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Abstract. We consider here the problem of adding diversity require-
ments for the results of continuous top-k queries in a large scale social
network, while preserving an efficient, continuous processing. We pro-
pose the DA-SANTA algorithm, which smoothly adds content diversity
to the continuous processing of top-k queries at the social network scale.
The experimental study demonstrates the very good properties in terms
of effectiveness and efficiency of this algorithm.
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1 Introduction and related work
We consider here the context of top-k continuous queries over text information
streams produced in social networks. Efficient processing of such queries at the
social network scale requires continuous processing techniques that incremen-
tally maintain the top-k list of each user in reaction to social network events
(new message, interaction with message). However, existing methods have dif-
ficulties to handle complex scoring functions, including social network criteria,
and usually focus on content-based relevance and time-based factors favoring
more recent messages. In previous work [1], we proposed an efficient method for
continuous processing of top-k queries over information streams in a large-scale
social network, using a relevance model with content-based, time-based and rich
social network factors (user- and interaction-based). We extend this work here,
to introduce results diversification into the continuous processing method.

Result diversification [4] aims at avoiding redundancy and too homogeneous
results to often imprecise user queries. For instance, a query about “olympic
games” could get only items about the 2024 games abundantly discussed recently,
while the user interest may be different. The content diversity of a results set is
generally measured either by the average or the minimum distance between all
the results. The general approach to add diversity to top-k querying is to use a
bi-objective scoring function that combines relevance and diversity.

Adding results diversification to continuous processing of top-k queries over
information streams at a social network scale is a very challenging task. First,
the general diversification problem is NP-hard [7]: given a query over a set O of n
objects, find S∗k ⊆ O of size k ≤ n, which maximizes a bi-objective function that
combines relevance and diversity. Specific approximate methods are necessary,



especially in the case of continuously arriving data. For instance, [3] and [5]
limit O to a sliding window of the most recent items, while [9] proposes an
incremental approach to maintain an approximate diversified top-k set, where O
is limited to the new item plus the current top-k. We adopt the latter definition
for O, but propose heuristics to select a victim in the current top-k. Next, the
constraint of continuous processing at the social network scale requires very
efficient algorithms. The methods above are not adapted to large social networks,
since they evaluate each new item with all the queries. The only work to date that
proposes a diversity-aware method adapted to a large number of queries is [2].
Like us, they index subscription queries to be able to prune queries not affected
by a new message, but focus on grouping queries into blocks for efficiency reasons.
They also use a victim selection heuristics that considers the oldest message in
the top-k. But their relevance function, favoring query grouping, is very specific
and they do not consider social network relevance factors.

Finally, when trying to extend an existing relevance-only approach to add
diversity, one must face the model mismatch between top-k computation for rel-
evance, at the element level, and diversity, at the set level. Efficient continuous
processing of top-k queries at a large scale is based on index structures for user
queries, with the specificity that they must include information about µq, the
k-th current score of each query, the limit to overstep to enter the top-k. Most
of them use inverted lists, one per query term. In [8], the index list for term t
contains subscription queries q containing t, sorted by wtq/µq, where wtq is the
weight of t in q. In [10] lists are ordered by a threshold value based on the cur-
rent top-k of each query. Some methods use different structures, for instance [13]
employs an original two-dimensional inverted query indexing scheme combining
wtq and µq. [12] use a double index per query term: an inverted list ordered by
query id and a tree structure organized by µq. Methods that focus on grouping
strategies to handle groups of queries instead of individual ones propose specific
index structures, for instance [11] uses a graph to index covering relationships
between subscription queries. To extend these methods with results diversifica-
tion, the indexing technique must be flexible enough to support it. This is not
the case for most of them, which also explains the fact that they do not consider
more complex scoring components, such as social network factors.

In this context, our main contributions are (i) a model that smoothly inte-
grates content-based diversity into the continuous top-k processing model pre-
sented in [1], including heuristics for approximate diversification and a query
indexing structure for efficient processing of diversity-aware top-k queries at the
social network scale, and (ii) an algorithm, DA-SANTA (Diversity-Aware Social
and Action Network Threshold Algorithm), based on this model, whose effec-
tiveness and efficiency are demonstrated through a set of experiments.

2 Data and processing models
Social network information streams. We consider the social network model
from [1], with asymmetric relation graphs, where each user produces a single
information stream of text messages and issues a single implicit subscription
query, expressed by the user profile. Like messages, user profiles are described by



a set of weighted terms expressing the user’s points of interest. The importance
of the content of a message m for user u is measured by a similarity function
sim (e.g. cosine similarity) between m and u’s profile p(u).

The model also considers an asymmetric importance function f , where f(u1, u2) ∈
[0, 1] is the importance of user u2 for u1 in the social network. Note that, even
if f is defined for any couple of users in the network , in practice each user has
a limited number of users of interest (with f >0), which results into reasonable
effort to manage this information.

Relevance scoring function. We consider the relevance scoring model pro-
posed in [1], combining content-based, time-based and social network factors.

tscore(m,u) = score(m,u) · TB(tm − to) (1)

score(m,u) = a sim(m, p(u)) + b f(u, um) + c G(m) (2)

(1) gives the time-based relevance of message m for user u. We use a time
bonus function TB : R+ → [1,∞), monotonically increasing, with TB(0) = 1,
where tm ∈ TS is the publishing time for message m and to ∈ TS a fixed origin
moment. Time-independent relevance score(m,u) expresses the initial impor-
tance of m for u at moment tm. It combines three elements: (i) content-based
similarity (sim(m, p(u))) between the message and the user profile, (ii) user-
dependent importance of the message in the social network (f(u, um)), mea-
sured by the importance of the message emitter um for user u, and (iii) user-
independent importance of the message in the social network (G(m)), measured
at publishing time by the global importance of the emitter in the social network.

Diversity model. We adopt the commonly used max-sum diversification bi-
criteria objective function [7] to combine relevance and diversity into a single
scoring function. If we note u.TLk = {m1, ...,mk} the top-k result set for user u,
its diversity D(u.TLk) is given by the sum of distances between the set elements,
where dist(mi,mj) = 1 − sim(mi,mj). The combined relevance-diversity score
DR is a linear combination between relevance and diversity.

DR(u.TLk) = ν fR(u.TLk) + (1− ν) fD(u.TLk) (3)

Here, fR(u.TLk) =
∑

m∈u.TLk
rel(m,u) expresses the relevance of the top-k

list (the rel scoring function may be (1) or (2)), while fD(u.TLk) = 2
k−1D(u.TLk)

measures the diversity score, where the homogeneity factor 2/(k − 1) compen-
sates the fact that fR sums k values, while for fD we have k(k − 1)/2 values.

Processing model. We adopt the commonly used approach [9][2] in top-k
diversification on streams, to limit the set of objects to the new message plus
the current top-k. Hence, for a given user u having the top-k result list u.TLk,
when a new message mnew arrives, the updated top-k list u.TL′k will be the
subset of size k of u.TLk ∪ {mnew} that maximizes the relevance-diversity score
DR defined in (3). Then the condition for the top-k to be updated is:

DR(u.TL′k) > DR(u.TLk) (4)

The basic algorithm for updating the top-k lists would repeat the above pro-
cessing for all the users in the social network, which raises an important efficiency
issue. Also, for each user the top-k update method is expensive, since it requires
k computations of the DR function.



Fig. 1. SANTA and DA-SANTA index and data structures

We propose the DA-SANTA algorithm that provides solutions for both these
efficiency problems. DA-SANTA proposes a pruning approach to avoid evaluat-
ing all users and employs heuristic methods to choose a single message (victim)
to be replaced with the new message.

3 The DA-SANTA algorithm
DA-SANTA scoring. For a new published message mnew and a given user
u, an heuristic function designates mvic ∈ u.TLk as potential victim. As shown
in Section 2, the condition for mnew to replace mvic in u.TLk is DR(u.TL′k) >
DR(u.TLk), where u.TL′k = u.TLk ∪ {mnew} - {mvic}. We note u.Fk = u.TLk

- {mvic} = u.TL′k - {mnew} the subset of k-1 results for u that do not change
when mnew replaces mvic. By developing (4) and simplifying the common part
that corresponds to u.Fk, the update condition becomes:

dru(mnew, u.Fk) > dru(mvic, u.Fk) (5)

We note dru(m,X) = ν rel(m,u)+(1−ν) 2
k−1Dm(X) the simplified relevance-

diversity scoring function, where Dm(X) =
∑

x∈X dist(m,x) can be interpreted
as the diversity of the set X relative to message m. dru(m,X) combines the
relevance of m for u with the diversity of X relative to m. Note that evaluating
condition (5) is significantly faster than for the equivalent condition on DR.

Victim selection heuristics. We explore two heuristics for choosing the vic-
tim message in u.TLk: (1) Minimum relevance (MR), which selects the message
with the smallest relevance to u: mvic = argminm∈u.TLkrel(m,u). (2) Minimum
relevance-diversity (MRD), which introduces a part of diversity into the heuris-
tics, by selecting the message with the smallest simplified relevance-diversity
dru: mvic = argminm∈u.TLkdru(m,u.TLk − {m}).
The DA-SANTA index. Figure 1 presents the DA-SANTA index structure,
as an extension of the SANTA index, composed of sorted lists of users by profile
term ti (text index), by user importance for uj (social index) and by relevance
score limit µ. DA-SANTA adds an extra list η to handle diversity, as follows.

Like for SANTA, we consider a monotonic objective function FDA for the
threshold-based strategy, issued from the update condition (5). Here FDA(mnew, u) =
dru(mnew, u.Fk)−dru(mvic, u.Fk), so (5) is equivalent to FDA(mnew, u) > 0. By
developing dru, the update condition becomes:

ν rel(mnew, u) + (1− ν)
2

k − 1
Dmnew(u.Fk)− ν µu − (1− ν)

2

k − 1
ηu > 0 (6)



DA-SANTA algorithm getCandidates method
Input: message mnew , index I, user table U Input: message mnew , index I

On mnew publication initTraversal(I,mnew)
for all c ∈ getCandidates(I,mnew) do result ← ∅

ue ← getUserEntry(U, c.user) threshold ← F
+
DA

(mnew)

if c.upperbound > ue.drvic then while threshold > 0 do
s ← compute-dr(ue,mnew) u ← nextIndexUser(I)

if s > ue.drvic then result ← result ∪ {(u, dr(mnew))}

ue.TLk ← ue.TLk ∪ {mnew} − {ue.mvic} threshold ← F
+
DA

(mnew)

ue.mvic ← heuristics(ue.TLk) //MR or MRD end while
ue.drvic ← compute-dr(ue,mvic) return result
Update I.µ, I.η

end if
end if

end for

Fig. 2. The DA-SANTA algorithm

Here µu=rel(mvic, u) is the relevance of the victim for u and ηu=Dmvic
(u.Fk)

the diversity of u.Fk relative to mvic. As the choice of mvic is independent of
mnew, µu and ηu are independent from mnew, can be computed in advance and
maintained after each top-k update.

Like for SANTA, the term in rel(mnew, u), when using scoring functions such
as (2) or (1) with cosine similarity, is indexed by the text and social indexes. We
also have the term in µu, indexed by the min-score index, with the difference that
the indexed value is here −rel(mvic, u). For the term in ηu, we add a new list η
to the index (diversity index), organized like µ but storing the values of −ηu in
descending order. However, the term in Dmnew

(u.Fk) in (6) cannot be indexed
in a similar way. Therefore, we consider an upperbound of FDA(mnew, u), by
replacing Dmnew

(u.Fk) with k-1, given that Dmnew
(u.Fk) sums k-1 distances

∈ [0, 1]. We note this upperbound F+
DA. With relevance function (2) using cosine

similarity, score(m,u) = a
∑

ti∈m wimwiu + b f(u, um) + c G(m), we obtain the
following objective function, monotonic in the (underlined) index dimensions:

F+
DA(mnew, u) = ν (a

∑
ti∈mnew

wimnew
wiu + b f(u, umnew) + c G(mnew)) +

2(1− ν)− ν µu − (1− ν) 2
k−1ηu

DA-SANTA also manages a user table to keep for each user in the social
network the current u.TLk and information for score computation.

The algorithm. Figure 2 presents DA-SANTA. On publication of a new mes-
sage mnew, the getCandidates method returns only users that have a chance to
integrate mnew in their top-k. Each returned candidate is a couple (user, upper-
bound) - we take advantage here of the capability of the index traversal method
to also estimate an upperbound for dru(mnew, u.Fk) (here u is c.user).

For each candidate, its entry ue in the user table is necessary to compute the
real value of dru(mnew, u.Fk). To avoid as much as possible this costly operation,
we filter out cases when the upperbound is not greater than dru(mvic, u.Fk)
(stored in ue.drvic). After computing the real score with the compute-dr function,
if the update condition (5) is fulfilled, we update the top-k list u.TLk, select the
new victim by using heuristics MR or MRD, and update dru(mvic, u.Fk).

Finally, we update the index lists µ and η, by moving only entries for u,
following the new value of −rel(mvic, u), respectively −Dmvic(u.Fk).

The getCandidates method traverses the index to prune candidates. Given
mnew, initTraversal selects the related lists from the index and computes the
coefficients of the objective function F+

DA(mnew, u). The index lists traversal
may follow any threshold algorithm strategy (e.g. TA[6]) through the call to



nextIndexUser, which returns the next user (in some of the lists) not yet seen in
the index (new candidate).

The threshold is the maximal value that the objective function F+
DA may

have, and is evaluated by F+
DA(mnew) as being F+

DA(mnew, u) applied to the last
visited value in each index list. The monotony of F+

DA and of the index lists

implies that for a new candidate u, F+
DA(mnew, u) ≤ F+

DA(mnew). For the same
reasons, we obtain an upperbound for dru(mnew, u.Fk) through dr(mnew), com-

puted like F+
DA(mnew) but only on the part that corresponds to dru(mnew, u.Fk).

Each new candidate and its upperbound for dru are appended to the results list.
Index traversal stops when the decreasing threshold becomes ≤ 0.

4 Experimental evaluation
Experimental setting. Our settings are similar to those applied in [1]. The
social network is extracted from Twitter, with about 104 000 users and 18 million
direct links between them. Computation of f uses the existence of a direct link
(u1, u2) and the number of actions of u1 on the messages of u2. We use about 500
000 tweets extracted from the last 200 tweets for each user. Messages contain 3-4
terms in average. A dictionary of about 187 000 terms was built with message
terms employed by at least 5 users. For each user, the profile contains all the
dictionary terms that occur in his messages - the average profile size is 125. Note
that user profiles and f are not continuously recomputed.

The relevance scoring function (1)(2) uses the default coefficients a=0.5,
b=0.375 and c=0.125, while G(m) uses the Klout score. Time bonus uses a
linear function TB(tm − to) = 1 + (tm − to)/Tb, where Tb is the period of time
after which an extra bonus equal to the initial score(m,u) is earned, with a de-
fault value of 15 days. We consider four combinations of factors in the relevance
scoring function: Text-Social-Time corresponds to the complete function (1),
Text-Social to (2), Text-Time ignores the social components considering b=c=0,
and Text only keeps the text relevance.

The other default values in the experiments are k=10 and ν=0.75.
We compare DA-SANTA with two other algorithms. Baseline corresponds

to the basic algorithm (Section 2), Incremental [9] optimizes the computation
of the relevance-diversity scores by using condition (5) with dru instead of (4).
All the algorithms have an initialization phase that processes the first 300 000
messages, followed by the measure phase on the remaining 200 000 messages.

Effectiveness. We measure the quality of the results in terms of relevance
(fR(u.TLk)) and diversity (fD(u.TLk)), while varying the balance parameter
ν. The values of fR and fD are normalized to [0,1] by division by k. Figure 3
represents this variation for MR and for each type of relevance scoring. Values
for ν=1 correspond to the case without diversity, while ν=0 is the other extreme
case, where only diversity counts. Figure 3.a) shows a monotonic decrease of rel-
evance in all the cases when ν decreases, to very low values when ν=0. However,
when social criteria are included into the relevance scoring, the decrease is much
smoother. This can be explained by a better natural content-diversity of mes-
sages when the relevance is not only based on content. Note also that relevance
scores are not comparable among the various scoring types.



(a) Variation of relevance (b) Variation of diversity

Fig. 3. Variation with ν of the achieved relevance and diversity, with MR heuristics

(a) DA-SANTA with MR and MRD (b) Baseline and Incremental

Fig. 4. Execution time for DA-SANTA, Baseline and Incremental

Figure 3.b shows that diversity grows when ν decreases, with a stabilization
to high values around ν=0.6. We notice that relevance functions including more
criteria provide increased content diversity. Also, the social network criteria ap-
pear to have a good influence on diversity, better than the time bonus.

When using the MRD, measures are very close to those for MR, with notice-
able better diversity, although the difference with MR is small.

In conclusion, a small contribution of diversity to the balance with relevance
brings a very good diversity to the results, without loosing much of the relevance.

Efficiency. We measure the execution time per message, for both MR and
MRD. Since time-dependent scoring has a significant impact on the execution
time (because of the increased probability of new messages to be relevant and
to enter the top-k), we compare two scoring cases, without (Text-Social), and
with (Text-Social-Time) time bonus.

Figure 4.a presents the variation of the execution time with ν. In all the cases,
the execution time first increases when ν decreases from 1 to around 0.75, then
it decreases when ν continues to decrease. The initial increase is explained by
the increasing role of the diversity in the global score, provoking more and more
updates to the top-k and to the index. Around ν=0.75 the diversity becomes high
enough and cannot increase too much anymore; the diversity part in the objective
function F+

DA becomes important enough to produce a quicker termination of
the index traversal. In all the cases, MR is slightly faster than the MRD. Time-



dependent scoring has a much higher impact on the execution time, which is 1.5
to 2.5 times longer with Text-Social-Time than with Text-Social.

In conclusion, the execution time of DA-SANTA (ms per message) is adapted
to continuous top-k processing. Time-dependent scoring has a real impact on the
execution time, but do not change the order of magnitude. The victim selection
heuristics has less impact than the other efficiency factors.
Comparison with Baseline and Incremental. Baseline and Incremental
produce both the same relevance and diversity, since they test each time all the
possible victims in the top-k. Comparing DA-SANTA with them evaluates the
loss of relevance and diversity by applying a victim selection heuristics. Measures
(not shown here for space reasons) indicate a negligible loss of relevance and
diversity, which proves the very good quality of results produced by DA-SANTA.

Figure 4.b compares the execution time of Baseline and Incremental with all
the DA-SANTA scoring cases. Incremental is about 3 times faster than Base-
line, but unlike DA-SANTA, its execution time (about 1 second/message) is not
appropriate for continuous processing of top-k queries at a social network scale.

In conclusion, DA-SANTA delivers a similar quality of results 2-3 orders of
magnitude faster than Baseline and Incremental, with execution times compat-
ible with the continuous processing of top-k queries in large social networks.
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