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bXLIM (UMR CNRS 7252), Université de Poitiers, 11 bd Marie et Pierre Curie, 86962 Futuroscope Chasseneuil Cedex, France
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Abstract

The main goal of this article is to use properties of homogeneous systems for addressing the problem of stability for a class of
nonlinear systems with sampled-data inputs. This nonlinear strategy leads to several kinds of stability, i.e. local asymptotic
stability, global asymptotic stability or global asymptotic set stability, depending on the sign of the degree of homogeneity.
The results are illustrated with the case of the double integrator.
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1 Introduction

Feedback control systems wherein the control loops are
closed through a real-time network are called Networked
Control Systems (NCSs) [1]. In NCSs, the presence of
packet-based communication, network delays, limited
bandwidth and packet dropouts is inevitable. NCSs are
widely studied in automatic control since several years
[2, 3].

When studying NCSs, a crucial problem is to deter-
mine whether some stability properties pertain through
sampled-data inputs [4]. Moreover, due to, for instance,
data packet dropouts [5], the inputs are not only sam-
pled but also usually nonuniformly sampled with respect
to time and this is called aperiodic sampled-data inputs
[6]. Several approaches have been developed to solve the
problem of stability for systems with sampled-data in-
puts, such as the input/output approach [7,8] or the sum
of squares approach [9]. Moreover, different dynamical
models as hybrid systems [1, 10], discrete-time systems
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[11] or time-delay systems [5,12–14] have also been used
to tackle this problem. Most of these strategies [7–9] are
developed under the emulation method where the con-
troller is first designed in continuous time and then im-
plemented as a sampled-data controller [2, 15].

The notion of homogeneity was introduced in [16] and
[17] and developed by many authors, for instance in
[18–20]. In [21], a new nonlinear approach based on the
input-to-state stability (ISS) properties of homogeneous
systems has been introduced for studying self-triggered
control for nonlinear systems.We know from [22,23] that
the emulation of a feedback law, which globally asymp-
totically stabilizes the origin of a nonlinear continuous-
time system, leads in general to semi-global practical
stability in the sampled-data context. In our article, we
show that if the nonlinear system satisfies in addition a
homogeneity property, then the global asymptotic sta-
bility, local asymptotic stability or global asymptotic set
stability are preserved under emulation depending on
the degree of homogeneity.

The main result shows that if it is possible to build a
stabilizing static feedback control for a continuous sys-
tem such that the closed-loop system with sampled-data
inputs satisfies a homogeneity property, then it is possi-
ble to preserve different notions of stability that depend
on the degree of homogeneity κ for the closed-loop sys-
tem with aperiodic sampled-data inputs. When κ = 0,

Preprint submitted to Automatica 23 June 2017



the closed-loop system is globally asymptotically sta-
ble if the maximum sampling period h is shorter than a
constant H. Linear systems are special cases of homo-
geneous systems of degree 0 and our result hence shows
that homogeneity explains this feature of linear systems.
We refer to [1, 14, 24] for different strategies used in
the literature for estimating H in the linear case. When
κ > 0, the closed-loop system achieves local asymptotic
stability, while when κ < 0, it achieves global asymp-
totic set stability. In these two cases, the results remain
true regardless of h < +∞, although the size of the do-
main of attraction and of the limit set do depend on h.
With the use of an homogeneous observer, the results
are then extended to continuous systems with an output.
The results are finally applied to the case of the double
integrator which is rather important in control theory
despite its simplicity [25,26].

The article is organized as follows. After some notations
and definitions given in Section 2, we develop the main
results of the article in Section 3. The example of the
double integrator is treated in Section 4. Finally, a con-
clusion is addressed in Section 5.

2 Notations and definitions

Let us introduce the following notations:

• R+ = {x ∈ R : x ≥ 0}, where R is the set of real
numbers.

• | · | denotes the absolute value in R, ∥ · ∥ denotes the
Euclidean norm on Rn.

• For r1, r2, . . . , rn, Diag(r1, . . . , rn) denotes the diago-
nal matrix of dimension n×n with kth diagonal entry
rk.

• A measurable function d : R+ → Rm is locally essen-
tially bounded if for any 0 ≤ a < b, the function d
is essentially bounded on the segment [a, b]. L∞

loc de-
notes the set of locally essentially bounded functions
d : R+ → Rm.

• A continuous function α : R+ → R+ belongs to the
class K if α(0) = 0 and the function is strictly increas-
ing. A function α : R+ → R+ belongs to the class K∞
if α ∈ K and it is unbounded.

• A continuous function β : R+ × R+ → R+ belongs
to the class KL if β(·, t) ∈ K∞ for each fixed t ∈ R+

and if for each fixed s ∈ R+ the function t 7→ β(s, t)
is decreasing to 0.

• The notation dxV (resp. dxΦ) stands for the differen-
tial of the function V (resp. the diffeomorphism Φ) at
the point x.

• ⌊x⌉α = |x|α sign(x) where x ∈ R and α > 0.
• Given that we will deal with a variety of suprema, we

will use a compact notation in the computations. For
instance, the notation sup{f(x, y) : g(x) = 0, h(y) ≤
1} stands for supx∈E,y∈F f(x, y) where E = {x ∈ Rn :
g(x) = 0} and F = {y ∈ Rn : h(y) ≤ 1}.

Consider the following system with f continuous

ẋ = f(x), x ∈ Rn. (1)

Let us recall the definitions of Lyapunov set stability
given for instance in [27].

Definition 1 A compact set K ⊂ Rn is:

• stable w.r.t. the system (1) if for any neighborhood U
of K, there exists a neighborhood W of K such that
for any maximal solution x(t) of (1), if there exists t0
such that x(t0) ∈ W , then x(t) is defined for all t ≥ t0
and x(t) ∈ U for all t ≥ t0;

• locally attractive w.r.t. the system (1) if there exists a
neighborhood U of K such that for any maximal solu-
tion x(t) of (1), if there exists t0 such that x(t0) ∈ U ,
then x(t) is defined for all t ≥ t0 and x(t) → K when
t → +∞ (the domain of attraction of a locally at-
tractive set is the biggest set U for which the preceding
point hold);

• globally attractive w.r.t. the system (1) if it is locally
attractive and if its domain of attraction is Rn;

• locally (resp. globally) asymptotically stable w.r.t. the
system (1) if it is stable and locally (resp. globally)
attractive w.r.t. the system (1);

• unstable if it is not stable.

Let us consider the following nonlinear system

ẋ = f(x,∆) (2)

where x ∈ Rn is the state, ∆ ∈ L∞
loc is the external input

and f : Rn × Rm → Rn is continuous. Let us recall the
definition of input-to-state stability given for instance in
[28].

Definition 2 The system (2) is called input-to-state
stable (ISS) if there exist some functions β ∈ KL and
γ ∈ K such that for any input ∆ ∈ L∞

loc and any x0 ∈ Rn

it holds that

∥x(t)∥ ≤ β(∥x(0)∥, t) + ess sup
τ∈[0,t]

γ(∥∆(τ)∥) ∀t ≥ 0

where x(t) is the solution of the system (2) satisfying
x(0) = x0. The function γ is called a nonlinear asymp-
totic gain.

The most common notion of homogeneity is the weighted
homogeneity, based on a particular choice of the coordi-
nates, while the most generic one is the geometric homo-
geneity, which is coordinate free [18, 19]. We use in the
sequel the framework of geometric homogeneity.

Definition 3 A vector field ν on Rn is called an Euler
vector field if ν is of class C1, complete (i.e. the maximal
solutions of ẋ = ν(x) are defined on R) and if the origin
is a globally asymptotically equilibrium of −ν.
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Definition 4 Let ν be an Euler vector field onRn,Φs(x)
denotes the value of the flow 1 of ν at time s with initial
condition x. A function V : Rn → R is ν-homogeneous
of degree κ ∈ R if for all x ∈ Rn and all s ∈ R we
have V (Φs(x)) = eκsV (x). A vector field f on Rn is ν-
homogeneous of degree κ ∈ R if for all x ∈ Rn and all
s ∈ R we have f(Φs(x)) = eκsdxΦ

sf(x).

A direct application of the chain rule then gives us the
following result.

Proposition 5 Let ν be an Euler vector field on Rn.
If V : Rn → R is differentiable and ν-homogeneous of
degree κ, then for all x ∈ Rn and all s ∈ R

dΦs(x)V · dxΦs = eκsdxV.

Remark 6 If we consider a matrix A ∈ Rn×n such that
−A is Hurwitz then the vector field defined by ν(x) = Ax
is an Euler vector field and the flow of ν verifies Φs(x) =
exp(As)x. In particular, if A = Diag(r1, . . . , rn) with
r1, . . . , rn > 0, the vector field ν(x) = Ax is Euler and
we find Φs(x) = Diag(er1s, . . . , erns)x. The homogeneity
defined by such an Euler vector field is usually referred
to as weighted homogeneity, the coefficients r1, . . . , rn
are called the weights and r = [r1, . . . , rn] is called the
generalized weight [30]. Let us finally mention that ho-
mogeneity with respect to an Euler vector field defined
by a generalized weight r is usually simply referred to as
r-homogeneity.

Definition 7 Let ν be an Euler vector field on Rn. A ν-
homogeneous norm is a function N : Rn → R such that:

(1) N is positive definite;
(2) N is ν-homogeneous of degree 1;
(3) N is continuous.

Example 8 Let r = [r1, . . . , rn] be a generalized
weight. For any ρ > 0, a r-homogeneous norm is

defined by Nρ(x) =
(∑n

i=1 |xi|
ρ
ri

) 1
ρ

. Furthermore,

N∞(x) = supi |xi|
1
ri also defines a r-homogeneous norm.

Remark 9 A homogeneous norm is always radially un-
bounded, following [18, Lemma 4.1]

The following proposition is a direct consequence of [18,
Lemma 4.2].

Proposition 10 Let N1 and N2 be two ν-homogeneous
norms. Then there exist a, b > 0 such that, for all x ∈ Rn:

aN1(x) ≤ N2(x) ≤ bN1(x).

1 See [29], Chapter 6 for details.

3 Main results

Let us consider the following nonlinear system

ẋ = F (x, u) (3)

defined by a continuous function F : Rn × Rm → Rn

and assume known a continuous static feedback
u : Rn → Rm such that the origin is a globally asymp-
totically stable equilibrium of the closed-loop system
ẋ = F (x, u(x)). Remark that, in this formulation, the
control u may depend on the state x through a static
output feedback u(x) = v(y), where y = g(x) is an
output. Since in networked communication, the state
information is only updated at discrete time instants,
we attempt at giving conditions based on homogeneity
under which some stability properties pertain for the
system (3). More precisely, we consider a maximum
sampling period 0 < h < +∞, a minimum sampling
period η > 0 and a sequence of sampling times (tk)k∈N
such that t0 = 0 and

η ≤ tk+1 − tk ≤ h. (4)

Due to the sampling, the control is now u(t) = u(x(tk))
for all t ∈ [tk, tk+1) (sample and hold). The system can
therefore be rewritten under the following form

ẋ(t) = F (x(t), u(x(tk))), t ∈ [tk, tk+1). (5)

We consider the following assumption on system (5).

Assumption 11 There exists a matrix A ∈ Rn×n such
that −A is Hurwitz and a degree κ ∈ R such that

F (exp(As)x, u(exp(As)z)) = eκs exp(As)F (x, u(z))

for all x, z ∈ Rn and all s ∈ R.

Assumption 11 is a homogeneity property of system
(5). Indeed, if we consider the vector field F̄ defined on
Rn × Rn by F̄ (x, z) = (F (x, u(z)), 0)T , then Assump-
tion 11 is equivalent to the ν-homogeneity of F̄ with
ν(x, z) = (Ax,Az)T . In particular, this assumption im-
plies that F (x, u(x)) is homogeneous. A class of systems
that satisfy Assumption 11 is, for example, the chain of
integrators and its nonlinear extension studied in [31].
Let us now give the main result of the article.

Theorem 12 Assume that the sampled system (5) is
such that the sampling times satisfy (4) and that As-
sumption 11 holds. Consider ν(x) = Ax and N any ν-
homogeneous norm.

(1) If κ > 0 then the origin is a locally asymptotically
stable equilibrium of the system (5) and there exists
ξ > 0 such that the set {x ∈ Rn : N(x) ≤ ξh−1/κ}
is a subset of the domain of attraction.
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(2) If κ = 0 then there exists H > 0 such that if h < H
then the origin is a globally asymptotically stable
equilibrium of the system (5).

(3) If κ < 0 then there exists ξ > 0 such that the set
{x ∈ Rn : N(x) ≤ ξh−1/κ} is globally asymptoti-
cally stable w.r.t. the system (5).

We will need the following result to prove Theorem 12.

Lemma 13 [32, Theorem 11] Assume that f : Rn ×
Rm → Rn is continuous and that there exist ν an Euler
vector field on Rn with flow denoted Φs(x), ν̃ an Euler

vector field on Rm with flow denoted Φ̃s(d) and κ ∈ R
such that for all x ∈ Rn and all z ∈ Rm,

f(Φs(x), Φ̃s(z)) = eκsdxΦ
sf(x, z). (6)

Assume also that the origin is a globally asymptotically
stable equilibrium of the system ẋ = f(x, 0). Then the
system (2) is ISS w.r.t. an input∆. Furthermore, for any
ν-homogeneous norm N and any ν̃-homogeneous norm
Ñ , there exist C > 0 such that

N(x(t)) ≤ max

{
β(N(x(0)), t) ; C ess sup

τ∈[0,t]

Ñ(∆(τ))

}
(7)

with β ∈ KL defined by

β(r, t) =


re−

a
2 t κ = 0

max

{[
r−κ/µ + aκ

2µ t
]−µ/κ

, 0

}
κ ̸= 0

(8)

where a > 0 and µ > max(−κ, 0) are positive constants.

Proof of Theorem 12. The proof of the theorem is
divided into 6 steps.

I. We show that it is sufficient to prove the result for
a given h when κ ̸= 0.

II. We rewrite the system and introduce some nota-
tion.

III. We prove a preliminary fact on the increase rate of
N(x(t)).

IV. We prove the theorem for κ > 0.
V. We prove the theorem for κ = 0.
VI. We prove the theorem for κ < 0.

Step I. When κ ̸= 0, assume that the results of Theo-
rem 12 hold for a given maximal sampling period h0 > 0.
Let us prove that the results then hold for any h > 0.
Indeed, consider s ∈ R such that h = e−κsh0. Con-
sider a solution x(t) of (5) with (tk)k∈N the sequence of
sampling times. Then consider z(t) = exp(As)x(eκst).
If tk ≤ eκst < tk+1, we have

ż(t) = eκs exp(As)F (x(eκst), u(x(tk))).

From Assumption 11, it follows that

ż(t) = F (exp(As)x(eκst), u(exp(As)x(eκse−κstk)))

= F (z(t), u(z(e−κstk))).

Hence the curve z(t) = exp(As)x(eκst) is a solution of
(5) with sampling times (e−κstk)k∈N. It follows that the
mapping x(t) 7→ exp(As)x(eκst) is a bijection between
the solutions of (5) with sampling times (tk)k∈N and the
solutions of (5) with sampling times (e−κstk)k∈N. Now,
in the case κ > 0 the local asymptotic stability for the
maximal sampling period h0 ensures the existence of
β0 ∈ KL such that

N(x0) ≤ ξh
−1/κ
0 ⇒ N(x(t)) ≤ β0(N(x0), t), ∀t ≥ 0.

By the point (2) of Definition 7 , N(x0) ≤ ξh
−1/κ
0 is

equivalent to N(z0) ≤ esξh
−1/κ
0 = ξ(e−κsh0)

−1/κ =

ξh−1/κ, we get

N(z(t)) = esN(x(eκst))

≤ esβ0(N(x0), e
κst)

≤ esβ0(e
−sN(z0), e

κst)

≤ βs(N(z0), t),

with βs(r, t) = esβ0(e
−sr, eκst) ∈ KL, and finally

N(z0) ≤ ξh−1/κ ⇒ N(z(t)) ≤ βs(N(z0), t)

for all t ≥ 0. In the case κ < 0, a similar method can
be used, based on the following recast of the announced
result:

N(x(t)) ≤ β0(N(x0), t) + ξh−1/κ, ∀t ≥ 0

with β0 ∈ KL.

Step II. We shall now base the sequel of this proof on
a rewriting of the system (5). Noting that u(x(tk)) =
u (x(t) + [x(tk)− x(t)]), we define f(x, z) = F (x, u(x+
z)) and hence we see that the system (5) can be rewritten
under the equivalent form{

ẋ = f(x,∆)

∆(t) = x(tk)− x(t), t ∈ [tk, tk+1)
(9)

The signal ∆ is piecewise continuous and verifies ∆̇ =
−f(x,∆) and ∆(tk) = 0. It is straightforward to check
that, under Assumption 11, the hypotheses of Lemma 13
hold. Since here x(t) and ∆(t) belong to the same space,
namely Rn, and ν(x) = ν̃(x) = Ax we can always select

the homogeneous norm Ñ of Equation (7) to be equal
to N . The origin being a globally asymptotically stable
equilibrium of the ν-homogeneous system ẋ = f(x, 0)
of degree κ, by virtue of [33, Theorem 2] there exists a
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ν-homogeneous smooth Lyapunov function V of degree
µ > 0 with µ+κ > 0. Let us defineN(x) = V (x)1/µ. We
will prove the theorem for this particular homogeneous
norm N , but Proposition 10 implies that the theorem
then holds for all homogeneous norms.

Step III. Step II and Lemma 13 lead to

N(x(t)) ≤ max

{
β(N(x(0)), t) ; C ess sup

τ∈[0,t]

N(∆(τ))

}
(10)

with C > 0 and β ∈ KL of Lemma 13. We define S =
{z ∈ Rn : N(z) = 1} and for any ε > 0

α(ε) = sup{∥dzV F (y−z, u(y))∥ : V (z) ≤ εµ and y ∈ S}

and H = sup0<ε<1/C
εµ

α(ε) ∈ (0,+∞]. Let us mention

that for any finite ε > 0, α(ε) is finite, being the supre-
mum of a continuous function on a compact set. Fix
h ∈ (0,H). There exists ε ∈ (0, 1/C) such that h ≤ εµ

α(ε) .

With this couple (h, ε) we shall now prove the following
fact.

Fact. Consider k such that N(x(tk))
−κ ≥ α(ε)h

εµ , then we
have

N(x(t)) ≤ max {β(N(x(tk)), t− tk) ; CεN(x(tk))}
(11)

for all t ∈ [tk, tk+1].

Remark first that if x(tk) = 0, then the asymptotic
stability of the origin for the closed-loop system ẋ =
F (x, u(x)) implies that x(t) = 0 for all t ∈ [tk, tk+1]
and the fact is proved. Now, to prove the fact when
x(tk) ̸= 0, let us study the variations of ∆(t). We denote
s = ln(N(x(tk))). Consider

t∗ = inf{t ≥ tk : N(∆(t)) > εN(x(tk))}
= inf{t ≥ tk : V (∆(t)) > εµV (x(tk))}.

Thus on the interval [tk, t
∗] we have V (∆(t)) ≤

εµV (x(tk)), which implies V (exp(−As)∆(t)) ≤ εµ and
exp(−As)x(tk) ∈ S given that N(x(tk)) = es. We have

V (∆(t∗)) =

∫ t∗

tk

d∆(t)V f(x(t), u(x(tk)))dt

≤ (t∗ − tk) sup
t∈[tk,t∗]

∥d∆(t)V F (x(t), u(x(tk)))∥

≤ (t∗ − tk) sup{∥dz̃V F (ỹ − z̃, u(ỹ))∥ :

V (exp(−As)z̃) ≤ εµ and exp(−As)ỹ ∈ S}

and from Assumption 11 and Proposition 5, it follows
that

V (∆(t∗))≤ e(κ+µ)s(t∗ − tk) sup{∥dzV F (y − z, u(y))∥ :

V (z) ≤ εµ and y ∈ S}
≤N(x(tk))

κ+µ(t∗ − tk)α(ε).

By continuity, we have V (∆(t∗)) = εµV (x(tk)) =
εµN(x(tk))

µ which leads to

εµN(x(tk))
µ ≤ N(x(tk))

κ+µ(t∗ − tk)α(ε)

and then t∗ − tk ≥ εµN(x(tk))
−κ

α(ε) ≥ h that is t∗ ≥ tk+1.

Thus, for all t ∈ [tk, tk+1] we haveN(∆(t)) ≤ εN(x(tk)).
Finally, inserting this inequality into (10) yields (11) and
the fact is proved.

We shall now split the proof into three cases, whether
κ > 0 or κ = 0 or κ < 0.

Step IV: κ > 0

The condition N(x(tk))
−κ ≥ α(ε)h

εµ is equivalent to

N(x(tk)) ≤
(

εµ

α(ε)h

)1/κ
. Let us denote

B(h) =

{
z ∈ Rn : N(z) ≤

(
εµ

α(ε)h

)1/κ
}
.

The set B(h) is a compact neighborhood of the origin. If
x0 ∈ B(h), (11) leads to N(x(t)) ≤ N(x(tk)) for all k ∈
N and all t ∈ (tk, tk+1]. Therefore the system is stable
and N(x(t)) converges to a limit ℓ ≥ 0 when t → +∞.
Now, by using (11), we obtain for all t ∈ [tk, tk+1] and
k ∈ N

N(x(tk+1))≤max{β(N(x(tk)), tk+1 − tk);CεN(x(tk))}
≤max {β(N(x(tk)), η) ; CεN(x(tk))} .

Following (8), we have β(r, t) = rβ(1, trκ/µ) therefore
the limit ℓ satisfies ℓ ≤ max {ℓβ(1, ηℓκ) ; Cεℓ} ≤ ℓ.
Thus ℓ = max

{
ℓβ(1, ηℓκ/µ) ; Cεℓ

}
= ℓβ(1, ηℓκ/µ)

since Cε < 1, κ > 0 and β(r, 0) = r. Hence ℓ = 0 or
β(1, ηℓκ/µ) = 1, but this second condition is also equiv-
alent to ℓ = 0. The local asymptotic stability follows
with B(h) a subset of the domain of attraction.

Step V: κ = 0

The condition N(x(tk))
−κ ≥ α(ε)h

εµ is equivalent to h ≤
εµ

α(ε) and therefore always holds given the choice we have

made for ε in Step III. By similar arguments to the case
κ > 0, we obtain that, if h < H, the origin is a globally
asymptotically stable equilibrium of the system (5).

Step VI: κ < 0

The condition N(x(tk))
−κ ≥ α(ε)h

εµ is equivalent to

N(x(tk)) ≥
(

α(ε)h
εµ

)− 1
κ

= ρ. Hence N(x(tk)) ≥ ρ en-

sures that N(x(tk+1)) ≤ N(x(t)) < N(x(tk)) for all
t ∈ (tk, tk+1]. However, the set {x ∈ Rn : N(x) < ρ}
is not necessarily positively invariant. We will there-
fore need another analysis to prove that, starting with
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N(x(tk)) < ρ, a trajectory cannot go “too far” from the
origin. Let us define, for ω ≥ 0

θ(ω) = sup{∥dzV F (z, u(y))∥ : V (z) ≤ 1+ω , V (y) ≤ 1}.

Denoting s = ln(1+ω)
µ , we get

θ(ω) = sup{∥dzV F (z, u(y))∥ : V (exp(−As)z) ≤ 1 and

V (exp(−As)y) ≤ 1/(1 + ω)}
= sup{∥dexp(As)z̃V F (exp(As)z̃, u(exp(As)ỹ))∥ :

V (z̃) ≤ 1 and V (ỹ) ≤ 1/(1 + ω)}

and from Assumption 11 and Proposition 5, it follows
that

θ(ω) = e(κ+µ)s sup{∥dz̃V F (z̃, u(ỹ))∥ : V (z̃) ≤ 1 and

V (ỹ) ≤ 1/(1 + ω)}
= (1 + ω)

κ+µ
µ sup{∥dz̃V F (z̃, u(ỹ))∥ : V (z̃) ≤ 1 and

V (ỹ) ≤ 1/(1 + ω)}.

Hence when ω → +∞ we have θ(ω) ∼ Ω ω
κ+µ
µ , with

Ω = sup{∥dz̃V F (z̃, u(0))∥ : V (z̃) ≤ 1} and there-
fore ω

θ(ω) → +∞, given that κ+µ
µ < 1 since κ < 0.

Since the function ω 7→ ω
θ(ω) vanishes at ω = 0, there

exists ω0 > 0 such that ω0

θ(ω0)
= εµ

α(ε) . Assume that

N(x(tk)) < ρ, i.e. V (x(tk)) < ρµ. Let us denote
t∗ = inf {t ≥ tk : V (x(t)) ≥ (1 + ω0)ρ

µ} > tk. Hence for
all t ∈ [tk, t

∗] we have V (x(t)) ≤ (1 + ω0)ρ
µ. Therefore,

we obtain

V (x(t∗)) = V (x(tk)) +

∫ t∗

tk

d

dt
V (x(t))dt

≤ ρµ + (t∗ − tk) sup{∥dx(t)V F (x(t), u(x(tk)))∥ :

t ∈ [tk, t
∗]}

≤ ρµ + (t∗ − tk) sup {∥dzV F (z, u(y))∥ :

V (z) ≤ (1 + ω0)ρ
µ and V (y) ≤ ρµ}

≤ ρµ + (t∗ − tk)ρ
κ+µθ(ω0).

Also, by continuity, V (x(t∗)) = (1+ω0)ρ
µ and therefore

after simplification and using ρ =
(

α(ε)h
εµ

)− 1
κ

we get

ω0 ≤ (t∗ − tk)
(

α(ε)h
εµ

)−1

θ(ω0) and given that ω0

θ(ω0)
=

εµ

α(ε) we find t∗ − tk ≥ h. Finally, t∗ ≥ tk+1 and then for

all t ∈ [tk, tk+1] we have V (x(t)) ≤ (1 + ω0)ρ
µ, which

implies N(x(t)) ≤ (1 + ω0)
1/µρ.

Let us summarize. We have three cases:

• if N(x(tk)) < ρ then we have N(x(t)) ≤ (1 + ω0)
1/µρ

for all t ∈ [tk, tk+1];

• if ρ ≤ N(x(tk)) ≤ (1 + ω0)
1/µρ then we still have

N(x(t)) ≤ (1 + ω0)
1/µρ for all t ∈ [tk, tk+1];

• if N(x(tk)) ≥ (1 + ω0)
1/µρ then N(x(tk))

−κ ≥ α(ε)h
εµ

and by the Fact of Step III we have

N(x(t)) ≤ max {β(N(x(tk)), t− tk) ; CεN(x(tk))}

for all t ∈ [tk, tk+1].

We get from the first two points that the set {N(x) ≤
(1 + ω0)

1/µρ} is positively invariant. Hence, if N(x0) >
(1 + ω0)

1/µρ, denoting k∗ = maxk≥0{N(x(tk)) ≥ (1 +

ω0)
1/µρ}, for all 0 ≤ k ≤ k∗, we have N(x(tk)) ≥

(1 + ω0)
1/µρ. Therefore the third point gives us that

N(x(tk+1)) ≤ N(x(tk)) for all 0 ≤ k ≤ k∗ and thus
N(x(tk)) < N(x0) for all 0 < k ≤ k∗. Using again the
shape of the function β, for 0 ≤ k < k∗ and t ∈ [tk, tk+1]
we get

N(x(t))≤max{β(N(x(tk)), η) ; CεN(x(tk))}
≤N(x(tk))max{β(1, ηN(x(tk))

κ/µ) ; Cε}
≤N(x(tk))max{β(1, ηN(x0)

κ/µ) ; Cε}
≤N(x(tk))q

where q = max{β(1, ηN(x0)
κ/µ) ; Cε} < 1, given that

β ∈ KL and β(r, 0) = r. Therefore

N(x(t)) ≤ max{N(x0)q
k ; (1 + ω0)

1/µρ}, t ∈ [tk, tk+1]

and we get the global asymptotical stability of the set
{x ∈ Rn : N(x) ≤ (1 + ω0)

1/µρ} = {x ∈ Rn : N(x) ≤
ξh−1/κ}.

Remark 14 With the notations of Theorem 12, in the
case κ < 0, the conclusion is equivalent to

N(x(t)) ≤ β0(N(x(0)), t) + ξh−1/κ, ∀ 0 < h < H

with β0 a class KL function, that is, the system (5) is ISS
w.r.t. the input h with asymptotic gain γ(h) = ξh−1/κ.
Consequently, the origin is globally practically stable, see
[34] for details. Let us also remark that the linear case is
included in the case κ = 0.

The statement of Theorem 12 does not provide an ex-
plicit method for estimating the constantsH and ξ. From
this perspective, it could be seen as a qualitative result
on sampled-data systems. However, up to a constant,
the Theorem 12 gives a precise estimation of the depen-
dency on h of the domain of attraction (when κ > 0) and
of the stable set (when κ < 0), which is a quantitative
data. Moreover, we would like to point out that, in most
particular cases, the constantsH and ξ can be estimated
mathematically (if a Lyapunov function is known) or by
computer simulations (see Section 4).

Even though Theorem 12 is written to emphasize the
effects of the communication network on a system
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asymptotically stabilized by a state feedback, the result
also applies to a system asymptotically stabilized by an
observer-based controller, provided that this observer is
homogeneous as well. We keep considering the system
(3) verifying Assumption 11. We endow the system with
an output y = j(x). As beforehand, we assume known
a state feedback u(x) such that the origin is a globally
asymptotically stable equilibrium for the closed-loop
system. We assume that an observer is added to the
system

˙̂x = G(y, x̂)

with G continuous, in such a way that the origin of Rn×
Rn is a globally asymptotically stable equilibrium of the
following system {

ẋ = F (x, u(x̂))
˙̂x = G(j(x), x̂)

(12)

Now we want to study the impact of a sampling on the
stability of this system. Indeed, the value of x̂ will be
updated only at the sampling instants tk, leading to{

ẋ(t) = F (x(t), u(x̂(tk))), t ∈ [tk, tk+1)

x̂(tk+1) = x̂(tk) + (tk+1 − tk)G(j(x(tk)), x̂(tk))
(13)

Proposition 15 Assume that the system (12), defined
on Rn×Rn, is ν-homogeneous of degree κ with ν(x, x̂) =
(Ax,Ax̂). Assume also that the sampled system (13) is
such that the sampling times satisfy (4).

(1) If κ > 0 then the origin is a locally asymptotically
stable equilibrium of the system (13) and there ex-
ists ξ > 0 such that the set {(x, x̂) ∈ Rn × Rn :
N(x) + N(x̂) ≤ ξh−1/κ} is a subset of the domain
of attraction.

(2) If κ = 0 then there exists H > 0 such that if h < H
then the origin is a globally asymptotically stable
equilibrium of the system (13).

(3) If κ < 0 then there exists ξ > 0 such that the set
{(x, x̂) ∈ Rn × Rn : N(x) + N(x̂) ≤ ξh−1/κ} is
globally asymptotically stable w.r.t. the system (13).

Proof. Let us denote

F̄ (X,U) =

(
F (X1, U1)

U2

)

for X = (X1, X2) ∈ Rn × Rn and U = (U1, U2) ∈ Rn ×
Rn and consider

Ẋ = F̄ (X,U(X)). (14)

If we apply to (14) the state feedback given by{
U1(X) = u(X2)

U2(X) = G(j(X1), X2)
(15)

we find {
Ẋ1 = F (X1, u(X2))

Ẋ2 = G(j(X1), X2)

which is (12), up to a renaming of the variables. Now,
(14) with sampled input (15) becomes{

Ẋ1(t) = F (X1(t), u(X2(tk)))

Ẋ2(t) = G(j(X1(tk)), X2(tk))

and the right hand side of the second line being constant,
the second line can be integrated. It yields{
Ẋ1(t) = F (X1(t), u(X2(tk)))

X2(tk+1) = X2(tk) + (tk+1 − tk)G(j(X1(tk)), X2(tk))

which is (13), up to a renaming of the variables. More-
over, the Assumption 11 holds for F̄ . Therefore, we ap-
ply Theorem 12 to (14) which concludes the proof.

4 The double integrator

Let us consider the double integrator with a sampled-
data input

ẋ(t) =

[
0 1

0 0

]
x(t) +

[
0

1

]
u(tk), t ∈ [tk, tk+1)

(16)
which has been studied in [25] as a typical example and
the control law

u(x) = −k1⌊x1⌉α − k2⌊x2⌉
2α

1+α (17)

with α > 0 and k1, k2 > 0. By using V (x) =
k1

1+α |x1|1+α +
x2
2

2 , we get V̇ (x) = −k2|x2|
1+3α
1+α ≤ 0. A

straightforward application of the LaSalle’s principle
shows that the origin of the continuous closed-loop sys-
tem (16)–(17) without the sampled-data input is a glob-
ally asymptotically stable equilibrium. In this example,
we consider ν = Ax with A = Diag(1, 1+α

2 ), we see that
the closed-loop system (16)–(17) satisfies Assumption
11 with degree κ = α−1

2 . So, we can apply Theorem 12.
Moreover, we choose a constant sampling period

tk = kT, T > 0, k ∈ N (18)

in order to use well known results about linear systems
having a constant sampling period. For the simulations,
we take k1 = k2 = 1.

• If we select α = 1 then the closed-loop system (16)–
(17)–(18) is linear. In this case, we know that the lin-
ear closed-loop sampled-data system (16)–(17)–(18)
is asymptotically stable if and only if the matrix Λ(T )
of the linear difference equation associated with (16)–
(17) and defined in [6,35] is Schur. For the double in-
tegrator, Λ(T ) is Schur if and only if T < TSchur = 2s.

7



• If we select α > 1 then the closed-loop system (16)–
(17)–(18) is homogeneous of positive degree. Due to
Theorem 12, the local asymptotic stability pertains
even if we have T > TSchur = 2s.We plot in simulation
the shape of the domains of attraction for α = 8 and
different values of T on Figure 1 and the shape of the
domains of attraction for T = 6s and different values
of α on Figure 2.
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Fig. 1. Domains of attraction for α = 8
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Fig. 2. Domains of attraction for T = 6s

• If we select α < 1 then the closed-loop system (16)–
(17)–(18) is homogeneous of negative degree. Due to
Theorem 12, the global asymptotic set stability per-
tains even if T > TSchur = 2s. We plot in simulation
the asymptotically stable sets for α = 0.1 and T = 4s,
T = 5s and T = 6s on Figure 3.

The case of the n−integrator can be treated in the same
way by using for instance the controllers given in [18,31].

5 Conclusion

In this article, an emulation approach based on input-
to-state stability properties of systems satisfying an ho-
mogeneous condition is developed for the stability of
nonlinear systems with sampled-data inputs. The main
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Fig. 3. Asymptotically stable sets for several T

result shows that if it is possible to build a stabilizing
feedback control for a continuous system such that the
closed-loop system with sampled-data inputs satisfies
the homogeneity property, then it is possible to preserve
different notions of stability that depend on the degree κ
for the closed-loop system with aperiodic sampled-data
inputs. Its usefulness is highlighted with the case of the
double integrator.
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Zürich, Switzerland, 2013, pp. 2585–2590.

[9] N. W. Bauer, P. J. H. Maas, W. P. M. H. Heemels, Stability
analysis of networked control systems: A sum of squares
approach, Automatica 48 (8) (2012) 1514–1524.

[10] M. C. F. Donkers, W. P. M. H. Heemels, N. Van De Wouw,
L. Hetel, Stability analysis of networked control systems using
a switched linear systems approach, IEEE Transactions on
Automatic Control 56 (9) (2011) 2101–2115.

8
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