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Abstract

This article deals with the finite time boundedness (FTB) and FTB-stabilization problem for a general class of neutral high-order
Hopfield neural networks (NHOHNNs) with time delay in the leakage term and mixed time delays. The mixed time delays consist
of both discrete time-varying delays and infinite distributed delays. By using the topological degree theory, sufficient conditions are
established to prove the existence of equilibrium points. Then, the Lyapunov-Krasovskii functional (LKF) method is used to prove
sufficient conditions for the FTB. These conditions are in the form of linear matrix inequalities (LMIs) and can be numerically
checked. Furthermore, a state feedback control is constructed to solve the FTB-stabilization problem. Finally, some numerical
examples are presented to show the effectiveness of our main results.
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1. Introduction

Neural Networks (NNs) have been widely studied due to
their practical applications in lots of areas such as model iden-
tification, signal processing, image processing, pattern recogni-
tion, optimization problems, associative memories [1, 2, 3, 4].
The majority of these applications requires the stability of the
designed NNs. It should be pointed out that the delay has a
great effect on the system performances. Therefore, the stabil-
ity analysis of delayed NNs has attracted the attention of many
researchers and a lot of results have been obtained (see for in-
stance [5, 6, 7, 8, 9, 10, 11]). In [10, 12], the authors discussed
the case of constant delays and in [6, 9, 11, 13] the authors ana-
lyzed the stability of NNs with continuously distributed delays.

Recently, another kind of delay, variously known as leakage
delay, is investigated in [14, 15, 16, 17]. It has been proved that
this kind of delay tends to render the systems of NNs unstable.
The effect of the leakage delay on stability is one of the im-
portant research topics in the field of the stability of NNs [18].
Many researchers analyzed the effect of the leakage delay on
the Lyapunov stability of various kinds of NNs such that bidi-
rectional associative memory NNs [19, 20] or impulsive NNs
[21, 22]. However, it should be pointed out that manipulating
this kind of delay is not easy. In addition, a kind of time delay
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systems, appointed neutral-type delay systems, is used by many
authors due to their practical applications [23]. There are sev-
eral results discussing the stability of neutral-type NNs, see for
instance [24, 25, 26] and references therein.

In order to render the stability criteria less conservative with
respect to the delays, several methods are developed in the lit-
erature [27, 28, 29, 30, 31, 32, 33, 34]. Most of these methods
are based on a Lyapunov functional and associated LMIs be-
cause these inequalities can be numerically checked. However,
it is well known that when a novel Lyapunov functional is de-
signed for reducing the conservatism with respect to the delays
a greater complexity in terms of inequalities and variables to
be calculated can appear. Therefore, the problem of reducing
simultaneously the number of decision variables and the con-
servatism with respect to the delays arises.

Most of the previous works on stability were mainly based
on the classical Lyapunov stability which is associated with an
infinite time interval. However, only a finite time interval is
considered in practical applications [35]. In 1953, Kamenkov
has introduced in [36] the concept of finite time boundedness
(FTB). Dorato reported in [37] that FTB and Lyapunov stabil-
ity are two independent concepts. Many studies have addressed
the FTB problem of NNs, see for instance [38, 39, 40, 41, 42,
43, 44, 45, 46, 47, 48, 49]. For neutral-type NNs, the FTB was
studied in [42, 47]. In [43, 49] and [41], the class of uncertain
NNs with Markovian jumps and the complex-valued NNs are
studied respectively. Also the impulsive NNs is investigated in
[39] and the authors of [40, 38] deal with the problem of FTB
for Memristive NNs and TS-fuzzy system with time-varying
delay respectively. Moreover, all the previous results on FTB
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are for lower order NNs. This class of lower order NNs has
several limitations (see for instance [50, 51]) which leads to
consider the class of NNs with high-order connections. This
class of high-order NNs has stronger approximation character-
istics, important storage capacity, faster convergence rate and
higher fault tolerance than lower-order NNs [52]. To the best of
the authors’ knowledge, the FTB and FTB-stabilization of neu-
tral high-order Hopfield NNs (NHOHNNs) with a leakage de-
lay and with both discrete and distributed delays, called mixed
time delays, have not been fully investigated in the literature.
Here is the main goal of our article. The delays considered in
our article contain an infinite distributed delay which occurs in
practice [23]. Indeed, there is no result for the FTB of NNs with
infinite distributed delays. Despite important studies available
yet to deal with the FTB concept [42, 43, 47, 48, 49], there is no
result for the FTB of NNs with non-differentiable time-varying
delay. Here is also a novelty of our article.

In our article, the FTB and FTB-stabilization are analyzed
for a general class of NHOHNNs with time delay in the leak-
age term and mixed time delays. The main contributions are as
follows:

(i) the LKF and LMIs techniques are used to study the effect
of the leakage delay on the FTB results of the concerned
NHOHNNs;

(ii) simplified LMI conditions are established to reduce the
conservatism with respect to the delays and provide a less
computational load simultaneously;

(iii) by using the FTB analysis, some conditions are given for
the FTB-stabilization of the concerned NHOHNNs with
a leakage delay. Moreover, the NHOHNNs considered
in this article are subjected to non-differentiable time-
varying delays.

The article is organized as follows. In Section 2, some pre-
liminaries useful for the study of the class of NHOHNNs are
presented. The existence of equilibrium points is addressed in
Section 3. Then, the FTB and the FTB-stabilization are studied
in Section 4. Numerical examples are presented in Section 5
to illuminate the validity of the proposed results. Finally, some
concluding remarks are drawn in Section 6.

2. Preliminaries

In this article, we use the following notations:

• R, Z+, Rn and Rn×n stand for the set of real numbers,
the set of positive integers, the n-dimensional real space
equipped with the euclidean norm ‖ . ‖ and the set of n×n
real matrices respectively;

• AT , A−1, A > 0, A < 0 and I means respectively
the transpose of A, the inverse of A, the matrix A is pos-
itive definite, the matrix −A is positive definite and the
identity matrix with appropriate dimensions;

• λmax(A), λmin(A) and ∗ stand for the maximum eigen-
value of A, the minimum eigenvalue of A and the sym-
metric block in one symmetric matrix respectively;

• X+ =
(
|xi j|

)
n×n

where X =
(
xi j)n×n ;

• for any interval I ⊂ R and V ⊂ Rk (1≤ k ≤ n), C(I, V )
and C1

b(I, V ) stand respectively for the set {φ : I→V : φ

is continuous} and {φ : I→V : φ is continuously differ-
entiable and bounded}.

We consider the following neutral high-order Hopfield neu-
ral networks (NHOHNNs) with time delay in the leakage term
and mixed time delays

ẋi(t) =−cixi(t−σ)+
n
∑
j=1

ai j f j (x j (t− τ (t)))

+
n
∑
j=1

n
∑

k=1
Ti jk fk (xk(t− τ(t))) f j (x j(t− τ(t)))

+
n
∑
j=1

bi j
∫ t
−∞

k j(t− s) f j (x j(s))ds

+
n
∑
j=1

di j ẋ j (t−h(t))+ Ji, t > 0, i = 1, . . . ,n

x(s) = φ(s), s ∈ (−∞, 0]

(1)

where ci > 0, C = diag(c1, . . . , cn), ai j, bi j and di j are the inter-
connection weight coefficients of the neurons, Ti jk the second-
order synaptic weights of the NNs, Ji an external input vector,
x(t) = (x1(t), . . . , xn(t))

T the neuron state vector of the NNs,
ẋ the time derivative of the neuron state,

f (x(.)) = ( f1 (x1(.)) , . . . , fn (xn(.)))
T

the neuron activation function such that fi(0) = 0 for all 1≤ i≤
n, σ ≥ 0 a constant which is the leakage delay,

K = diag(k1(.), . . . , kn(.))

the delay kernel, τ(.) and h(.) the time-varying transmission
delays satisfying 0≤ τ(t)≤ τ , 0≤ h(t)≤ h̄ and ḣ(t)≤ h∗ < 1.
The initial condition satisfies φ(.) ∈C1

b ((−∞,0],Rn) where the
norm is defined by

‖φ‖h̄ = max

{
sup
s≤0
‖φ(s)‖, sup

−h̄≤s≤0
‖φ̇(s)‖

}
.

The term of the right-hand side of System (1) involving the time
derivative of the state renders the system of neutral-type (see
for instance [53]). Several studies have been done on System
(1), especially in [8], where the global exponential stability is
treated for σ = 0 and with Markovian jump parameters. In [54],
the authors studied the stability of the almost automorphic solu-
tions for the same model but without taking into consideration
infinite distributed delays. Note that such System (1) contains
many of the well-known models as special cases.

Let us introduce the following three assumptions:

(H1) for all x, y ∈R, there exist constants ω > 0, M−j and M+
j

such that

| f j(x)| ≤ ω j and M−j ≤
| f j(x)− f j(y)|

x− y
≤M+

j ,
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(H2) for all j = 1, . . . ,n, the functions k j : R+→ R+ are con-
tinuous and satisfy∫ +∞

0
k j(u)du = k j and

∫ +∞

0
u k j(u)du < ∞,

(H3) C−A+M−B+K+M is a M-matrix.

Remark 2.1. Under assumptions (H1) and (H2), the existence
of the solutions of System (1) is guaranteed by using [53, The-
orem 2.1]. It should also be pointed out that the constants M+

j
and M−j can be negative or positive in the assumption (H1)
which allows Lurie-type functions if we take M+

j ,M
−
j > 0 [55]

or Lipschitz functions if we take M−j = −M+
j < 0. There-

fore (H1) is weaker than the assumptions used for instance in
[56, 57, 58]. Finally, if we only consider Lipschitz activation
functions as in [12], the method used in [12] for proving the
existence of an equilibrium point does not work for System (1)
with the high-order terms.

Definition 2.1. ([12]) A nonsingular matrix X = (xi j)n×n is a
M-matrix if X = rI−β with β ≥ 0 and r > ρ (β ) where ρ (β )
stands for the spectral radius of the matrix β .

Let

Zn×n =
{

A = (ai j) ∈ Rn×n : aii > 0, ai j ≤ 0, for all i 6= j
}

then we have the following lemma:

Lemma 2.2. ([12]) The following claims are equivalent:

(i) there exist δ j > 0 such that
n
∑
j=1

a jiδ j > 0 for all i= 1, . . . ,n;

(ii) A ∈ Zn×n is a M-matrix;

(iii) there exist δ j > 0 such that
n
∑
j=1

ai jδ j > 0 for all i= 1, . . . ,n.

Let us give the definition of the topological degree.

Definition 2.3. ([12]) Assume that F : Ω→ Rn is a continu-
ously differentiable function where Ω⊂Rn is an open bounded
set. If JF(u) = 0 for any u ∈ F−1(p) and p /∈ F (∂Ω), where JF
denotes the Jacobian determinant relative to F, then the topo-
logical degree relative to Ω and p is given by

deg(F,Ω, p) =

 ∑
u∈F−1(p)

sign JF(u) if F−1(p) 6= /0

0 if F−1(p) = /0

Let us introduce the notion of finite time boundedness.

Definition 2.4. ([59]) System (1) is said to be finite time bounded
(FT B) with respect to (c1,c2,R,T ) where 0 < c1 ≤ c2, R > 0
and T > 0 if for all t ∈ [0, T ] we have

max

{
sup
θ≤0
{xT (θ)Rx(θ)}, sup

−h̄≤θ≤0
{ẋT (θ)Rẋ(θ)}

}
≤ c1

implies that
xT (t)Rx(t)< c2.

Let us give two lemmas useful to prove our first result.

Lemma 2.5. ([15]) Given any real matrix M = MT > 0 of ap-
propriate dimension and a vector field ω : [a, b]→ Rn such
that the integrations concerned are well defined, then we have[∫ b

a
ω(s)ds

]T

M
∫ b

a
ω(s)ds≤ (b−a)

∫ b

a
ω

T (s)Mω(s)ds.

Lemma 2.6. ([60]) Let P ∈ Rn×n be a symmetric matrix, then
we have

λmin (P)xT x≤ xT Px≤ λmax (P)xT x

for any x ∈ Rn.

3. Existence of equilibrium points

In [15], the existence of equilibrium points for neutral lower
order Hopfield NNs with time delay in the leakage term is dis-
cussed. Thanks to the high-order terms, the NNs given by (1)
are more general. Compared with results in [15], we extend
the existence of equilibrium points to the more general class of
NHOHNNs.

We introduce the following notations:

M j = max
{
|M−j |, |M

+
j |
}
, M = diag(M1, . . . ,Mn)

A = [ai j]n×n, B = [bi j]n×n, D = [di j]n×n.

We present a sufficient condition which guarantee the existence
of equilibrium points for the NHOHNNs given by (1).

Theorem 3.1. Under assumptions (H1)− (H2)− (H3), Sys-
tem (1) has at least one equilibrium point.

PROOF. If x∗ = (x∗1, . . . , x∗n)
T denotes an equilibrium point of

System (1), then x∗ satisfies for all i = 1, . . . ,n

− cix∗i +
n

∑
j=1

ai j f j(x∗j)+
n

∑
j=1

n

∑
k=1

Ti jk fk(x∗k) f j(x∗j)

+
n

∑
j=1

bi j

∫ t

−∞

k j(t− s) f j(x∗j)ds+
n

∑
j=1

di j ẋ∗j + Ji = 0 (2)

By using (H2), Equation (2) is equivalent to

− cix∗i +
n

∑
j=1

ai j f j(x∗j)+
n

∑
j=1

n

∑
k=1

Ti jk fk(x∗k) f j(x∗j)

+
n

∑
j=1

bi jk j f j(x∗j)+ Ji = 0.

Let

li(x) = cixi−
n

∑
j=1

(
ai j +bi jk j

)
f j(x j)−

n

∑
j=1

n

∑
k=1

Ti jk fk(xk) f j(x j)− Ji.

(3)

Clearly, a solution of l(x) = (l1(x), . . . , ln(x))T = 0 is an equi-
librium of System (1). Now, we define the homotopy mapping

F(x, λ ) = (F1(x), . . . , Fn(x))
T
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where λ ∈ [0, 1] and Fi(x) = λ li(x)+(1−λ )xi. It follows from
assumptions (H1)− (H2) that for all 1≤ i≤ n

|Fi(x, λ )|=
∣∣∣λ[cixi−

n

∑
j=1

ai j f j(x j)−
n

∑
j=1

n

∑
k=1

Ti jk fk(xk) f j(x j)

−
n

∑
j=1

bi jk j f j(x j)− Ji

]
+(1−λ )xi

∣∣∣
≥ |λcixi +(1−λ )xi|−λ

n

∑
j=1
|ai j|| f j(x j)|

−λ

n

∑
j=1

n

∑
k=1

∣∣Ti jk
∣∣ | fk(xk)|

∣∣ f j(x j)
∣∣

−λ

n

∑
j=1
|bi j||k j|| f j(x j)|−λ |Ji|

≥ |λcixi +(1−λ )xi

∣∣∣−λ

n

∑
j=1
|ai j|M j|x j|

−λ

n

∑
j=1
|bi j||k j|M j|x j|−λ

[
|Ji|+

n

∑
j=1

n

∑
k=1
|Ti jk|ω2

]
.

Since C−A+M−B+K+M is a M-matrix, Lemma 2.2 implies
that there exists constants δi > 0 with i = 1, . . . ,n such that

δici−
n

∑
j=1

δ j|ai j|M j−
n

∑
j=1

δ j|bi j||k j|M j > 0

or (4)

δici−
n

∑
j=1

δ j|a ji|Mi−
n

∑
j=1

δ j|b ji||ki|Mi > 0.

For F(x) = (F1(x1), . . . , Fn(xn))
T , we have

n

∑
i=1

δi|Fi(x, λ )| ≥
n

∑
i=1

δi(1−λ )|xi|+λ

n

∑
i=1

[
δici|xi|

−δi

n

∑
j=1
|ai j|M j|x j|−δi

n

∑
j=1
|bi j||k j|M j|x j|

]
−λ

n

∑
i=1

δi

(
|Ji|+

n

∑
j=1

n

∑
k=1
|Ti jk|ω2

)

≥ λ

n

∑
i=1

[
δici|xi|−δi

n

∑
j=1

M j|ai j||x j|

−δi

n

∑
j=1

M j|bi j||k j||x j|
]

−λ

n

∑
i=1

δi

(
|Ji|+

n

∑
j=1

n

∑
k=1
|Ti jk|ω2

)

= λ

n

∑
i=1

[
δici−

n

∑
j=1

δ j|a ji|Mi

−
n

∑
j=1

δ j|b ji|Mi|ki|
]
|xi|

−λ

n

∑
i=1

δi

(
|Ji|+

n

∑
j=1

n

∑
k=1
|Ti jk|ω2

)

Define

δ0 = min
1≤i≤n

{
δici−

n

∑
j=1

δ j|a ji|Mi−
n

∑
j=1

δ j|b ji|Mi|ki|

}

∆0 = max
1≤i≤n

{
δi

(
|Ji|+

n

∑
j=1

n

∑
k=1
|Ti jk|ω2

)}
Let

Ω =

{
x : |xi|< β =

n(∆0 +1)
δ0

}
(5)

then Ω is non-empty from (4). It follows from (5) that for any
x ∈ ∂Ω there exists 1≤ i0 ≤ n such that |xi0 |= β . So we have

n

∑
i=1

δi
∣∣Fi(x, λ )

∣∣≥ λ

n

∑
i=1

[
δi0ci0 −

n

∑
j=1

δ jMi0 |a ji0 |

−
n

∑
j=1

δ jMi0 |b ji0 ||ki0 |
]
|xi0 |−λ

n

∑
i=1

∆0

≥ λδ0|xi0 |−λn∆0 > 0.

For all λ ∈ (0, 1], it means that F(x, λ ) 6= 0 for any x ∈ ∂Ω

and λ ∈ (0, 1]. If λ = 0, we have F(x, λ ) = x 6= 0 for any
x ∈ ∂Ω. Therefore F(x, λ ) 6= 0, for any x ∈ ∂Ω, λ ∈ [0, 1].
We have deg(Id ,Ω, 0) = 1 where Id(x) = x and deg(Id ,Ω, 0)
is the topological degree. Thus from the homotopy invariance
theorem given for instance in [61, page 13], we obtain

deg(Id ,Ω, 0) = deg(l(.),Ω, 0) = 1.

By using the topological degree theory [61], we can conclude
that the equation l(x) = 0 has at least one solution in Ω. It
implies that System (1) has at least one equilibrium point. �

4. Finite Time boundedness analysis

4.1. Finite time Boundedness
Compared with some existing results in [15, 24, 42], Sys-

tem (1) is more general to some extent. Moreover, the usual
Lyapunov stability is studied in [24, 15] whereas the concept of
FTB is discussed in this section. Assume that x∗=(x∗1, . . . , x∗n)

T

is an equilibrium point of System (1). By a simple transformation

z(t) = x(t)− x∗

we can shift the equilibrium point x∗ to the origin. By using (2),
System (1) can be rewritten as (see [62]):

ż(t) =−Cz(t−σ)+
(
A+ΓT T ∗

)
g(z(t− τ(t)))

+B
∫ t
−∞

K(t− s)g(z(s))ds+Dż(t−h(t))
z(s) = φ(s)− x∗, s ∈ (−∞, 0]

where

g(z(.)) = f (z(.)+ x∗)− f (x∗), Ti = [Ti jk]n×n,

T ∗ =
[
T1 +T T

1 , ..., Tn +T T
n
]T

,

Γ = diag[ξ , ..., ξ ], ξ = [ξ1, ..., ξn]
T ,

ξi =
Ti jk

Ti jk +Tik j
fk (xk(t− τ(t))+

Tik j

Ti jk +Tik j
fk(x∗k).

4



We will use this z−form of System (1) for the proof of the re-
sults of our article. We introduce the following notations:

Γ
+ = diag[ξ+, ..., ξ

+], ξ
+ = [ω1, ..., ωn]

T , c+ = max
1≤i≤n

ci.

The methods used in [47, 48, 42, 63, 64] for ensuring the
FTB of NNs require the differentiability and the boundedness of
the derivative of the time-varying delays. For improving these
results, we remove this restriction by establishing the follow-
ing theorem where the time-varying delays are not necessary
differentiable.

Theorem 4.1. Under assumptions (H1)− (H2)− (H3), Sys-
tem (1) is FTB with respect to (c1,c2,R,T ) if there exist a posi-
tive scalar α , two n×n matrices Q1, Q2, three n×n symmetric
positive definite matrices P, Q3, Q4, four n×n positive diago-
nal matrices U1, U2, Q5, Q6, and a 2n×2n matrix

Q7 =

[
T11 T12
∗ T22

]
> 0

such that the following conditions hold:

Ξ =



Π11 0 Π13 Π14 0 Π16 Π17 Π18 Π19
∗ Π22 Π23 0 Π25 0 0 Π28 Π29
∗ ∗ Π33 0 Π35 Π36 0 Π38 Π39
∗ ∗ ∗ Π44 0 0 0 Π48 0
∗ ∗ ∗ ∗ Π55 0 0 0 0
∗ ∗ ∗ ∗ ∗ Π66 0 Π68 Π69
∗ ∗ ∗ ∗ ∗ ∗ Π77 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ Π88 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ Π99


< 0 (6)

and [
c2 e−αT √

c1√
c1 ω

−1
1

]
> 0 (7)

where

Π11 =−PC−CP+Q3 +σ
2Q4−U1Σ1−αP,

Π13 = PD, Π14 = T T
12, Π16 =CPC+αCP,

Π17 =U1Σ2, Π18 = PÃ, Π19 = PB,

Π22 = τT22 +Q6−Q1−QT
1 , Π23 = Q1D+QT

2 D,

Π25 =−Q1C, Π28 = Q1Ã, Π29 = Q1B,

Π33 =−Q6(1−h∗)−DT Q2D−DT QT
2 D, Π35 = DT Q2C,

Π36 =−DT PC, Π38 =−DT Q2Ã, Π39 =−DT Q2B,

Π44 = τT11−T12−T T
12−U2Σ1, Π48 =U2Σ2, Π55 =−Q3,

Π66 =−Q4−αCPC, Π68 =−CPÃ, Π69 =−CPB,

Π77 = Q5κ−U1, Π88 =−U2, Π99 =−Q5,

and

ω1 =
[
2λmax(P)(1+σ

2c+2
)+σλmax(Q3)

+ h̄λmax(Q6)+σ
3
λmax(Q4)+ τ

2
λmax(T22)

+
n

∑
j=1

q jk j max
j

M2
j

∫
∞

0
uk j(u)du

]

×

[(
nc+σ

λmin(Q3)

) 1
2

+(λmin(P))
−1
2

]2

cond(P)cond(P̃)

with

Σ1 = diag(M−1 M+
1 , . . . , M−n M+

n ),

Σ2 = diag
(

M−1 +M+
1

2
, . . . ,

M−n +M+
n

2

)
,

Q5 = diag(q1, . . . , qn), κ = diag(k2
1, . . . , k2

n),

Ã = A+Γ
+T

T ∗, P̃ = R
1
2 PR

1
2 ,

cond(P) =
λmax(P)
λmin(P)

the condition number of P.

The proof of Theorem 4.1 is inspired by the proof of Theo-
rem 2 in [15].

PROOF. Let us consider the following LKF

V (t,z(t)) =
6

∑
i=1

Vi (t,z(t)) (8)

where

V1 (t,z(t)) =
[

z(t)−C
∫ t

t−σ

z(s)ds
]T

P
[

z(t)−C
∫ t

t−σ

z(s)ds
]

V2 (t, z(t)) =
∫ t

t−σ

zT (s)Q3z(s)ds+
∫ t

t−h(t)
żT (s)Q6ż(s)ds

V3 (t, z(t)) = σ

∫ t

t−σ

∫ t

s
zT (u)Q4z(u)duds

V4 (t, z(t)) =
∫ t

0

∫ u

u−τ(u)

[
z(u− τ(u))

ż(s)

]T

Q7

[
z(u− τ(u))

ż(s)

]
ds du

V5 (t, z(t)) =
∫ 0

−τ

∫ t

t+u
żT (s)T22ż(s)ds du

V6 (t, z(t)) =
n

∑
j=1

q jk j

∫
∞

0
k j(u)

∫ t

t−u
g2

j(z j(s))ds du

By calculating V̇ (t,z(t)) (see AppendixA), we obtain

V̇ (t,z(t))≤ ζ
T (t,z(t))Ξ̄ζ (t,z(t))

where

ζ (t,z(t)) =

[
zT (t), żT (t), żT (t−h(t)) ,zT (t− τ(t)) ,zT (t−σ),

(∫ t

t−σ

z(s)ds
)T

,gT (z(t)) ,gT (z(t− τ(t))) ,

(∫ t

−∞

K(t− s)g(z(s))ds
)T
]T

and

Ξ̄ =



Π̄11 0 Π13 Π14 0 Π̄16 Π17 Π18 Π19
∗ Π22 Π23 0 Π25 0 0 Π28 Π29
∗ ∗ Π33 0 Π35 Π36 0 Π38 Π39
∗ ∗ ∗ Π44 0 0 0 Π48 0
∗ ∗ ∗ ∗ Π55 0 0 0 0
∗ ∗ ∗ ∗ ∗ Π̄66 0 Π68 Π69
∗ ∗ ∗ ∗ ∗ ∗ Π77 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ Π88 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ Π99


< 0 (9)
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with

Π̄11 =−PC−CP+Q3 +σ
2Q4−U1Σ1, Π̄16 =CPC, Π̄66 =−Q4.

Therefore

V̇ (t,z(t))≤ ζ
T (t,z(t))Ξ̄ζ (t,z(t))

≤ ζ
T (t,z(t))Ξζ (t,z(t))+αV1(t,z(t))

≤ ζ
T (t,z(t))Ξζ (t,z(t))+αV (t,z(t))

with

Ξ̄ = Ξ+



αP 0 0 0 0 −αCP 0 0 0
∗ 0 0 0 0 0 0 0 0
∗ ∗ 0 0 0 0 0 0 0
∗ ∗ ∗ 0 0 0 0 0 0
∗ ∗ ∗ ∗ 0 0 0 0 0
∗ ∗ ∗ ∗ ∗ αCPC 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0


Since Ξ < 0, it leads to

V̇ (t,z(t))≤ αV (t,z(t)). (10)

Integrating (10) from 0 to t ∈ [0, T ], we obtain

V (t,z(t))≤ eαtV (z(0)) (11)

where

V (z(0))≤
[
2λmax(P)(1+σ

2c
+2)+σλmax(Q3)+ h̄λmax(Q6)

+σ
3
λmax(Q4)+ τ

2
λmax(T22)

+
n

∑
j=1

q jk j max
j

M2
j

∫
∞

0
uk j(u)du

]
‖φ‖2

h. (12)

On one hand, by using the Cauchy-Schwartz inequality and
Lemma 2.6 we have

‖z(t)‖ ≤
∥∥∥∥C∫ t

t−σ

z(s)ds
∥∥∥∥+

√
V1(t,z(t))
λmin(P)

≤
∥∥∥∥C∫ t

t−σ

z(s)ds
∥∥∥∥+

√
V (t,z(t))
λmin(P)

(13)

and since∥∥∥∥∫ t

t−σ

z(s)ds
∥∥∥∥2

=

(∫ t

t−σ

z(s)ds
)T (∫ t

t−σ

z(s)ds
)

≤ σ

∫ t

t−σ

zT (s)z(s)ds

≤ σ

λmin(Q3)

∫ t

t−σ

zT (s)Q3z(s)ds

≤ σ

λmin(Q3)
V (t,z(t))

we obtain

‖z(t)‖ ≤
[( nc+σ

λmin(Q3)

) 1
2 +
(
λmin(P)

)−1
2

]√
V (t). (14)

On the other hand, Lemma 2.6, implies that

λmax(P̃)‖z(t)‖2 ≥ zT (t)P̃z(t)≥ λmin(P)zT (t)Rz(t),

λmin(P̃)‖z(0)‖2 ≤ zT (0)P̃z(0)≤ λmax(P)zT (0)Rz(0). (15)

So (11)-(12)-(14) and (15) prove that

‖z(t)‖ ≤
[( nc+σ

λmin(Q3)

) 1
2 +
(
λmin(P)

)−1
2
]
e

α
2 T
√

V (z((0))

≤ e
α
2 T
[
2λmax(P)(1+σ

2c+
2
)+σλmax(Q3)

+ h̄λmax(Q6)+σ
3
λmax(Q4)+ τ

2
λmax(T22)

+
n

∑
j=1

q jk j max
j

M2
j

∫
∞

0
uk j(u)du

] 1
2

×

[(
nc+σ

λmin(Q3)

) 1
2

+
(
λmin(P)

)−1
2

]√
λmax(P)
λmin(P̃)

c1 (16)

and

zT (t)Rz(t)≤ eαT
[
2λmax(P)

(
1+σ

2c+
2
)
+σλmax(Q3)

+ h̄λmax(Q6)+σ
3
λmax(Q4)+ τ

2
λmax(T22)

+
n

∑
j=1

q jk j max
j

M2
j

∫
∞

0
uk j(u)du

]
×
[( nc+σ

λmin(Q3)

) 1
2 +
(
λmin(P)

)−1
2

]2

× cond(P)cond(P̃)c1 (17)

The inequality (17) and the Schur complement lemma, given
for instance in [65], applied to condition (7) prove that

z(t)T Rz(t)< c2 for all t ∈ [0, T ].

So, the proof is completed. �

Remark 4.1. If conditions (6) and (7) of Theorem 1 are sat-
isfied with α = 0, then System (1) is asymptotically stable in
the sense of Lyapunov. The LKF inequality (10) is used to deal
with the problem of FTB of the NHOHNNs with infinite dis-
tributed delays and leakage delay. Compared with [15], some
new sufficient conditions in terms of LMIs are established to
make our results less conservative with respect to the delays.
When the number of neurons n increases, the complexity in-
creases strongly because 8.5n2 + 4n+ 1 variables are involved
in the LMIs that must be resolved. Such a complexity is caused
by the use of the LKF inequality (10).

Remark 4.2. Condition (7) is not standard LMIs, however it
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can be guaranteed by the following conditions

λ1I < P < λ2I, λ3I < Q3 < λ4I, Q4 < λ5I, Q6 < λ6I, T22 < λ7I;

(18)

− c2r2
1λ

2
1 e−αT + c1

[
2λ2(1+σ

2c+
2
)+σλ4 + h̄λ6 +σ

3
λ5 + τ

2
λ7

+
n

∑
j=1

q jk j max
j

M2
j

∫
∞

0
uk j(u)du

][nc+σ√
λ3

+
1√
λ1

]2

r2
2λ

2
2 < 0;

(19)

where r1 = λmin(R), r2 = λmax(R) and λi, i = 1, . . .7 are un-
known positive variables. It should be pointed out that (19) is
not a LMI w.r.t. λi, i = 1,2,3 because λi appears in a nonlinear
fashion. Therefore, we first find the scalars λi from (6) and then
we solve (19) which then becomes a LMI.

When τ(t) = 0 and K = 0, System (1) turns into

ẋi(t) =−cixi(t−σ)+
n
∑
j=1

ai j f j (x j(t))

+
n
∑
j=1

n
∑

k=1
Ti jk fk (xk(t)) f j (x j(t))

+
n
∑
j=1

di j ẋ j (t−h(t))

x(s) = φ(s), s ∈ (−∞, 0]

(20)

Let us give the definition of finite time boundedness for System
(20).

Definition 4.2. ([44]) System (20) is said to be Finite Time
Bounded (FTB) with respect to (c1,c2,R,T ), 0< c1≤ c2, T > 0,
R > 0 if for all t ∈ [0, T ]

max

{
sup

−σ<θ≤0
{xT (θ)Rx(θ)}, sup

−h̄≤θ≤0
{ẋT (θ)Rẋ(θ)}

}
≤ c1

implies that
xT (t)Rx(t)< c2.

According to Definition 4.2, we deduce the following corol-
lary.

Corollary 4.3. Under the assumptions and notations of Theo-
rem 4.1, System (20) is FTB w.r.t. (c1,c2,R,T ) if the following
conditions hold:

Ξ̃ =


Π̃11 0 Π13 0 Π16 Π̃17
∗ Π̃22 Π23 Π25 0 0
∗ ∗ Π33 Π35 Π36 0
∗ ∗ ∗ Π55 0 0
∗ ∗ ∗ ∗ Π66 0
∗ ∗ ∗ ∗ ∗ −U1

< 0 (21)

and [
c2 e−αT √

c1√
c1 ω

−1
2

]
> 0 (22)

where

Π̃11 =−PC−CP+Q3 +σ
2Q4−U1Σ1−U2Σ1−αP,

Π̃17 = (U1 +U2)Σ2 +PÃ, Π̃22 = Q6−Q1−QT
1 .

and

ω2 = eαT
[
2λmax(P)(1+σ

2c+
2
)+σλmax(Q3)+ h̄λmax(Q6)

+σ
3
λmax(Q4)

][( nc+σ

λmin(Q3)

) 1
2 +
(
λmin(P)

)−1
2

]2

× cond(P)cond(P̃).

PROOF. Consider the following LKF

V (t, z(t)) =
3

∑
i=1

Vi (t,z(t)) (23)

By using the LKF (23) and similar arguments to the ones of
Theorem 4.1 we obtain easily the result. �

Remark 4.3. The lower order class of Hopfield NNs is inves-
tigated by many authors [15, 16, 17] and can be considered as
a theoretical basis for solving optimization problems. As re-
ported in [66], this class of NNs is expected to produce the
poorest quality of solution with a great complexity as measured
by the order of the network. Therefore, our work offers a the-
oretical basis for the design of the second-order class of NNs
with mixed time delays more effective in the resolution of op-
timization problems thanks to the second order synaptic terms
Ti jk.

Now, when the high-order terms Ti jk = 0, System (1) turns
into

ẋi(t) =−cixi(t−σ)+
n
∑
j=1

ai j f j (x j(t− τ(t)))

+
n
∑
j=1

bi j
∫ t
−∞

k j(t− s) f j (x(s))ds+
n
∑
j=1

di j ẋ j (t−h(t))

x(s) = φ(s), s ∈ (−∞, 0]
(24)

Then, we have the following result.

Corollary 4.4. Under the assumptions and notations of Theo-
rem 4.1 , System (24) is FTB w.r.t. (c1,c2,R,T ) if the following
conditions hold:

Ξ̂ =



Π11 0 Π13 Π14 0 Π16 Π17 Π̂18 Π19
∗ Π22 Π23 0 Π25 0 0 Π̂28 Π29
∗ ∗ Π33 0 Π35 Π36 0 Π̂38 Π39
∗ ∗ ∗ Π44 0 0 0 Π48 0
∗ ∗ ∗ ∗ Π55 0 0 0 0
∗ ∗ ∗ ∗ ∗ Π66 0 Π̂68 Π69
∗ ∗ ∗ ∗ ∗ ∗ Π77 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ Π88 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ Π99


< 0

(25)
and [

c2 e−αT √
c1√

c1 ω
−1
1

]
> 0 (26)

where Π̂i8 = Πi8−PΓ+T
T ∗ for i = 1, 2, 3, 6.
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The proof of Corollary 4.4 is similar to the one that of The-
orem 4.1, so it is omitted.

The computation can be simplified by reducing the param-
eters involved in the LKF. It is also possible to replace the
LKF by a Lyapunov function with the Razumukhin techniques.
However, this will have a great influence on the conservatism
with respect to the delays, in particular on the upper bounds of
the delays [67, 68].

In order to simplify the calculations without losing the con-
servatism with respect to the delays, we establish the following
Corollary 4.5 which provides a simplified criterion for NHOHNNs
without delay in the leakage term. This criterion is based on the
Schur complement and has been presented for the Lyapunov
stability of a special class of NHOHNNs in [69]. The impact
of this criterion on the conservatism with respect to the delays
will be illustrated in Example 5.3.

Corollary 4.5. Under the assumptions and notations of Theo-
rem 4.1, System (1) with σ = 0 is FTB w.r.t. (c1,c2,T,R) if the
following conditions hold:

Λ =


−Π22 −Π23 0 0 −Π28 −Π29
∗ −Π33 0 0 −Π38 −Π39
∗ ∗ −Π44 0 −Π48 0
∗ ∗ ∗ −Π77 0 0
∗ ∗ ∗ ∗ −Π88 0
∗ ∗ ∗ ∗ ∗ −Π99

> 0

(27)
and [

c2 e−αT √
c1√

c1 ω̄1

]
> 0 (28)

where

P̄ = R−
1
2 PR−

1
2 ,

ω̄1 =
λmin(P)
cond(P̄)

[
2λmax(P)+ h̄λmax(Q6)+ τ

2
λmax(T22)

+
n

∑
j=1

q j k j max
j

M2
j

∫
∞

0
u k j(u)du

]−1
.

PROOF. Let us consider the following LKF

V0(t,z(t)) =
2

∑
i=1

V̄i(t,z(t))+
6

∑
i=4

Vi(t,z(t)) (29)

where

V̄1 (t,z(t)) = z(t)T Pz(t),

V̄2 (t, z(t)) =
∫ t

t−h(t)
żT (s)Q6ż(s)ds,

V4 (t, z(t)) =
∫ t

0

∫ u

u−τ(u)

[
z(u− τ(u))

ż(s)

]T

Q7

[
z(u− τ(u))

ż(s)

]
dsdu;

V5 (t, z(t)) =
∫ 0

−τ

∫ t

t+u
żT (s)T22ż(s)dsdu,

V6(t, z(t)) =
n

∑
j=1

q jk j

∫
∞

0
k j(u)

∫ t

t−u
g2

j(z j(s))ds du.

By using the LKF (29) and similar arguments to the ones of
Theorem 4.1, we obtain

V̇0(t,z(t))≤−ζ
T
0 (t,z(t))Λ̄ζ0(t,z(t))+αV0(t,z(t))

where

ζ0(t,z(t)) =

[
zT (t), żT (t), żT (t−h(t)), zT (t− τ(t)), gT (z(t)),

gT (z(t− τ(t))),
(∫ t

−∞

K(t− s)g(z(s))ds
)T
]T

and

Λ̄ =



Λ11 Λ12 Λ13 −Π14 −Π17 −Π18 −Π19
∗ −Π22 −Π23 0 0 −Π28 −Π29
∗ ∗ −Π33 0 0 −Π38 −Π39
∗ ∗ ∗ −Π44 0 −Π48 0
∗ ∗ ∗ ∗ −Π77 0 0
∗ ∗ ∗ ∗ ∗ −Π88 0
∗ ∗ ∗ ∗ ∗ ∗ −Π99


with

Λ11 = PC+CP+U1Σ1 +αP, Λ12 = Q1C

Λ13 =−PD−CQT
2 D

Clearly, if

Λ̄ > 0 (30)

then we have
V̇0(t,z(t))≤ αV0(t,z(t)). (31)

By using Schur complements, (30) can be expressed as

cR−Γ > 0 (32)

where

R =



Λ̌22 Λ̌23 0 0 Λ̌28 Λ̌29
∗ Λ̌33 0 0 Λ̌38 Λ̌39
∗ ∗ Λ̌44 0 Λ̌48 0
∗ ∗ ∗ Λ̌77 0 0
∗ ∗ ∗ ∗ Λ̌88 0
∗ ∗ ∗ ∗ ∗ Λ̌99


with

c > 0, Q̌i,> 0, i = 1,2,5,7, Ǔ1 > 0, Ǔ2 > 0,

Q1 = cQ̌1, Q2 = cQ̌2, Q5 = cQ̌5, Q6 = cQ̌6

Q7 = cQ̌7, U1 = cǓ1, U2 = cǓ2, T11 = cŤ11,

T12 = cŤ12, T22 = cŤ22, Λ̌22 =−τŤ22− Q̌6 + Q̌1 + Q̌T
1 ,

Λ̌23 =−Q̌1D− Q̌T
2 D, Λ̌28 =−Q̌1Ã, Λ̌29 =−Q̌1B,

Λ̌33 = Q̌6(1−h∗)+DT Q̌2D+DT Q̌T
2 D, Λ̌38 =−DT Q̌2Ã,

Λ̌39 = DT Q̌2B, Λ̌44 =−τŤ11 + Ť12 + Ť T
12 +Ǔ2Σ1,

Λ̌48 =−Ǔ2Σ2, Λ̌77 =−Q̌5κ +Ǔ1, Λ̌88 = Ǔ2, Λ̌99 = Q̌5.
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and

Γ =


ΛT

12
−ΠT

13
−ΠT

14
−ΠT

17
−ΠT

18
−ΠT

19

(Λ11)
−1 [

Λ12 −Π13 −Π14 −Π17 −Π18 −Π19
]

Since Λ11 > 0 then it leads to Γ > 0 and consequently R >
1
c Λ > 0 from condition (27). Therefore (31) is satisfied by tak-
ing c > λmax(T )

λmax(R)
. Thus, condition (27) implies that V̇0(t,z(t)) ≤

αV0(t,z(t)) and consequently V (t,z(t))≤ eαTV (z(0)).
Furthermore, we have

‖x(0)‖2 ≤ 1
λmin(P)

xT (0)Px(0)

≤ 1
λmin(P)

xT (0)R
1
2 R−

1
2 PR−

1
2 R

1
2 x(0)

≤ λmax(P̄)
λmin(P)

xT (0)Rx(0)

Therefore

V (0)≤ γc1 (33)

where

γ =
λmax(P̄)
λmin(P)

[
2λmax(P)+ h̄λmax(Q6)+ τ

2
λmax(T22)

+
n

∑
j=1

q jk j max
j

M2
j

∫
∞

0
uk j(u)du

]
. (34)

and

xT (t)Rx(t)≤ 1
λmin(P̄)

xT (t)Px(t)≤ 1
λmin(P̄)

V (t,x(t)) .

So conditions (28) and (33) imply that xT (t)Rx(t) < c2 which
achieves the proof. �

Remark 4.4. In [70], the problem of FTB for Markovian jump-
ing NNs with time-varying delays is studied by using the recip-
rocally convex combination technique where a double integral
term appears in the LKF. Very recently, the authors of [71] have
used the same approach where a triple integral term is added
in the LKF. However, these novel LKFs also lead to a greater
complexity in terms of inequalities and variables to be calcu-
lated and this complexity can cause numerical problems with
a large number of neurons ([33]). In our article we use a well
know LKF (8), but based on the Jensen’s integral inequality the
upper bound of the LKF is estimated more tightly and then the
conservatism with respect to the delays is reduced (see Example
5.1).

4.2. Finite time Boundedness stabilization

In this section, sufficient conditions are given for solving
the FTB-stabilization problem of a general class of NHOHNNs

with time delay in the leakage term and mixed time delays of
the form

ẋi(t) =−cixi(t−σ)+
n
∑
j=1

ai j f j (x j(t− τ(t)))

+
n
∑
j=1

n
∑

k=1
Ti jk fk (xk(t− τ(t))) f j (x j(t− τ(t)))

+
n
∑
j=1

bi j
∫ t
−∞

k j(t− s) f j (x j(s))ds

+
n
∑
j=1

di j ẋ j(t−h(t))+u, t > 0, i = 1, . . . ,n

x(s) = φ(s), s ∈ (−∞, 0]

(35)

where u is the control variable. The following state feedback
control is considered

u(x(t)) = K2x(t) (36)

where K2 is to be determined. The corresponding closed-loop
z−system is given by

ż(t) =−Cz(t−σ)+Ag(z(t− τ(t))+ΓT T ∗g(z(t− τ(t)))
+B

∫ t
−∞

K(t− s)g(z(s))ds+Dż(t−h(t))K2z(t)
z(s) = φ(s)− x∗, s ∈ (−∞, 0]

(37)

We now introduce the definition of finite time bounded sta-
bilization.

Definition 4.6. ([48]) The NNs described by System (35) is said
to be FTB-stabilizable w.r.t. (c1,c2,R,T ) if there exists a con-
troller u(z(t)) of the form (36) such that the corresponding
closed-loop z−System (37) is FTB with respect to (c1,c2,R,T ).

We can now state the main result of this section.

Theorem 4.7. Under the assumptions and notations of Theo-
rem 4.1, System (35) is FTB-stabilizable w.r.t. (c1,c2,R,T ) if
the following conditions hold:

Ψ =



Ψ11 Ψ12 Ψ13 0 Π15 Ψ16 Π17 Π18 Π19
∗ Π22 Π23 0 Π25 0 0 Π28 Π29
∗ ∗ Π33 0 Π35 Π36 0 Π38 Π39
∗ ∗ ∗ Π44 0 0 0 Π48 Π49
∗ ∗ ∗ ∗ Π55 0 0 0 0
∗ ∗ ∗ ∗ ∗ Π66 0 Π68 Π69
∗ ∗ ∗ ∗ ∗ ∗ Π77 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ Π88 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ Π99


< 0

(38)
and [

c2 e−αT √
c1√

c1 ω
−1
1

]
> 0 (39)

where

C̃ =C−K2,

Ψ11 =−PC−CP+PK2 +KT
2 P+Q3 +σ

2Q4−U1Σ1−αP,

Ψ12 =−Q1K2, Ψ13 = PD+DT Q2K2, Ψ16 =CPC̃+αCP,

9



PROOF. According to Definition 4.6, if we apply Theorem 4.1
to the closed-loop System (37) then we can easily obtain the
result. The details of the proof is left to the reader. �

When σ = 0, Theorem 4.7 cannot be directly used to de-
sign a feedback control of the form of (36). To overcome this
obstacle, the following proposition is established.

Proposition 4.8. Under assumptions (H1)− (H3), System (35)
without leakage delay is FTB- stabilizable w.r.t. (c1,c2,T,R) if
there exist a positive scalar α , three n×n matrices Q̃1, Q̃2, Y ,
five n× n positive diagonal matrices X , Ũ1, Ũ2, Q̃5, Q6 and a
2n×2n matrix

Q̃7 =

[
T̃11 T̃12
∗ T22

]
> 0

such that the following conditions hold:

Ξ1 =



Ξ11 Ξ12 Ξ13 Ξ14 Ξ15 Ξ16 Ξ17
∗ Ξ22 Ξ23 0 0 Ξ26 Ξ27
∗ ∗ Ξ33 0 0 Ξ36 Ξ37
∗ ∗ ∗ Ξ44 0 Ξ46 0
∗ ∗ ∗ ∗ Ξ55 0 0
∗ ∗ ∗ ∗ ∗ Ξ66 0
∗ ∗ ∗ ∗ ∗ ∗ Ξ77


< 0 (40)

and [
c2 e−αT √

c1√
c1 ω̄

−1
2

]
> 0 (41)

where

Ξ11 =−CX−XC+Y +Y T −Ũ1Σ1−αX ,

Ξ12 = XC+Y, Ξ13 = D+DTCX +DTY,

Ξ14 = T̃ T
12, Ξ15 = Ũ1Σ2, Ξ16 = ÃX , Ξ17 = BX ,

Ξ22 = τT22 +Q6−2I, Ξ23 = XD+DT X , ,

Ξ26 = XÃ, Ξ27 = XB, Ξ33 =−Q6(1−h∗)−2DT D,

Ξ36 =−XDT Ã, Ξ37 =−XDT B,

Ξ44 = τT̃11− T̃12− T̃ T
12−Ũ2Σ1, Ξ46 = Ũ2Σ2,

Ξ55 = Q̃5κ−Ũ1, Ξ66 =−Ũ2, Ξ77 =−Q̃5.

and

ω̄2 =
1

λmin(X̄)

[
2λmax(X−1)+ h̄λmax(Q6)

+ τ
2
λmax(T22)+

n

∑
j=1

ρ
−1
j q̃ jρ

−1
j k j max

j
M2

j

∫
∞

0
u k j(u)du

]
with

Q̃5 = diag(q̃1, . . . , q̃n), X = diag(ρ1, . . . ,ρn), X̄ =R
−1
2 X−1R

−1
2 .

PROOF. Let Q1 =Q2 = I. Now, we make some transformations
for the above inequalities (40)-(41). Pre and post-multiplying
(40) by diag(X−1, I, I,X−1, . . . ,X−1) and letting

X = P−1, Y = KX , Q̃5 = P−1Q5P−1;

Ũ1 = P−1U1P−1, Ũ2 = P−1U2P−1, T̃12 = P−1T12P−1. (42)

we obtain Λ > 0. That is, (40) implies Condition (27). Then, by
replacing (42) in Condition (41) we obtain easily (28). There-
fore, the conditions of Corollary 4.5 are obtained which achieves
the proof. �

Remark 4.5. Based on the inequality S−1 ≥ 2ξ I− ξ 2S (S be-
ing a non-singular matrix), the following LMI conditions[

−λ1I I
∗ −Xi

]
< 0, Xi < λ2I, Q̃5 < 2ξ1I−ξ

2
1 λ3I[

−(2ξ3I−ξ 2
3 λ2)π1c2e−αT + c1

[
2λ1 + h̄λ6 + τ2λ7

] √
c1r3λ1

∗ −λ3.

]
< 0

where π1 = λmin(R−1), r3 =
n
∑
j=1

k j max
j

M2
j
∫

∞

0 uk j(u)du, ξ1, ξ3

are adjustable parameters and λi, i = 1,2,3,6,7 are unknown
positive scalars, ensure Condition (41) [48].

When σ 6= 0, the following proposition can be applied di-
rectly to design a feedback control which is able to FTB-stabilize
the NHOHNNs.

Proposition 4.9. Under the assumptions (H1)− (H2)− (H3),
if there exist a positive scalar α , three positive symmetric defi-
nite matrices P, Q3, Q4, five n× n diagonal matrices X , U1 >
0, U2 > 0, Q5 > 0, Q6 > 0, and a 2n×2n matrix

Q7 =

[
T11 T12
∗ T22

]
> 0

such that the following conditions hold:

Θ =



Θ11 X Π13 0 Π15 Θ16 Π17 Π18 Π19
∗ Θ22 Θ23 0 Θ25 0 0 Θ28 Θ29
∗ ∗ Θ33 0 0 Π36 0 0 0
∗ ∗ ∗ Π44 0 0 0 Π48 Π49
∗ ∗ ∗ ∗ Π55 0 0 0 0
∗ ∗ ∗ ∗ ∗ Π66 0 Π68 Π69
∗ ∗ ∗ ∗ ∗ ∗ Π77 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ Π88 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ Π99


< 0

(43)
and [

c2 e−αT √
c1√

c1 ω
−1
1

]
> 0 (44)

where
Θ11 =−PC−CP+Q3 +σ

2Q4−U1Σ1−αP+2X , Θ16 =CPC+αCP−CX ,

Θ22 = τT22 +Q6−2P, Θ23 = PD, Θ25 =−PC, Θ28 = PÃ, Θ29 = PB,

Θ33 =−Q6(1−h∗)

and other parameters are the same as in Theorem 4.1, then
the feedback control u2(x(t)) = P−1Xx(t) FTB-stabilize System
(35) w.r.t. (c1,c2,R,T ).

PROOF. Let Q1 = P and Q2 = 0. The proof of Proposition 4.9
is similar to the one of Theorem 4.7 so it is omitted here. �

Remark 4.6. In the results presented in[47, 48, 42, 63, 64], the
feedback control given for ensuring the FTB-stabilization of the
NNs cannot be designed with a leakage delay. When σ 6= 0,
the conditions established in these works are not LMI condi-
tions which renders the control algorithm more complicated.
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To overcome these difficulties, the matrix gain should be of the
following form K = P−1X . In this case, it is possible to find
LMI conditions ensuring the FTB-stabilization of NNs of the
above mentioned works, even if there is a leakage delay.

5. Numerical examples

In this section, three numerical examples are presented to
show the effectiveness of the results.

5.1. Example 1

Consider System (1) with n = 2 and

f1(s) = f2(s) = tanh(s), τ(t) = 0.2−0.1cos t,

h(t) = σ = 0.1, k1(s) = k2(s) = e−s, J = (1, 2)T ,

and parameters C, A, T1, T2, B and D given as follows:

C =

[
4 0
0 4

]
, A =

[
0.1 0.18
−0.8 −0.93

]
, T1 =

[
0.2 0.07

0.03 0.01

]
,

T2 =

[
0.1 0.05
0.04 0.02

]
, B =

[
0.7 −0.2
−0.2 0.5

]
, D =

[
0.1 0
0 0.1

]
.

It leads to τ = 0.3, h∗= 0, M−j = 0, M+
j = 1, k j = 1 for j = 1, 2.

Note that

C−A+M−B+K+M =

[
3.2 −0.38
−1 2.57

]
is a M-matrix. By using Theorem 3.1, we know that System (1)
has an equilibrium point.

For c1 = 0.35, T = 5 and R = I, solving (6)-(7) with the
Matlab LMI toolbox [72] with α = 0.02 leads to the following
solutions

P =

[
128.0037 19.7975
19.7975 62.5951

]
, Q1 =

[
10.08 3.3704

3.3704 6.3560

]
Q2 =

[
16.7695 1.7013
1.7013 7.4374

]
, Q3 =

[
220.9824 57.9710
57.9710 131.3136

]
Q4 =

[
7.3255 1.2523
1.2523 5.1806

]
, Q5 =

[
110.8764 0

0 65.8265

]
Q6 =

[
2.0464 0

0 0.8882

]
, U1 =

[
232.5544 0

0 156.5080

]
U2 =

[
65.8755 0

0 58.9563

]
, T11 =

[
112.1715 54.9582
54.9582 85.9251

]
T12 =

[
45.4573 20.3443
20.3443 31.9253

]
, T22 =

[
19.7736 8.8448
8.8448 13.8120

]
The minimum value of c2 satisfies minc2 > 1.8157 for α =
0.02. Theorem 4.1 leads to the FTB of the considered system
w.r.t. (0.35,3, I,5). Time history of xT (t)x(t) is illustrated on
Fig 1.

Moreover, we see on Figure 2 that the considered system is not
FTB w.r.t. (0.35,0.9, I,100).
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Figure 1: Time history of xT (t)x(t) with initial condition (0.305,0.5)T
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Figure 2: Time history of xT (t)x(t) with initial condition (0.305, 0.5)T for
T = 100

Now, we fix α = 0.02 and plot on Figure 3 the different values
of the maximum of c1 with respect to the parameters T and c2
for having the FTB.

Figure 3: maxc1 with respect to (T, c2)

Finally for α = 0.01, Figure 4 shows the minimum of c2 with
respect to (T, c1) for having the FTB.
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Figure 4: minc2 with respect to (T, c1)

h∗ = 0 and σ = 0
Methods τmax
[73] 0.87
[15] 0.3527
[75] 0.4
Corollary 4.5 1.123

Table 1: The maximum allowable bounds τmax for h∗ = 0 and σ = 0

When σ = 0, the upper bound of the delay τ for which LMIs
(6) of Theorem 4.1 remain feasible is τmax = 1.088. However,
we obtain τmax = 1.123 if we use the simplified criterion given
in Corollary 4.5.

Remark 5.1. The stability criterion given in [15, 73, 74, 75]
fails for small delays (τmax≤ 0.87) and becomes infeasible when
a leakage delay σ extends beyond 0.15. The method proposed
in our work overcomes these difficulties by proving sufficient
conditions that are able to ensure the FTB and even the asymp-
totic stability for a delay larger than the one given in [15, 73,
75]. Table 1 and Table 2 compare the maximum allowable
bounds τmax of τ(t) derived from Theorem 4.1, Corollary 4.5
and [15, 73, 75, 74].

Remark 5.2. The method used in our article improves and ex-
tends the results given in [15, 74] by reducing the conservatism
with respect to the delays and by simplifying the calculus si-
multaneously. This improvement is illustrated in Tables 3–4
and 5 by presenting a comparison of the computational load.
Noted that FWM and DV stand respectively for the number of

h∗ = 0
Methods τmax for σ = 0.15 τmax for σ = 0.2
[74] Infeasible Infeasible
[Theorem 4.1] 0.245 0.095

Table 2: The maximum allowable bounds of τmax for h∗ = 0

σ = 0
Methods FWM DV τmax
[15] 2 4n2 +4n 0.3527
[Corollary 4.5] 2 3n2 +4n+1 1.123

Table 3: A comparison of computational load when σ = 0

σ = 0.15
Methods FWM DV τmax
[74] 2 28n2 +16n Infeasible
[Theorem 4.1] 2 8.5n2 +4n+1 0.245

Table 4: A comparison of computational load when σ = 0.15

free-weight matrices and the number of decision variables used.

5.2. Example 2
Consider System (1) with n = 2,

C =

[
1 0
0 0.2

]
and other parameters similar to Subsection 5.1. By setting c1 =
6.5, T = 5 and R = I, we have that System (1) is FTB w.r.t.
(6.5,1500, I,5) but is not FTB w.r.t. (6.5,1500, I,10). More-
over, we have |xi| → +∞, i = 1,2 when t → +∞ as shown if
Figure 5 which proves that this system is not asymptotically
stable.
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2500

Time (s)

xT
(t

)x
(t

)

 

 

xT(t)x(t)

Figure 5: The history of xT (t)x(t) for System (1) in Exemple 2 with initial
condition (0.1, 0.1)T

σ = 0.2
Methods FWM DV τmax
[74] 2 28n2 +16n Infeasible
[Theorem 4.1] 2 8.5n2 +4n+1 0.095

Table 5: The maximum allowable bounds of τ(t) when σ = 0.2
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So, we have shown that FTB and Lyapunov asymptotic stability
are two independent concepts.

Now we consider the controlled System (35) with the above
numerical values. In order to FTB-stabilize System (35), we
consider the feedback control according to the method proposed
in Theorem 4.7. The feedback control is given by u(x(t)) =

K1x(t), with K1 =

[
−0.1 0

0 0.042

]
. From Theorem 4.7, we de-

duce that System (35) is FTB stabilizable w.r.t. (6.5, 1500, I, 10).
Figure 6 shows the history of xT (t)x(t).
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xT(t)x(t)

Figure 6: The history of xT (t)x(t) for System (35) with initial condition
(0.1, 0.1)T under controller (36) with K = K1

The state feedback control u2 (x(t)) = K2x(t) with

K2 =

[
−0.1 0

0 −0.9

]
FTB-stabilize the system but it also asymptotically stabilize the
system if we consider an infinite time evolution. The history of
xT (t)x(t) is then illustrated in Figure 7.
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Figure 7: The history of xT (t)x(t) for System (37) with initial condition
(0.1, 0.1)T under controller (36) with K = K2

5.3. Example 3

Consider System (1) with n = 2,

C =

[
0.01 0

0 0.01

]
and other parameters similar to Subsection 5.1. From condition
(44), we have that minc2 = 11.6515. We choose c1 = 0.35,
T = 10 and c2 = 12 and we see on Figure 8 that the open-loop
System (1) is not FTB w.r.t. (c1,c2, I,T ).
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Figure 8: The history of xT (t)x(t) for System (37) without controller (36)

In order to FTB stabilize System (35) with the above numeri-
cal values, we build the following control U (x(t)) = P−1Xx(t)
according to the strategy given in Subsection 4.2. Proposition
4.9 implies that the closed-loop System (37) is FTB-stabilizable
w.r.t. (c1,c2,T, I) for α = 0.02, with the following solutions

P =

[
6.5871 0

0 4.3602

]
, Q3 =

[
0.3573 −0.1380
−0.1380 0.2511

]
Q4 =

[
4.8974 −0.5024
−0.5024 4.5153

]
, Q5 =

[
6.1356 0

0 3.5997

]
Q6 =

[
0.5134 0

0 0.3434

]
,U1 =

[
12.0818 0

0 7.2642

]
U2 =

[
11.2816 0

0 8.7200

]
, T11 =

[
4.6319 0.5660
0.5660 3.5918

]
T12 =

[
4.0306 1.0331
1.0331 3.1048

]
, T22 =

[
3.7924 1.3756
1.3756 2.8913

]
X =

[
−14.7082 0

0 −5.5260

]
and the controller u(x(t)) = P−1Xx(t) with

P−1X =

[
−2.2329 0

0 −1.2674

]
.

The history of xT (t)Rx(t) with the previous controller u(x(t))=
P−1Xx(t) is illustrated on Figure 9.
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Figure 9: The history of xT (t)x(t) for System (37)under controller P−1Xx(t).

Now, if the time-varying delay τ(t) defined by the non-differentiable
function is as follows:

τ(t) =

{
0.3−0.1sin t i f t ∈ I= ∪k≥0 [2kπ,(2k+1)π] ;
0 i f t ∈ R+\I.

(45)

System (35) stays FTB-stabilizable w.r.t. (c1,c2,T, I) which is
illustrated in Figure 10.
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Figure 10: The history of xT (t)x(t) for System (37) under time-varying delay
(45).

Remark 5.3. It should be pointed out that the results in [47,
48, 42, 63, 64] fail for System (1) with the time-varying delay
(45) even without leakage delay because (45) is not differen-
tiable. This proves the advantage of the proposed approach in
our article.

6. Conclusion

This article deals with the problem of finite time bounded-
ness and finite time boundedness stabilization of a general class
of neutral high-order Hopfield neural networks with time delay
in the leakage term and mixed time delays. By using the topo-
logical degree theory, sufficient conditions are given to prove

the existence of equilibrium points. The Lyapunov-Krasovskii
functional method and the LMIs technique are used to establish
some sufficient conditions which ensure the finite time bound-
edness and finite time boundedness stabilization of the class of
systems considered in our article. Finally, numerical examples
are presented to show the effectiveness and the interest of our
proposed results.

AppendixA. The calculus of V̇ (t)

System (1) has an equivalent form given by
d
dt

[
z(t)−C

∫ t
t−σ

z(u)du

]
=−Cz(t)+(A+ΓT T ∗)g(z(t− τ(t)))

+B
∫ t
−∞

K(t− s)g(z(s))ds+Dż(t−h(t))
z(s) = φ(s)− x∗

Moreover, we have

V̇1(t,z(t)) = 2
[
z(t)−C

∫ t

t−σ

z(u)du
]T

P
[
−Cz(t)+(A+Γ

T T ∗)g(z(t− (τ(t)))

+Dż(t−h(t))+B
∫ t

−∞

K(t− s)g(z(s))ds
]

=−2zT (t)PCz(t)+2zT (t)P(A+Γ
T T ∗)g(z(t− τ(t)))

+2zT (t)PB
∫ t

−∞

K(t− s)g(z(s))ds+2zT (t)PDż(t−h(t))

+2zT (t)CPC
∫ t

t−σ

z(u)du−2
[∫ t

t−σ

z(u)du
]T

CPDż(t−h(t))

−2
[∫ t

t−σ

z(u)du
]T

CP(A+Γ
T T ∗)g(z(t− (τ(t)))

−2
[∫ t

t−σ

z(u)du
]T

CPB
∫ t

−∞

K(t− s)g(z(s))ds (A.1)

and

V̇2(t,z(t)) = zT (t)Q3z(t)− zT (t−σ)Q3z(t−σ)+ żT (t)Q6ż(t)

− żT (t−h(t))Q6ż(t−h(t))(1− ḣ(t))

≤ zT (t)Q3z(t)− zT (t−σ)Q3z(t−σ)+ żT (t)Q6ż(t)

− żT (t−h(t))Q6ż(t−h(t))(1−h∗) (A.2)

It follows from Lemma 2.5 that

V̇3(t,z(t)) = σ
2zT (t)Q4z(t)−σ

∫ t

t−σ

zT (u)Q4z(u)du

≤ σ
2zT (t)Q4z(t)−

[∫ t

t−σ

z(u)du
]T

Q4

[∫ t

t−σ

z(u)du
]

(A.3)

and

V̇4(t,z(t)) =
∫ t

t−τ(t)

[
g(z(t− τ(t)))

ż(s)

]T [T11 T12
∗ T22

][
g(z(t− τ(t)))

ż(s)

]
ds

= τ(t)zT (t− τ(t))T11z(t− τ(t))+2zT (t)T T
12z(t− τ(t))

−2zT (t− τ(t))T T
12z(t− τ(t))+

∫ t

t−τ(t)
żT (s)T22ż(s)ds

≤ zT (t− τ(t))[τT11−2T T
12]z(t− τ(t))]

+2zT (t)T T
12z(t− τ(t))+

∫ t

t−τ

żT (s)T22ż(s)ds (A.4)
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and

V̇5(t,z(t)) = τ żT (t)T22ż(t)−
∫ 0

−τ

żT (t +u)T22ż(t +u)du

= τ żT (t)T22ż(t)−
∫ t

t−τ

żT (s)T22ż(s)ds (A.5)

and

V̇6(t,z(t)) =
n

∑
j=1

q jk j

∫
∞

0
k j(u)

(
g2

j(z j(t))−g2
j(z j(t−u))

)
du

≤ gT (z(t))Q5κg(z(t))−
n

∑
j=1

q j

∫
∞

0
κ j(u)du

×
∫

∞

0
κ j(u)g2

j(z j(t−u))du

≤ gT (z(t))Q5κg(z(t))−
n

∑
j=1

q j

(∫
∞

0
k j(u)g j(z j(t−u))du

)2

≤ gT (z(t))Q5κg(z(t))

−
(∫ t

−∞

K(t− s)g(z(s))ds
)T

Q5

(∫ t

−∞

K(t− s)g(z(s))ds
)

(A.6)

In addition, we note that

0 = 2żT (t)Q1

(
− ż(t)+ ż(t)

)
=−2żT (t)Q1 ż(t)−2żT (t)Q1Cz(t−σ)+2żT (t)Q1(A+Γ

T T ∗)g(z(t− τ(t)))

+2żT (t)Q1Dż(t−h(t))+2żT (t)Q1B
∫ t

−∞

K(t− s)g(z(s))ds (A.7)

and

0 = 2żT (t−h(t))DT Q2

(
−Dż(t−h(t))+Dż(t−h(t))

)
= 2żT (t−h(t))DT Q2

(
−Dż(t−h(t))+ ż(t)+Cz(t−σ)

− (A+Γ
T T ∗)g(z(t− τ(t))−B

∫ t

−∞

K(t− s)g(z(s))ds
)

=−2żT (t−h(t))DT Q2Dż(t−h(t))+2żT (t−h(t))DT Q2Dż(t)

+2żT (t−h(t))DT Q2Cz(t−σ)

−2żT (t−h(t))DT Q2(A+Γ
T T ∗)g(z(t− τ(t)))

−2żT (t−h(t))DT Q2B
∫ t

−∞

K(t− s)g(z(s))ds (A.8)

By using (H1), the following inequality holds

0 ≤
[

z(t)
g(z(t))

]T [−U1Σ1 U1Σ2
∗ −U1

][
z(t)

g(z(t))

]
+

[
z(t− τ(t))

g(z(t− τ(t)))

]T [−U2Σ1 U2Σ2
∗ −U2

][
z(t− τ(t))

g(z(t− τ(t)))

]
(A.9)

for any n× n diagonal matrices U1 > 0, U2 > 0. By using
(A.1)-(A.9), we finally get

V̇ (t,z(t))≤ ζ
T (t,z(t))Ξ̄ζ (t,z(t)).
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