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Introduction

Neural Networks (NNs) have been widely studied due to their practical applications in lots of areas such as model identification, signal processing, image processing, pattern recognition, optimization problems, associative memories [START_REF] Bishop | Neural networks for pattern recognition[END_REF][START_REF] Aouiti | A genetic-designed beta basis function neural network for multi-variable functions approximation[END_REF][START_REF] Aouiti | The design of beta basis function neural network and beta fuzzy systems by a hierarchical genetic algorithm[END_REF][START_REF] Aouiti | New results for impulsive recurrent neural networks with time-varying coefficients and mixed delays[END_REF]. The majority of these applications requires the stability of the designed NNs. It should be pointed out that the delay has a great effect on the system performances. Therefore, the stability analysis of delayed NNs has attracted the attention of many researchers and a lot of results have been obtained (see for instance [START_REF] Aouiti | Oscillation of impulsive neutral delay generalized high-order Hopfield neural networks[END_REF][START_REF] Aouiti | Pseudo almost automorphic solutions of recurrent neural networks with time-varying coefficients and mixed delays[END_REF][START_REF] Chen | Exponential stability criterion for interval neural networks with discrete and distributed delays[END_REF][START_REF] Huang | Global exponential stability of neutral highorder stochastic Hopfield neural networks with Markovian jump parameters and mixed time delays[END_REF][START_REF] Liu | Almost periodic solutions for Hopfield neural networks with continuously distributed delays[END_REF][START_REF] Peng | LMI-based global exponential stability of equilibrium point for neutral delayed BAM neural networks with delays in leakage terms via new inequality technique[END_REF][START_REF] Wang | On global asymptotic stability of neural networks with discrete and distributed delays[END_REF]). In [START_REF] Peng | LMI-based global exponential stability of equilibrium point for neutral delayed BAM neural networks with delays in leakage terms via new inequality technique[END_REF][START_REF] Huang | Global exponential stability and periodic solutions of recurrent neural networks with delays[END_REF], the authors discussed the case of constant delays and in [START_REF] Aouiti | Pseudo almost automorphic solutions of recurrent neural networks with time-varying coefficients and mixed delays[END_REF][START_REF] Liu | Almost periodic solutions for Hopfield neural networks with continuously distributed delays[END_REF][START_REF] Wang | On global asymptotic stability of neural networks with discrete and distributed delays[END_REF][START_REF] Ammar | Existence and uniqueness of pseudo almost-periodic solutions of recurrent neural networks with time-varying coefficients and mixed delays[END_REF] the authors analyzed the stability of NNs with continuously distributed delays.

Recently, another kind of delay, variously known as leakage delay, is investigated in [START_REF] Gopalsamy | Leakage delays in BAM[END_REF][START_REF] Li | Delay-dependent stability of neural networks of neutral type with time delay in the leakage term[END_REF][START_REF] Li | Asymptotic stability analysis on nonlinear systems with leakage delay[END_REF][START_REF] Peng | Global attractive periodic solutions of BAM neural networks with continuously distributed delays in the leakage terms[END_REF]. It has been proved that this kind of delay tends to render the systems of NNs unstable. The effect of the leakage delay on stability is one of the important research topics in the field of the stability of NNs [START_REF] Aouiti | Piecewise pseudo almost periodic solution for impulsive generalised high-order Hopfield neural networks with leakage delays[END_REF]. Many researchers analyzed the effect of the leakage delay on the Lyapunov stability of various kinds of NNs such that bidirectional associative memory NNs [START_REF] Balasubramaniam | Global asymptotic stability of BAM fuzzy cellular neural networks with time delay in the leakage term, discrete and unbounded distributed delays[END_REF][START_REF] Lakshmanan | Stability criteria for BAM neural networks with leakage delays and probabilistic time-varying delays[END_REF] or impulsive NNs [START_REF] Li | Existence, uniqueness and stability analysis of recurrent neural networks with time delay in the leakage term under impulsive perturbations[END_REF][START_REF] Li | Existence and global stability analysis of equilibrium of fuzzy cellular neural networks with time delay in the leakage term under impulsive perturbations[END_REF]. However, it should be pointed out that manipulating this kind of delay is not easy. In addition, a kind of time delay systems, appointed neutral-type delay systems, is used by many authors due to their practical applications [START_REF] Wang | Reliable H ∞ control for discrete-time piecewise linear systems with infinite distributed delays[END_REF]. There are several results discussing the stability of neutral-type NNs, see for instance [START_REF] Feng | Delay-dependent stability of neutral type neural networks with distributed delays[END_REF][START_REF] Li | Global robust stability for stochastic interval neural networks with continuously distributed delays of neutral type[END_REF][START_REF] Aouiti | Neutral impulsive shunting inhibitory cellular neural networks with time-varying coefficients and leakage delays[END_REF] and references therein.

In order to render the stability criteria less conservative with respect to the delays, several methods are developed in the literature [START_REF] Huang | State estimation of recurrent neural networks with time-varying delay: A novel delay partition approach[END_REF][START_REF] Lakshmanan | Delay-dependent state estimation of neural networks with mixed timevarying delays[END_REF][START_REF] Li | A new model transformation of discrete-time systems with time-varying delay and its application to stability analysis[END_REF][START_REF] Li | New delay-variation-dependent stability for neural networks with time-varying delay[END_REF][START_REF] Li | Improved stability criteria of neural networks with timevarying delays: An augmented LKF approach[END_REF][START_REF] Yue | A piecewise analysis method to stability analysis of linear continuous/discrete systems with time-varying delay[END_REF][START_REF] Yan | Finite-time stability and stabilization of itô stochastic systems with Markovian switching: mode-dependent parameter approach[END_REF][START_REF] Qi | Finite-time passivity and passification for stochastic time-delayed Markovian switching systems with partly known transition rates[END_REF]. Most of these methods are based on a Lyapunov functional and associated LMIs because these inequalities can be numerically checked. However, it is well known that when a novel Lyapunov functional is designed for reducing the conservatism with respect to the delays a greater complexity in terms of inequalities and variables to be calculated can appear. Therefore, the problem of reducing simultaneously the number of decision variables and the conservatism with respect to the delays arises.

Most of the previous works on stability were mainly based on the classical Lyapunov stability which is associated with an infinite time interval. However, only a finite time interval is considered in practical applications [START_REF] Onori | Finite time stability design via feedback linearization[END_REF]. In 1953, Kamenkov has introduced in [START_REF] Kamenkov | On stability of motion over a finite interval of time[END_REF] the concept of finite time boundedness (FTB). Dorato reported in [START_REF] Amato | Finite-time control of linear systems subject to parametric uncertainties and disturbances[END_REF] that FTB and Lyapunov stability are two independent concepts. Many studies have addressed the FTB problem of NNs, see for instance [START_REF] Ma | Finite time non-fragile dissipative control for uncertain TS fuzzy system with time-varying delay[END_REF][START_REF] Tan | Finite-time stability of neural networks with impulse effects and time-varying delay[END_REF][START_REF] Zhao | Finite-time boundedness analysis of memristive neural network with time-varying delay[END_REF][START_REF] Zhou | Finite-time synchronization of complex-valued neural networks with mixed delays and uncertain perturbations[END_REF][START_REF] Ali | Robust finite-time H ∞ control for a class of uncertain switched neural networks of neutral-type with distributed time varying delays[END_REF][START_REF] He | Finite-time boundedness of uncertain time-delayed neural network with Markovian jumping parameters[END_REF][START_REF] Jiang | Finite time stability of Cohen-Grossberg neural network with time-varying delays[END_REF][START_REF] Lin | Finite-time boundedness and L 2 -gain analysis for switched delay systems with norm-bounded disturbance[END_REF][START_REF] Shen | LMI-based finite-time boundedness analysis of neural networks with parametric uncertainties[END_REF][START_REF] Wang | Extended finite-time H ∞ control for uncertain switched linear neutral systems with time-varying delays[END_REF][START_REF] Wu | Finite-time boundedness and stabilization of uncertain switched neural networks with timevarying delay[END_REF][START_REF] Zhang | Finite-time boundedness for uncertain discrete neural networks with time-delays and Markovian jumps[END_REF]. For neutral-type NNs, the FTB was studied in [START_REF] Ali | Robust finite-time H ∞ control for a class of uncertain switched neural networks of neutral-type with distributed time varying delays[END_REF][START_REF] Wang | Extended finite-time H ∞ control for uncertain switched linear neutral systems with time-varying delays[END_REF]. In [START_REF] He | Finite-time boundedness of uncertain time-delayed neural network with Markovian jumping parameters[END_REF][START_REF] Zhang | Finite-time boundedness for uncertain discrete neural networks with time-delays and Markovian jumps[END_REF] and [START_REF] Zhou | Finite-time synchronization of complex-valued neural networks with mixed delays and uncertain perturbations[END_REF], the class of uncertain NNs with Markovian jumps and the complex-valued NNs are studied respectively. Also the impulsive NNs is investigated in [START_REF] Tan | Finite-time stability of neural networks with impulse effects and time-varying delay[END_REF] and the authors of [START_REF] Zhao | Finite-time boundedness analysis of memristive neural network with time-varying delay[END_REF][START_REF] Ma | Finite time non-fragile dissipative control for uncertain TS fuzzy system with time-varying delay[END_REF] deal with the problem of FTB for Memristive NNs and TS-fuzzy system with time-varying delay respectively. Moreover, all the previous results on FTB are for lower order NNs. This class of lower order NNs has several limitations (see for instance [START_REF] Hopfield | Neural networks and physical systems with emergent collective computational abilities[END_REF][START_REF] Kamp | Recursive neural networks for associative memory[END_REF]) which leads to consider the class of NNs with high-order connections. This class of high-order NNs has stronger approximation characteristics, important storage capacity, faster convergence rate and higher fault tolerance than lower-order NNs [START_REF] Zheng | Matrix measure based stability criteria for high-order neural networks with proportional delay[END_REF]. To the best of the authors' knowledge, the FTB and FTB-stabilization of neutral high-order Hopfield NNs (NHOHNNs) with a leakage delay and with both discrete and distributed delays, called mixed time delays, have not been fully investigated in the literature. Here is the main goal of our article. The delays considered in our article contain an infinite distributed delay which occurs in practice [START_REF] Wang | Reliable H ∞ control for discrete-time piecewise linear systems with infinite distributed delays[END_REF]. Indeed, there is no result for the FTB of NNs with infinite distributed delays. Despite important studies available yet to deal with the FTB concept [START_REF] Ali | Robust finite-time H ∞ control for a class of uncertain switched neural networks of neutral-type with distributed time varying delays[END_REF][START_REF] He | Finite-time boundedness of uncertain time-delayed neural network with Markovian jumping parameters[END_REF][START_REF] Wang | Extended finite-time H ∞ control for uncertain switched linear neutral systems with time-varying delays[END_REF][START_REF] Wu | Finite-time boundedness and stabilization of uncertain switched neural networks with timevarying delay[END_REF][START_REF] Zhang | Finite-time boundedness for uncertain discrete neural networks with time-delays and Markovian jumps[END_REF], there is no result for the FTB of NNs with non-differentiable time-varying delay. Here is also a novelty of our article.

In our article, the FTB and FTB-stabilization are analyzed for a general class of NHOHNNs with time delay in the leakage term and mixed time delays. The main contributions are as follows:

(i) the LKF and LMIs techniques are used to study the effect of the leakage delay on the FTB results of the concerned NHOHNNs;

(ii) simplified LMI conditions are established to reduce the conservatism with respect to the delays and provide a less computational load simultaneously;

(iii) by using the FTB analysis, some conditions are given for the FTB-stabilization of the concerned NHOHNNs with a leakage delay. Moreover, the NHOHNNs considered in this article are subjected to non-differentiable timevarying delays.

The article is organized as follows. In Section 2, some preliminaries useful for the study of the class of NHOHNNs are presented. The existence of equilibrium points is addressed in Section 3. Then, the FTB and the FTB-stabilization are studied in Section 4. Numerical examples are presented in Section 5 to illuminate the validity of the proposed results. Finally, some concluding remarks are drawn in Section 6.

Preliminaries

In this article, we use the following notations:

• R, Z + , R n and R n×n stand for the set of real numbers, the set of positive integers, the n-dimensional real space equipped with the euclidean norm . and the set of n×n real matrices respectively;

• A T , A -1 , A > 0, A < 0 and I means respectively the transpose of A, the inverse of A, the matrix A is positive definite, the matrix -A is positive definite and the identity matrix with appropriate dimensions;

• λ max (A), λ min (A) and * stand for the maximum eigenvalue of A, the minimum eigenvalue of A and the symmetric block in one symmetric matrix respectively;

• X + = |x i j | n×n
where X = x i j ) n×n ;

• for any interval

I ⊂ R and V ⊂ R k (1 ≤ k ≤ n), C(I, V )
and C 1 b (I, V ) stand respectively for the set {φ : I → V : φ is continuous} and {φ : I → V : φ is continuously differentiable and bounded}.

We consider the following neutral high-order Hopfield neural networks (NHOHNNs) with time delay in the leakage term and mixed time delays

                           ẋi (t) = -c i x i (t -σ ) + n ∑ j=1 a i j f j (x j (t -τ (t))) + n ∑ j=1 n ∑ k=1 T i jk f k (x k (t -τ(t))) f j (x j (t -τ(t))) + n ∑ j=1 b i j t -∞ k j (t -s) f j (x j (s)) ds + n ∑ j=1 d i j ẋ j (t -h(t)) + J i , t > 0, i = 1, . . . , n x(s) = φ (s), s ∈ (-∞, 0] (1)
where c i > 0, C = diag (c 1 , . . . , c n ), a i j , b i j and d i j are the interconnection weight coefficients of the neurons, T i jk the secondorder synaptic weights of the NNs, J i an external input vector, x(t) = (x 1 (t), . . . , x n (t)) T the neuron state vector of the NNs, ẋ the time derivative of the neuron state, f (x(.)) = ( f 1 (x 1 (.)) , . . . , f n (x n (.))) T the neuron activation function such that f i (0) = 0 for all 1 ≤ i ≤ n, σ ≥ 0 a constant which is the leakage delay,

K = diag (k 1 (.), . . . , k n (.))
the delay kernel, τ(.) and h(.) the time-varying transmission delays satisfying 0

≤ τ(t) ≤ τ, 0 ≤ h(t) ≤ h and ḣ(t) ≤ h * < 1. The initial condition satisfies φ (.) ∈ C 1 b ((-∞, 0], R n )
where the norm is defined by

φ h = max sup s≤0 φ (s) , sup -h≤s≤0 φ (s) .
The term of the right-hand side of System (1) involving the time derivative of the state renders the system of neutral-type (see for instance [START_REF] Hale | Introduction to functional differential equations[END_REF]). Several studies have been done on System (1), especially in [START_REF] Huang | Global exponential stability of neutral highorder stochastic Hopfield neural networks with Markovian jump parameters and mixed time delays[END_REF], where the global exponential stability is treated for σ = 0 and with Markovian jump parameters. In [START_REF] Li | Almost automorphic solution for neutral type high-order Hopfield neural networks with delays in leakage terms on time scales[END_REF], the authors studied the stability of the almost automorphic solutions for the same model but without taking into consideration infinite distributed delays. Note that such System (1) contains many of the well-known models as special cases.

Let us introduce the following three assumptions:

(H1) for all x, y ∈ R, there exist constants ω > 0, M - j and M + j such that

| f j (x)| ≤ ω j and M - j ≤ | f j (x) -f j (y)| x -y ≤ M + j , ( 
H2) for all j = 1, . . . , n, the functions k j : R + → R + are continuous and satisfy

+∞ 0 k j (u)du = k j and +∞ 0 u k j (u)du < ∞, (H3) C -A + M -B + K + M is a M-matrix.
Remark 2.1. Under assumptions (H1) and (H2), the existence of the solutions of System (1) is guaranteed by using [53, Theorem 2.1]. It should also be pointed out that the constants M + j and M - j can be negative or positive in the assumption (H1) which allows Lurie-type functions if we take M + j , M - j > 0 [START_REF] Wu | Lagrange stability of memristive neural networks with discrete and distributed delays[END_REF] or Lipschitz functions if we take M - j = -M + j < 0. Therefore (H1) is weaker than the assumptions used for instance in [START_REF] Cao | Exponential stability of high-order bidirectional associative memory neural networks with time delays[END_REF][START_REF]Dynamics of high-order Hopfield neural networks with time delays[END_REF][START_REF] Wang | Global exponential stability and periodic solutions of high-order bidirectional associative memory (BAM) neural networks with time delays and impulses[END_REF]. Finally, if we only consider Lipschitz activation functions as in [START_REF] Huang | Global exponential stability and periodic solutions of recurrent neural networks with delays[END_REF], the method used in [START_REF] Huang | Global exponential stability and periodic solutions of recurrent neural networks with delays[END_REF] for proving the existence of an equilibrium point does not work for System [START_REF] Bishop | Neural networks for pattern recognition[END_REF] with the high-order terms. Definition 2.1. ( [START_REF] Huang | Global exponential stability and periodic solutions of recurrent neural networks with delays[END_REF]) A nonsingular matrix X = (x i j ) n×n is a M-matrix if X = rIβ with β ≥ 0 and r > ρ (β ) where ρ (β ) stands for the spectral radius of the matrix β .

Let

Z n×n = A = (a i j ) ∈ R n×n : a ii > 0, a i j ≤ 0, for all i = j then we have the following lemma: Lemma 2.2. ( [START_REF] Huang | Global exponential stability and periodic solutions of recurrent neural networks with delays[END_REF]) The following claims are equivalent: (i) there exist δ j > 0 such that n ∑ j=1 a ji δ j > 0 for all i = 1, . . . , n;

(ii) A ∈ Z n×n is a M-matrix;

(iii) there exist δ j > 0 such that n ∑ j=1 a i j δ j > 0 for all i = 1, . . . , n.

Let us give the definition of the topological degree. Definition 2.3. ( [START_REF] Huang | Global exponential stability and periodic solutions of recurrent neural networks with delays[END_REF]) Assume that F : Ω → R n is a continuously differentiable function where Ω ⊂ R n is an open bounded set. If J F (u) = 0 for any u ∈ F -1 (p) and p / ∈ F (∂ Ω), where J F denotes the Jacobian determinant relative to F, then the topological degree relative to Ω and p is given by

deg (F, Ω, p) =    ∑ u∈F -1 (p) sign J F (u) if F -1 (p) = / 0 0 if F -1 (p) = / 0
Let us introduce the notion of finite time boundedness.

Definition 2.4. ( [START_REF] Bai | Finite-time stability analysis of discrete-time fuzzy Hopfield neural network[END_REF]) System (1) is said to be finite time bounded

(FT B) with respect to (c 1 , c 2 , R, T ) where 0 < c 1 ≤ c 2 , R > 0 and T > 0 if for all t ∈ [0, T ] we have max sup θ ≤0 {x T (θ )Rx(θ )}, sup -h≤θ ≤0 { ẋT (θ )R ẋ(θ )} ≤ c 1 implies that x T (t)Rx(t) < c 2 .
Let us give two lemmas useful to prove our first result. Lemma 2.6. ( [START_REF] Berman | Nonnegative matrices in the mathematical sciences[END_REF]) Let P ∈ R n×n be a symmetric matrix, then we have λ min (P) x T x ≤ x T Px ≤ λ max (P) x T x for any x ∈ R n .

Existence of equilibrium points

In [START_REF] Li | Delay-dependent stability of neural networks of neutral type with time delay in the leakage term[END_REF], the existence of equilibrium points for neutral lower order Hopfield NNs with time delay in the leakage term is discussed. Thanks to the high-order terms, the NNs given by (1) are more general. Compared with results in [START_REF] Li | Delay-dependent stability of neural networks of neutral type with time delay in the leakage term[END_REF], we extend the existence of equilibrium points to the more general class of NHOHNNs.

We introduce the following notations:

M j = max |M - j |, |M + j | , M = diag (M 1 , . . . , M n ) A = [a i j ] n×n , B = [b i j ] n×n , D = [d i j ] n×n .
We present a sufficient condition which guarantee the existence of equilibrium points for the NHOHNNs given by (1). 

-c i x * i + n ∑ j=1 a i j f j (x * j ) + n ∑ j=1 n ∑ k=1 T i jk f k (x * k ) f j (x * j ) + n ∑ j=1 b i j t -∞ k j (t -s) f j (x * j )ds + n ∑ j=1 d i j ẋ * j + J i = 0 (2)
By using (H2), Equation ( 2) is equivalent to

-c i x * i + n ∑ j=1 a i j f j (x * j ) + n ∑ j=1 n ∑ k=1 T i jk f k (x * k ) f j (x * j ) + n ∑ j=1 b i j k j f j (x * j ) + J i = 0. Let l i (x) = c i x i - n ∑ j=1 a i j + b i j k j f j (x j ) - n ∑ j=1 n ∑ k=1 T i jk f k (x k ) f j (x j ) -J i . (3) 
Clearly, a solution of l(x) = (l 1 (x), . . . , l n (x)) T = 0 is an equilibrium of System [START_REF] Bishop | Neural networks for pattern recognition[END_REF]. Now, we define the homotopy mapping

F(x, λ ) = (F 1 (x), . . . , F n (x)) T
where λ ∈ [0, 1] and

F i (x) = λ l i (x) + (1 -λ )x i . It follows from assumptions (H1) -(H2) that for all 1 ≤ i ≤ n |F i (x, λ )| = λ c i x i - n ∑ j=1 a i j f j (x j ) - n ∑ j=1 n ∑ k=1 T i jk f k (x k ) f j (x j ) - n ∑ j=1 b i j k j f j (x j ) -J i + (1 -λ )x i ≥ |λ c i x i + (1 -λ )x i | -λ n ∑ j=1 |a i j || f j (x j )| -λ n ∑ j=1 n ∑ k=1 T i jk | f k (x k )| f j (x j ) -λ n ∑ j=1 |b i j ||k j || f j (x j )| -λ |J i | ≥ |λ c i x i + (1 -λ )x i -λ n ∑ j=1 |a i j |M j |x j | -λ n ∑ j=1 |b i j ||k j |M j |x j | -λ |J i | + n ∑ j=1 n ∑ k=1 |T i jk |ω 2 . Since C -A + M -B + K + M is a M-matrix, Lemma 2.
2 implies that there exists constants δ i > 0 with i = 1, . . . , n such that

δ i c i - n ∑ j=1 δ j |a i j |M j - n ∑ j=1 δ j |b i j ||k j |M j > 0 or (4) 
δ i c i - n ∑ j=1 δ j |a ji |M i - n ∑ j=1 δ j |b ji ||k i |M i > 0. For F(x) = (F 1 (x 1 ), . . . , F n (x n )) T , we have n ∑ i=1 δ i |F i (x, λ )| ≥ n ∑ i=1 δ i (1 -λ )|x i | + λ n ∑ i=1 δ i c i |x i | -δ i n ∑ j=1 |a i j |M j |x j | -δ i n ∑ j=1 |b i j ||k j |M j |x j | -λ n ∑ i=1 δ i |J i | + n ∑ j=1 n ∑ k=1 |T i jk |ω 2 ≥ λ n ∑ i=1 δ i c i |x i | -δ i n ∑ j=1 M j |a i j ||x j | -δ i n ∑ j=1 M j |b i j ||k j ||x j | -λ n ∑ i=1 δ i |J i | + n ∑ j=1 n ∑ k=1 |T i jk |ω 2 = λ n ∑ i=1 δ i c i - n ∑ j=1 δ j |a ji |M i - n ∑ j=1 δ j |b ji |M i |k i | |x i | -λ n ∑ i=1 δ i |J i | + n ∑ j=1 n ∑ k=1 |T i jk |ω 2 Define δ 0 = min 1≤i≤n δ i c i - n ∑ j=1 δ j |a ji |M i - n ∑ j=1 δ j |b ji |M i |k i | ∆ 0 = max 1≤i≤n δ i |J i | + n ∑ j=1 n ∑ k=1 |T i jk |ω 2 Let Ω = x : |x i | < β = n(∆ 0 + 1) δ 0 ( 5 
)
then Ω is non-empty from (4). It follows from ( 5) that for any

x ∈ ∂ Ω there exists 1 ≤ i 0 ≤ n such that |x i 0 | = β . So we have n ∑ i=1 δ i F i (x, λ ) ≥ λ n ∑ i=1 δ i 0 c i 0 - n ∑ j=1 δ j M i 0 |a ji 0 | - n ∑ j=1 δ j M i 0 |b ji 0 ||k i 0 | |x i 0 | -λ n ∑ i=1 ∆ 0 ≥ λ δ 0 |x i 0 | -λ n∆ 0 > 0. For all λ ∈ (0, 1], it means that F(x, λ ) = 0 for any x ∈ ∂ Ω and λ ∈ (0, 1]. If λ = 0, we have F(x, λ ) = x = 0 for any x ∈ ∂ Ω. Therefore F(x, λ ) = 0, for any x ∈ ∂ Ω, λ ∈ [0, 1]. We have deg(I d , Ω, 0) = 1 where I d (x) = x and deg (I d , Ω, 0)
is the topological degree. Thus from the homotopy invariance theorem given for instance in [61, page 13], we obtain

deg(I d , Ω, 0) = deg (l(.), Ω, 0) = 1.
By using the topological degree theory [START_REF] Cho | Topological degree theory and applications[END_REF], we can conclude that the equation l(x) = 0 has at least one solution in Ω. It implies that System (1) has at least one equilibrium point.

Finite Time boundedness analysis

Finite time Boundedness

Compared with some existing results in [START_REF] Li | Delay-dependent stability of neural networks of neutral type with time delay in the leakage term[END_REF][START_REF] Feng | Delay-dependent stability of neutral type neural networks with distributed delays[END_REF][START_REF] Ali | Robust finite-time H ∞ control for a class of uncertain switched neural networks of neutral-type with distributed time varying delays[END_REF], System ( 1) is more general to some extent. Moreover, the usual Lyapunov stability is studied in [START_REF] Feng | Delay-dependent stability of neutral type neural networks with distributed delays[END_REF][START_REF] Li | Delay-dependent stability of neural networks of neutral type with time delay in the leakage term[END_REF] whereas the concept of FTB is discussed in this section. Assume that x * = (x * 1 , . . . , x * n ) T is an equilibrium point of System [START_REF] Bishop | Neural networks for pattern recognition[END_REF]. By a simple transformation

z(t) = x(t) -x *
we can shift the equilibrium point x * to the origin. By using (2), System (1) can be rewritten as (see [START_REF] Lou | Novel global stability criteria for high-order Hopfield-type neural networks with time-varying delays[END_REF]):

     ż(t) = -Cz(t -σ ) + A + Γ T T * g (z(t -τ(t))) +B t -∞ K(t -s)g (z(s)) ds + Dż (t -h(t)) z(s) = φ (s) -x * , s ∈ (-∞, 0] where g (z(.)) = f (z(.) + x * ) -f (x * ), T i = [T i jk ] n×n , T * = T 1 + T T 1 , ..., T n + T T n T , Γ = diag[ξ , ..., ξ ], ξ = [ξ 1 , ..., ξ n ] T , ξ i = T i jk T i jk + T ik j f k (x k (t -τ(t)) + T ik j T i jk + T ik j f k (x * k ).
We will use this z-form of System (1) for the proof of the results of our article. We introduce the following notations:

Γ + = diag[ξ + , ..., ξ + ], ξ + = [ω 1 , ..., ω n ] T , c + = max 1≤i≤n c i .
The methods used in [START_REF] Wang | Extended finite-time H ∞ control for uncertain switched linear neutral systems with time-varying delays[END_REF][START_REF] Wu | Finite-time boundedness and stabilization of uncertain switched neural networks with timevarying delay[END_REF][START_REF] Ali | Robust finite-time H ∞ control for a class of uncertain switched neural networks of neutral-type with distributed time varying delays[END_REF][START_REF] Ali | Delay-dependent stability criteria of uncertain Markovian jump neural networks with discrete interval and distributed time-varying delays[END_REF][START_REF] Wang | New results on robust finite-time boundedness of uncertain switched neural networks with time-varying delays[END_REF] for ensuring the FTB of NNs require the differentiability and the boundedness of the derivative of the time-varying delays. For improving these results, we remove this restriction by establishing the following theorem where the time-varying delays are not necessary differentiable.

Theorem 4.1. Under assumptions (H1) -(H2) -(H3), Sys- tem (1) is FTB with respect to (c 1 , c 2 , R, T ) if there exist a posi- tive scalar α, two n × n matrices Q 1 , Q 2 , three n × n symmetric positive definite matrices P, Q 3 , Q 4 , four n × n positive diago- nal matrices U 1 , U 2 , Q 5 , Q 6 ,
and a 2n × 2n matrix

Q 7 = T 11 T 12 * T 22 > 0
such that the following conditions hold: 

Ξ =              Π 11 0 Π 13 Π
             < 0 (6)
and

c 2 e -αT √ c 1 √ c 1 ω -1 1 > 0 ( 7 
)
where

Π 11 = -PC -CP + Q 3 + σ 2 Q 4 -U 1 Σ 1 -αP, Π 13 = PD, Π 14 = T T 12 , Π 16 = CPC + αCP, Π 17 = U 1 Σ 2 , Π 18 = P Ã, Π 19 = PB, Π 22 = τT 22 + Q 6 -Q 1 -Q T 1 , Π 23 = Q 1 D + Q T 2 D, Π 25 = -Q 1 C, Π 28 = Q 1 Ã, Π 29 = Q 1 B, Π 33 = -Q 6 (1 -h * ) -D T Q 2 D -D T Q T 2 D, Π 35 = D T Q 2 C, Π 36 = -D T PC, Π 38 = -D T Q 2 Ã, Π 39 = -D T Q 2 B, Π 44 = τT 11 -T 12 -T T 12 -U 2 Σ 1 , Π 48 = U 2 Σ 2 , Π 55 = -Q 3 , Π 66 = -Q 4 -αCPC, Π 68 = -CP Ã, Π 69 = -CPB, Π 77 = Q 5 κ -U 1 , Π 88 = -U 2 , Π 99 = -Q 5 ,
and

ω 1 = 2λ max (P)(1 + σ 2 c + 2 ) + σ λ max (Q 3 ) + hλ max (Q 6 ) + σ 3 λ max (Q 4 ) + τ 2 λ max (T 22 ) + n ∑ j=1 q j k j max j M 2 j ∞ 0 uk j (u)du × nc + σ λ min (Q 3 ) 1 2

+ (λ min (P))

-1 22 cond(P)cond( P)

with

Σ 1 = diag(M - 1 M + 1 , . . . , M - n M + n ), Σ 2 = diag M - 1 + M + 1 2 , . . . , M - n + M + n 2 , Q 5 = diag(q 1 , . . . , q n ), κ = diag(k 2 1 , . . . , k 2 n ), Ã = A + Γ + T T * , P = R 1 2 PR 1 2 ,
cond(P) = λ max (P) λ min (P) the condition number of P.

The proof of Theorem 4.1 is inspired by the proof of Theorem 2 in [START_REF] Li | Delay-dependent stability of neural networks of neutral type with time delay in the leakage term[END_REF].

PROOF. Let us consider the following LKF

V (t, z(t)) = 6 ∑ i=1 V i (t, z(t)) (8) 
where

V 1 (t, z(t)) = z(t) -C t t-σ z(s)ds T P z(t) -C t t-σ z(s)ds V 2 (t, z(t)) = t t-σ z T (s)Q 3 z(s)ds + t t-h(t) żT (s)Q 6 ż(s)ds V 3 (t, z(t)) = σ t t-σ t s z T (u)Q 4 z(u)duds V 4 (t, z(t)) = t 0 u u-τ(u) z(u -τ(u)) ż(s) T Q 7 z(u -τ(u)) ż(s) ds du V 5 (t, z(t)) = 0 -τ t t+u żT (s)T 22 ż(s)ds du V 6 (t, z(t)) = n ∑ j=1 q j k j ∞ 0 k j (u) t t-u g 2 j (z j (s))ds du By calculating V (t, z(t)) (see AppendixA), we obtain V (t, z(t)) ≤ ζ T (t, z(t)) Ξζ (t, z(t))
where 

ζ (t, z(t)) = z T (t), żT (t), żT (t -h(t)) , z T (t -τ(t)) , z T (t -σ ), t t-σ z(s)ds T , g T (z(t)) , g T (z(t -τ(t))) , t -∞ K(t -s)g(z(s))ds T T and Ξ =              Π11 0 Π 13 Π
             < 0 (9) with Π11 = -PC -CP + Q 3 + σ 2 Q 4 -U 1 Σ 1 , Π16 = CPC, Π66 = -Q 4 . Therefore V (t, z(t)) ≤ ζ T (t, z(t)) Ξζ (t, z(t)) ≤ ζ T (t, z(t))Ξζ (t, z(t)) + αV 1 (t, z(t)) ≤ ζ T (t, z(t))Ξζ (t, z(t)) + αV (t, z(t)) with Ξ = Ξ +               αP 0 0 0 0 -αCP 0 0 0 * 0 0 0 0 0 0 0 0 * * 0 0 0 0 0 0 0 * * * 0 0 0 0 0 0 * * * * 0 0 0 0 0 * * * * * αCPC 0 0 0 * * * * * * 0 0 0 * * * * * * * 0 0 * * * * * * * * 0               Since Ξ < 0, it leads to V (t, z(t)) ≤ αV (t, z(t)). (10) 
Integrating ( 10) from 0 to t ∈ [0, T ], we obtain

V (t, z(t)) ≤ e αt V (z(0)) (11) 
where

V (z(0)) ≤ 2λ max (P)(1 + σ 2 c + 2 ) + σ λ max (Q 3 ) + hλ max (Q 6 ) + σ 3 λ max (Q 4 ) + τ 2 λ max (T 22 ) + n ∑ j=1 q j k j max j M 2 j ∞ 0 uk j (u)du φ 2 h . (12) 
On one hand, by using the Cauchy-Schwartz inequality and Lemma 2.6 we have

z(t) ≤ C t t-σ z(s)ds + V 1 (t, z(t))
λ min (P)

≤ C t t-σ z(s)ds + V (t, z(t)) λ min (P) (13) 
and since

t t-σ z(s)ds 2 = t t-σ z(s)ds T t t-σ z(s)ds ≤ σ t t-σ z T (s)z(s)ds ≤ σ λ min (Q 3 ) t t-σ z T (s)Q 3 z(s)ds ≤ σ λ min (Q 3 ) V (t, z(t))
we obtain

z(t) ≤ nc + σ λ min (Q 3 ) 1 2 + λ min (P) -1 2 V (t). (14) 
On the other hand, Lemma 2.6, implies that

λ max ( P) z(t) 2 ≥ z T (t) Pz(t) ≥ λ min (P)z T (t)Rz(t), λ min ( P) z(0) 2 ≤ z T (0) Pz(0) ≤ λ max (P)z T (0)Rz(0). (15) 
So ( 11)-( 12)-( 14) and [START_REF] Li | Delay-dependent stability of neural networks of neutral type with time delay in the leakage term[END_REF] prove that

z(t) ≤ nc + σ λ min (Q 3 ) 1 2 + λ min (P) -1 2 e α 2 T V (z((0)) ≤ e α 2 T 2λ max (P)(1 + σ 2 c + 2 ) + σ λ max (Q 3 ) + hλ max (Q 6 ) + σ 3 λ max (Q 4 ) + τ 2 λ max (T 22 ) + n ∑ j=1 q j k j max j M 2 j ∞ 0 uk j (u)du 1 2 × nc + σ λ min (Q 3 ) 1 2 
+ λ min (P)

-1 2 
λ max (P) λ min ( P) c 1 [START_REF] Li | Asymptotic stability analysis on nonlinear systems with leakage delay[END_REF] and

z T (t)Rz(t) ≤ e αT 2λ max (P) 1 + σ 2 c + 2 + σ λ max (Q 3 ) + hλ max (Q 6 ) + σ 3 λ max (Q 4 ) + τ 2 λ max (T 22 ) + n ∑ j=1 q j k j max j M 2 j ∞ 0 uk j (u)du × nc + σ λ min (Q 3 ) 1 2 + λ min (P) -1 2 2
× cond(P)cond( P)c 1 [START_REF] Peng | Global attractive periodic solutions of BAM neural networks with continuously distributed delays in the leakage terms[END_REF] The inequality [START_REF] Peng | Global attractive periodic solutions of BAM neural networks with continuously distributed delays in the leakage terms[END_REF] and the Schur complement lemma, given for instance in [START_REF] Boyd | Linear matrix inequalities in system and control theory[END_REF], applied to condition [START_REF] Chen | Exponential stability criterion for interval neural networks with discrete and distributed delays[END_REF] prove that

z(t) T Rz(t) < c 2 for all t ∈ [0, T ].
So, the proof is completed.

Remark 4.1. If conditions ( 6) and ( 7) of Theorem 1 are satisfied with α = 0, then System (1) is asymptotically stable in the sense of Lyapunov. The LKF inequality ( 10) is used to deal with the problem of FTB of the NHOHNNs with infinite distributed delays and leakage delay. Compared with [START_REF] Li | Delay-dependent stability of neural networks of neutral type with time delay in the leakage term[END_REF], some new sufficient conditions in terms of LMIs are established to make our results less conservative with respect to the delays. When the number of neurons n increases, the complexity increases strongly because 8.5n 2 + 4n + 1 variables are involved in the LMIs that must be resolved. Such a complexity is caused by the use of the LKF inequality [START_REF] Peng | LMI-based global exponential stability of equilibrium point for neutral delayed BAM neural networks with delays in leakage terms via new inequality technique[END_REF].

Remark 4.2. Condition ( 7) is not standard LMIs, however it can be guaranteed by the following conditions

λ 1 I < P < λ 2 I, λ 3 I < Q 3 < λ 4 I, Q 4 < λ 5 I, Q 6 < λ 6 I, T 22 < λ 7 I; (18) 
-c 2 r 2 1 λ 2 1 e -αT + c 1 2λ 2 (1 + σ 2 c + 2 ) + σ λ 4 + hλ 6 + σ 3 λ 5 + τ 2 λ 7 + n ∑ j=1 q j k j max j M 2 j ∞ 0 uk j (u)du nc + σ λ 3 + 1 λ 1 2 r 2 2 λ 2 2 < 0; (19) 
where r 1 = λ min (R), r 2 = λ max (R) and λ i , i = 1, . . . 7 are unknown positive variables. It should be pointed out that ( 19) is not a LMI w.r.t. λ i , i = 1, 2, 3 because λ i appears in a nonlinear fashion. Therefore, we first find the scalars λ i from ( 6) and then we solve [START_REF] Balasubramaniam | Global asymptotic stability of BAM fuzzy cellular neural networks with time delay in the leakage term, discrete and unbounded distributed delays[END_REF] which then becomes a LMI.

When τ(t) = 0 and K = 0, System (1) turns into

                   ẋi (t) = -c i x i (t -σ ) + n ∑ j=1 a i j f j (x j (t)) + n ∑ j=1 n ∑ k=1 T i jk f k (x k (t)) f j (x j (t)) + n ∑ j=1 d i j ẋ j (t -h(t)) x(s) = φ (s), s ∈ (-∞, 0] (20) 
Let us give the definition of finite time boundedness for System [START_REF] Lakshmanan | Stability criteria for BAM neural networks with leakage delays and probabilistic time-varying delays[END_REF].

Definition 4.2. ( [START_REF] Jiang | Finite time stability of Cohen-Grossberg neural network with time-varying delays[END_REF]) System (20) is said to be Finite Time Bounded (FTB) with respect to

(c 1 , c 2 , R, T ), 0 < c 1 ≤ c 2 , T > 0, R > 0 if for all t ∈ [0, T ] max sup -σ <θ ≤0 {x T (θ )Rx(θ )}, sup -h≤θ ≤0 { ẋT (θ )R ẋ(θ )} ≤ c 1 implies that x T (t)Rx(t) < c 2 .
According to Definition 4.2, we deduce the following corollary. 

Ξ =         Π11 0 Π 13 0 Π 16 Π17 * Π22 Π 23 Π 25 0 0 * * Π 33 Π 35 Π 36 0 * * * Π 55 0 0 * * * * Π 66 0 * * * * * -U 1         < 0 ( 21 
)
and

c 2 e -αT √ c 1 √ c 1 ω -1 2 > 0 ( 22 
)
where

Π11 = -PC -CP + Q 3 + σ 2 Q 4 -U 1 Σ 1 -U 2 Σ 1 -αP, Π17 = (U 1 +U 2 ) Σ 2 + P Ã, Π22 = Q 6 -Q 1 -Q T 1 .
and

ω 2 = e αT 2λ max (P)(1 + σ 2 c + 2 ) + σ λ max (Q 3 ) + hλ max (Q 6 ) + σ 3 λ max (Q 4 ) nc + σ λ min (Q 3 ) 1 2 + λ min (P) -1 2 2
× cond(P)cond( P).

PROOF. Consider the following LKF

V (t, z(t)) = 3 ∑ i=1 V i (t, z(t)) (23) 
By using the LKF [START_REF] Wang | Reliable H ∞ control for discrete-time piecewise linear systems with infinite distributed delays[END_REF] and similar arguments to the ones of Theorem 4.1 we obtain easily the result.

Remark 4.3. The lower order class of Hopfield NNs is investigated by many authors [START_REF] Li | Delay-dependent stability of neural networks of neutral type with time delay in the leakage term[END_REF][START_REF] Li | Asymptotic stability analysis on nonlinear systems with leakage delay[END_REF][START_REF] Peng | Global attractive periodic solutions of BAM neural networks with continuously distributed delays in the leakage terms[END_REF] and can be considered as a theoretical basis for solving optimization problems. As reported in [START_REF] Cooper | Stability analysis of higher-order neural networks for combinatorial optimization[END_REF], this class of NNs is expected to produce the poorest quality of solution with a great complexity as measured by the order of the network. Therefore, our work offers a theoretical basis for the design of the second-order class of NNs with mixed time delays more effective in the resolution of optimization problems thanks to the second order synaptic terms T i jk .

Now, when the high-order terms T i jk = 0, System (1) turns into

           ẋi (t) = -c i x i (t -σ ) + n ∑ j=1 a i j f j (x j (t -τ(t))) + n ∑ j=1 b i j t -∞ k j (t -s) f j (x(s)) ds + n ∑ j=1 d i j ẋ j (t -h(t)) x(s) = φ (s), s ∈ (-∞, 0] (24) 
Then, we have the following result. 

Ξ =               Π 11 0 Π 13 Π
              < 0 ( 25 
)
and

c 2 e -αT √ c 1 √ c 1 ω -1 1 > 0 ( 26 
)
where Πi8 = Π i8 -PΓ + T T * for i = 1, 2, 3, 6.

The proof of Corollary 4.4 is similar to the one that of Theorem 4.1, so it is omitted.

The computation can be simplified by reducing the parameters involved in the LKF. It is also possible to replace the LKF by a Lyapunov function with the Razumukhin techniques. However, this will have a great influence on the conservatism with respect to the delays, in particular on the upper bounds of the delays [START_REF] Mazenc | Stability analysis for systems with time-varying delay: trajectory based approach[END_REF][START_REF] Zhou | Razumikhin and Krasovskii stability theorems for time-varying time-delay systems[END_REF].

In order to simplify the calculations without losing the conservatism with respect to the delays, we establish the following Corollary 4.5 which provides a simplified criterion for NHOHNNs without delay in the leakage term. This criterion is based on the Schur complement and has been presented for the Lyapunov stability of a special class of NHOHNNs in [START_REF] Singh | Simplified LMI condition for global asymptotic stability of delayed neural networks[END_REF]. The impact of this criterion on the conservatism with respect to the delays will be illustrated in Example 5.3. 

Λ =         -Π 22 -Π 23 0 0 -Π 28 -Π 29 * -Π 33 0 0 -Π 38 -Π 39 * * -Π 44 0 -Π 48 0 * * * -Π 77 0 0 * * * * -Π 88 0 * * * * * -Π 99         > 0 (27) and c 2 e -αT √ c 1 √ c 1 ω1 > 0 ( 28 
)
where

P = R -1 2 PR -1 2 , ω1 = λ min (P) cond( P) 2λ max (P) + hλ max (Q 6 ) + τ 2 λ max (T 22 ) + n ∑ j=1 q j k j max j M 2 j ∞ 0 u k j (u)du -1
.

PROOF. Let us consider the following LKF

V 0 (t, z(t)) = 2 ∑ i=1 Vi (t, z(t)) + 6 ∑ i=4 V i (t, z(t)) (29) 
where

V1 (t, z(t)) = z(t) T Pz(t), V2 (t, z(t)) = t t-h(t) żT (s)Q 6 ż(s)ds, V 4 (t, z(t)) = t 0 u u-τ(u) z(u -τ(u)) ż(s) T Q 7 z(u -τ(u)) ż(s) dsdu; V 5 (t, z(t)) = 0 -τ t t+u żT (s)T 22 ż(s)dsdu, V 6 (t, z(t)) = n ∑ j=1 q j k j ∞ 0 k j (u) t t-u g 2 j (z j (s))ds du.
By using the LKF [START_REF] Li | A new model transformation of discrete-time systems with time-varying delay and its application to stability analysis[END_REF] and similar arguments to the ones of Theorem 4.1, we obtain

V0 (t, z(t)) ≤ -ζ T 0 (t, z(t)) Λζ 0 (t, z(t)) + αV 0 (t, z(t))
where

ζ 0 (t, z(t)) = z T (t), żT (t), żT (t -h(t)), z T (t -τ(t)), g T (z(t)), g T (z(t -τ(t))), t -∞ K(t -s)g(z(s))ds T T and Λ =           Λ 11 Λ 12 Λ 13 -Π 14 -Π 17 -Π 18 -Π 19 * -Π 22 -Π 23 0 0 -Π 28 -Π 29 * * -Π 33 0 0 -Π 38 -Π 39 * * * -Π 44 0 -Π 48 0 * * * * -Π 77 0 0 * * * * * -Π 88 0 * * * * * * -Π 99           with Λ 11 = PC +CP +U 1 Σ 1 + αP, Λ 12 = Q 1 C Λ 13 = -PD -CQ T 2 D Clearly, if Λ > 0 ( 30 
)
then we have V0 (t, z(t)) ≤ αV 0 (t, z(t)).

By using Schur complements, (30) can be expressed as

cR -Γ > 0 ( 32 
)
where

R =         Λ22 Λ23 0 0 Λ28 Λ29 * Λ33 0 0 Λ38 Λ39 * * Λ44 0 Λ48 0 * * * Λ77 0 0 * * * * Λ88 0 * * * * * Λ99         with c > 0, Qi , > 0, i = 1, 2, 5, 7, Ǔ1 > 0, Ǔ2 > 0, Q 1 = c Q1 , Q 2 = c Q2 , Q 5 = c Q5 , Q 6 = c Q6 Q 7 = c Q7 , U 1 = c Ǔ1 , U 2 = c Ǔ2 , T 11 = c Ť11 , T 12 = c Ť12 , T 22 = c Ť22 , Λ22 = -τ Ť22 -Q6 + Q1 + QT 1 , Λ23 = -Q1 D -QT 2 D, Λ28 = -Q1 Ã, Λ29 = -Q1 B, Λ33 = Q6 (1 -h * ) + D T Q2 D + D T QT 2 D, Λ38 = -D T Q2 Ã, Λ39 = D T Q2 B, Λ44 = -τ Ť11 + Ť12 + Ť T 12 + Ǔ2 Σ 1 , Λ48 = -Ǔ2 Σ 2 , Λ77 = -Q5 κ + Ǔ1 , Λ88 = Ǔ2 , Λ99 = Q5 . and Γ =         Λ T 12 -Π T 13 -Π T 14 -Π T 17 -Π T 18 -Π T 19         (Λ 11 ) -1 Λ 12 -Π 13 -Π 14 -Π 17 -Π 18 -Π 19
Since Λ 11 > 0 then it leads to Γ > 0 and consequently R > 1 c Λ > 0 from condition [START_REF] Huang | State estimation of recurrent neural networks with time-varying delay: A novel delay partition approach[END_REF]. Therefore ( 31) is satisfied by taking c > λ max (T ) λ max (R) . Thus, condition [START_REF] Huang | State estimation of recurrent neural networks with time-varying delay: A novel delay partition approach[END_REF] implies that V0 (t, z(t)) ≤ αV 0 (t, z(t)) and consequently V (t, z(t)) ≤ e αT V (z(0)).

Furthermore, we have

x(0) 2 ≤ 1 λ min (P) x T (0)Px(0) ≤ 1 λ min (P) x T (0)R 1 2 R -1 2 PR -1 2 R 1 2 x(0) ≤ λ max ( P) λ min (P) x T (0)Rx(0) Therefore V (0) ≤ γc 1 ( 33 
)
where

γ = λ max ( P) λ min (P) 2λ max (P) + hλ max (Q 6 ) + τ 2 λ max (T 22 ) + n ∑ j=1 q j k j max j M 2 j ∞ 0 uk j (u)du . ( 34 
)
and

x T (t)Rx(t) ≤ 1 λ min ( P) x T (t)Px(t) ≤ 1 λ min ( P) V (t, x(t)) .
So conditions ( 28) and [START_REF] Yan | Finite-time stability and stabilization of itô stochastic systems with Markovian switching: mode-dependent parameter approach[END_REF] imply that x T (t)Rx(t) < c 2 which achieves the proof.

Remark 4.4. In [START_REF] Cheng | Stochastic finite-time boundedness for Markovian jumping neural networks with time-varying delays[END_REF], the problem of FTB for Markovian jumping NNs with time-varying delays is studied by using the reciprocally convex combination technique where a double integral term appears in the LKF. Very recently, the authors of [START_REF] Rajavel | Finite-time nonfragile passivity control for neural networks with time-varying delay[END_REF] have used the same approach where a triple integral term is added in the LKF. However, these novel LKFs also lead to a greater complexity in terms of inequalities and variables to be calculated and this complexity can cause numerical problems with a large number of neurons ( [START_REF] Yan | Finite-time stability and stabilization of itô stochastic systems with Markovian switching: mode-dependent parameter approach[END_REF]). In our article we use a well know LKF [START_REF] Huang | Global exponential stability of neutral highorder stochastic Hopfield neural networks with Markovian jump parameters and mixed time delays[END_REF], but based on the Jensen's integral inequality the upper bound of the LKF is estimated more tightly and then the conservatism with respect to the delays is reduced (see Example 5.1).

Finite time Boundedness stabilization

In this section, sufficient conditions are given for solving the FTB-stabilization problem of a general class of NHOHNNs with time delay in the leakage term and mixed time delays of the form

                           ẋi (t) = -c i x i (t -σ ) + n ∑ j=1 a i j f j (x j (t -τ(t))) + n ∑ j=1 n ∑ k=1 T i jk f k (x k (t -τ(t))) f j (x j (t -τ(t))) + n ∑ j=1 b i j t -∞ k j (t -s) f j (x j (s)) ds + n ∑ j=1 d i j ẋ j (t -h(t)) + u, t > 0, i = 1, . . . , n x(s) = φ (s), s ∈ (-∞, 0] ( 35 
)
where u is the control variable. The following state feedback control is considered

u (x(t)) = K 2 x(t) ( 36 
)
where K 2 is to be determined. The corresponding closed-loop z-system is given by

     ż(t) = -Cz(t -σ ) + Ag(z(t -τ(t)) + Γ T T * g (z(t -τ(t))) +B t -∞ K(t -s)g (z(s)) ds + Dż (t -h(t)) K 2 z(t) z(s) = φ (s) -x * , s ∈ (-∞, 0] (37) 
We now introduce the definition of finite time bounded stabilization. Definition 4.6. ( [START_REF] Wu | Finite-time boundedness and stabilization of uncertain switched neural networks with timevarying delay[END_REF]) The NNs described by System (35) is said to be FTB-stabilizable w.r.t. (c 1 , c 2 , R, T ) if there exists a controller u (z(t)) of the form [START_REF] Kamenkov | On stability of motion over a finite interval of time[END_REF] such that the corresponding closed-loop z-System (37) is FTB with respect to (c 1 , c 2 , R, T ).

We can now state the main result of this section. 

Ψ =              Ψ 11 Ψ 12 Ψ 13 0 Π 15 Ψ 16 Π 17 Π 18 Π 19 * Π 22 Π 23 0 Π 25 0 0 Π 28 Π 29 * * Π 33 0 Π 35 Π 36 0 Π 38 Π 39 * * * Π 44 0 0 0 Π 48 Π 49 * * * * Π 55 0 0 0 0 * * * * * Π 66 0 Π 68 Π 69 * * * * * * Π 77 0 0 * * * * * * * Π 88 0 * * * * * * * * Π 99              < 0 (38) 
and

c 2 e -αT √ c 1 √ c 1 ω -1 1 > 0 ( 39 
)
where

C = C -K 2 , Ψ 11 = -PC -CP + PK 2 + K T 2 P + Q 3 + σ 2 Q 4 -U 1 Σ 1 -αP, Ψ 12 = -Q 1 K 2 , Ψ 13 = PD + D T Q 2 K 2 , Ψ 16 = CP C + αCP,
PROOF. According to Definition 4.6, if we apply Theorem 4.1 to the closed-loop System (37) then we can easily obtain the result. The details of the proof is left to the reader.

When σ = 0, Theorem 4.7 cannot be directly used to design a feedback control of the form of [START_REF] Kamenkov | On stability of motion over a finite interval of time[END_REF]. To overcome this obstacle, the following proposition is established. such that the following conditions hold:

Ξ 1 =           Ξ 11 Ξ 12 Ξ 13 Ξ 14 Ξ 15 Ξ 16 Ξ 17 * Ξ 22 Ξ 23 0 0 Ξ 26 Ξ 27 * * Ξ 33 0 0 Ξ 36 Ξ 37 * * * Ξ 44 0 Ξ 46 0 * * * * Ξ 55 0 0 * * * * * Ξ 66 0 * * * * * * Ξ 77           < 0 (40) and c 2 e -αT √ c 1 √ c 1 ω-1 2 > 0 (41) 
where

Ξ 11 = -CX -XC +Y +Y T -Ũ1 Σ 1 -αX, Ξ 12 = XC +Y, Ξ 13 = D + D T CX + D T Y, Ξ 14 = T T 12 , Ξ 15 = Ũ1 Σ 2 , Ξ 16 = ÃX, Ξ 17 = BX, Ξ 22 = τT 22 + Q 6 -2I, Ξ 23 = XD + D T X, , Ξ 26 = X Ã, Ξ 27 = XB, Ξ 33 = -Q 6 (1 -h * ) -2D T D, Ξ 36 = -XD T Ã, Ξ 37 = -XD T B, Ξ 44 = τ T11 -T12 -T T 12 -Ũ2 Σ 1 , Ξ 46 = Ũ2 Σ 2 , Ξ 55 = Q5 κ -Ũ1 , Ξ 66 = -Ũ2 , Ξ 77 = -Q5 . and ω2 = 1 λ min ( X) 2λ max (X -1 ) + hλ max (Q 6 ) + τ 2 λ max (T 22 ) + n ∑ j=1 ρ -1 j q j ρ -1 j k j max j M 2 j ∞ 0 u k j (u)du with Q5 = diag( q1 , . . . , qn ), X = diag(ρ 1 , . . . , ρ n ), X = R -1 2 X -1 R -1 2 .
PROOF. Let Q 1 = Q 2 = I. Now, we make some transformations for the above inequalities ( 40)- [START_REF] Zhou | Finite-time synchronization of complex-valued neural networks with mixed delays and uncertain perturbations[END_REF]. Pre and post-multiplying (40) by diag(X -1 , I, I, X -1 , . . . , X -1 ) and letting

X = P -1 , Y = KX, Q5 = P -1 Q 5 P -1 ; Ũ1 = P -1 U 1 P -1 , Ũ2 = P -1 U 2 P -1 , T12 = P -1 T 12 P -1 . ( 42 
)
we obtain Λ > 0. That is, [START_REF] Zhao | Finite-time boundedness analysis of memristive neural network with time-varying delay[END_REF] implies Condition [START_REF] Huang | State estimation of recurrent neural networks with time-varying delay: A novel delay partition approach[END_REF]. Then, by replacing [START_REF] Ali | Robust finite-time H ∞ control for a class of uncertain switched neural networks of neutral-type with distributed time varying delays[END_REF] in Condition [START_REF] Zhou | Finite-time synchronization of complex-valued neural networks with mixed delays and uncertain perturbations[END_REF] we obtain easily [START_REF] Lakshmanan | Delay-dependent state estimation of neural networks with mixed timevarying delays[END_REF]. Therefore, the conditions of Corollary 4.5 are obtained which achieves the proof.

Remark 4.5. Based on the inequality S -1 ≥ 2ξ Iξ 2 S (S being a non-singular matrix), the following LMI conditions

-λ 1 I I * -X i < 0, X i < λ 2 I, Q5 < 2ξ 1 I -ξ 2 1 λ 3 I -(2ξ 3 I -ξ 2 3 λ 2 )π 1 c 2 e -αT + c 1 2λ 1 + hλ 6 + τ 2 λ 7 √ c 1 r 3 λ 1 * -λ 3 . < 0
where

π 1 = λ min (R -1 ), r 3 = n ∑ j=1 k j max j M 2 j ∞
0 uk j (u)du, ξ 1 , ξ 3 are adjustable parameters and λ i , i = 1, 2, 3, 6, 7 are unknown positive scalars, ensure Condition (41) [START_REF] Wu | Finite-time boundedness and stabilization of uncertain switched neural networks with timevarying delay[END_REF].

When σ = 0, the following proposition can be applied directly to design a feedback control which is able to FTB-stabilize the NHOHNNs. Proposition 4.9. Under the assumptions (H1) -(H2) -(H3), if there exist a positive scalar α, three positive symmetric definite matrices P, Q 3 , Q 4 , five n × n diagonal matrices X, U 1 > 0, U 2 > 0, Q 5 > 0, Q 6 > 0, and a 2n × 2n matrix

Q 7 = T 11 T 12 * T 22 > 0
such that the following conditions hold: 

Θ =              Θ 11 X Π
             < 0 (43) 
and

c 2 e -αT √ c 1 √ c 1 ω -1 1 > 0 ( 44 
)
where

Θ 11 = -PC -CP + Q 3 + σ 2 Q 4 -U 1 Σ 1 -αP + 2X, Θ 16 = CPC + αCP -CX, Θ 22 = τT 22 + Q 6 -2P, Θ 23 = PD, Θ 25 = -PC, Θ 28 = P Ã, Θ 29 = PB, Θ 33 = -Q 6 (1 -h * )
and other parameters are the same as in Theorem 4.1, then the feedback control u 2 (x(t)) = P -1 Xx(t) FTB-stabilize System (35) w.r.t. (c 1 , c 2 , R, T ).

PROOF. Let Q 1 = P and Q 2 = 0. The proof of Proposition 4.9 is similar to the one of Theorem 4.7 so it is omitted here.

Remark 4.6. In the results presented in [START_REF] Wang | Extended finite-time H ∞ control for uncertain switched linear neutral systems with time-varying delays[END_REF][START_REF] Wu | Finite-time boundedness and stabilization of uncertain switched neural networks with timevarying delay[END_REF][START_REF] Ali | Robust finite-time H ∞ control for a class of uncertain switched neural networks of neutral-type with distributed time varying delays[END_REF][START_REF] Ali | Delay-dependent stability criteria of uncertain Markovian jump neural networks with discrete interval and distributed time-varying delays[END_REF][START_REF] Wang | New results on robust finite-time boundedness of uncertain switched neural networks with time-varying delays[END_REF], the feedback control given for ensuring the FTB-stabilization of the NNs cannot be designed with a leakage delay. When σ = 0, the conditions established in these works are not LMI conditions which renders the control algorithm more complicated.

To overcome these difficulties, the matrix gain should be of the following form K = P -1 X. In this case, it is possible to find LMI conditions ensuring the FTB-stabilization of NNs of the above mentioned works, even if there is a leakage delay.

Numerical examples

In this section, three numerical examples are presented to show the effectiveness of the results.

Example 1

Consider System (1) with n = 2 and 

f 1 (s) = f 2 (s) = tanh(s), τ(t) = 0.2 -0.1 cost, h(t) = σ = 0.1, k 1 (s) = k 2 (s) = e -s , J = (1, 2)

It leads to

τ = 0.3, h * = 0, M - j = 0, M + j = 1, k j = 1 for j = 1, 2. Note that C -A + M -B + K + M = 3.2 -0.38 -1 2.57
is a M-matrix. By using Theorem 3.1, we know that System (1) has an equilibrium point.

For c 1 = 0.35, T = 5 and R = I, solving ( 6)-( 7) with the Matlab LMI toolbox [START_REF] Lofberg | Yalmip : a toolbox for modeling and optimization in matlab[END_REF] The minimum value of c 2 satisfies min c 2 > 1.8157 for α = 0.02. Moreover, we see on Figure 2 that the considered system is not FTB w.r.t. (0.35, 0.9, I, 100). Finally for α = 0.01, Figure 4 shows the minimum of c 2 with respect to (T, c 1 ) for having the FTB. h * = 0 and σ = 0 Methods τ max [START_REF] Arbi | Stability analysis of delayed Hopfield neural networks with impulses via inequality tech-niques[END_REF] 0.87 [START_REF] Li | Delay-dependent stability of neural networks of neutral type with time delay in the leakage term[END_REF] 0.3527 [START_REF] Wang | Global exponential stability of high-order bidirectional associative memory (BAM) neural networks with time delays in leakage terms[END_REF] 0.4 Corollary 4.5 1.123 When σ = 0, the upper bound of the delay τ for which LMIs (6) of Theorem 4.1 remain feasible is τ max = 1.088. However, we obtain τ max = 1.123 if we use the simplified criterion given in Corollary 4.5.

Remark 5.1. The stability criterion given in [START_REF] Li | Delay-dependent stability of neural networks of neutral type with time delay in the leakage term[END_REF][START_REF] Arbi | Stability analysis of delayed Hopfield neural networks with impulses via inequality tech-niques[END_REF][START_REF] Sakthivel | Design of state estimator for bidirectional associative memory neural networks with leakage delays[END_REF][START_REF] Wang | Global exponential stability of high-order bidirectional associative memory (BAM) neural networks with time delays in leakage terms[END_REF] fails for small delays (τ max ≤ 0.87) and becomes infeasible when a leakage delay σ extends beyond 0.15. The method proposed in our work overcomes these difficulties by proving sufficient conditions that are able to ensure the FTB and even the asymptotic stability for a delay larger than the one given in [START_REF] Li | Delay-dependent stability of neural networks of neutral type with time delay in the leakage term[END_REF][START_REF] Arbi | Stability analysis of delayed Hopfield neural networks with impulses via inequality tech-niques[END_REF][START_REF] Wang | Global exponential stability of high-order bidirectional associative memory (BAM) neural networks with time delays in leakage terms[END_REF]. Table 1 Remark 5.2. The method used in our article improves and extends the results given in [START_REF] Li | Delay-dependent stability of neural networks of neutral type with time delay in the leakage term[END_REF][START_REF] Sakthivel | Design of state estimator for bidirectional associative memory neural networks with leakage delays[END_REF] by reducing the conservatism with respect to the delays and by simplifying the calculus simultaneously. This improvement is illustrated in Tables 3-4 and 5 by presenting a comparison of the computational load. Noted that FWM and DV stand respectively for the number of h * = 0 Methods τ max for σ = 0.15 τ max for σ = 0.2 [START_REF] Sakthivel | Design of state estimator for bidirectional associative memory neural networks with leakage delays[END_REF] Infeasible Infeasible [Theorem 4.1] 0.245 0.095 The state feedback control u 2 (x(t)) = K 2 x(t) with

K 2 = -0.1 0 0 -0.9
FTB-stabilize the system but it also asymptotically stabilize the system if we consider an infinite time evolution. The history of x T (t)x(t) is then illustrated in Figure 7. In order to FTB stabilize System [START_REF] Onori | Finite time stability design via feedback linearization[END_REF] with the above numerical values, we build the following control U (x(t)) = P -1 Xx(t) according to the strategy given in Subsection 4.2. Proposition 4.9 implies that the closed-loop System [START_REF] Amato | Finite-time control of linear systems subject to parametric uncertainties and disturbances[END_REF] Remark 5.3. It should be pointed out that the results in [START_REF] Wang | Extended finite-time H ∞ control for uncertain switched linear neutral systems with time-varying delays[END_REF][START_REF] Wu | Finite-time boundedness and stabilization of uncertain switched neural networks with timevarying delay[END_REF][START_REF] Ali | Robust finite-time H ∞ control for a class of uncertain switched neural networks of neutral-type with distributed time varying delays[END_REF][START_REF] Ali | Delay-dependent stability criteria of uncertain Markovian jump neural networks with discrete interval and distributed time-varying delays[END_REF][START_REF] Wang | New results on robust finite-time boundedness of uncertain switched neural networks with time-varying delays[END_REF] fail for System (1) with the time-varying delay (45) even without leakage delay because [START_REF] Lin | Finite-time boundedness and L 2 -gain analysis for switched delay systems with norm-bounded disturbance[END_REF] is not differentiable. This proves the advantage of the proposed approach in our article.

Conclusion

This article deals with the problem of finite time boundedness and finite time boundedness stabilization of a general class of neutral high-order Hopfield neural networks with time delay in the leakage term and mixed time delays. By using the topological degree theory, sufficient conditions are given to prove the existence of equilibrium points. The Lyapunov-Krasovskii functional method and the LMIs technique are used to establish some sufficient conditions which ensure the finite time boundedness and finite time boundedness stabilization of the class of systems considered in our article. Finally, numerical examples are presented to show the effectiveness and the interest of our proposed results.

AppendixA. The calculus of V (t) System (1) has an equivalent form given by 

Lemma 2 . 5 .

 25 ([15]) Given any real matrix M = M T > 0 of appropriate dimension and a vector field ω : [a, b] → R n such that the integrations concerned are well defined, then we have

Theorem 3 . 1 .

 31 Under assumptions (H1) -(H2) -(H3), System (1) has at least one equilibrium point. PROOF. If x * = (x * 1 , . . . , x * n ) T denotes an equilibrium point of System (1), then x * satisfies for all i = 1, . . . , n

Corollary 4 . 3 .

 43 Under the assumptions and notations of Theorem 4.1, System (20) is FTB w.r.t. (c 1 , c 2 , R, T ) if the following conditions hold:

Corollary 4 . 4 .

 44 Under the assumptions and notations of Theorem 4.1 , System (24) is FTB w.r.t. (c 1 , c 2 , R, T ) if the following conditions hold:

Corollary 4 . 5 .

 45 Under the assumptions and notations of Theorem 4.1, System (1) with σ = 0 is FTB w.r.t. (c 1 , c 2 , T, R) if the following conditions hold:

Theorem 4 . 7 .

 47 Under the assumptions and notations of Theorem 4.1, System (35) is FTB-stabilizable w.r.t. (c 1 , c 2 , R, T ) if the following conditions hold:

Proposition 4 . 8 .

 48 Under assumptions (H 1 ) -(H 3 ), System (35) without leakage delay is FTB-stabilizable w.r.t. (c 1 , c 2 , T, R) if there exist a positive scalar α, three n × n matrices Q1 , Q2 , Y , five n × n positive diagonal matrices X, Ũ1 , Ũ2 , Q5 , Q 6 and a 2n × 2n matrix Q7 = T11 T12 * T 22 > 0

  Theorem 4.1 leads to the FTB of the considered system w.r.t. (0.35, 3, I, 5). Time history of x T (t)x(t) is illustrated on Fig 1.

Figure 1 :Figure 2 :

 12 Figure 1: Time history of x T (t)x(t) with initial condition (0.305, 0.5) T

Figure 3 :

 3 Figure 3: max c 1 with respect to (T, c 2 )

Figure 4 :

 4 Figure 4: min c 2 with respect to (T, c 1 )

Figure 7 : 2 5

 72 Figure7: The history of x T (t)x(t) for System[START_REF] Amato | Finite-time control of linear systems subject to parametric uncertainties and disturbances[END_REF] with initial condition (0.1, 0.1) T under controller[START_REF] Kamenkov | On stability of motion over a finite interval of time[END_REF] with K = K 2

Figure 8 :

 8 Figure8: The history of x T (t)x(t) for System[START_REF] Amato | Finite-time control of linear systems subject to parametric uncertainties and disturbances[END_REF] without controller[START_REF] Kamenkov | On stability of motion over a finite interval of time[END_REF] 

Figure 10 :

 10 Figure 10: The history of x T (t)x(t) for System (37) under time-varying delay (45).

  T , and parameters C, A, T 1 , T 2 , B and D given as follows:

	C =	4 0 0 4	, A =	0.1 -0.8 -0.93 0.18	, T 1 =	0.2 0.07 0.03 0.01	,
	T 2 =	0.1 0.05 0.04 0.02	, B =	0.7 -0.2 -0.2 0.5	, D =	0.1 0 0 0.1	.

  with α = 0.02 leads to the following solutions

	P =	128.0037 19.7975 19.7975 62.5951	, Q 1 =	10.08 3.3704 3.3704 6.3560
	Q 2 =	16.7695 1.7013 1.7013 7.4374	, Q 3 =	220.9824 57.9710 57.9710 131.3136
	Q 4 =	7.3255 1.2523 1.2523 5.1806	, Q 5 =	110.8764 0	0 65.8265
	Q 6 =	2.0464 0	0 0.8882	, U 1 =	232.5544 0	0 156.5080
	U 2 =	65.8755 0	0 58.9563	, T 11 =	112.1715 54.9582 54.9582 85.9251
	T 12 =	45.4573 20.3443 20.3443 31.9253	, T 22 =	19.7736 8.8448 8.8448 13.8120

Table 1 :

 1 The maximum allowable bounds τ max for h

* = 0 and σ = 0

  and Table 2 compare the maximum allowable bounds τ max of τ(t) derived from Theorem 4.1, Corollary 4.5 and [15, 73, 75, 74].

Table 2 :

 2 The maximum allowable bounds of τ max for h * = 0

		σ = 0	
	Methods	FWM	DV	τ max
	[15]	2	4n 2 + 4n	0.3527
	[Corollary 4.5]	2	3n	

2 + 4n + 1 1.123

Table 3 :

 3 A comparison of computational load when σ = 0

		σ = 0.15	
	Methods	FWM	DV	τ max
	[74]	2	28n 2 + 16n	Infeasible
	[Theorem 4.1]	2	8.5n 2 + 4n + 1	0.245

Table 4 :

 4 A comparison of computational load when σ = 0.15 free-weight matrices and the number of decision variables used.

	C =	1 0 0 0.2

5.2. Example 2

Consider System (1) with n = 2, and other parameters similar to Subsection 5.1. By setting c 1 = 6.5, T = 5 and R = I, we have that System (1) is FTB w.r.t. (6.5, 1500, I, 5) but is not FTB w.r.t. (6.5, 1500, I, 10). Moreover, we have |x i | → +∞, i = 1, 2 when t → +∞ as shown if Figure

5

which proves that this system is not asymptotically stable.

Table 5 :

 5 The maximum allowable bounds of τ(t) when σ = 0.2 So, we have shown that FTB and Lyapunov asymptotic stability are two independent concepts. Now we consider the controlled System[START_REF] Onori | Finite time stability design via feedback linearization[END_REF] with the above numerical values. In order to FTB-stabilize System[START_REF] Onori | Finite time stability design via feedback linearization[END_REF], we consider the feedback control according to the method proposed in Theorem 4.7. The feedback control is given by u (x(t)) =

	K 1 x(t), with K 1 =	-0.1 0	0 0.042	. From Theorem 4.7, we de-
	duce that System (35) is FTB stabilizable w.r.t. (6.5, 1500, I, 10).
	Figure 6 shows the history of x T (t)x(t).	
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					x T (t)x(t)	
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	x T (t)x(t)					
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	0	2	4	6	8	10
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Figure 6: The history of x T (t)x(t) for System (35) with initial condition (0.1, 0.1) T under controller (36) with K = K 1

  is FTB-stabilizable w.r.t. (c 1 , c 2 , T, I) for α = 0.02, with the following solutions The history of x T (t)Rx(t) with the previous controller u (x(t)) = P -1 Xx(t) is illustrated on Figure9. Figure 9: The history of x T (t)x(t) for System (37)under controller P -1 Xx(t).Now, if the time-varying delay τ(t) defined by the non-differentiable function is as follows:τ(t) = 0.3 -0.1 sint i f t ∈ I = ∪ k≥0 [2kπ, (2k + 1)π] ; 0 i f t ∈ R + \I.(45)System[START_REF] Onori | Finite time stability design via feedback linearization[END_REF] stays FTB-stabilizable w.r.t. (c 1 , c 2 , T, I) which is illustrated in Figure10.

		2						x T (t)x(t)						
		1.8													
		1.6													
		1.4													
	x T (t)x(t)	1 1.2													
		0.8													
		0.6													
		0.4													
		0.2													
		0	2		4	6		8		10					
						Times (s)									
		2													
								x							
		1.8													
		1.6													
		1.4													
	x T (t)x(t)	1 1.2													
		0.6 0.8									P =	6.5871 0	0 4.3602	, Q 3 =	-0.1380 0.2511 0.3573 -0.1380
		0.2 0.4									Q 4 =	4.8974 -0.5024 -0.5024 4.5153	, Q 5 =	0 6.1356	3.5997 0
		0	1	2	3	4 Time (s) 5	6	7	8	9	Q 6 =	0.5134 0	0 0.3434	,U 1 =	0 12.0818	7.2642 0
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											and the controller u (x(t)) = P -1 Xx(t) with
												P -1 X =	-2.2329 0	0 -1.2674	.

T (t)x(t)

  -C t t-σ z(u)du = -Cz(t) + (A + Γ T T * )g(z(tτ(t))) +B t -∞ K(ts)g(z(s))ds + Dż(th(t)) z(s) = φ (s)x * -Cz(t) + (A + Γ T T * )g(z(t -(τ(t))) s)g(z(s))ds = -2z T (t)PCz(t) + 2z T (t)P(A + Γ T T * )g(z(tτ(t))) s)g(z(s))ds + 2z T (t)PDż(th(t))

	         dt z(t) Moreover, we have d				
	V1 (t, z(t)) = 2 z(t) -C	t	z(u)du			
			t-σ				
				t			
	+ Dż(t -h(t)) + B t K(t + 2z T (t)PB -∞ -∞ t K(t + 2z T (t)CPC z(u)du -2	t	z(u)du	T	CPDż(t -h(t))
			t-σ			t-σ
		t					
	-2	z(u)du				
		t-σ					
		t	T	t		
	-2	z(u)du	CPB	K(t -s)g(z(s))ds	(A.1)
		t-σ		-∞		
						t t-σ	z T (u)Q 4 z(u)du
	≤ σ 2 z T (t)Q 4 z(t) -		t t-σ	z(u)du	T	Q 4	t t-σ	z(u)du
								(A.3)
	and						
	V4 (t, z(t)) =	t t-τ(t)	g(z(t -τ(t))) ż(s)	T T 11 T 12 * T 22	g(z(t -τ(t))) ż(s)	ds
	= τ(t)z T (t -τ(t))T 11 z(t -τ(t)) + 2z T (t)T T 12 z(t -τ(t))
	-2z T (t -τ(t))T T 12 z(t -τ(t)) +	t t-τ(t)	żT (s)T 22 ż(s)ds
	≤ z						

T P T CP(A + Γ T T * )g(z(t -(τ(t))) and V2 (t, z(t)) = z T (t)Q 3 z(t)z T (tσ )Q 3 z(tσ ) + żT (t)Q 6 ż(t) -żT (th(t))Q 6 ż(th(t))(1 -ḣ(t)) ≤ z T (t)Q 3 z(t)z T (tσ )Q 3 z(tσ ) + żT (t)Q 6 ż(t) -żT (th(t))Q 6 ż(th(t))(1h * ) (A.2)

It follows from Lemma 2.5 that

V3 (t, z(t)) = σ 2 z T (t)Q 4 z(t)σ T (tτ(t))[τT 11 -2T T 12 ]z(tτ(t))] + 2z T (t)T T 12 z(tτ(t)) + t t-τ

żT (s)T 22 ż(s)ds (A.4)

and

In addition, we note that

By using (H1), the following inequality holds

for any n × n diagonal matrices U 1 > 0, U 2 > 0. By using (A.1)-(A.9), we finally get V (t, z(t)) ≤ ζ T (t, z(t)) Ξζ (t, z(t)).