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Abstract—We study timed systems in which some timing fea-
tures are unknown parameters. Parametric timed automata are
a classical formalism for such systems but for which most inter-
esting problems are undecidable. Lower-bound/upper-bound
parametric timed automata (L/U-PTAs) achieve decidability
for reachability properties by enforcing a separation of pa-
rameters used as upper bounds in the automaton constraints,
and those used as lower bounds.

We further study L/U-PTAs by considering liveness related
problems. We prove that: (1) the existence of at least one
parameter valuation for which there exists an infinite run
in the automaton is PSPACE-complete; (2) the existence of
a parameter valuation such that the system has a deadlock
is however undecidable; (3) the problem of the existence
of a valuation for which a run remains in a given set of
locations exhibits a very thin border between decidability and
undecidability.

Index Terms—L/U-PTA, EG-emptiness, deadlock-freeness, in-
finite run

1. Introduction

Following Lamport, properties of systems are often char-
acterized as safety properties (“something bad will never
happen”) and liveness properties (“something good will
eventually happen”) [Lam77]. Safety generally reduces to
reachability, while liveness is more complex. The “good”
behavior may not be reached for two main reasons: either
there is a deadlock, a state in which the system cannot
evolve anymore, or there is a livelock, an infinite path never
reaching the “good” behavior. Both situations are captured
by the CTL operator EG [CES86].

We study here those behaviors in the context of para-
metric timed systems, in which some timing features (e. g.,
the duration of a task, a transmission delay in a network, the
delay to trigger a watchdog, etc.) are not known and replaced
by symbolic constants, called parameters. The objective of
verification on such partially defined systems, is then to
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synthesize the possible valuations of parameters such that
some properties are satisfied.

Related Works. Parametric timed automata
(PTAs) [AHV93] have been introduced to deal with
such parametric timed systems. They consist in finite
automata equipped with real-valued clocks that can be
compared with constants or parameters in constraints
restricting if and when the edges can be taken.

The simple problem of whether there exists a valua-
tion for each parameter such that some control location is
reachable in the timed automaton obtained by replacing the
parameters with those valuations (also called EF-emptiness)
is undecidable for PTAs for both integer- and rational-valued
parameters. Several alternative proofs refine this result in
terms of the number of parameters, number of clocks com-
pared to parameters, types of constraints, etc. (see, e. g.,
[Mil00], [Doy07], [BO14], [BBLS15], [And15]).

In order to overcome these disappointing results, lower-
bound/upper-bound parametric timed automata (L/U-PTAs)
are introduced as a subclass of PTAs where each parameter
either always appears as an upper bound when compared
to a clock, or always as a lower bound [HRSV02]. The
EF-emptiness problem, and also the EF-universality prob-
lem (“Can we reach a given location, regardless of what
valuations we give to the parameters?”) are decidable for
L/U-PTAs.

In [BL09], infinite acceptance properties are considered:
the emptiness and the universality of the valuation set for
which a given location is infinitely often traversed are de-
cidable for integer-valued parameters.

In [JLR15], it is shown that the AF-emptiness problem
(“Is the set of parameter valuations such that the system
reaches a given location for all runs, empty?”) is undecidable
for L/U-PTAs with integer- and rational-valued parameters.

Contribution. With the notable exception of [JLR15], and
to some extent of [BL09] which addresses the existence of
cycles, all the works cited above focus on safety properties,
through the basic problem of reachability. This is maybe not
so surprising given that most results related to this simpler
problem are already negative.

We nonetheless address here the problem of liveness
in PTAs, and more precisely, with the negative result
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of [JLR15] on AF-emptiness in mind, we start from L/U-
PTAs with rational-valued parameters and further refine both
the model and the properties. We prove that:

1) deciding the existence of at least one parameter val-
uation for which there exists an infinite run (discrete
cycle) in the automaton is PSPACE-complete;

2) deciding the existence of a parameter valuation such
that the system has a deadlock is however undecidable;

3) the problem of the existence of a valuation for which
a run remains in a given set of locations exhibits a
very thin border between decidability and undecid-
ability: while this problem is decidable for L/U-PTAs
with a bounded parameter domain with closed bounds,
it becomes undecidable if either the assumption of
boundedness or of closed bounds is lifted. This result
confirms that L/U-PTAs stand at the border between
decidability and undecidability.

Differently from [BL09], we use here no accepting
locations. In addition, our parameters are not restricted to
be integer-valued, and can be rational-valued.

Outline. We recall the necessary preliminaries in Section 2.
We then consider the problem of the existence of at least
one parameter valuation for which there exists an infinite run
(Section 3), for which there exists a deadlock (Section 4),
and for which a run remains in a given set of locations (Sec-
tion 5). We conclude and discuss perspectives in Section 6.

2. Preliminaries

2.1. Clocks, Parameters and Constraints

Let N, Z, Q+ and R+ denote the sets of non-negative
integers, integers, non-negative rational numbers and non-
negative real numbers respectively. Let I(N) denote the
set of non-necessarily closed intervals on N, i. e., the set
of intervals of the form [a, b], (a, b], [a, b) or (a, b) where
a, b ∈ N and a ≤ b.

Throughout this paper, we assume a set X =
{x1, . . . , xH} of clocks, i. e., real-valued variables that
evolve at the same rate. A clock valuation is a function
w : X → R+. We identify a clock valuation w with the
point (w(x1), . . . , w(xH)) of RH

+ . We write ~0 for the clock
valuation that assigns 0 to all clocks. Given d ∈ R+, w+ d
denotes the valuation such that (w + d)(x) = w(x) + d,
for all x ∈ X . Given R ⊆ X , we define the reset of a
valuation w, denoted by [w]R, as follows: [w]R(x) = 0 if
x ∈ R, and [w]R(x) = w(x) otherwise.

We assume a set P = {p1, . . . , pM} of parameters, i. e.,
unknown constants. A parameter valuation v is a function
v : P → Q+. We identify a valuation v with the point
(v(p1), . . . , v(pM )) of QM

+ . An integer parameter valuation
is a valuation v such that ∀p ∈ P, v(p) ∈ N.

In the following, we assume ./ ∈ {<,≤,≥, >}.
Throughout this paper, lt denotes a linear term over X∪P of
the form

∑
1≤i≤H αixi +

∑
1≤j≤M βjpj + d, with xi ∈ X ,

pj ∈ P , and αi, βj , d ∈ Z. A constraint C (i. e., a con-
vex polyhedron) over X ∪ P is a conjunction of inequal-
ities of the form lt ./ 0. Given a parameter valuation v,
v(C) denotes the constraint over X obtained by replacing
each parameter p in C with v(p). Likewise, given a clock
valuation w, w(v(C)) denotes the expression obtained by
replacing each clock x in v(C) with w(x). We say that v
satisfies C, denoted by v |= C, if the set of clock valuations
satisfying v(C) is nonempty. Given a parameter valuation
v and a clock valuation w, we denote by w|v the valuation
over X ∪ P such that for all clocks x, w|v(x) = w(x) and
for all parameters p, w|v(p) = v(p). We use the notation
w|v |= C to indicate that w(v(C)) evaluates to true. We say
that C is satisfiable if ∃w, v s.t. w|v |= C.

A guard g is a constraint over X∪P defined by inequal-
ities of the form x ./

∑
1≤j≤M βjpj + d, with βj ∈ {0, 1}

and d ∈ Z.

2.2. Parametric Timed Automata

2.2.1. Syntax.

Definition 1. A PTA A is a tuple A = (Σ, L, l0, X, P, I, E),
where: i) Σ is a finite set of actions, ii) L is a finite set of
locations, iii) l0 ∈ L is the initial location, iv) X is a finite
set of clocks, v) P is a finite set of parameters, vi) I is the
invariant, assigning to every l ∈ L a guard I(l), vii) E is
a finite set of edges e = (l, g, σ,R, l′) where l, l′ ∈ L are
the source and target locations, σ ∈ Σ, R ⊆ X is a set of
clocks to be reset, and g is a guard.

Given a parameter valuation v, we denote by v(A) the
non-parametric timed automaton where all occurrences of a
parameter pi have been replaced by v(pi).

2.2.2. Concrete Semantics.

Definition 2 (Concrete semantics of a TA). Given a PTA
A = (Σ, L, l0, X, P, I, E), and a parameter valuation v, the
concrete semantics of v(A) is given by the timed transition
system (S, s0,→), with
• S = {(l, w) ∈ L× RH

+ | w|v |= I(l)} , s0 = (l0,~0)
• → consists of the discrete and (continuous) delay tran-

sition relations:
– discrete transitions: (l, w)

e→ (l′, w′), if
(l, w), (l′, w′) ∈ S, there exists e = (l, g, σ,R, l′) ∈
E, w′ = [w]R, and w|v |= g.

– delay transitions: (l, w)
d→ (l, w + d), with d ∈ R+,

if ∀d′ ∈ [0, d], (l, w + d′) ∈ S.

Moreover we write (l, w)
e7→ (l′, w′) for a combination

of a delay and discrete transition where ((l, w), e, (l′, w′)) ∈
7→ if ∃d,w′′ : (l, w)

d→ (l, w′′)
e→ (l′, w′).

Given a TA v(A) with concrete semantics (S, s0,→),
we refer to the states of S as the concrete states of v(A).
A (concrete) run of v(A) is a possibly infinite alternating
sequence of concrete states of v(A) and edges starting from
the initial concrete state s0 of the form s0

e07→ s1
e17→ · · · em−17→

sm
em7→ · · · , such that for all i = 0, 1, . . . , ei ∈ E, and
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(si, ei, si+1) ∈ 7→. Given a state s = (l, w), we say that s
is reachable (or that v(A) reaches s) if s belongs to a run
of v(A). By extension, we say that l is reachable in v(A),
if there exists a state (l, w) that is reachable. Given a set
of locations T ⊆ L (T stands for “target”), we say that
a run stays in T if all of its states (l, w) are such that
l ∈ T . A maximal run is a run that is either infinite (i. e.,
contains an infinite number of discrete transitions), or that
cannot be extended by a discrete transition. A maximal run
is deadlocked if it is finite, i. e., contains a finite number
of discrete transitions. By extension, we say that a TA is
deadlocked if it contains at least one deadlocked run.

2.3. Subclasses of PTAs

Let us recall L/U-PTAs [HRSV02], [BL09].

Definition 3 (L/U-PTA). An L/U-PTA is a PTA where the set
of parameters is partitioned into lower-bound parameters
and upper-bound parameters, where an upper-bound (resp.
lower-bound) parameter pi is such that, for every guard
or invariant constraint x ./

∑
1≤j≤M βjpj + d, we have:

βi = 1 implies ./ ∈ {≤, <} (resp. ./ ∈ {≥, >}).

Recall from our definition of guard that βi can only be
0 or 1.

L/U-PTAs enjoy a well-known monotonicity property
recalled in the following lemma (that corresponds to a re-
formulation of [HRSV02, Prop 4.2]), stating that increasing
upper-bound parameters or decreasing lower-bound param-
eters can only add behaviors.

Lemma 1. Let A be an L/U-PTA and v be a parameter val-
uation. Let v′ be a valuation such that for each upper-bound
parameter p+, v′(p+) ≥ v(p+) and for each lower-bound
parameter p−, v′(p−) ≤ v(p−). Then any run of v(A) is a
run of v′(A).

In this paper, we will also consider bounded PTAs, i. e.,
PTAs with a bounded parameter domain that assigns to each
parameter an infimum and a supremum, both integers.

Definition 4 (bounded PTA). A bounded PTA is A|bounds ,
where A is a PTA, and bounds : P → I(N) assigns to each
parameter p an interval [inf, sup], (inf, sup], [inf, sup), or
(inf, sup), with inf, sup ∈ N. We use inf(p, bounds) and
sup(p, bounds) to denote the infimum and the supremum
of p, respectively. (Note that we rule out∞ as a supremum.)

We say that a bounded PTA is a closed bounded PTA if,
for each parameter p, its ranging interval bounds(p) is of
the form [inf, sup]; otherwise it is an open bounded PTA.

We define similarly bounded L/U-PTAs.

Whereas bounded PTAs are naturally a subclass of PTAs,
we showed in [ALR16b] that bounded L/U-PTAs are incom-
parable with L/U-PTAs: a consequence is that undecidabil-
ity results for bounded L/U-PTAs cannot be automatically
extended to L/U-PTAs; conversely, decidability results for
L/U-PTAs cannot be automatically extended to bounded
L/U-PTAs.

2.4. Decision Problems

Let P be a given a class of decision problems.

P-emptiness problem:
INPUT: A PTA A and an instance φ of P
PROBLEM: Is the set of parameter valuations v such that
v(A) satisfies φ empty?

In this paper, we mainly focus on the following three
decision problems:
• deadlock-existence: given a TA v(A), is there at least

one run of v(A) that is deadlocked, i. e., has no discrete
successor (possibly after some delay)?

• cycle-existence: given a TA v(A), is there at least
one run of v(A) with an infinite number of discrete
transitions?

• EG1: given a TA v(A) and a subset T of its locations,
is there at least one maximal run of v(A) along which
the location always remain in T ?

For example, given a PTA A, deadlock-existence-
emptiness asks: “is the set of parameters valuations v such
that at least one run of v(A) is deadlocked, i. e., has no
discrete successor (possibly after some delay), empty?”.
In the following, we often abbreviate deadlock-existence-
emptiness and cycle-existence-emptiness as ED-emptiness
and EC-emptiness, respectively.

Note that ED-emptiness is equivalent to AC-universality,
where AC-universality asks whether all parameter valuations
are such that all maximal runs contain an infinite number of
discrete transitions. Conversely, EC-emptiness is equivalent
to AD-universality (for all valuations, all runs are dead-
locked). In addition, EG-emptiness is also close to both
former problems: EG is true if there exists either a finite
run with a deadlock staying in T , or an infinite run staying
in T .

3. Cycle-Existence-Emptiness

Theorem 1. The cycle-existence-emptiness problem is de-
cidable for closed bounded L/U-PTAs.

Proof. Recall that, thanks to the monotonicity property of
L/U-PTAs (recalled in Lemma 1), any run possible for
a valuation v of the parameters is also possible for any
valuation of the parameters for which the upper-bound (resp.
lower-bound) parameters are larger (resp. smaller) than or
equal to that of v.

Let A|bounds be a closed bounded L/U-PTA. Let vinf/sup
be the valuation such that, for each lower-bound parame-
ter p−, vinf/sup(p−) = inf(p−, bounds) and, for each upper-
bound parameter p+, vinf/sup(p+) = sup(p+, bounds).

1) If vinf/sup(A) contains an infinite run (which can be
checked in PSPACE [AD94], and can be performed
efficiently in practice using, e. g., the zone graph), then
since A|bounds is closed, vinf/sup belongs to bounds ,

1. The name “EG” comes from the CTL syntax, and is consistent with
EF and AF used in [JLR15].
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and hence the set of parameter valuations that yield an
infinite run is not empty.

2) On the contrary, if vinf/sup(A) contains no infinite
run, then from the monotonicity property of L/U-PTAs
(Lemma 1), no other valuation in bounds gives a TA
with an infinite run, as such a TA could only contain
less runs. Hence the set of parameter valuations that
yield an infinite run is empty.

The above result cannot be used as such for non-bounded
L/U-PTAs as a cycle that exists for an infinite parameter
valuation may not exist for any finite parameter valuation:
consider the L/U-PTA in Figure 1b. This L/U-PTA has an
infinite run for p = ∞, but for any parameter valuation
(i. e., different from ∞), the number of self-loops in l0
is bounded by p, and hence finite. However, extending to
rational-valued parameters a result from [BL09], we can still
prove decidability.

Lemma 2. Given an L/U-PTA A and a subset of its lo-
cations T , the problem of the existence of at least one
parameter valuation v such that v(A) has a run passing
infinitely often through T is PSPACE-complete.

Proof. Let us prove that there exists a rational-valued valua-
tion satisfying the property iff there exists an integer-valued
valuation doing so.
⇐ Considering an integer valuation is also a rational-

valued valuation, the result trivially holds.
⇒ Assume there exists a rational-valued parameter valua-

tion v for which v(A) contains an infinite run passing
infinitely often through locations of T . Let v′ be the
integer parameter valuation obtained from v as follows:

v′(p) =


v(p) if v(p) ∈ N
dv(p)e if p is an upper-bound parameter
bv(p)c if p is a lower-bound parameter

From the monotonicity property of L/U-PTAs
(Lemma 1), if v(A) yields an infinite run passing
infinitely often through locations of T , then v′(A)
does too.

Observe that this is not true for general PTAs: in Figure 1a,
there is an infinite run passing infinitely often through l0 iff
0 < p < 1; therefore, there exist rational-valued valuations
satisfying the property, but no integer-valued valuation.

Now, in [BL09, Theorem 8], it is proved that the problem
of the emptiness of the set of integer parameter valuations
for which there exists an infinite run passing infinitely often
through T is PSPACE-complete. This concludes the proof.

Theorem 2. The cycle-existence-emptiness problem is de-
cidable and PSPACE-complete for L/U-PTAs.

Proof. Let A be an L/U-PTA. The set of parameter val-
uations for which A has an infinite run is empty iff the
set of parameter valuations for which A has an infinite
run passing infinitely often through L (where L denotes

all locations of A) is empty. Hence we can directly apply
our intermediate Lemma 2 to conclude that this problem is
decidable and PSPACE-complete.

Without surprise (with the rule of thumb that any non-
trivial problem for PTAs is undecidable), this problem be-
comes undecidable for general PTAs, even when bounded.
We do include the full proof of this result as it will be used
later on to prove more subtle results.

Theorem 3. The cycle-existence-emptiness problem is unde-
cidable for (bounded) PTAs with 3 clocks and 1 parameter.

Proof. We reduce from the boundedness problem of a 2-
counter machine, which is undecidable [Min67].

Recall that a deterministic 2-counter machine has two
non-negative counters C1 and C2, a finite number of states
and a finite number of transitions, which can be of the form:
• when in state qi, increment Ck and go to qj ;
• when in state qi, if Ck = 0 then go to qk, otherwise

go to qj .
The machine starts in state q0 with the counters set

to 0; by definition, it halts when it reaches a specific
state called qhalt. The boundedness problem for 2-counter
machines asks whether, along the unique maximal run, the
value of the counters remains smaller than some bound, and
is undecidable [Min67].

Given such a machineM, we encode it as a PTAA(M);
our encoding is inspired by an existing encoding of a 2-
counter machine, used to (re)prove the undecidability of the
EF-emptiness problem for bounded PTAs and then further
related results, and found in [ALR16a]. However, we had
to modify it in two directions:i) we adapt the construction
so that it fits the cycle-existence-problem instead of the
EF-emptiness problem; and ii) we change the model of
the 2-counter machine (in [ALR16a], we used the model
of [AHV93], where the machine has three instructions:
increment, decrement, zero-test (and block if unsatisfied)).
This second part required us to modify the gadgets.

Let us now describe this encoding in details, as we will
modify it in the subsequent proofs.

Each state qi of the machine is encoded as a location of
the automaton, which we call qi. The counters are encoded
using clocks x, y and z and one parameter a, with the
following relations with the values c1 and c2 of counters C1

and C2: when x = 0, we have y = 1−ac1 and z = 1−ac2.
All three clocks are parametric, i. e., are compared with a
in some guard or invariant of the encoding. We will see that
a is a rational-valued bounded parameter, typically in [0, 1]
(although not bounding a has no impact on the proof).

We initialize the clocks with the gadget in Figure 2a (that
also blocks the case where a = 0). Note that, throughout the
paper, we highlight in thick green the locations of the PTA
corresponding to a state of the 2CM (in contrast with other
locations added in the encoding to maintain the matching
between the clock values and the counter values). Since all
clocks are initially 0, in Figure 2a clearly, when in q0 with
x = 0, we have y = z = 1, which indeed corresponds to
counter values 0.
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l0

0 < x < 1
∧ x = p

(a)

l0

y ≤ p
l1

x = 1
x := 0 x = 0 ∧ y ≤ p

(b)

l0

x = 1 ∧ y ≤ p
x := 0

(c)

l0

x ≥ p ∧ y ≤ 1
x := 0

(d)

Figure 1: Examples of PTA (a) and L/U-PTAs (b–d)

l0 l1 q0

x = a ∧ x > 0
x = 1
x := 0

(a) Initial gadget

qi li1

li2

l′i2

li3 qj
x = 0

z = 1
z := 0

y = a+ 1
y := 0

y = a+ 1
y := 0

z = 1
z := 0

x = 1
x := 0

(b) Increment gadget (C1)

qi li1

li2

l′i2

li3 qj

qk

x = 0

y < 1

z = a+ 1
z := 0

y = 1
y := 0

y = 1
y := 0

z = a+ 1
z := 0

x = a+ 1
x := 0

x = 0
y = 1

(c) 0-test and decrement gadget (C1)

Figure 2: EC-emptiness: gadgets

We now present the gadget encoding the increment
instruction of C1 in Figure 2b. The transition from qi to li1
only serves to clearly indicate the entry in the increment
gadget and is done in 0 time unit. Since we use only
equalities, there are really only two paths that go through
the gadget: one going through li2 and one through l′i2. Let
us begin with the former. We start from some encoding
configuration: x = 0, y = 1 − ac1 and z = 1 − ac2 in
qi (and therefore the same in li1). We can enter li2 (after
elapsing enough time) if 1− ac2 ≤ 1, i. e., ac2 ≥ 0, which
implies that a ≥ 0, and when entering li2 we have x = ac2,
y = 1 − ac1 + ac2 and z = 0. Then we can enter li3
if 1 − ac1 + ac2 ≤ 1 + a, i. e., a(c1 + 1) ≥ ac2. When
entering li3, we then have x = a(c1 + 1), y = 0 and
z = a(c1+1)−ac2. Finally, we can go to qj if a(c1+1) ≤ 1
and when entering qj we have x = 0, y = 1 − a(c1 + 1)
and z = 1− ac2, as expected.

We now examine the second path. We can enter l′i2 if
1− ac1 ≤ a+ 1, i. e., a(c1 + 1) ≥ 0, and when entering l′i2
we have x = a(c1 + 1), y = 0 and z = 1− ac2 + a(c1 + 1).
Then we can go to li3 if 1 − ac2 + a(c1 + 1) ≤ 1 + a,
i. e., a(c1 + 1) ≤ ac2. When entering li3, we then have
x = ac2, y = ac2 − a(c1 + 1) and z = 0. Finally, we can
go to qj if ac2 ≤ 1 and when entering qj we have x = 0,
y = 1− a(c1 + 1) and z = 1− ac2, as expected.

Remark that exactly one path can be taken depending
on the respective order of c1 + 1 and c2, except when both
are equal or a = 0, in which cases both paths lead to the
same configuration anyway (and the case a = 0 is excluded
by Figure 2a anyway).

Decrement is done similarly by replacing guards y =
a+1 with y = 1, and guards x = 1 and z = 1 with x = a+1
and z = a + 1, respectively, as shown in Figure 2c. In
addition, the 0-test is obtained by simply adding a transition
from qi to qk with guard y = 1 ∧ x = 0, which ensures

that C1 = 0. Similarly, the guard from qi to li1 ensures that
decrement is done only when the counter is not null.

All those gadgets also work for C2 by swapping y and z.
The actions associated with the transitions do not matter;

we can assume a single action σ on all transitions (omitted
in all figures).

Finally, we add a self-loop (with no guard) on the
location qhalt (encoding the machine state qhalt), ensuring
that whenever qhalt is reachable then there exists an infinite
run in the PTA.

We now prove that the value of the counters remains
bounded iff there exists a parameter valuation v such that
v(A) yields an infinite run. First note that if a = 0 the
initial gadget cannot be passed, and there is no infinite run.
Assume a > 0. Consider two cases:

1) either the value of the counters is not bounded. Then,
for any parameter valuation, at some point during an
incrementation of, say, C1 we will have a(c1 + 1) > 1
when taking the transition from li2 to li3 and the PTA
will be blocked. Therefore, there exists no parameter
valuation for which there exists an infinite run.

2) or the value of the counters remains bounded. Let c be
their maximal value. Let us consider two subcases:
a) either the machine reaches qhalt: in that case, if
c = 0 and 0 < a ≤ 1 or c > 0 and ca < 1, then
the PTA valuated with such parameter valuations
correctly simulates the machine, yielding a (unique)
run reaching location qhalt. From there, this run is
infinite thanks to the self-loop on qhalt. The set of
such valuations for a is certainly non-empty: a = 1

2
belongs to it if c = 0 and a = 1

c does otherwise.
b) or the machine does not halt. Then again, for a

sufficiently small parameter valuation (i. e., a < 1 if
c = 0 and a ≤ 1

c otherwise), the machine is properly
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simulated, and since the machine does not halt, then
the run simulating the infinite execution is infinite
too. For other values of a, the machine will block at
some point in an increment gadget, because a is not
small enough and the guard to qj cannot be satisfied.

In both subcases, there exist parameter valuations for
which there exists an infinite run.

Hence the value of the counters remains bounded iff there
exists a parameter valuation v such that v(A) contains an
infinite run.

Remark 1. In this paper, we allow guards and invariants of
the form x ./

∑
1≤j≤M βjpj + d, which is more restrictive

than [BL09] (that allows parametric coefficients different
from 0 and 1, as well as diagonal constraints), but more
permissive than [AHV93], that only allows a syntax x ./ p.
In fact, most papers in the literature define their own syntax
(see [And15] for a survey). We can adapt our proof to fit in
the most restrictive syntax (x ./ p) as follows: transitions
with y = a+ 1 guards and y := 0 reset can be equivalently
replaced by one transition with a “y = 1” guard and a
reset of some additional clock w, followed by a transition
with a w = a guard and the y := 0 reset (and similarly
for x and z is the decrement gadget). This also allows the
proof to work without complex parametric expressions in
guards, using three additional clocks (we conjecture that a
smarter encoding can be exhibited to factor these additional
clocks, so as to use a single additional clock). A similar
modification can be applied to all subsequent undecidability
proofs.

Finally note that the EC-emptiness problem for the class
of open bounded L/U-PTAs (that does not fit in Theorems 1
and 2) remains an open problem. We conjecture that this
is decidable using techniques derived from the robustness
results of [San11] but the adaptation appears to require
rather lengthy developments, with techniques quite different
from those presented here, and is thus left to future work.

4. Deadlock-Existence-Emptiness

Theorem 4. The deadlock-existence-emptiness problem is
undecidable for closed bounded L/U-PTAs, with 3 clocks
and 2 parameters.

Proof. We will use a reduction from the halting problem of
a 2-counter machine. Let us consider the encoding used in
the proof of Theorem 3, that we transform into an L/U-PTA
by replacing any comparison of a clock with a (say x = a)
into x ≤ a+ ∧ x ≥ a−, where a− (resp. a+) is a lower-
bound (resp. upper-bound) parameter. The crux of the proof
is in the original enforcement of constraints in the encoding
(in particular with location q′halt) such that the deadlock
property ensures that a− = a+.

We give the modified increment gadget in Figure 3 (the
decrement gadget is modified in a similar fashion). We
replace the initial gadget (Figure 2a) with the new one in
Figure 4a. Before initializing the values of the counters, this
gadget first ensures that a− ≤ a+.

qi li1

li2

l′i2

li3 qj
x = 0

z = 1
z := 0

a− + 1 ≤ y ≤ a+ + 1
y := 0

a− + 1 ≤ y ≤ a+ + 1
y := 0

z = 1
z := 0

x = 1
x := 0

Figure 3: ED-emptiness for bounded L/U-PTAs: increment
gadget

l0 l1 q0

a− ≤ x ≤ a+
x, y, z := 0

x = 1
x := 0

(a) Initial gadget

qhalt q′halt

a− ≤ x < a+

a− ≤ x ∧ x = 0

(b) Final gadget

Figure 4: ED-emptiness for bounded L/U-PTAs: initial and
final gadgets

We also add a new location q′halt reachable from qhalt
as shown in the final gadget in Figure 4b. Finally, we add an
unguarded transition (i. e., a transition the guard of which is
true) from any location of the encoding (including that of the
initial gadget, but excluding qhalt) to location q′halt. That is,
it is always possible to reach q′halt from any location without
condition, except from qhalt. From that particular location,
q′halt is reachable if and only if a− < a+ or a− = 0.

We assume the following bounds for the parameters:
a−, a+ ∈ [0, 1].

Let us show that there exists a parameter valuation for
which the system contains at least one deadlock iff the 2-
counter machine halts, which is undecidable [Min67]. Let
us reason by cases on the valuations of a− and a+.

1) If a− > a+, the initial gadget cannot be passed, but
thanks to the unguarded transitions to q′halt, all runs
eventually end in q′halt, from which the absence of
deadlock is guaranteed by the unguarded self-loop.

2) If a− < a+, the machine may not be properly simu-
lated because some transitions do not occur at the right
time and some run could reach qhalt while the machine
does not halt. Let us consider a run in the TA obtained
with such a parameter valuation.
a) either this run is infinite and remains in the ma-

chine (e. g., it loops infinitely through the increment,
decrement and 0-test gadgets of our encoding). Then
there is no deadlock.

b) or this run would block in a gadget; in that case,
thanks to the unguarded transitions to q′halt, this run
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can go to q′halt, from which it is deadlock-free.
c) or this run reaches qhalt (recall that the value of x

is necessarily 0 when entering qhalt); from there,
thanks to the upper transition in Figure 4b, it can
reach q′halt, from which it is again deadlock-free.

3) If a− = a+ = 0, the machine may again not be
properly simulated: again we could reach qhalt while
the machine does not halt. The situation is similar to the
previous case (a− < a+) except that in qhalt a run has
to take the lower transition in Figure 4b to reach q′halt,
from which it is again deadlock-free.

4) If a− = a+ > 0:

a) Either the machine does not halt:

i) . . . and the counters remain bounded: for some
parameter valuations small enough to encode the
value of the counters (typically a− = a+ ≤ 1

c ,
where c is the maximum value of both C1 and
C2) then the PTA correctly simulates the infi-
nite execution of the machine, and the system
is deadlock-free. (Note that such valuations can
also lead to q′halt anytime, but this is harmless
since this location guarantees the absence of
deadlocks.) For other valuations, at some point
we have a−c1 > 1; more specifically, there is an
incrementation of C1 such that a−c1 ≤ 1 and
a−(c1 + 1) > 1. Hence, the run cannot continue
in the encoding, but can reach q′halt, from where
the run is non-blocking.

ii) . . . and the counters are unbounded. Then what-
ever the value of a− > 0, at some point we have
a−c1 > 1. Then, when executing the correspond-
ing increment gadget, q′halt can be reached from
li2, from where the run is non-blocking.

Hence if the machine does not halt, the system is
deadlock-free for all parameter valuations.

b) Or the machine halts. In this case, if c is the
maximum value of both C1 and C2 over the (neces-
sarily finite) halting execution of the machine, and if
c > 0, then for valuations such that a− = a+ ≤ 1

c ,
then there exists one run that correctly simulates the
machine (beside plenty of runs that will go to q′halt
due to the unguarded transitions from all locations
except qhalt); this run that correctly simulates the
machine eventually reaches qhalt. From qhalt, for
such valuations, the system is deadlocked: indeed,
the transitions from qhalt to q′halt can only be taken
if a− < a+ or a− = 0. And there is no unguarded
transition from qhalt to q′halt, which is crucial for
the correctness of our encoding. The set of such
valuations for which there exists a run that cor-
rectly simulates the machine is certainly non-empty:
a− = a+ = 1

c belongs to it (if c = 0 then we
choose, e. g., a− = a+ = 1

2 ). Hence, if the 2-counter
machine halts, there exist parameter valuations for
which a run has no discrete successor, and hence
the system is not deadlock-free.

Hence the 2-counter machine halts iff the set of valua-
tions for which the automaton has at least one deadlock is
not empty.

Corollary 1. The deadlock-existence-emptiness problem
is undecidable for open bounded L/U-PTAs, L/U-PTAs,
bounded PTAs and PTAs, with 3 clocks and 2 parameters.

Proof. Let us consider each formalism:
open bounded L/U-PTAs In the above construction, we

can assume, e. g., a− ∈ (0, 1], which does not impact
the proof.

L/U-PTAs The bounds on the parameters are not required
in the above construction: for valuations larger than 1
(that necessarily do not simulate correctly the machine),
a gadget may block, therefore leading to q′halt, from
which the system is deadlock-free, hence without im-
pacting the spirit of the proof.

bounded PTAs From the fact that a bounded L/U-PTA is
a bounded PTA.

PTAs From the fact that an L/U-PTA is a PTA.
Observe that the number of parameters can be reduced to 1
for (possibly bounded) PTAs by merging a− and a+ into a
single parameter a.

5. EG-Emptiness

In this section, we prove that the EG-emptiness problem
is decidable for closed bounded L/U-PTAs, and that lifting
either closedness or boundedness leads to undecidability.

Theorem 5. The EG-emptiness problem is decidable for
closed bounded L/U-PTAs.

We will use Lemma 1 to deal with infinite paths but
it is of no use for deadlocks: by decreasing lower-bounds
or increasing upper-bounds, some deadlocks can actually be
removed. We will therefore also use the symbolic semantics
of PTAs (see, e. g., [JLR15]), which we need first to recall.

We define the time elapsing of a constraint C, denoted
by C↗, as the constraint over X and P obtained from C
by delaying all clocks by an arbitrary amount of time. That
is, C↗ = {w′|v | w |= v(C) ∧ ∀x ∈ X : w′(x) = w(x) +
d, d ∈ R+}. Dually, we define the past of C, denoted by
C↙, as the constraint over X and P obtained from C by
letting time pass backward by an arbitrary amount of time.
That is, C↙ = {w′|v | w |= v(C) ∧ ∀x ∈ X : w′(x) +
d = w(x), d ∈ R+}. Given R ⊆ X , we define the reset
of C, denoted by [C]R, as the constraint obtained from C
by resetting the clocks in R, and keeping the other clocks
unchanged. We denote by C↓P the projection of C onto P ,
i. e., obtained by eliminating the clock variables (e. g., using
Fourier-Motzkin).

The (sets of clock valuations satisfying the) constraints
generated by PTA can be represented by subsets of R|X|+
with a special form called parametric zone [HRSV02]. A
parametric zone is a convex polyhedron over X∪P in which
all constraints on variables are of the form x ./ plt (para-
metric rectangular constraints), or xi−xj ./ plt (parametric
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diagonal constraints), where xi ∈ X , xj ∈ X and plt is a
parametric linear term over P , i. e., a linear term without
clocks (αi = 0 for all i).

A symbolic state is a pair s = (l, C) where l ∈ L is a
location, and C its associated parametric zone. The initial
symbolic state of A is s0 =

(
l0, ({~0} ∧ I(l0))↗ ∧ I(l0)

)
.

The symbolic semantics relies on the Succ operation.
Given a symbolic state s = (l, C) and an edge e =
(l, g, σ,R, l′), Succ(s, e) = (l′, C ′), with C ′ =

(
[(C ∧

g)]R ∧ I(l′)
)↗ ∧ I(l′). The Succ operation is effectively

computable, using polyhedral operations: note that the suc-
cessor of a parametric zone C is a parametric zone (see e. g.,
[JLR15]).

A symbolic run of a PTA is an alternating sequence of
symbolic states and edges starting from the initial symbolic
state, of the form s0

e0⇒ s1
e1⇒ · · · em−1⇒ sm, such that for all

i = 0, . . . ,m− 1, we have ei ∈ E, and si+1 = Succ(si, ei).
In the following, we simply refer to symbolic states belong-
ing to a run of A as symbolic states of A.

We can now come back to the proof of Theorem 5.

Proof. Let A|bounds be a closed bounded L/U-PTA and
T be a subset of its locations. Since A is closed and
bounded, for each parameter p, bounds(p) is a closed inter-
val [m−(p),m+(p)].

The basic monotonicity property of L/U-PTAs
(Lemma 1) ensures that the TA vinf/sup(A), where vinf/sup
is obtained by valuating lower-bound parameters p− by
m−(p) and upper-bound parameters p+ by m+(p), includes
all the runs that could be produced with other parameter
valuations. Consequently, if there is an infinite path for
some valuation, there is one for vinf/sup (note that, as
emphasized above, this is not true for deadlocks).

In vinf/sup(A), it is decidable to find an infinite path
staying in T , or conclude that none exist: this can be
encoded into the CTL formula EG(T ∧XG), to be verified
on the (finite) region graph of A [AD94]. Since the region
equivalence is a time-abstract bisimulation [TY01], this
means for A “there exists a path that remains in T and
in which every state has a discrete successor (possibly after
letting some time elapse) in T ”. That path therefore has an
infinite number of discrete actions. If we do find such a
path, we can then terminate by answering yes to the EG-
emptiness problem. If we do not, then in vinf/sup(A), all
paths staying in T are finite. If we keep only discrete actions
and locations, which are in finite number, the resulting paths
therefore form a finite tree. Let us recall again that, thanks
to Lemma 1, all the discrete paths that stay in T and can be
obtained with any parameter valuation, belong to that tree.

We can now explicitly compute the symbolic states
(following the symbolic semantics recalled above) for all
the paths in the finite tree (not only those that are maximal).
Recall that each symbolic state s is a pair (l, C), where l is a
location and C a convex polyhedron representing all param-
eter valuations and clock valuations that can be reached by
the given discrete path. In each of these polyhedra, we can
explicitly check for the existence of a deadlock: i) remove
all parts that are in the past of the guard of an outgoing

transition in A (using operation C↙), and that would satisfy
the target location invariant; ii) test for emptiness.

If the result is not empty then there exists a point in
the tested set which can be decomposed into a parameter
valuation and clock valuation such that, by any time elapsing
from the clock valuation, none of the guards can become
true. We therefore have a deadlock. If the result is empty,
by the same reasoning, we can take a transition (possibly
by first letting some time elapse) from all states of C, so
none of them are deadlocked. Note that both operations can
be performed using classical polyhedral operations.

If we find a deadlock, then we can terminate and an-
swer yes to the EG-emptiness problem. Otherwise, we can
terminate and answer no, because we have checked all
the potential discrete paths staying in T for any parameter
valuation.

Note that this proof fails when the L/U-PTA is not
bounded or closed. In particular, the closedness plays a
key role in the sense that we are able to test the val-
uation vinf/sup. Consider first the L/U-PTA in Figure 1c
made of a single location and a single loop with guard
x = 1∧ y ≤ p and a reset of x, where x, y are clocks and p
a parameter. This is clearly an L/U-PTA. As p grows, there
are more and more discrete behaviors, but there is no cycle
for any parameter valuation. In [BL09], the authors provide
a finite upper bound NA for the upper-bound parameters
such that if there exists a valuation such that the valuated
L/U-PTA has an accepting run, then the valuation giving 0 to
lower bound parameters and NA to upper-bound parameters
also ensures the existence of an accepting run. That bound
used in this example would indeed prove the non-existence
of a cycle for any parameter value, but it does not in turn
allow us to derive a finite tree containing all the discrete
behaviors, for any possible parameter value (a larger bound
would still give more runs).

Similarly, now consider the L/U-PTA in Figure 1d. If 0 is
excluded from the domain of p, we have a behavior similar
to the previous example: as p gets closer and closer to 0,
we have more and more discrete behaviors. And even if we
could derive a lower bound à la [BL09] ensuring the non-
existence of a cycle here, it would not give a finite tree of
all the possible discrete behaviors, for any parameter value.

We can actually exhibit a very thin border between
decidability and undecidability of L/U-PTAs by proving
that, given a bounded L/U-PTA A|bounds with a single
open bound in bounds or an unbounded L/U-PTA, the EG-
emptiness problem becomes undecidable.

Theorem 6. The EG-emptiness problem is undecidable for
open bounded L/U-PTAs, with 4 clocks and 4 parameters.

Proof. We will use a reduction from the halting problem of
a 2-counter machine.

Let us consider the encoding used in the proof of The-
orem 4, to which we will perform several modifications.

First, we force the 2-counter machine to execute in a
constant 1-time unit duration as follows:
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qi li1

li2

l′i2

li3 qj
x = 0

b− ≤ z ≤ b+
z := 0

a− + b− ≤ y
y := 0

a− + b− ≤ y
y := 0

b− ≤ z ≤ b+
z := 0

b− ≤ x ≤ b+
x := 0

Figure 5: EG-emptiness for bounded L/U-PTAs: increment
gadget

1) We replace any occurrence of “1” in the encoding with
a parameter, either b− or b+ (depending on whether
the occurrence of 1 occurs as a lower-bound or an
upper-bound); hence the duration of an increment or
decrement gadget is now at least b− and at most b+.
We give the increment gadget in Figure 5. The en-
coding of a counter is as follows: when x = 0, then
y = b − ac1 and z = b − ac2, where a = a− = a+

and b = b− = b+ (for other parameter valuations, the
machine is not properly simulated). Typically, b will
need to be sufficiently small compared to 1 to encode
the required number of steps of the machine, and a will
need to be sufficiently small compared to b to encode
the maximum value of the counters. The decrement
part of the “test and decrement” instruction is modified
similarly.

2) We modify the zero-test part of the “test and decre-
ment” instruction so that its duration is within [b−, b+],
as in Figure 6: only the first transition encodes the
zero-test, the two other transitions forcing [b−, b+] time
units to elapse while keeping the values of the clocks
unchanged, assuming a− = a+ and b− = b+ (we
will see later that other valuations do not matter). Let
a = a− = a+ and b = b− = b+. The zero-test requires
here that b = y ∧ x = 0; in addition, z encodes
c2 as follows: z = b − ac2. After reaching li1 and
waiting enough time to take the transition to li2 (i. e., a
duration in ac2) we have: z = b and x = y = ac2.
After reaching li2 and waiting enough time to take
the transition to qj (i. e., a duration in b − ac2) we
have: z = b − ac2 and x = y = b. Resetting x gives
x = 0, y = b and z = b − ac2, which was the value
when performing the 0-test. So the value of the clocks
remains unchanged when b− = b+, and [b−, b+] time
units have elapsed in any case.

3) We add to any location in the entire system an invariant
w ≤ 1, where w is a fresh clock that is never reset
in the increment/decrement/zero-test gadgets. (These
invariants are omitted in Figure 5.)

Hence, the duration of any gadget is at least b− and therefore
for any valuation b− > 0 the number of operations the
machine can perform is finite due to the global invariant
w ≤ 1.

qi li1 li2 qk

b− ≤ y ≤ b+ ∧ x = 0
y := 0

b− ≤ z ≤ b+
z := 0

b− ≤ x ≤ b+
x := 0

Figure 6: EG-emptiness for bounded L/U-PTAs: zero-test
gadget

l0 l1 q0

a− ≤ x ≤ a+
x, y, z, w := 0

b− ≤ x ≤ b+
x,w := 0

Figure 7: EG-emptiness for bounded L/U-PTAs: initial gad-
get

Then, before starting the 2-counter machine encoding,
we add an initial gadget given in Figure 7. This gadget
constrains a− ≤ a+, b− ≤ b+, and is such that when
leaving the gadget then y, z ∈ [b− ≤ b+] while x,w are 0.
When b− = b+, this correctly encodes that the value of both
counters is 0.

Then, we add a new q′halt location (without any invari-
ant, i. e., not requiring w ≤ 1), with two transitions from
qhalt as depicted in Figure 8. We then add a transition (with
no guard) from any location of the encoding (except qhalt)
to q′halt. That is, for any increment gadget, if the value of
the parameters is not small enough to correctly simulate the
machine, then the system is not deadlocked, and can lead
instead to q′halt. (If the value is small enough, the system
can either lead to q′halt or continue in the 2-counter machine
encoding.) We also add a transition to q′halt (with no guard)
from all locations in the initial gadget in Figure 7.

We assume the following bounds for the parameters:
a−, a+, b+ ∈ [0, 1] and b− ∈ (0, 1].

Let us show that the 2-counter machine halts iff the set
of valuations satisfying EG(L \ {q′halt}) is not empty.

1) If a− > a+ or b− > b+, the initial gadget cannot be
passed, and thanks to the transitions to q′halt, all runs
eventually reach q′halt, hence EG(L\{q′halt}) does not
hold.

2) If a− < a+ and b− ≤ b+, then the machine may not be
correctly simulated: a given run will either reach qhalt,
in which case it will also reach q′halt (as the guard
from qhalt to q′halt does not forbid this run), or it will
loop in the machine until it eventually gets blocked
(since b− > 0 and because of the invariant w ≤ 1, for
any value of b−, the maximal number of steps is 1

b− );
when being blocked, it has no other option than going
to q′halt, thanks to the unguarded transitions from any

qhaltw ≤ 1 q′halt

a− ≤ x < a+

b− ≤ x < b+

Figure 8: EG-emptiness for bounded L/U-PTAs: final gadget
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location to q′halt. Hence if a− < a+, EG(L \ {q′halt})
does not hold.

3) If b− < b+ (and a− ≤ a+), again the machine may
not be correctly simulated, and following a similar
reasoning, EG(L \ {q′halt}) again does not hold.

4) If a− = a+ and b− = b+ > 0:
a) Either the machine does not halt: in this case, after

a maximum number of steps (typically 1
b− ), a gadget

will be blocked due to the invariant w ≤ 1, and the
run will end in q′halt. Hence if the 2-counter machine
does not halt, EG(L \ {q′halt}) does not hold.

b) Or the machine halts: in this case, if c is the maxi-
mum value of both C1 and C2 over the (necessarily
finite) halting execution of the machine, and if m is
the length of this execution, and if c > 0, then for
valuations such that a− = a+ ≤ b−

c and b− = b+ ≤
1
m , then there exists one run that correctly simulates
the machine (beside plenty of runs that will go to
q′halt due to the unguarded transitions); this run that
correctly simulates the machine eventually reaches
qhalt. From qhalt, for such valuations, the system
is deadlocked: indeed, the transitions from qhalt to
q′halt can only be taken if a− < a+ or b− < b+.
Hence EG(L \ {q′halt}) holds. The set of such valu-
ations is certainly non-empty: a− = a+ = 1

m×c and
b− = b+ = 1

m belongs to it (if c = 0 then we choose,
e. g., b− = b+ = 1 and a− = a+ = 1

2 ). Hence, if
the 2-counter machine halts, there exist parameter
valuations for which EG(L \ {q′halt}) holds.

Hence the 2-counter machine halts iff the set of valuations
for which EG(L \ {q′halt}) holds is not empty.

Remark 2. The above construction works over 1 time unit
(an invariant can be added to q′halt too), so this gives an
undecidability result over bounded time as well.

We now prove that EG-emptiness is also undecidable
for unbounded L/U-PTAs. When not considering L/U-PTAs,
proving an undecidability result for bounded PTAs gives
the undecidability for unbounded PTAs, as a bounded PTA
can be simulated using a PTA (by, e. g., adding the bounds
as a guard between a fresh location prior to the initial
location and the initial location, e. g., p ∈ [inf, sup] becomes
inf ≤ x ≤ sup ∧ p = x). Recall that this is not true for
L/U-PTAs, as such a construction requires to compare the
clock and the parameter using an equality; in addition, L/U-
PTAs are incomparable with bounded L/U-PTAs [ALR16b].
In addition, our proof for unbounded L/U-PTAs uses one
parameter less than for open bounded L/U-PTAs.

Theorem 7. The EG-emptiness problem is undecidable for
L/U-PTAs with 4 clocks and 3 parameters.

Proof (sketch). We again use a reduction from the halting
problem of a 2-counter machine. Our proof essentially relies
on a mechanism similar to the proof of Theorem 6. However,
we must use a different PTA encoding (the encoding used in
the proof of Theorem 6 does not work for unbounded L/U-
PTAs, as it strongly relies on the fact that b− be strictly

positive). Instead, we propose an encoding inspired by that
of a 2-counter machine proposed in [BBLS15] to prove the
undecidability of the EF-emptiness problem for PTAs with
a single integer-valued parameter (that can also be rational-
valued). We modify the encoding of [BBLS15] to obtain an
L/U-PTA, by splitting the single parameter a into a lower-
bound parameter a− and an upper-bound parameter a+, in
the spirit of previous undecidability results for L/U-PTAs
in this paper (Theorems 4 and 6). Then, we add a global
invariant w ≤ b+ (where w is a fresh clock never reset, and
b+ a fresh upper-bound parameter), to ensure that, for any
valuation of b+ > 0, the number of operations the machine
can perform is finite (which requires some modifications
of the gadgets to ensure that they require at least 1 time
unit). The proof then follows a reasoning similar to that of
Theorem 6.

See Section 7.1 for a detailed proof.

Remark 3. The above construction works also for integer-
valued parameters, so this gives an undecidability result for
integer-valued parameters too. The proof also works over
discrete time (with integer-valued parameters).

6. Conclusion

Despite the vast number of undecidability results linked
to the formalism of parametric timed automata, and to
which we also contribute here, we have achieved some
decidability for the existential parametric problem on the EG
liveness property. This could be done by imposing original
constraints to the classical subclass of L/U-PTAs, pertaining
to the topology of the domain of the parameter values. This
domain should be a closed and bounded hyperrectangle of
the rational space.

The subclass together with the EG property really lies
on the boundary of decidability: on the one hand, we have
proved that considering unbounded, or bounded but open
domains leads again to undecidability for EG. On the other
hand, if we consider — instead of the EG property which
asks for the existence of a maximal finite or infinite path
staying in some locations — only infinite maximal paths
(existence of discrete cycles), then we have proved that the
problem becomes decidable (for either closed bounded do-
mains, or unbounded domains — the case of open bounded
domains remains open). And finally, if we consider only
finite maximal paths (existence of deadlocks), then we have
proved that the problem becomes consistently undecidable.
Our results are summarized in Table 1, where bold green
denotes decidability and italic red denotes undecidability.

Future work includes i) studying the decidability of EC-
emptiness for open bounded L/U-PTAs (possibly adapting
techniques developed in [San11]), ii) extending the EG
decidability result to shapes other than hyperrectangles, and
iii) studying actual synthesis. In addition, the decidability
of problems we proved undecidable for L/U-PTAs should
be studied for two subclasses of L/U-PTAs, where all pa-
rameters are upper bounds (U-PTAs) or all lower bounds
(L-PTAs).
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Class PTAs L/U-PTAs bounded open L/U-PTAs bounded closed L/U-PTAs
EC-emptiness Theorem 3 Theorem 1 open Theorem 2
ED-emptiness Corollary 1 Corollary 1 Theorem 4 Corollary 1
EG-emptiness from Theorem 7 Theorem 7 Theorem 6 Theorem 5

TABLE 1: Decidability of EG for L/U-PTAs
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7. Appendix

7.1. Proof of Theorem 7

Theorem 7 (recalled). The EG-emptiness problem is un-
decidable for L/U-PTAs with 4 clocks and 3 parameters.

Proof. We will again use a reduction from the halting prob-
lem of a 2-counter machine. Our proof essentially relies on
a mechanism similar to the proof of Theorem 6; however,
we must use a different PTA encoding (the encoding used in
the proof of Theorem 6 does not work for unbounded L/U-
PTAs, as it strongly relies on the fact that b− be strictly
positive), which prevents us to factor the proof as much as
we would have wished.

We propose here an encoding inspired by that of a 2-
counter machine proposed in [BBLS15] to prove the un-
decidability of the EF-emptiness problem for PTAs with a
single integer-valued parameter used to encode the max-
imum value of the two counters (although not consid-
ered in [BBLS15], the proof also works identically with
a rational-valued parameter). Two different instructions are
considered:
• when in state qi, increment Ck and go to qj ;
• when in state qi, if Ck = 0 then go to qk, otherwise

decrement Ck and go to qj ;
Starting from the initial configuration (q0, C1 = 0, C2 = 0)
the machine either reaches qhalt and halts, or loops forever.
Knowing whether the machine halts is undecidable [Min67].

The encoding uses a single parameter a. Two clocks x
and y are used to encode the value of the counters, while a
third clock z is used as an auxiliary clock. Whenever z = 0,
then x = c1 and y = c2.

We modify this encoding by splitting the single parame-
ter a into a lower-bound parameter a− and an upper-bound
parameter a+, in the spirit of previous undecidability results
for L/U-PTAs in this paper (Theorems 4 and 6).

In addition, we request that the entire execution takes
a time less than b+, where b+ is a fresh upper-bound
parameter; this is achieved by adding an invariant w ≤ b+

to all locations (with w a fresh clock never reset after the
initial gadget).

We give the modified increment gadget for the first
counter in Figure 9 (invariants are omitted). Note that, if
z = 0 when entering qi then the time to pass this gadget is
in [a− + 1, a+ + 1].

The test and decrement gadget is similar, and given in
Figure 10. We performed a slight modification to the zero-
test of [BBLS15], that was executed in 0-time; we require in
our construction that each gadget takes at least one time unit.
Hence, we rewrote it in Figure 10 so as to force at least one
time unit to elapse after the clocks are tested, and so that the
final value of the clock is not changed, when a− = a+ (in
the spirit of the same operation in the proof of Theorem 6):
when performing the zero-test, we have x = z = 0 and
y = c2. Then after a−c2+1 time units (with a = a+ = a−),
we have x = z = a + 1 − c2 and y = a + 1, and we can

qi li1 li4

li2

li2′

li3

li3′

qj

z = 1
z := 0

a− ≤ x ≤ a+
x := 0

a− ≤ y ≤ a+
y := 0 y = 1

y := 0

a− ≤ y ≤ a+
y := 0

y = 1
y := 0

a− ≤ x ≤ a+
x := 0

a− ≤ z ≤ a+
z := 0

Figure 9: EG-emptiness for L/U-PTAs: increment gadget

take the transition to li2′′ , resetting y. Then after c2 time
units, we have x = z = a+ 1 and y = c2 and we can take
the transition to li2′′ , resetting x and z. This gives finally
x = z = 0 and y = c2 and the time spent in the gadget is in
[a− + 1, a+ + 1], and therefore is more than one time unit.
Gadgets for the second counter are symmetric.

We add before the first instruction the initial gadget
given in Figure 11, constraining a− ≤ a+ and b+ > 0,
and resetting all clocks.

In addition, just as in Theorem 6, we add unguarded
transitions from any location (including that of the initial
gadget, but excluding qhalt) to a new location q′halt. We
also add two transitions from qhalt to q′halt given in the
final gadget in Figure 12.

Let us show that the 2-counter machine halts iff the set
of valuations for which EG(L\{q′halt}) holds is not empty.
We reason on the parameter valuations.

1) If a− > a+ or b+ = 0, the initial gadget cannot
be passed: any run is sent to q′halt because of the
transitions to q′halt, and therefore EG(L\{q′halt}) does
not hold.

2) If a− < a+ and b+ > 0, then the machine may not be
correctly simulated: a given run will either reach qhalt,
in which case it will also reach q′halt (as the guard from
qhalt to q′halt in Figure 12 does not forbid this run),
or it will loop in the machine until it eventually gets
blocked: since b+ > 0, since all gadgets require at least
1 time unit, for any value of b+ the invariant z ≤ b+

will eventually block a transition after at most b+ steps.
When being blocked, a run has no other option than
going to q′halt, because of the unguarded transitions
from any location to q′halt. Hence if a− < a+ and
b+ > 0, EG(L \ {q′halt}) does not hold.

3) Now, assume a− = a+ and b+ > 0.
a) Either the machine does not halt: in this case, af-

ter a maximum number of steps (typically at most
b+), a gadget will be blocked due to the invariant
z ≤ b+, and the run will end in q′halt because
of the unguarded transitions from any location to
q′halt. Hence if the 2-counter machine does not halt,
EG(L \ {q′halt}) does not hold.
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qi li1 li4

li2

li2′

li3

li3′

qj

li1′′ li2′′ qk

z = 0 ∧ x > 0

a− ≤ x ≤ a+
x := 0

x = 1
x := 0 a− ≤ y ≤ a+

y := 0

a− ≤ y ≤ a+
y := 0

a− ≤ x ≤ a+
x := 0

x = 1
x := 0

a− ≤ z ≤ a+
z := 0

z = 0 ∧ x = 0

a− + 1 ≤ y ≤ a+ + 1
y := 0

a− + 1 ≤ x ≤ a+ + 1
x, z := 0

Figure 10: EG-emptiness for L/U-PTAs: test and decrement gadget

l0 l1 q0

a− ≤ x ≤ a+
x := 0

0 < x ≤ b+
x, y, z, w := 0

Figure 11: EG-emptiness for L/U-PTAs: initial gadget

qhaltw ≤ b+ q′halt
a− ≤ x < a+

Figure 12: EG-emptiness for L/U-PTAs: final gadget

b) Or the machine halts: in this case, if c is the maxi-
mum value of both C1 and C2 over the (necessarily
finite) halting execution of the machine, and if m is
the length of this execution, and if c > 0, then for
valuations such that a− = a+ ≤ c and sufficiently
large valuations of b+ (typically b+ ≥ m× (a+ + 1)
as a gadget can take up to a+ + 1 time units),
then there exists one run that correctly simulates
the machine; this run eventually reaches qhalt. From
qhalt, for such values, the system is deadlocked.
Hence, if the 2-counter machine halts, there exist
parameter valuations for which a run does not reach
q′halt, i. e., for which EG(L \ {q′halt}) holds.

Hence the 2-counter machine halts iff the set of valua-
tions for which EG(L \ {q′halt}) holds is not empty.
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