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Abstract—We investigate the coordination of autonomous de-
vices with strategic and non-aligned utility functions. The encoder
and the decoder of the point-to-point network choose their coding
strategy in order to maximize their own utility function. This
paper extends our previous results on strategic coordination
by considering state information at the decoder. We study the
connexion between Wyner-Ziv source coding and the problem of
Bayesian persuasion in the economics literature.

I. INTRODUCTION

In this paper, we investigate a point-to-point network of

autonomous devices with non-aligned utility functions, see

Fig. 1. Our study is based on notion of “Empirical Coordi-

nation” which characterizes the global behavior that can be

implemented by local policies. Coming originally from the

literature of Game Theory [1], [2], [3], [4], [5], the problem

of Coordination has attracted a lot of attention in Information

Theory [6], [7], [8], [9], [10], [11]. It consists in determining

the minimal exchange of information required by autonomous

devices in order to implement a coordinated behavior. More

precisely, a target joint distribution is achievable if there exists

a coding scheme whose empirical distribution of symbols

converges to that target distribution. Then, it is possible to

optimize any utility function - instead of the distortion - by

considering the one-shot version of the problem instead of

the problem by blocks of n-symbols. The notion of Empirical

Coordination generalizes the “Rate-Distortion Theory” as well

as “Channel coding result” and is strongly related to the joint

source-channel coding with state information at both encoder

and decoder [12], [13], [14], [15], [16], [17], [18], [19], [20],

[21], [22].

In this paper, we investigate the coordinated behavior of two

devices with non-aligned utility functions, in the spirit of [23],

[24]. Fig. 1 corresponds to the problem of Wyner-Ziv source

coding with state information at the decoder [25], with a noisy

channel. The only difference is that the encoder and decoder

are players endowed with distinct utility functions φ1(u, v)
and φ2(u, v). If these utility functions were equal φ1(u, v) =
φ2(u, v), our solution would boil down to the classical result

for noisy channel and Wyner-Ziv source.

† Tristan Tomala acknowledges financial support from the HEC foundation.
The authors would like to thank Institute Henri Poincaré (IHP) in Paris

France, for hosting their scientific discussions.
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Fig. 1. The information source is i.i.d. Puz(u, z) and the channel T (y|x) is
memoryless. The encoder P1 and the decoder P2 are players that maximize
their own utility functions φ1(u, v) ∈ R and φ2(u, v) ∈ R.

We consider a game in which the encoder and decoder are

the players P1 and P2 that choose the encoding and decoding

strategies in order to maximize their long-run utility. The

equilibrium solution proposed by Stackelberg in [27] is more

suited than the “Nash Equilibrium” [28], since the decoder

P2 knows in advance the encoding strategy of P1, i.e. the

encoder P1 has “commitment power”. This problem is also

related to the “Strategic Transmission of Information” in the

literature of Game Theory [29], [30], [31], [32], [33], [34].

In fact, our problem is closely related to the problem of

“Bayesian Persuasion” [35], [36], in which a sender wants

to persuade a receiver to change her action. By sending some

information, the encoder is able to control the posterior beliefs

of the decoder, knowing that he will choose a best-reply action.

The problem of strategic communication was investigated in

the literature of Information Theory [37], [38], [39], [40]

for Gaussian source and channel, and the quadratic distortion

functions of [29].

II. STRATEGIC COORDINATION

A. Problem Statement

We consider the problem of strategic coordination depicted

in Fig. 1. Notations Un, Xn, Y n, Zn, V n stand for se-

quences of random variables of information source un =
(u1, . . . , un) ∈ Un, decoder’s state information zn ∈ Zn,

inputs of the channel xn ∈ Xn, outputs of the channel

yn ∈ Yn and decoder’s output vn ∈ Vn, respectively. The

sets U , Z , X , Y , V have finite cardinality. The set of proba-

bility distributions over X is denoted by ∆(X ). The notation

||Q−P||1 =
∑

x∈X |Q(x)−P(x)| stands for the L1 distance
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between the probability distributions Q and P . With a slight

abuse of notation, we denote by Q(x)×Q(v|x), the product of

distributions over ∆(X×V). Notation Y −
−X−
−U denotes the

Markov chain property corresponding to P(y|x, u) = P(y|x)
for all (u, x, y). Player P1 observes a sequence of source

symbols un ∈ Un and chooses at random a sequence of

channel inputs xn ∈ Xn. Player P2 observes a sequence of

channel outputs yn ∈ Yn and state information zn ∈ Zn

before choosing at random a sequence of actions vn ∈ Vn.

Definition II.1 (Strategies of both players)

• Player P1 chooses a strategy σ and player P2 chooses a

strategy τ , defined as follows:

σ : Un −→ ∆(Xn), (1)

τ : Yn ×Zn −→ ∆(Vn). (2)

Both strategies (σ, τ) are stochastic.

• A pair of strategies (σ, τ) induces a joint probability

distribution Pσ,τ ∈ ∆(Un × Zn × Xn × Yn × Vn) over the

n-sequences of symbols, defined by:

n∏

i=1

P
(
Ui, Zi

)
× Pσ

(
Xn

∣∣∣Un
)

×

n∏

i=1

T
(
Yi

∣∣∣Xi

)
× Pτ

(
V n

∣∣∣Y n, Zn
)
. (3)

Definition II.2 (Expected n-stage utilities) The utilities of

the n-stage game Φn
1 and Φn

2 are evaluated with respect to

the marginal distribution Pσ,τ over the sequences (Un, V n)
and the utility functions φ1(u, v) ∈ R, φ2(u, v) ∈ R.

Φn
1 (σ, τ) =Eσ,τ

[
1

n

n∑

i=1

φ1(Ui, Vi)

]

=
∑

un,vn

Pσ,τ

(
un, vn

)
·

[
1

n

n∑

i=1

φ1(ui, vi)

]
, (4)

Φn
2 (σ, τ) =

∑

un,vn

Pσ,τ

(
un, vn

)
·

[
1

n

n∑

i=1

φ2(ui, vi)

]
. (5)

Definition II.3 (Decoder’s best-replies) For any strategy σ
of P1, we define the set of n-best-reply of P2 as follows:

BR
n
2 (σ) =

{
τ, s.t. Φn

2 (σ, τ) ≥ Φn
2 (σ, τ̃ ), ∀τ̃ 6= τ

}
. (6)

Definition II.4 (Characterization) We consider an auxiliary

random variable W with |W| = min
(
|V|, |U|+1

)
. We define

the set Q0 of target probability distributions by:

Q0 =

{
Puz(u, z)×Q(w|u), s.t.,

max
P(x)

I(X ;Y )− I(U ;W ) + I(Z;W ) ≥ 0

}
. (7)

We define the set Q2

(
Q(u, z, w)

)
of decoder’s best-reply:

Q2

(
Q(u, z, w)

)
=argmaxQ(v|z,w) E Q(u,z,w)

×Q(v|z,w)

[
φ2(U, V )

]
.

(8)

The optimal utility Φ⋆
1 of P1 is given by:

Φ⋆
1 = sup

Q(u,z,w)∈Q0

min
Q(v|z,w)∈

Q2

(
Q(u,z,w)

)
E Q(u,z,w)

×Q(v|z,w)

[
φ1(U, V )

]
. (9)

We prove that the n-stage game of utility Φn
1 (σ, τ) can be

reformulated as a one-shot game in which the decoder chooses

Q(v|z, w), knowing that the encoder has chosen Q(w|u).

Theorem II.5 (Main Result) The limit utility of P1 when P2

chooses any n-best-reply τ ∈ BR
n
2 (σ):

∀n ∈ N, ∀σ, min
τ∈BRn

2 (σ)
Φn

1 (σ, τ) ≤ Φ⋆
1, (10)

∀ε > 0, ∃n̄, ∀n ≥ n̄, ∃σ, min
τ∈BRn

2 (σ)
Φn

1 (σ, τ) ≥ Φ⋆
1 − ε.

(11)

The proofs of the converse (10) and achievability (11) results

are stated in Sec. IV and V.

III. EXAMPLE WITH Z-STATE INFORMATION

The binary source U has probability P(u1) = p0 with p0 ∈
[0, 1] and the state information Z is drawn through a Z-channel

with parameter δ ∈ [0, 1] as in Fig. 2. While observing the state

u2

u1

b

b

b

b

b

b

b

b

w2

w1

z2

z1
1− α

1− β

α

β

1− δ

1

δ

Fig. 2. Joint distribution P(u, z) and the signaling strategy Q(w|u).

information Z , the decoder reactualizes his beliefs regarding

the source:

q1 = Q(u1|z1) =
p0 · (1− δ)

p0 · (1− δ)
= 1, (12)

q2 = Q(u1|z2) =
p0 · δ

1− p0 · (1− δ)
. (13)

We denote by (q1, q2) the belief ex-ante, i.e. before the

transmission of W .

The binary auxiliary random variable W ∈ {w1, w2} is

drawn with distribution Q(w|u) and parameters α ∈ [0, 1], β ∈
[0, 1] as in Fig. 2. After receiving the symbol W , the decoder

reactualizes his posterior beliefs denoted by (p1, p2, p3, p4):

Q(u1|w1, z1) =p1 = Q(u1|w2, z1) = p3 = 1, (14)

Q(u1|w1, z2) =
p0 · (1− α) · δ

p0 · (1 − α) · δ + (1− p0) · β
= p2, (15)

Q(u1|w2, z2) =
p0 · α · δ

p0 · α · δ + (1− p0) · (1− β)
= p4. (16)

(15)-(16) reformulate into the signaling strategy Q(w|u):

α =
p4 ·

(
p2 · (1− p0(1− δ))− p0 · δ

)

p0 · δ · (p2 − p4)
, (17)

β =
(1− p2) ·

(
p0 · δ − p4 · (1− p0(1− δ))

)

(p2 − p4) · (1 − p0)
. (18)
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Fig. 3. Regions of posterior beliefs (p2, p4) satisfying information constraint
C − I(U ;W ) + I(Z;W ) ≥ 0 for p0 = 0.5, C = 1 −H(0.25), δ = 0.4.

The threshold 2

7
corresponds to the beliefs ex-ante q2 given by (13), induced

by the symbol z2.

Lemma 1 A pair of posterior beliefs (p2, p4) is feasible if

and only if p2 < q2 < p4 or p4 < q2 < p2.

The proof of Lemma 1 comes from the constraints α ∈ [0, 1],
β ∈ [0, 1] in (17) and (18). The pair of posterior beliefs

(p2, p4) cannot belongs to the grey regions of Fig. 3. We

u2

u1

v1 v2

10

0

4

9

Fig. 4. Utility φ2(u, v) of P2

u2

u1

v1 v2

1

1

0

0

Fig. 5. Utility φ1(u, v) of P1

consider that the channel capacity is fixed equal to C =
maxP(x) I(X ;Y ) = 1−H(0.25). The information constraint

of Q0 writes:

C − I(W ;U) + I(W ;Z) ≥ 0 (19)

⇐⇒H(U |W,Z) ≥ H(U |Z)− C (20)

⇐⇒P(w1, z2)H(p2) + P(w2, z2)H(p4) ≥ H(U |Z)− C
(21)

⇐⇒
p0 · δ − p4 · (1− p0(1− δ))

p2 − p4
H(p2)

+
p2 · (1− p0(1− δ))− p0 · δ

p2 − p4
H(p4) ≥ H(U |Z)− C.

(22)

The green regions of Fig. 3 represent the pairs of posterior

beliefs (p2, p4) that satisfy the information constraint. We

consider the utility functions of the encoder φ1(u, v) and of

the decoder φ2(u, v), given by Fig. 4 and 5. The player P2

holds a belief P(u1) regarding the source of information U .

0 1 P(u1)

E
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te
d

u
ti

li
ty

o
f
P
2 v⋆29

4

v⋆1 10

b

0.6

Fig. 6. The best-reply action v⋆ of P2 depends on his belief P(u) regarding
the source U : if P(u1) ∈ [0, 0.6] he plays v⋆

2
and if P(u1) ∈ [0.6, 1] he

plays v⋆
1

.

He chooses a best-reply action v⋆1 or v⋆2 depending on the

interval [0, 0.6] or [0.6, 1] in which lies the belief P(u1), see

Fig. 6. The utility of player P1 only depends on the action

E
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p
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d

u
ti
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o
f
P
1

0

1

1

v⋆1

v⋆2
pp

0 =
0.5

q
1 =

1

p
1 =

p
3 =

1

q
2 =

2/7

b b
p ⋆
2 =

0.06

p ⋆
4 =

0.6

b

b Φ⋆
1

b

b b

Fig. 7. The expected utility of player P1 depending on the belief P(u1)
of player P2. The optimal posterior beliefs (p⋆

2
, p⋆

4
) satisfy the information

constraint C − I(U ;W ) + I(Z;W ) ≥ 0, for p0 = 0.5, C = 1−H(0.25),
δ = 0.4.

of player P2 and is represented by the orange line in Fig. 7.

The encoder would like to send some information in order to

modify the posterior beliefs of P2 such that p4 belongs to the

interval p4 ∈ [0.6, 1]. Then the best-reply action of P2 would

be v⋆1 that rewards player P1. The optimal solution is to fix

p⋆4 = 0.6 and to find p⋆2 that satisfies the information constraint
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with equality:

C − I(W ;U) + I(W ;Z) = 0 (23)

⇐⇒
p0 · δ − p⋆4 · (1− p0(1− δ))

p⋆2 − p⋆4
H(p⋆2)

+
p⋆2 · (1− p0(1− δ))− p0 · δ

p⋆2 − p⋆4
H(p⋆4) = H(U |Z)− C.

(24)

Hence the optimal solution is p⋆2 ≃ 0.06 and the pair (p⋆2, p
⋆
4)

lies at the border of the green region of Fig. 3. This solution

induces the conditional entropies H(U |W, z2) ≃ 0.7146 and

H(U |W,Z) = H(U |Z)−C ≃ 0.5747. The optimal utility for

player P1 is Φ⋆
1 ≃ 0.5925.

IV. CONVERSE PROOF OF THEOREM II.5

We consider an arbitrary strategy σ of length n ∈ N. We

denote by T the uniform random variable {1, . . . , n} and we

introduce the auxiliary random variable W = (Y n, Z−T , T )
whose joint probability distribution Pσ(u, z, w) with (U,Z) is

defined by:

Pσ(u, z, w) =Pσ

(
uT , zT , y

n, z−T , T
)

=P(T = i) · Pσ

(
uT , zT , y

n, z−T
∣∣T = i

)

=
1

n
· Pσ

(
ui, zi, y

n, z−i
)
. (25)

This identification ensures that the Markov chain W −
−UT −
−
ZT is satisfied. We now prove that the distribution P(u, z, w)
satisfies the information constraint of the set Q0.

0 ≤I(Xn;Y n)− I(Un, Zn;Y n) (26)

≤
n∑

i=1

H(Yi)−
n∑

i=1

H(Yi|Xi)− I(Un;Y n|Zn) (27)

≤n ·max
P(x)

I(X ;Y )−

n∑

i=1

I(Ui;Y
n|Zn, U i−1) (28)

=n ·max
P(x)

I(X ;Y )−

n∑

i=1

I(Ui;Y
n, Z−i, U i−1|Zi) (29)

≤n ·max
P(x)

I(X ;Y )−

n∑

i=1

I(Ui;Y
n, Z−i|Zi) (30)

=n ·max
P(x)

I(X ;Y )− n · I(UT ;Y
n, Z−T |ZT , T ) (31)

=n ·max
P(x)

I(X ;Y )− n · I(UT ;Y
n, Z−T , T |ZT ) (32)

=n ·max
P(x)

I(X ;Y )− n · I(U ;W |Z) (33)

=n ·

(
max
P(x)

I(X ;Y )− I(U ;W ) + I(Z;W )

)
. (34)

(26) comes from the Markov chain Y n −
−Xn −
− (Un, Zn).
(27) comes from the memoryless property of the channel and

from removing the positive term I(Un;Zn) ≥ 0.

(28) comes from taking the maximum P(x) and chain rule.

(29) comes from the i.i.d. property of the source (U,Z) that

implies I(Ui, Zi;Z
−i, U i−1) = I(Ui;Z

−i, U i−1|Zi) = 0.

(30) comes from removing I(Ui;U
i−1|Y n, Z−i, Zi) ≥ 0.

(31) comes from the uniform random variable T ∈ {1, . . . , n}.

(32) comes from the independence between T and the source

(U,Z), that implies I(UT , ZT ;T ) = I(UT ;T |ZT ) = 0.

(33) comes from the identification W = (Y n, Z−T , T ).
(34) comes from the Markov chain W −
− UT −
− ZT . This

proves that the distribution Pσ(u, z, w) belongs to the set Q0.

For any strategies (σ, τ), we reformulate the long-run util-

ities with the auxiliary random variable W = (Y n, Z−T , T ).

Φn
1 (σ, τ)

=
∑

un,zn,yn

Pσ(u
n, zn, yn)

∑

vn

Pτ (v
n|yn, zn) ·

1

n

n∑

i=1

φ1(ui, vi)

(35)

=

n∑

i=1

∑

ui,zi,

z−i,yn

1

n
· Pσ(ui, z

n, yn)
∑

vi

Pτ (vi|y
n, zn) · φ1(ui, vi)

(36)

=
∑

ui,zi,z
−i,

yn,i

Pσ(ui, zi, z
−i, yn, i)

∑

vi

Pτ (vi|y
n, z−i, zi, i) · φ1(ui, vi)

(37)

=
∑

u,z,w

Pσ(u, z, w)
∑

v

Pτ (v|w, z) · φ1(u, v). (38)

(35) - (37) are reformulations valid also for φ2(u, v).
(38) comes from replacing the random variables (Y n, Z−T , T )
by W , whose distribution is stated in (25).

By replacing W = (Y n, Z−T , T ), the set of n-best-reply

BR
n
2 (σ) is equal to the set Q2

(
Pσ(u, z, w)

)
:

BR
n
2 (σ)

= argmaxPτ (vn|yn,zn)

∑

un,zn,

xn,yn

Pσ(u
n, zn, xn, yn)

×
∑

vn

Pτ (v
n|yn, zn) ·

1

n

n∑

i=1

φ2(ui, vi) (39)

=argmaxPτ (v|w,z)

∑

u,z,w

Pσ(u, z, w)
∑

v

Pτ (v|w, z) · φ2(u, v)

(40)

=Q2

(
Pσ(u, z, w)

)
. (41)

We conclude the proof of (10) in Theorem II.5.

min
τ∈BRn

2 (σ)
Φn

1 (σ, τ) = min
τ∈BRn

2 (σ)

∑

un,zn,yn

Pσ(u
n, zn, yn)

×
∑

vn

Pτ (v
n|yn, zn) ·

1

n

n∑

i=1

φ1(ui, vi) (42)

= min
Pτ (v|w,z)∈

Q2

(
Pσ(u,z,w)

)
∑

u,z,w

Pσ(u, z, w)
∑

v

Pτ (v|w, z) · φ1(u, v)

(43)

≤ sup
Q(u,z,w)∈Q̃0

min
Q(v|w,z)∈

Q2

(
Q(u,z,w)

)
EQ(u,z,w)×Q(v|w,z)

[
φ1(U, V )

]
= Φ⋆

1.

(44)

(42) comes from the definitions.

(43) comes from (41) that identifies the set of n-best-reply

BR
n
2 (σ) with the set Q2

(
Pσ(u, z, w)

)
of definition II.4.



5

(44) comes from (34) that shows the distribution Pσ(u, z, w)
belongs to the set Q̃0.

The cardinality bound |W| = min
(
|V|, |U| + 1

)
follows

from Caratheodory’s Lemma and Markov chain Z−
−U−
−W .

V. SKETCH OF ACHIEVABILITY OF THEOREM II.5

We denote by Q(u, z, w) ∈ Q0 the distribution that is

optimal for (9). We consider the concatenation of Wyner-Ziv

source coding [25] with a channel code [26]. Empirical Co-

ordination results [14] ensures that the sequences of symbols

(Un, Zn,Wn) are jointly typical for Q(u, z, w) with large

probability. Following the same lines as in [23], [24], we prove

that the beliefs Pσ(ui|y
n, zn) induced by the strategy σ are

close to the target belief Q(u|z, w):

Eσ

[
1

n

n∑

i=1

D

(
Pσ(Ui|Y

n, Zn)

∣∣∣∣
∣∣∣∣Q(Ui|Wi, Zi)

)]
≤ ε. (45)

This provides a lower bound on the utility of P1:

min
τ∈BRn

2 (σ)
Φn

1 (σ, τ) ≥ Φ⋆
1 − ε. (46)

The full version of the proof is in [41].
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[38] E. Akyol, C. Langbort, and T. Başar, “On the role of side information

in strategic communication,” in 2016 IEEE International Symposium on

Information Theory (ISIT), pp. 1626–1630, July 2016.
[39] S. Sarıtaş, S. Yüksel, and S. Gezici, “Dynamic signaling games under

nash and stackelberg equilibria,” in 2016 IEEE International Symposium

on Information Theory (ISIT), pp. 1631–1635, July 2016.
[40] E. Akyol, C. Langbort, and T. Başar, “Information-theoretic approach
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