
HAL Id: hal-01724290
https://hal.science/hal-01724290

Submitted on 6 Mar 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Optimal Reachability in Cost Time Petri Nets
Hanifa Boucheneb, Didier Lime, Baptiste Parquier, Charlotte Seidner, Olivier

Henri Roux

To cite this version:
Hanifa Boucheneb, Didier Lime, Baptiste Parquier, Charlotte Seidner, Olivier Henri Roux. Optimal
Reachability in Cost Time Petri Nets. 15th International Conference on Formal Modeling and Analysis
of Timed Systems (FORMATS 2017), Sep 2017, Berlin, Germany. �hal-01724290�

https://hal.science/hal-01724290
https://hal.archives-ouvertes.fr

Optimal Reachability in Cost Time Petri Nets

Hanifa Boucheneb1, Didier Lime2, Baptiste Parquier2,
Olivier H. Roux2 and Charlotte Seidner3

1 École Polytechnique de Montréal, Québec, Canada
2 École Centrale de Nantes, LS2N UMR CNRS 6004

3 Université de Nantes, LS2N UMR CNRS 6004

Abstract. In order to model resource-consumption or allocation prob-
lems in concurrent real-time systems, we propose an extension of time
Petri nets (TPN) with a linear cost function and investigate the mini-
mum/infimum cost reachability problem. We build on the good proper-
ties of the state class symbolic abstraction, which is coarse and requires
no approximation (or k -extrapolation) to ensure finiteness, and extend
this abstraction to symbolically compute the cost of a given sequence
of transitions. We show how this can be done, both by using general
convex polyhedra, but also using the more efficient Difference Bound
Matrix (DBM) data structure. Both techniques can then be used to ob-
tain a symbolic algorithm for minimum cost reachability in bounded time
Petri nets with possibly negative costs (provided there are no negative
cost cycles). We prove that this algorithm terminates in both cases by
proving that it explores only a finite number of extended state classes for
bounded TPN, without having to resort to a bounded clock hypothesis,
or to an extra approximation/extrapolation operator. All this is imple-
mented in our tool Romeo and we illustrate the usefulness of these results
in a case study.

1 Introduction

Time Petri nets (TPN for short) have been introduced by Merlin in 1974 to ex-
tend the modelling and analysis powers of Petri nets to time dependent systems.
They allow to specify different kinds of time constraints by means of intervals as-
sociated with transitions. Furthermore, they offer effective reachability analysis
methods that take into account the time constraints of systems. These methods
are generally based on the state space abstraction where all the firing sequences
and reachable markings are represented. Even if the reachability problem is not
decidable for TPN, there are some subclasses of TPN, such as bounded TPN, for
which the reachability problem is decidable. Using reachability analysis methods,
tools such as Tina and Romeo provide an interesting platform to verify various
qualitative and quantitative properties of TPN.

Cost time Petri nets (cTPN for short) extend TPN with costs associated with
transitions and markings. The cost of a transition represents its firing cost while
the cost of a marking is the price per time unit for staying in the marking. As
a run in the TPN is a succession of discrete transitions interspersed with time

elapsing (delay transitions), the cost of the run is the accumulation of the costs
of its discrete and delay transitions. Several runs may lead with different costs
to a goal marking. These costs represent in general resource-consumptions such
as memory and power consumptions. In such cases, it would be interesting to
be able to determine the runs that yield the optimal cost. This problem, called
the optimal-cost reachability, can be stated formally as follows in the context of
cTPN: Given a goal marking m, what is the optimal (minimal/infimum) cost to
reach m in the cTPN?

This paper deals with the optimal-cost problem for cTPN. It proposes a
forward exploration of cost state classes that provides the optimal cost to reach
a given goal marking for all bounded cTPN with no negative-cost cycles.

Related works

In the literature, the optimal-cost problem has been addressed for Priced Timed
automata (PTA) in [2,3,4,9,12] and Priced Timed Petri nets (PTPN) in [1]. A
PTA is a timed automaton where locations have rate costs and edges have costs.
The rate cost of a location gives the cost per time unit for staying in the location,
whereas the cost of a transition indicates its firing cost. A PTPN is a timed arc
Petri net where each place has a rate cost, each transition has a firing cost
and the firing semantics of its transitions is weak. It is well known that many
verification problems such as reachability and coverability are undecidable under
the strong semantics but decidable under the weak semantics. However, timed
models based on strong semantics are more appropriate to specify urgency than
those based on weak semantics. Moreover, they do not need to manage dead
tokens or transitions.

For PTA with non negative integer costs, two different solutions based on
priced regions and priced zones have been proposed, in [2] and [12], respec-
tively for the optimal-cost problem. The solution proposed in [2] has allowed
the authors to prove decidability of the optimal-cost problem. However, from
a practical point of view, region graphs are less useful than zone graphs. In
[3,4,9,12], the computation of the optimal-cost to reach a goal location is based
on a forward exploration of priced zones, where an extra variable Cost gives the
currently best known cost of reaching the goal location. A priced zone extends a
zone with a linear cost function specifying the optimal cost to reach every state
of that zone [3,4,9,12]. The optimal cost of a priced zone is obtained by min-
imising its cost function under the constraints of the zone. The priced zones of
the discrete and continuous successors are computed by considering some zone
facets4. The exploration is performed congruently with a ”bigger and cheaper”
inclusion relation over priced zones. The inclusion relation used in [4,12] and im-
plemented in the UPPAAL-CORA tool ensures termination of the exploration
for all bounded PTA (meaning all clocks are bounded). However, the terminai-
son is not guaranteed for PTA with unbounded clocks. Furthermore, if negative

4 A zone facet is obtained by adding a constraint of the form x = c (or x − y = c),
where c is a constant and x ≺ c (or x− y ≺ c) is an atomic constraint of the zone.

costs are allowed, the exploration does not necessarily provide the optimal-cost
to reach the goal location. Indeed, if a path leading to the goal location goes
through a priced zone belonging to some cycle with negative cost, the optimal
cost to reach the goal location may be −∞. In [9], the authors have improved the
approach, developed in [3,4,12], by refining and combining the inclusion relation
over priced zones with an over-approximation relation over clock valuations, by
ignoring clock values that exceed some bound when priced zones are compared
together. This improvement ensures termination of the forward exploration al-
gorithm even when clocks are not bounded and costs are negative, provided that
the PTA is free of negative cost cycles.

For PTPN, the optimal-cost reachability problem is also decidable, but only
if all costs are non negative integers. The computation of the optimal-cost for
reaching a goal marking is based on similar techniques to those of PTA [1].

Our contribution

While weighted, priced, or cost timed automata have been well-studied in the
literature, very few comparable results exist for time Petri nets. Yet, beyond
subjective preferences for one or another formalism, time Petri nets exhibit
some interesting properties. In particular, while the symbolic techniques de-
fined for timed automata can be adapted to TPN, the symbolic abstraction of
choice remains the so-called state classes. They are naturally very coarse and
have the great advantage of not requiring any further approximation (as in k-
extrapolation, LU -extrapolation, etc.), or any boundedness hypothesis on the
clock variables, to ensure their finite number. This has proven quite problematic
and the restriction that clocks should be bounded to ensure termination has has
been lifted only recently in [9], 15 years after the the initial approach of [12].

We therefore investigate here how this specific abstraction can be adapted to
symbolically compute optimal costs. As we expected, the state class abstraction,
even extended with costs, does not require any approximation. While the results
we obtain are similar, in terms of what we can do in the end, to the results
obtained for timed automata, the underlying techniques are quite specific. For
instance, an important result is that we can partition the domains (encoded as
Difference Bound Matrices or DBMs) to ensure that the constraints on the cost
remain simple as in [12] but the notion of facet used in that paper does not apply
to our model.

Outline The paper is structured as follows. Section 2 presents the TPN formal-
ism, its extension with costs (cTPN) and their semantics. Section 3 extends the
state class method to cTPN. In Section 4, we present the symbolic algorithm
used to compute the optimal cost. In Section 5, by describing how cost state
classes can be partitioned, we both improve the algorithm efficiency and pro-
vide a key result for the termination proof of the symbolic algorithm, given in
Section 6. In Section 7, we present our implementation in the Romeo tool and
a case study to illustrate how cTPN can be useful for the design of real-time
systems. Finally, Section 8 concludes this paper.

2 Cost Time Petri Nets

2.1 Preliminaries

We denote the set of natural numbers by N, the set of integers by Z, the set of
rational numbers by Q, the set of real numbers by R and the set of non-negative
real numbers by R≥0.

For I ∈ IQ≥0
, I denotes its left end-point and I denotes its right end-point

if I is bounded and ∞ otherwise. Moreover, for any θ ∈ R≥0, we let I−̈θ be the
interval defined by {x− θ | x ∈ I ∧ x− θ ≥ 0}.

Let F and F ′ be two systems of linear inequalities over a set of variables
X; F ≡ F ′ denotes that both systems have the same set of solutions over X.
Furthermore, F|Y (with Y ⊆ X) denotes the projection of F over Y obtained
for instance by a Fourier–Motzkin elimination of all variables that are in X but
not in Y .

2.2 Time Petri Nets

Definition 1 (Time Petri Net (TPN)). A Time Petri Net is a sextuple
N = (P, T, •., .•,m0, Is) where:

– P is a finite non-empty set of places,

– T is a finite set of transitions such that T ∩ P = ∅,
– •. : T → NP is the backward incidence mapping,

– .• : T → NP is the forward incidence mapping,

– m0 : P → N is the initial marking,

– Is : T → IQ≥0
is a function assigning a firing interval to each transition.

The distribution of tokens over the places of N is called a marking which is
a mapping from P to N. For a marking m ∈ NP , m(p) denotes the number of
tokens in place p. A Petri net N is said to be k-bounded or simply bounded if
the number of tokens in each place does not exceed a finite number k for any
marking reachable from m0.

A transition t ∈ T is said to be enabled by a given marking m ∈ NP if m
supplies t with at least as many tokens as required by the backward incidence
mapping •. We define En(m) as the set of transitions that are enabled by the
marking m:

En(m) = {t ∈ T | m ≥ •(t)}

A transition t′ ∈ T is said to be newly enabled by the firing of a transition t
from a given marking m ∈ NP if it is enabled by m− •t+ t• but not by m− •t.
The set of transitions that are newly enabled by the firing of t from the marking
m is:

N ewlyEn(m, t) =
{
t′ ∈ En(m− •t+ t•) | t′ 6∈ En(m− •t) or t = t′

}

Definition 2 (State). A state of the net N is described by an ordered pair
(m, I) in NP × ITQ≥0

, where m is a marking of N and I is a function called

the interval function. I : T → IQ≥0
associates a temporal interval with every

transition enabled by m.

Definition 3 (Semantics of a TPN). The semantics of a TPN is defined by
a timed transition system (Q, q0,→) where:

– Q ⊆ NP × ITQ≥0

– q0 = (m0, I0) s.t. ∀t ∈ En(m0) I0(t) = Is(t)
– → consists of two types of transitions:

• discrete transitions: (m, I)
t−→ (m′, I ′) iff

∗ m ≥ •t, m′ = m− •t+ t• and I(t) = 0,

∗ ∀t′ ∈ En(m′)
· I ′(t′) = Is(t

′) if t′ ∈ N ewlyEn(m, t),
· I ′(t′) = I(t′) otherwise

• time transitions: (m, I)
θ∈Q≥0−−−−→ (m, I−̈θ) iff ∀t ∈ En(m), (I−̈θ)(t) ≥ 0.

A run of a time Petri Net N is a (finite or infinite) path starting in state q0
and whose steps follow the semantics described above. The set of runs of a TPN
N is denoted by Runs(N). A run is therefore a succession of time and discrete
transitions; let us for instance consider the elapsing of a duration θ followed by

the firing of a transition t: (m, I)
θ−→ (m, I−̈θ) t−→ (m′, I ′). In the following, such

a succession is denoted by (m, I)
t@θ−−→ (m′, I ′).

Furthermore, sequence(ρ) denotes the projection of the run ρ over T . The

sequence σ corresponding to the run ρ = q0
t0@θ0−−−−→ q1

t1@θ1−−−−→ q2
t2@θ2−−−−→ q3 is

therefore σ = sequence(ρ) = t0t1t2.

Definition 4 (Discrete state graph of a TPN). The discrete state graph
(DSG) of a TPN is the structure DSG = (S, s0, ↪→) where S ∈ NP × ITQ≥0

,

s0 = (m0, Is) and s
t
↪−→ s′ iff ∃θ ∈ Q≥0 | s

t@θ−−→ s′

Any state of the DSG is a state of the semantics of the TPN and any state of
the semantics which is not in the DSG is reachable from some state of the DSG
by a continuous transition. The DSG is a dense graph and a state may have

infinite number of successors by
t
↪−→. Finitely representing state spaces involves

grouping some sets of states.

State Classes For an arbitrary sequence of transitions σ = t1 . . . tn ∈ T ∗,
let Cσ be the set of all states that can be reached by the sequence σ from s0:

Cσ = {s ∈ S|s0
t1
↪−→ s1 · · ·

tn
↪−→ s}. All the states of Cσ share the same marking

and can therefore be written as a pair (m,D) where m is the common marking
and D is the union of all points belonging to the set of firing intervals. D is
called the firing domain.
∼= denotes the relation satisfied by two such sets of states when they have

both the same marking and the same firing domain.

Definition 5. Let Cσ = (m,D) and C ′σ′ = (m′, D′) be two sets of states; Cσ ∼=
Cσ′ iff m = m′ and D ≡ D′.

If Cσ ∼= Cσ′ , any firing schedule firable from some state in Cσ is firable
from state in Cσ′ and conversely. The state classes as defined in [6,5] are the
equivalence classes of the ∼= relation defined on the set of classes Cσ.

Definition 6. The state class graph (SCG) of [6,5] is defined by the set of state

classes equipped with a transition relation: Cσ
t−→ X iff Cσ.t ∼= X.

Hence the SCG computes the smallest set C of state classes w.r.t. ∼=. The
SCG is finite iff the net is bounded. Moreover, the SCG is a complete and sound
state space abstraction of the TPN.

Given a state class C = (m,D), a point x = (θ1, θ2, ..., θn) ∈ D is composed
of the values of variables θ1, θ2, ..., θn that refers to the firing instants in C of
transitions t1, t2...tn that are enabled by m. The firing domain may be described
by linear inequations of the form θj − θi ≤ c or θi ≤ c where c ∈ Q; therefore,
they can be encoded as a Difference Bound Matrix (DBM) [6,10].

Let Θ = {θ1...θn} and C a set of constraints over Θ. Let θ0 a reference
variable whose value is always 0 and Θ0 = Θ ∪ {θ0}. A DBM M representing C
is a matrix of size |Θ0| × |Θ0| such that Mij = inf{c|(θj − θi ≤ c) ∈ C} where
inf(∅) = +∞. A DBM has a unique canonical form which gives the tightest
bounds on all differences between variables.

2.3 Cost Time Petri Nets

Definition 7 (Cost Time Petri Net (cTPN)). A Cost Time Petri Net is
a tuple Nc = (P, T, •., .•,m0, Is, ω, cr) where:

– N = (P, T, •., .•,m0, Is) is a TPN,
– ω : T → Z is the discrete cost function,
– cr : NP → Z is the cost rate function; as a matter of fact, cr is a linear

function over markings.

Definition 8 (Semantics of a cTPN). The semantics of a cTPN Nc =
(P, T, •., .•,m0, Is, ω, cr) is the semantics of the TPN N = (P, T, •., .•,m0, Is).

The cost state of a cTPN is (m, I, c) ∈ NP × ITQ≥0
× R, where (m, I) is a

TPN state and c is the accumulation, from the initial state, of the costs of the
discrete and timed transitions of a run that leads to (m, I). More specifically:

– the cost of a discrete transition (m, I, c)
t−→ (m′, I ′, c′) is c′ − c = ω(t);

– the cost of a timed transition (m, I, c)
d−→ (m, I ′, c′) is c′ − c = d ∗ cr(m).

Definition 9 (Cost of a run (Ωr)). The cost of a run ρ = (m0, I0, c0)
t0@θ0−−−−→

(m1, I1, c1)
t1@θ1−−−−→ (m2, I2, c2) · · · tn−1@θn−1−−−−−−−→ (mn, In, cn) is

Ωr(ρ) =

n−1∑
i=0

θi ∗ cr(mi) + ω(ti)

Definition 10 (Optimal cost of a sequence). The optimal cost Ω(σ) of the
sequence of transitions σ is

Ω(σ) = Ωr(ρ) such that sequence(ρ) = σ and 6 ∃ρ′ ∈ Runs(N) | Ωr(ρ′) <
Ωr(ρ).

Since Cσ is the set of all states that can be reached by the sequence σ, we
also denote Ω(Cσ) = Ω(σ).

3 Cost State classes

We now extend the notion of state class to additionally include an information
on the cost of the corresponding runs. We call cost state classes these extended
state classes.

Recall that the firing domain D of a classic state class Cσ = (m,D) of [6,5]
is a convex polyhedron constraining the firing times of the transitions enabled
by m. Note that these firing times are relative to the absolute firing date of the
last transition of σ (or 0 for the initial class). For an enabled transition ti, we
denote by θi the corresponding variable in D.

Cost state classes Lσ = (m,F) extend the firing domain with an additional
cost variable c, initially null, and evolving as described in the semantics above,
and using the following observation: since firing dates are relative to the last fired
transition, the time spent in a class before firing some transition ti is exactly θi.

Computing the successive cost state classes then naturally extends the classic
computation of [6,5] as follows:

– the initial cost state class is: Lε = (m0, {θi ∈ Is(ti)|ti ∈ En(m0)} ∧ {c = 0})
– a transition tf is firable from class Lσ = (m,F) iff:
• tf is enabled by m;
• F ∧

∧
i6=f θf ≤ θi 6= ∅.

– the successor Lσ.tf of cost state class Lσ by a transition tf firable from Lσ
is given by Algorithm 1.

Algorithm 1 Successor L′ = (m′, F ′) of L = (m,F) by firing tf : L′ =
Next(L, tf)

1: m′ ← m′ = m− •tf + t•f
2: F ′ ← F ∧

∧
i 6=f θf ≤ θi

3: for all i 6= f , add variable θ′i to F ′, constrained by θi = θ′i + θf to F ′

4: add variable c′ to F ′, constrained by c′ = c+ θf ∗ cr(m) + ω(tf)
5: eliminate (by projection) variables c, θi for all i, and θ′j for all tj disabled by firing
tf , from F ′

6: for all tj ∈ N ewlyEn(m, tf), add variable θ′j , constrained by θ′j ∈ Is(tj)

Remark that the only change to the classic successor computation in Algo-
rithm 1 is the addition of line 4 (and of course the elimination of c in line 5).

By iteratively computing the extended state classes we obtain a possibly
infinite graph with edges labeled by fired transitions and nodes by classes. The
quotient of the graph by the equivalence relation ≡ defined by (m,F) ≡ (m′, F ′)
iff m = m′ and F = F ′ (in the sense that the polyhedra contain the same points),
provides a finite graph for regular state classes, when the net is bounded. This
is however not necessarily the case with cost state classes since the cost variable
c may increase or decrease unboundedly, and its relation to the other variables
may be arbitrarily complex (though still linear).

Lemma 1 (Lσ |θ ∼= Cσ). Let σ a firable sequence from the initial state, Lσ |θ ∼=
Cσ.

A corollary of lemma 1 is that Next(Lσ |θ, t) ∼= Next(Lσ, t)|θ.

Lemma 2 (Optimal cost of Lσ). Ω(σ) = inf(Lσ |c).

We will now denote Ω(Lσ) = Ω(Cσ) = Ω(σ).

4 Symbolic Algorithm

Now that we have a symbolic abstraction, we can reuse the symbolic algorithm
from [12,15], originally designed for priced zones. The only property we need to
ensure correctness and soundness is that we can extract the minimum cost for a
given sequence of transitions. We have seen how to do that for cost state classes
in the previous section.

So, given a target set of markings Goal, if Algorithm 2 terminates, it will
provide the optimal cost to reach Goal.

Algorithm 2 Symbolic algorithm for optimal cost
1: Cost←∞
2: Passed← ∅
3: Waiting← {(m0, F0)}
4: while Waiting 6= ∅ do
5: select Lσ = (m,F) from Waiting
6: if m ∈ Goal and Ω(Lσ) < Cost then
7: Cost← Ω(Lσ)
8: end if
9: if for all L′ ∈ Passed, Lσ 64 L′ then

10: add Lσ to Passed
11: for all t ∈ Firable(Lσ), add Lσ.t to Waiting
12: end if
13: end while
14: return Cost

The algorithm consists in a classic exploration of the symbolic state-space,
updating the optimal cost whenever we visit a marking in Goal. It uses a passed

list to store already visited symbolic states but since the cost is not bounded a
priori there is no reason the same states will eventually repeat.

To overcome this difficulty the algorithm uses a dedicated comparison oper-
ator 4 between symbolic states that is easily adapted to cost state classes as
follows.

For any cost state class L = (m,F) and any point θ ∈ F|θ, the optimal cost
of θ in F is defined by ΩF (θ) = min(θ,c)∈F c.

In the sequel, given a point θ = (θ1, . . . , θn) ∈ F|θ, we often write (θ, c)
instead of (θ1, . . . , θn, c) for the corresponding point in F with cost value c.

Definition 11. Let L = (m,F) and L′ = (m′, F ′) two cost state classes. We
say that L is subsumed by L′, which we denote by L 4 L′ iff m = m′ and for all
F|θ ⊆ F ′|θ, and for all θ ∈ F|θ, ΩF ′(θ) ≤ ΩF (θ).

Relation 4 can be checked for cost state classes in the same way proposed
for priced zones in [15]: consider (m,F) 4 (m′, F ′), then m = m′ and F ⊂ F ′

are easy to check as polyhedral operations. To check the last condition, if c is the
cost variable in F and c′ the cost variable in F ′, we need only minimize c− c′ on
F and check that it is non negative. This minimisation can again be done using
classic polyhedral operations, here, for instance, the simplex method.

We can however also reduce 4 checking to standard inclusion on polyhedra.
Given a cost state class Lσ = (m,F), we denote by ↑F the convex polyhedron

obtained from F by removing all upper bound constraints on cost variable c (or
equivalently, by adding an extremal ray in the direction of c). By extension, we
note ↑Lσ = (m, ↑F).

It is easy to see that for all points (θ1, . . . , θn, c
′) in ↑F there exists a point

(θ1, . . . , θn, c), with c ≤ c′ in F and therefore Ω(↑Lσ) = Ω(Lσ). This also implies
that for any transition t firable from Lσ, the successor of ↑Lσ by t (obtained with
Algorithm 1) is equal to ↑Lσ.t. Furthermore, we have the following lemma.

Lemma 3. Let L and L′ be two cost state classes. We have L 4 L′ iff ↑L ⊆ ↑L′.

Now, to prove that the algorithm indeed always terminates, we first have to
show that relaxed cost state classes can always be partitioned in a finite number
of cost state classes with only one lower bound constraint on the cost variable.

Definition 12. A simple cost state class is a cost state class such that its do-
main contains only one constraint over the cost variable and this constraint is a
lower bound constraint.

This will also give us a usually more efficient way to symbolically compute
the optimal cost, using the efficient DBM data structure and, in particular, min-
imisation of a linear expression over a DBM, instead of the simplex or polyhedral
inclusion, using the results of [15]. Suppose we have two simple cost state classes
L and L′: their firing domains F and F ′ can be decomposed as DBMs D and D′,
each with an additional constraint on the cost variable, c ≥ `(θ) and c′ ≥ `′(θ).
Then instead of minimizing c− c′ over F , we only need to minimize `(θ)− `′(θ)
over D, which is usually much easier [15].

5 Computing the simple cost state classes

We now show how we can partition relaxed cost state classes into simple cost
state classes. Note that the initial cost state class, once relaxed with ↑, is indeed
a simple cost state class. We then focus on computing the successors of simple
cost state classes.

Let us consider a simple cost state class L = (m,F) where F is a combination
of a classic firing domain D, written as a DBM, and of a linear inequality over
variables θi constraining the cost c. To ease further reading, we also define sets
E as En(m) and Ef as En(m) \ {tf}. The firing domain F is thus defined:

F :

D :

{
∀ti ∈ E αi ≤ θi ≤ βi
∀ti, tj ∈ E θi − θj ≤ γij

c ≥
∑
ti∈E

aiθi + b

Let us compute its successor L′ = (m′, F ′) by firing transition tf following
Algorithm 1 and show that L′ can be written as a finite union of simple cost
state classes.

Applying line 2 simply means that we modify D by adding the constraint
θf ≤ θi for all ti in Ef . Following line 3, we then replace θi by θ′i + θf ; after
simplification, we obtain the following domain:

F3 :

D3 :

αf ≤ θf ≤ βf (5.1)

∀ti ∈ Ef
{
αi − θ′i ≤ θf ≤ βi − θ′i (5.2)
max(0,−γfi) ≤ θ′i ≤ γif

∀ti, tj ∈ Ef θ′i − θ′j ≤ γij

c ≥
∑
ti∈Ef

aiθ
′
i +

(∑
ti∈E

ai

)
θf + b

We then compute the constraint on the new cost c′, according to line 4 of
the algorithm: c′ ≥

∑
ti∈Ef aiθ

′
i+C ∗ θf +B (5.3) where C = cr(m) +

∑
ti∈E ai

and B = b+ ω(tf).
Before proceeding to line 5 of the algorithm, in which we need to eliminate

θf (amongst other variables) from the system, let us notice that only inequal-
ities (5.1), (5.2) and (5.3) involve θf . To eliminate θf by projection, we use
Fourier–Motzkin elimination (FME): we keep all the inequalities in F4 that don’t
involve θf and we add all the inequalities stating that any lower bound of θf
should be lower than any of its upper bounds. We obtain the following system:

F5 :

D5 :

{
∀ti ∈ Ef max(0,−γfi, αi − βf ≤ θ′i ≤ min(γif , βi − αf)
∀ti, tj ∈ Ef θ′i − θ′j ≤ min(γij , βi − αj)

c′ ≥

max

(
αf , max

ti∈Ef
(αi − θ′i)

)
∗ C +

∑
ti∈Ef

aiθ
′
i +B if C ≥ 0

min

(
βf , min

ti∈Ef
(βi − θ′i)

)
∗ C +

∑
ti∈Ef

aiθ
′
i +B otherwise

Again, D5 is a DBM; following Lemma 1, it is indeed equal to the DBM
obtained by a computation of the next state without considering the cost. On a
side note, exact expressions for the bounds of the canonical form of this DBM
can be found in [7,8]. We now consider that D5 is defined by:

D5 :

{
∀ti ∈ Ef α′i ≤ θ′i ≤ β′i
∀ti, tj ∈ Ef θ′i − θ′j ≤ γ′ij

In our aim to obtain an union of simple cost state classes, we shall now
consider the constraints on the new cost c′. Let us suppose that C ≥ 0; the
constraint over c′ can be split in two cases: either αf is the largest coefficient,
or one transition tI ∈ Ef yields largest coefficient. Supposing that αf is indeed
the largest coefficient, we know that αi − θ′i ≤ αf for all ti in Ef and that
c′ ≥ αf ∗ C +

∑
ti∈Ef aiθ

′
i + B. By combining these constraints with F5, we

obtain the following simple cost state class:

F ′5 :

D′5 :

{
∀ti ∈ Ef max(α′i, αi − αf) ≤ θ′i ≤ β′i
∀ti, tj ∈ Ef θ′i − θ′j ≤ γ′ij

c′ ≥ αf ∗ C +
∑
ti∈Ef aiθ

′
i +B

All other cases (e.g. one of the αI−θ′I is the greatest coefficient, and also the
cases when C < 0) also lead to adding constraints preserving the DBM form,
and we can thus show that F5 can indeed be split as a finite union of simple cost
state classes of the following form:

F ′5 :

D′5 :

{
∀ti ∈ Ef α′′i ≤ θ′i ≤ β′′i
∀ti, tj ∈ Ef θ′i − θ′j ≤ γ′′ij

c′ ≥
∑
ti∈Ef a

′
iθ
′
i +B′

In order to complete line 5 of the algorithm, we need to eliminate in all
domains F ′5 all variables refering to transitions that have been disabled by the
firing of tf . Let tk be such a transition; to eliminate θ′k from F ′5, we apply the
FME method again. Note that, to eliminate θ′k in D′5, provided D′5 is in canonical
form, we simply erase any inequality involving this variable, which gives us DBM
D′′5 ; we therefore focus on inequalities over the cost c′ and obtain the following
domain:

F ′5 :

D′′5

c′ ≥

max

(
α′′k , max

ti∈Ef\{tk}
(θ′i − γ′′ik)

)
∗ a′k +

∑
ti∈Ef\{tk}

a′iθ
′
i +B′ if a′k ≥ 0

min

(
β′′f , min

ti∈Ef\{tk}
(θ′i + γ′′ki)

)
∗ a′k +

∑
ti∈Ef

a′iθ
′
i +B′ otherwise

Again, we can split the constraint on c′ to obtain a finite union of simple
cost state classes and iterate the process for all the transitions that have been
disabled by the firing of tf .

Finally, we add the constraints given by line 6 to finish the computation of
F ′. In the end, we indeed obtain the successor of our initial simple cost state
class as a finite union of simple cost state classes.

Each of the elements of this finite union can then be considered as a stan-
dalone successor of that state class in Algorithm 2 much like in [12,15].

6 Termination of the algorithm

To prove the termination, we consider < the symmetric relation to 4, such that
x < y iff y 4 x, and prove that it is a well quasi-order (wqo), i.e., that for every
infinite sequence of cost state classes, there are at least L and L′ in the sequence,
with L strictly preceding L′ such that L < L′. This implies that the exploration
of children in Algorithm 2 will always eventually stop.

The idea is to first prove that < is a wqo on simple cost state classes, and
then to lift this result to a certain quasi-order derived from < and defined on sets
of simple cost state classes. To ensure the lifted order is indeed a wqo, < has to
have a stronger property: indeed, we need to prove that it is a better quasi-order
(bqo). The definition of bqo’s is a bit involved and we actually do not need to
use it explicitly so we refer the interested reader to [14] for instance.

Proposition 1. Let N be a bounded TPN such that the cost of all runs is uni-
formly lower-bounded by some constant m, then relation < is a better quasi-order
on the simple cost state classes of N .

The wqo on cost state classes and the termination of Algorithm 2 are rather
direct consequences of Proposition 1.

Corollary 1. Let N be a bounded TPN such that the cost of all runs is uniformly
lower-bounded by some constant M , then relation < is a well quasi-order on the
cost state classes of N .

Corollary 2. When N is bounded and the cost of all runs is uniformly lower-
bounded by some constant M , Algorithm 2 terminates.

7 Practical results

We have implemented the above algorithms in Romeo5, a tool for the verification
of (parametric) time Petri nets [13]. In this section, we illustrate the above
approaches with a practical example. It uses negative costs, the point here being
to show how to obtain a scheduler using prediction about environmental features.

5 http://romeo.rts-software.org

EPOC (Energy Proportional and Opportunistic Computing systems)

The EPOC project [11] focusses on energy-aware task execution in the context
of a mono-site and small data Center which is connected to the regular electric
grid and to local renewable energy sources (such as windmills or solar cells).

Given a reliable prediction model, it is possible to design a scheduling that
aims at optimizing resource utilization and energy usage. A power-driven ap-
proach allows shifting or scheduling the postponable workloads to the time pe-
riod when the electricity is available (from the renewable energy sources) or at
the best price.

Description: We look here at a small system with four tasks: Task1 can be
scheduled at any time with non-renewable energy whereas the other tasks must
be computed using renewable energy. To run the four tasks, there are two pro-
cessors: Task2, Task3 and Task4 can run on both, but Task1 must run on the
first processor. Furthermore, the second processor, which can only use renewable
energy, is twice as slow as the first processor.

The energy source is assumed to rely on solar cells and wind turbines; as
illustrated by Fig. 2, the weather pattern used in the case study is the following:

– 10 a.m.–11:20 a.m.: windy, with a mix of sunny and cloudy;
– 11:20 a.m.–11:30 a.m.: calm and cloudy;
– 11:30 a.m.–11:40 a.m.: calm and weakly sunny;
– 11:40 a.m.–12 p.m. (noon): calm and sunny.

If a task is executed after the deadline, the cost rate is 100. Using non-
renewable energy for Task1 has a cost rate of 40. If tasks 2, 3 and 4 are executed
during a sunny period, the cost rate is −20; during a period of weak sun, it is
−10; and during a windy period, it is −10. Evidently, costs add up: e.g. when
the weather is sunny and windy, the cost rate is −20− 10 = −30.

The TPN model is presented in Fig 1. Proc1 and Proc2 stand for the pro-
cessors (1 and 2).

The associated cost function is: 40 ∗ R1 1 + (DL) ∗ (R1 1 + R2 1 + R2 2 +
R3 1 +R3 2 +R4 1 +R4 2) ∗ 100− (1 ∗Windy + 2 ∗ (Sun1 + Sun2 + Sun3 +
Sun4) + 1 ∗WeakSun) ∗ (R2 1 +R2 2 +R3 1 +R3 2 +R4 1 +R4 2) ∗ 10.

Objective: We want to reach a marking corresponding to the situation where all
tasks have been executed, which corresponds to all places in the upper net being
empty except Proc1 and Proc2, which contains exactly one token.

Results: The minimal cost to reach a state such that all the tasks are executed is
−1560 and from the associated trace (given by Romeo) we can derive the Gantt
chart in Fig 2. As for Fig 3, it shows the evolution of the cost rate during the
scenario proposed in the Gantt chart Fig 2.

Table 1 summarizes the performances of Romeo to reach the minimal cost
using cost state classes (and polyhedral operations) or simple cost state classes
(relying on DBMs). As a sanity check we can remark that both abstractions

Task1

T1
[0, 0]

W1

start1-1
[0,∞[

R1-1

end1-1
[40, 40]

Proc1

Task2

T2
[20, 20]

W2

start2-1
[0,∞[

R2-1

end2-1
[4, 4]

start2-2
[0,∞[

R2-2

end2-2
[8, 8]

Task3

T3
[30, 30]

W3

start3-1
[0,∞[

R3-1

end3-1
[5, 5]

start3-2
[0,∞[

R3-2

end3-2
[10, 10]

Task4

T4
[40, 40]

W4

start4-1
[0,∞[

R4-1

end4-1
[10, 10]

start4-2
[0,∞[

R4-2

end4-2
[20, 20]

Proc2

WeatherModel
tenAM
[10, 10]

Sun1

T25
[20, 20]

Covered

T26
[40, 40]

P29

T28
[0, 0]

Sun3

Windy

noWind
[80, 80]

P19

staticCloud
[0, 0]

Cloudy

cloudLeaving
[10, 10]

WeakSun

noMoreCloud
[10, 10]

Sun4

noon
[20, 20]

DL

Cloud

cloudOut
[5, 5]

Sun2

cloudIn
[5, 5]

Fig. 1. EPOC example

WEATHER FORECAST

wind

sun

clouds

task1-1

task2-1

task3-1

task4-1

processor 1

task2-2

task3-2

task4-2

processor 2

Time 1 10 t.u. 20 30 40 50 60 70 80 90 100 110 120

Fig. 2. EPOC: Gantt chart

T ime0 10 20 30 40 50 60 70 80 90 100 110 120

Cost

0

-1000

-2000

-3000

•−1560

Fig. 3. EPOC: Cost evolution

indeed compute the same minimal cost. As we are still implementing Romeo
with cost features, we are not yet able to get consistent data about the memory
used for each computation.

For this example, we notice using simple state classes to reach the minimal
cost is more efficient (almost 3 times faster): it is something we observed with
other examples studied, but not exposed in this paper. Therefore, experiment
urge us to favour this method over the use of cost state classes algorithms, even
though both methods give correct results.

Table 1. Offline non-preemptive Scheduler: Romeo performances

Method Cost State classes SimpleStateClasses

Minimal cost −1560 −1560

Computing time 4856.3s 1696.3s

8 Conclusion

In this paper, we have studied the optimal-cost reachability problem for time
Petri nets, where both letting time elapse and firing transitions have costs. We
have proposed a forward exploration algorithm based on the state class method
that provides the optimal-cost to reach a marking, for all bounded TPN with
no negative-cost cycles. We have first defined the reachability cost problem by
means of time-dependent cost constraints integrated to state classes and then
adapted consequently the firing rule. The optimal-cost to reach a state class
from the initial state class is reduced to a linear programming problem. Unlike
other approches [2,3,4,9,12,1], the one presented in this paper doesn’t need any
approximation/extrapolation nor handling dead tokens or transitions. Finally,
we have confirmed the effectiveness and efficiency of our approach through a
case study.

References

1. Parosh A. Abdulla and Richard Mayr. Priced Timed Petri Nets. Logical Methods
in Computer Science, 9(4), 2013.

2. Rajeev Alur, Salvatore La Torre, and George J. Pappas. Optimal paths in weighted
timed automata. Theoretical Computer Science, 318(3):297 – 322, 2004.

3. Gerd Behrmann, Ansgar Fehnker, Thomas Hune, Kim Larsen, Paul Pettersson,
Judi Romijn, and Frits Vaandrager. Minimum-Cost Reachability for Priced Timed
Automata, pages 147–161. Springer Berlin Heidelberg, Berlin, Heidelberg, 2001.

4. Gerd Behrmann, Kim G. Larsen, and Jacob I. Rasmussen. Optimal scheduling
using priced timed automata. SIGMETRICS Perform. Eval. Rev., 32(4):34– 40,
March 2005.

5. Bernard Berthomieu and Michel Diaz. Modeling and verification of time dependent
systems using time petri nets. IEEE Trans. Software Eng., 17(3):259–273, 1991.

6. Bernard Berthomieu and Miguel Menasche. An enumerative approach for analyzing
time petri nets. In IFIP Congress, pages 41–46, 1983.

7. Hanifa Boucheneb and John Mullins. Analyse des réseaux temporels : Calcul des
classes en O(n2) et des temps de chemin en O(m× n). TSI. Technique et science
informatiques, 22(4):435–459, 2003.

8. Pierre-Alain Bourdil, Bernard Berthomieu, Silvano Dal Zilio, and François Verna-
dat. Symmetry reduction for time petri net state classes. Science of Computer
Programming, 132:209–225, 2016.

9. Patricia Bouyer, Maximilien Colange, and Nicolas Markey. Symbolic optimal reach-
ability in weighted timed automata. In Proceedings of the 28th International Con-
ference on Computer Aided Verification (CAV’16), volume 9779 of Lecture Notes
in Computer Science, pages 513–530, Toronto, Canada, July 2016. Springer.

10. D. L. Dill. Timing assumptions and verification of finite-state concurrent sys-
tems. In Proc. Int. Workshop Automatic Verification Methods for Finite State
Systems (CAV’89), volume 407 of Lecture Notes in Computer Science, pages 197–
212. Springer, 1989.

11. EPOC. Energy proportional and opportunistic computing systems.
http://www.epoc.cominlabs.ueb.eu/fr.

12. Kim Larsen, Gerd Behrmann, Ed Brinksma, Ansgar Fehnker, Thomas Hune, Paul
Pettersson, and Judi Romijn. As cheap as possible: Efficient cost-optimal reachabil-
ity for priced timed automata. Lecture Notes in Computer Science, 2102:493–505,
2001.

13. Didier Lime, Olivier H. Roux, Charlotte Seidner, and Louis-Marie Traonouez.
Romeo: A parametric model-checker for Petri nets with stopwatches. In Stefan
Kowalewski and Anna Philippou, editors, 15th International Conference on Tools
and Algorithms for the Construction and Analysis of Systems (TACAS 2009), vol-
ume 5505 of Lecture Notes in Computer Science, pages 54–57, York, United King-
dom, March 2009. Springer.

14. Alberto Marcone. Fine analysis of the quasi-orderings on the power set. Order,
18(4):339–347, 2001.

15. Jacob I. Rasmussen, Kim G. Larsen, and K. Subramani. On using priced timed
automata to achieve optimal scheduling. Formal Methods in System Design,
29(1):97–114, 2006.

