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Abstract We present a derivation of the third postulate of Relational Quan-
tum Mechanics (RQM) from the properties of conditional probabilities. The
first two RQM postulates are based on the information that can be extracted
from interaction of different systems, and the third postulate defines the prop-
erties of the probability function. Here we demonstrate that from a rigorous
definition of the conditional probability for the possible outcomes of different
measurements, the third postulate is unnecessary and the Born’s rule naturally
emerges from the first two postulates by applying the Gleason’s theorem. We
demonstrate in addition that the probability function is uniquely defined for
classical and quantum phenomena. The presence or not of interference terms
is demonstrated to be related to the precise formulation of the conditional
probability where distributive property on its arguments cannot be taken for
granted. In the particular case of Young’s slits experiment, the two possible
argument formulations correspond to the possibility or not to determine the
particle passage through a particular path.

Keywords quantum mechanics interpretation · relational quantum me-
chanics · information · conditional probability · Young’s slits · distributive
property · orthomodular lattice · yes/no experiment

1 Introduction

After more than 100 years from the first attempt to formulate Quantum Me-
chanics (QM) by postulates [1], its interpretation and foundation are still in
discussion in the scientific community. The origin of this open issue partially
lies in the fact that our process of understanding is strongly based on the abil-
ity to make analogies with something familiar to us. In the case of quantum
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phenomena, this approach fails because in our daily environment these kinds
of events are not evident. In the Young’s slit experiment for example, where
a massive particle or photons pass through the slits and form an interference
pattern on a screen, we compare this phenomenon to common systems such
as a ping-pong ball or sea waves. The non-compatibility and contradictions
between these two analogies create the impression to deal with paradoxes pro-
ducing a sense of discomfort. This difficulty to deal with quantum phenomena
is well manifested by the famous phrase of R. Feynman who, in his sixth lecture
The character of physical law at Cornell University in 1964 [2], provocatively
stated “I think I can safely say that nobody understands quantum mechanics”.
Without going into the discussion of the meaning of understanding, different
interpretations of quantum phenomena and different choices of QM postulates
can be discussed. Several approaches have been formulated since the early days
of Quantum Mechanics and have been amply discussed in the literature (see
e.g. Ref. [3] and references therein). New approaches and interpretations con-
tinue to be proposed [4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16] demonstrating
a strong interest in this subject still nowadays.

To choose among the different QM interpretations and postulates formu-
lations, a pragmatic approach is to consider two important criteria (i) the
simplicity of the theory, following the Ockham’s razor philosophical princi-
ple1, and (ii) an interpretation that uses as ingredients for the postulates
formulation, the concepts that are most familiar to our common experience.
To satisfy this second criterion, a way chosen by many authors in recent years
is to use as basis of interpretations or foundation of QM the information that
can be exchanged between the system and another system or an observer
[5, 8, 10, 12, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28]. The first postulation
of QM in terms of information is due to Rovelli in 1996 with the formulation
of Relational Quantum Mechanics (RQM) [17, 29, 30]. In RQM framework, no
system is privileged (there is no observable and observer, both are considered
simply different systems) and everything depends on the reciprocal relation-
ship through the mutual interaction, hence the name “Relational” in RQM.
The aspect of the quantization of nature is dictated in the first postulate by
imposing a maximum limit on the information that can be extracted from
a system. The probabilistic aspect of the theory is introduced by the second
postulate that states that, even when all possible information is available,
new one can be extracted from a system. The third and last postulate, less
intuitive, defines the way to compute probabilities, imposing, accordingly to
experimental observations (Young’s slits for ex.), the calculation via squares
of amplitudes and sums of amplitudes (Born’s rule). In the context of RQM,
new developments and discussions appeared in the last years [6, 7, 31, 32, 33].
In particular, EPR-type experiment have been reinterpreted in the context of
RQM [29], it has been demonstrated that properties of orthmodularity are a

1 From the English Franciscan friar William of Ockham statement “Non sunt multipli-
canda entia sine necessitate” , “Entities must not be multiplied beyond necessity” from
William of Ockham (1287-1347), which can be interpreted in a more modern form as “Among
competing hypotheses, the one with the fewest assumptions should be selected”.
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direct consequence of the first two postulates of RQM [34] and, very recently,
an alternative reconstruction of the Hilbert space is derived from the first two
RQM postulates and four additional postulates [23, 24, 25].

In this article we present a derivation of the third postulate of RQM from
the first two postulates and the basic properties of conditional probability
function. In the original article of RQM [17], Rovelli writes

“One could conjecture that equations (13)–(17) (the equations rel-
atives to probability properties, N.A.) could be derived solely by the
properties of conditional probabilities . . . Here, I content myself with
the much more modest step of introducing a third postulate.”

The main result presented here is exactly to demonstrate Rovelli’s conjecture
from first principles, thus eliminating the need of introducing a third postu-
late. We will demonstrate in particular that, when the most general proba-
bility function is rigorously defined, Born’s rule emerges from the first two
RQM postulates by the use Gleason’s theorem. The approach presented here
is alternative to the recent work from Höhn [23, 24, 25] of QM foundation
from the first two RQM postulated and additional ones. Differences between
the two methods and their corresponding assumptions will be discussed.

To present how to apply the developed formalism in a concrete case, we
will consider the example of Young’s slits experiment and we will calculate
probabilities in cases of distinguishability or indistinguishability of the par-
ticle path through the slits pair. We will in particular demonstrate that the
probability function is uniquely defined for both cases. The presence or not
of interference terms is related to the precise formulation of the conditional
probability where distributive property on its arguments cannot be taken for
granted.

The article is organized as follows: in Sec. 2, as introduction, we present the
first two RQM postulates and their relation to the measurement processes and
Hilbert spaces. In Sec. 3 we discuss how we can built a probability function and
we will study its properties. Section 4 analyses the Young’s slits experiment
in the framework of the formalism developed. We will end the article with
the sections of conclusions (Sec. 5) and an appendix for an introduction to
orthomodular lattices and their connections with “yes/no” experiments.

2 An introduction to Relational Quantum Mechanics: postulates,
measurements algebra and Hilbert space

This chapter is an introduction with some examples of RQM postulates. In
particular, we recall here past major results on the theory of lattices associated
to “yes/no” experiments and the reconstruction of the Hilbert space in the
context of RQM.
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2.1 Interacting systems and measurement processes

The basic assumption of RQM is that the world can be decomposed into a
collection of systems, each of which can be equivalently considered as an ob-
serving system or as an observed system. The information is exchanged via
physical interaction between systems. The process of acquisition of informa-
tion can be described as a “question” that a system (observing system) asks
another system (observed system). Since information is discrete, any process
of acquisition of information can be decomposed into acquisitions of elemen-
tary bits of information by a series of “yes/no” experiment, i.e. a click or not
of a specific measurement apparatus.2

On another hand, a set of “yes/no” measurements on a same system prepa-
ration can be seen as a set of propositions linked to each other by an ordered
relationship “�” [35, 36, 37, 38]. If i, j represent two possible measurement
results, the relationship i � j indicates that each time we have a certain yes
outcome for j also we have a certain yes outcome for i. The ensemble of propo-
sitions and the order relation between them form a structure called partially
ordered set (poset) with some particular properties (orthocomplementation
and other properties) that will be essential to define from it a Hilbert space.

It is not the intent of this article to make an introduction to poset and
orthocomplemented lattices. Here we will present only their basic properties in
the relation with RQM postulates. For the readers that are not familiar to these
structures, their properties and their connection to “yes/no” measurements of
classical and quantum phenomena, a short introduction is presented in the
appendix at the end of the article. An exhaustive presentation on this topic
can be found in Refs. [37, 38].

2.2 First postulate of RQM and orthocomplemented lattices

The first postulate of RQM is [17]

Postulate 1 (Limited information): there is a maximum amount of
relevant information that can be extracted from a system.

If there is a maximal amount of information that can be extracted from the
system, it exists an ensemble of N ′ questions Qi that completely describes the
system. These questions can be represented by different experimental results:
the detection of a particle with spin up or down or the measurement of a
particle momentum within a value interval. If the information is limited, this
means that exists a list of limited “yes/no” questions Qi with i = 1, . . . N ≤ N ′
independent from each other that describes completely the system. With the
operations of conjunction “∧” (“AND”), disjunction “∨” (“OR”) and negation
“¬” (“NOT”), we can in addition build another list of mutually exclusive
questions Qiα where Qiα ∧ Qjα = ∅ for i 6= j [17], where the Greek letter
indicate belonging to the same complete set of questions and “∅” defines an

2 An answer to a question correspond then to one bit of acquired information.
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Fig. 1 Left: artistic scheme of a Stern-Gerlach experiment with vertically aligned magnets.
Right: graph of the orthocomplemented lattice corresponding to the detection of the three
emerging beams.

empty set. For each pair of questions, the combinations Qiα∧Qjα and Qiα∨Qjα
are univocally defined. Because we have a complete set of questions, we have
that

∨
iQ

i
α = 1, the ensemble of all possible positive answers, defines certainty

(represented here by “1”).
For each question Qiα (e.g. “is the spin up?”) its positive answer correspond

to a statement i (“the spin is up”). A negative answer corresponds to its
complementary statement i⊥ (“the spin is not up”), which correspond to a
positive answer to the question ¬Qiα opposite to Qiα.3 The different possible
answers {i, i⊥} together with the operations “∧”, “∨” constitute a logical
structure called lattice, indicated by L. This lattice is orthocomplemented
because for each element i (a positive answer), it exist is complement i⊥ (a
negative answer to the same question), with the properties i ∨ i⊥ = 1 and
i ∧ i⊥ = ∅, where 1, ∅ are also part of the lattice L (a complete lattice).

Another important property of the lattice defined by a complete series of
mutually exclusive questions is the distributivity, which corresponds to the
property

i ∧ (j ∨ k) = (i ∧ j) ∨ (i ∧ k), i ∨ (j ∧ k) = (i ∨ j) ∧ (i ∨ k) (1)

for any triplet i, j, k ∈ L. As we will see in the following sections where we
will consider more than one set of complete questions, distributivity, or more
precisely its absence, will play an important role to calculate interference phe-
nomena in the probability calculation. Note, a distributive orthocomplemented
lattice is also called Boolean lattice.

A simple example of a complete set of questions can be built considering a
spin-1 particle passing through a Stern-Gerlach apparatus with a defined axis
orientation, vertical for example (see Fig. 1 left). Here the spin orientation
of the particle is determined by the deflection of the particle itself passing
through a non-homogeneous magnetic field. The complete set of question is

3 In other words we have ¬Qiα = Qi
⊥
α
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constituted by a series of three particle detectors that correspond to the ques-
tions {QV } = Q+

V , Q
0
V and Q−V , one for each spin projection. The ensemble

of the corresponding answers {V+, V0, V−, V ⊥+ , V ⊥0 , V ⊥− } forms a orthocomple-
mented distributive (Boolean) lattice represented in Fig. 1 right (see Appendix
for more details on lattices properties).

From the output of the three detectors we can extract only a limited
amount of information. In opposite, in a classical case as the measurement
of egg holes by different calibers (see Appendix), from the use of additional
holes with different diameters, additional information can be always be ex-
tracted.4

2.3 Second postulate of RQM and orthomodular lattices

The second postulate of RQM is [17]

Postulate 2 (Unlimited questions): it is always possible to acquire
new information about a system.

When a particle coming out from a Stern-Gerlach apparatus, vertically
oriented for example, is injected into another Stern-Gerlach apparatus with a
different orientation, e.g. horizontal, the new output can be used to extract
new information with a loss of old information because its total quantity is
bounded. The new results {H+, H0, H−, H

⊥
+ , H

⊥
0 , H

⊥
−} correspond to a new set

of questions {QH} = Q+
H , Q

0
H , Q

−
H .As for the vertical case, the new possible

outcomes alone have a mutual relation similar to the scheme in Fig. 1 (right).
But when horizontal and vertical measurement apparatus are not considered
subsequentially but together as alternative measurements, they form a lattice
that is no more distributive, contrary to classical cases as a egg measured by
two different sets of calibers (see Appendix).

The non-distributivity of the lattice is related to the fact that each set
of questions is complete, but the sets are not compatible each other because
each apparatus can extract an information Imax and the maximal quantity
of information that can be extracted is also I = Imax. The absence of the
distributive property has major consequences. It implies in fact that the order
on which the questions/measurements are made matters and is related to the
commutation of operators in standard QM.

As pointed in the early years of QM [35], proposition lattices defined by set
of measurements of classical or quantum cases, have still in common an impor-
tant property, orthomodularity, which is a weaker property than distributivity5

consisting in
i = j ∨ (i ∧ j⊥) (2)

4 If we do not consider the atomic structure of the eggs and calibers, the extractable
information is in fact limitless.

5 Orthomodularity derives from the modularity property, i∨ (j ∧k) = (i∨ j)∧k if k � i a
special case of distributivity, and the property of orthocompleteness [35, 37, 38]. All Boolean
lattices, which are distributive, are automatically orthomodular.
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for each pair of elements i, j ∈ L with i � j. Recently, Grinbaum demonstrated
[34] that orthomodularity property is in fact a direct consequence the presence
of upper bound of information. To note that for this demonstration the author
introduces the property of relevance6 between pairs of questions. This property
can be used to discriminate questions belonging to the same complete set or
to different sets.

A final comment to the second postulate is that it can be actually con-
sidered, as a lower bound on the information, in complement to the first pos-
tulate that determine the higher bound. Absolute certainty corresponds to a
zero information gain. Postulate 2 of RQM assure that we can extract always
information larger than zero.

2.4 Reconstruction of the Hilbert space

It has been demonstrated that if we have an orthomodular lattice L, which
is in addition atomic, complete and has covering property, an Hilbert space
H can be reconstructed [3, 37, 39]. As discussed above, orthomodularity can
be derived directly from the first two RQM postulates [34]. Similarly, com-
pleteness is directly derived by construction of RQM because a system can be
completely described by a finite number of answers of “yes/no” questions due
to the information boundaries. Moreover, each question constitutes actually
an atom7 of the lattice L. The covering property, valid for many lattices cor-
responding to measurements of quantum systems, has to be assumed valid the
general case for the reconstruction of H (on this assumption we will discuss
more extensively in the next paragraphs). Even if the Hilbert space H is re-
constructed from the lattice formed by complete sets of questions, the choice
of its numbered field (real, complex, quaternion, p-adic, etc. ) is not defined.
However, it can be demonstrated that the complex case satisfies the basic
requirements for describing quantum phenomena without redundancy [37].

In the reconstruction of the Hilbert space from the orthomodular lattice,
each complete set of questions {Qiα} is associated to a basis {|iα〉} of H.
Moreover, from any |iα〉 we can built a projector P iα = |iα〉 〈iα|. Different
sets of questions {|iα〉}, {|jβ〉} correspond to different complete bases that are
related to each other via unitary matrices U with |jβ〉 = U |iα〉. The unitarity
of U is guaranteed by the completeness and orthogonality of each basis element
[40]. In this context, a pure state, |iα〉, correspond to a certain positive answer
to a question of a complete set. A mixed state is the results of an uncertainty
between answers of among questions.

6 Question j is irrelevant with respect to the question i if j ∧ i⊥ 6= ∅. [34]
7 Each positive (or negative) answer i (i⊥) to the question Qi is an elementary constituent

and it respect the atomicity property: for any other element j ∈ L, i � j implies that j = ∅
or j = i.
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3 Probability function and properties

3.1 Definition of probability function

Taking into account two complete families of questions {Qiα}, {Q
j
β} and the

second RQM postulate, we can consider the probability for obtaining a positive
answer to the question Qjβ knowing a positive answer to the question Q1

α.
This is a perfect example of conditional probability that can be indicated
by p[Qjβ |Qiα]. In the next paragraphs we will build p[Qjβ |Qiα] from minimal
requirements for the most general definition of probability function.

In its most general definition, probability is a measurement or map on a set
of elements Ω to the real interval [0, 1] via a function ℘ : Ω → [0, 1] [41, 42].
The first axiomatization of the probability function ℘ is due to Kolmogorov in
1933 [42, 43, 44] where Ω is on a field F that is closed under complementation
with respect to Ω and union8 and where

℘[A] ≥ 0 for all A ∈ F , (3a)

℘[Ω] = 1, (3b)

℘[A ∪B] = ℘[A] + ℘[B] for all A and B ∈ F with A ∩B = ∅. (3c)

This general form is normally implemented in different cases of classical or
quantum physics [3, 38, 39, 42, 45, 46] and is more or less explicitly used in
all approaches of foundations of QM.

In the context of logic of True/False values of sentences of a set S, an
analog definition of ℘ is [41, 42, 47]

℘[A] ≥ 0 for all A ∈ S, (4a)

℘[True] = 1, (4b)

℘[A ∧B] = ℘[A] + ℘[B] for all A and B ∈ S with A ∧B = ∅. (4c)

This is a more adapted set of axioms of ℘ to be directly implemented for
probability measurements in orthomodular lattices L [37] and RQM where
sentences of S are positive or negative answers of questions.

To correctly define the probability function p[Qjβ |Qiα] for obtaining a pos-

itive answer to a question Qjβ knowing a positive answer to a question of

another family Qiα, we have to introduce conditionality properties. To under-
line that we are dealing with measurements that corresponds to answers to
questions, in the previous expression and in the following paragraphs we im-

plicitly indicates by Qi its corresponding positive answer and ¬Qi ≡ Qi
⊥

the
corresponding negative answer. Taking inspiration from Refs. [42, 44, 48, 49],
from Eqs. (4) we can derive the axioms

8 if A and B ∈ F , also A ∪B ∈ F and the complement Ā = Ω −A ∈ F (F is a σ-field).
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p[Qjβ |Q
i
α] ≥ 0, (5a)

p
[∨
j

Qjβ

∣∣∣Qiα] = 1, (5b)

p[Qjβ ∨Q
k
β |Qiα] = p[Qjβ |Q

i
α] + p[Qkβ |Qiα], (5c)

for the probability relative to the set of questions Qjβ knowing a positive ques-

tion Qiα. The second axiom states that the probability of certainty is 1. It
corresponds to Eqs. (3a) and (4a), and it is equivalent to p[Qjβ |Q

j
β ] =1. Be-

cause of the completeness of each set of questions, we have in fact
∨
j Q

j
β ≡ 1,

i.e. always True. Due to the mutual exclusivity of the questions Qjβ ∧Qkβ = ∅
for j 6= k, Eq. (5c) is equivalent to Eq. (4c).

Similar definitions of conditional probability are implemented in the re-
cent approach of QM foundation of Auffèves and Grangier [15, 50] and of
Höhn [23, 24, 25] with however some important differences. Höhn assumes ad-
ditional symmetric properties of p (see next paragraphs) to reconstruct QM
framework. This is not the case for Auffèves and Grangier where however the
probability function is not rigorously defined, similarly to the case of RQM
original formulation [17].

For a given answer of the question Qiα the probability function p[·|Qiα]
defined by Eqs. (5) is compatible with Kolmogorov’s axiomatic definition
(Eqs. (3)). Differently from Kolmogorov approach, we will see that the ex-
plicit dependency on the prior answers provides a clear use of p in different
contexts.

3.2 The Gleason’s theorem and the third principle of RQM

In the previous sections we saw that from the first and the second postulates
of RQM we can build a Hilbert space. This reconstruction enable to make a
direct link to the different choices of probability axioms, Eqs. (3) and (5) and
then the use of Gleason’s theorem [51]. Gleason’s theorem (from an adaption
of Refs. [3, 37]) states:

In a separable Hilbert space H of dimension ≥ 3, whether real, com-
plex or quaternion, every probability measure (that respects Eqs. (3),
N.A.) on a closed subspace HS can be written in the form

p[HS ] = tr[ρPS ], (6)

where PS denotes the orthogonal projection on HS and ρ is a density
operator.

In our notation a pure state |iα〉 corresponds to a certain positive answer
to a question Qiα and it is associated to the density matrix ρα = |iα〉 〈iα|,
which is in this case is equivalent to the projector P iα = |iα〉 〈iα|.
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The probability for having a positive answer to the question Qjβ is

p[Qjβ |Q
i
α] = tr[ραP

j
β ] = | 〈jβ |iα〉 |2 = |Uij |2, (7)

where Uij is the unitary matrix element corresponding to the transformation
between the complete bases {|iα〉} and {|jβ〉} complete bases transformation

and P jβ = |jβ〉 〈jβ | is the projector corresponding to Qjβ . Thus, we see that
Born’s rule can be deduced solely from the first two RQM postulates and
from Gleason’s theorem, without the need of any further assumption: a third
postulate devoted to probabilities does not appear necessary.

From Eq. (7) we see that p[Qjβ |Qiα] is completely symmetric to the exchange

of order of the questions Qjβ and Qiα,

p[Qjβ |Q
i
α] = p[Qiα|Q

j
β ], (8)

a property that is only assumed as valid in the original formulation of RQM
[17] but also in the recent QM foundation approach from Höhn [23, 24, 25]
and in other recent works.

From Eqs. (5), we have in addition the properties

p[
∨
j

Qjβ |Q
i
α] =

∑
j

p[Qjβ |Q
i
α] =

∑
i

p[Qiα|Q
j
β |] = p[

∨
i

Qiα|Q
j
β |] = 1. (9)

In other words
∑
i |Uij |2 =

∑
j |Uij |2 = 1, which is one of the basic properties

of unitary matrices [17, 40].

3.3 Alternative foundations of QM via RQM postulates and discussion

In the previous section we demonstrated that from minimal requirements for
the conditional probability function and the first two postulates of RQM,
Born’s rule can be derived. It has to be noted that this demonstration is based
on the assumption that any lattice L associated to quantum measurements
has covering properties [6, 37]. This is the case for simple examples of simple
quantum measurement graphs [35, 37, 38, 52, 53] but it is not proved for the
general case. Here the cover property has to be assumed valid.9 Moreover, the
numerical field of the Hilbert space cannot be derived from RQM principles
and real and complex numerical fields are found only from a non-exhaustive
exclusion of other cases. In particular the quaternion case is eliminated only
when composite systems are considered [37].

A recent alternative foundation of QM based on the first two principles of
RQM, with addition of new postulates, has been proposed by Höhn [23, 24, 25].
In this remarkable work, real and complex numerical fields are deduced by
construction from a set of five postulates: the first two RQM ones plus other

9 A possible demonstration could maybe possible using information boundaries for lattice
elements relative to different set of questions, similarly to the otrhomodularity derivation in
Ref. [34].
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three. The complex case becomes the only acceptable field once an additional
postulate on the measurement of composite systems is added. This is a very
interesting result but it has to be noticed that, in addition to the important
increase of number of postulates where time coordinate has a preferential role,
it relies on the additional assumption of the symmetric properties of the prob-
ability functions p[Qi|Qj ] with respect couple of questions Qi, Qj . This is not
the case in the demonstration proposed here were the symmetric properties of
p[Qi|Qj ] are derived directly from Eq. (7). It interesting to note that in Höhn’s
work, if the existence of a state of no information is assumed, p[Qjβ |Q

j
β ] is used

to classify families of questions, independent, dependent, partially dependent,
similarly to the relation of relevance introduced by Grinbaum [34] between
different lattice elements (see Sec. 2.3).

3.4 Additional properties of conditional probability function and Bayes’
theorem

Other non-trivial properties of the conditional probability function p can be
discussed considering three sets of complete questions. If we have three sub-
sequent specific questions Qiα, Q

j
β , Q

k
γ from three different sets of complete

questions, we can consider the probability p[Qkγ |Q
j
β > Qiα] for having a posi-

tive answer for Qkγ knowing a positive answer for Qjβ after a positive answer

for Qiα. To take into account the order of the questions we introduce the new
non-symmetric relation operator “ >”, similar to the “AND” logical operator
“∧” but where Qi > Qj 6= Qj > Qi. We underline the importance of the se-
quence of the questions because it is related to the non-commutativity of the
operators P iα and P jβ , i.e. P iαP

j
β 6= P jβP

i
α. As we will see, when the sequence of

the questions is not important, the operator “ >” reduces to the conjugation
operator “∧”.

From Gleason’s theorem (Eq. (7)) and the properties of the density oper-
ator, and in particular Lüders’ rule for conditional probabilities, we have for
pure states

p[Qkγ |Q
j
β > Q

i
α] =

tr[P jβραP
j
βP

k
γ ]

tr[ραP
j
β ]

=
tr[P jβP

i
αP

j
βP

k
γ ]

tr[P iαP
j
β ]

=

=
tr[P jβP

i
αP

j
βP

k
γ ]

p[Qiα|Q
j
β ]

=
| 〈kγ |P jβ |iα〉 |2

| 〈jβ |iα〉 |2
. (10)

Because of the trace properties tr[MNL] = tr[NLM ] = tr[LMN ] (but 6=
tr[MLN ]), the nominator of Eq. (10) is completely symmetric with respect
to the interchange of P iα and P kγ . The difference between p[Qkγ |Q

j
β > Qiα] and

p[Qkγ > Q
j
β |Qiα] is only the denominator,

p[Qkγ > Q
j
β |Q

i
α] = tr[P jβP

i
αP

j
βP

k
γ ] = | 〈kγ |P jβ |iα〉 |

2, (11)
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which is required for the probability normalisation. In other words, we have

p[Qkγ |Q
j
β > Q

i
α] =

p[Qkγ > Q
j
β |Qiα]

p[Qiα|Q
j
β ]

, (12)

which is very similar to Bayes’ theorem for conditional probability except for
the presence of the operator “ >” instead of the conjunction “∧”.

If the projectors relative to questions commute10 additional simplifications
can be applied [37]. In this case we have P jβP

k
γ = P kγ P

j
β that, together with

Eq. (10) gives

p[Qkγ |Qiα > Q
j
β ] =

tr[P jβραP
j
βP

k
γ ]

tr[ραP
j
β ]

=
tr[ραP

j
βP

k
γ ]

tr[ραP
j
β ]

=

=
p[Qkγ ∧Q

j
β |Qiα]

p[Qjβ |Qiα]
≡ p[Qkγ |Qiα ∧Q

j
β ], (13)

which is nothing else the Bayes’ theorem with “ >” equivalent to “∧”. We note
that the demonstration of the Bayes’ theorem provided by Cox and Jaynes
[44, 54] is based on the assumption that the conditional probability p[Qkγ ∧
Qjβ |Qiα] can be written as function of p[Qkγ |Qiα∧Q

j
β ] and p[Qjβ |Qiα] [42, 44, 54].

This is clearly not true for the general case described by Eq. (10) where the
conjunction ‘∧’ between non-compatible questions is not defined [48]. In the
other way around, we note also that Bayes’ theorem can be easily derived
when distributive property is assumed valid [55], which underlines once more
the important role of distributivity.

4 An example: the Young’s slits

4.1 Young’s slits in the Relational Quantum Mechanics framework

To see the implication of the previous formulas and their interpretation, we
consider the classical example of the a ‘Young’s slits’-like experiment, exten-
sively considered in the literature (see e.g. [37, 38, 56]).

We consider here the ideal experiment represented in Fig. 2 where a particle
is emitted by a source S and detected by a series of detectors D0, . . . , DN after
passing through a pair of slits, A and B. We assume that the walls of the slits
themselves, indicated by C, can detect the arrival of particles.

The initial state, i.e. the initial question Qiα = QSα, corresponds to the
emission or not of a particle from the source S. The detection in proximity of
the slits correspond to the questions Qjβ with j = {A,B,C} for the passage
through the slits A,B or the hitting of the slits walls C. The final set of ques-
tions corresponds to the detection on the the different detectors on the screen

10 This conditions is satisfied if the orthomodular lattice associated to the set of measure-
ments is distributive.
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Fig. 2 Artistic scheme of the Young’s slit experiment.

with Qkγ with k = {D0, . . . , DN}. Each set of questions {QAβ , QBβ , QCβ } and

{QD0
γ , . . . , QDN

γ } are complete and corresponds to complete bases of Hilbert
space {|Aβ〉 , |Bβ〉 , |Cβ〉} and {|D0〉γ , . . . , |DN 〉γ}.

We consider two different cases. In the first one we consider the possibility
to distinguish the passage of a particle through A or B (for ex. following the
trajectory of the particle if the particle is a ball or another macroscopic object)
before being detected on the screen. In the second case, we consider that only
the information from the slits wall C is available and we cannot access to the
information of the passage through A or B. In both case we will study the
detection from one particular detector only D = Dn ∈ {D0, . . . , DN}.

In the first case, because we can distinguish a path between A or B, we are
considering a detection that correspond to the question structure (QDγ > QAβ )∨
(QDγ > QBβ ): we want to determine the probability to detect a particle from
D passed through A or to detect a particle from D passed throuhg B. We
are only interested to the detection in D (from here the operator “∨′′) but
we could in principle detect from which slit the particle passed (from here
the operator “ >”). The probability we are interested is then p[(QDγ > QAβ ) ∨
(QDγ > QBβ )|QSα] where QSα = True correspond to a particle emission from
the source. Detection of a passage through A or B correspond to mutually
exclusive questions QAβ and QBβ where QAβ ∧ QBβ = ∅. Any combination with

these questions, (QDγ > QAβ ) and (QDγ > QBβ ) in our case, is also mutually
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exclusive as well.11 Applying Eq. (5c), we have then

p[(QDγ > Q
A
β ) ∨ (QDγ > Q

B
β )|QSα] = p[QDγ > Q

A
β |QSα] + p[QDγ > Q

B
β |QSα] =

= | 〈Dγ |PAβ |Sα〉 |2 + | 〈Dγ |PBβ |Sα〉 |2 =

= | 〈Dγ |Aβ〉 〈Aβ |Sα〉 |2 + | 〈Dγ |Bβ〉 〈Bβ |Sα〉 |2. (14)

The final probability is the sum of the individual probabilities (composed each
by the square product of different terms) to pass through the slit A and the
slit B.

In the second case we consider that we cannot distinguish in principle
the passage through one specific slit. The non-detection on the walls C after
an emission from S corresponds to the certainty of the passage of a particle

through A or B. Symbolically it means that ¬QCβ ≡ QC
⊥

β ≡ QAβ ∨QBβ . In this
case, using Eq. (11), the probability to detect a particle from D is

p[QDγ > (Q
A
β ∨QBβ )|QSα] = | 〈Dγ |PA∨Bβ |Sα〉 |2 (15)

with PA∨Bβ the projector operator corresponding to the positive answer to the
question “Is the particle passed through A or B?”.

Considering that {|jβ〉} basis is orthonormal (formed by mutual exclusive

questions), we have that 〈jβ |kβ〉 = 0 = P jβP
k
β for j 6= k and then [52]

PA∨Bβ = I − PA
⊥∧B⊥

β = I − (I − PAβ )(I − PBβ ) = PAβ + PBβ . (16)

Using this last equation we have that the final probability is

p[QDγ > (Q
A
β ∨QBβ )|QSα] = | 〈Dγ |(PAβ + PBβ )|Sα〉 |2 =

= | 〈Dγ |Aβ〉 〈Aβ |Sα〉+ 〈Dγ |Bβ〉 〈Bβ |Sα〉 |2. (17)

Differently to the discernible case (Eq. (14)), we have here the square of the
sum of two terms with the possibility of interference terms. We have then
the well known property of probability calculation of QM without introducing
additional postulates or axioms.12

In this example we considered only two slits, but it can easily extended
to a general case of Ns slits. The ensemble of slits correspond to a set of mu-
tually exclusive questions {QAβ , QBβ , QEβ , QFβ , . . .} with an additional question

corresponding to the ensemble of slit walls QC
⊥

β ≡ QAβ ∨QBβ ∨QEβ ∨QFβ ∨ . . .
for which Eqs. (14) and (17) can be easily generalized.

11 Because we can distinguish the trajectories, each pair (QDγ > QAβ ) and (QDγ > QBβ ) can

be considered as two distinct detectors to which correspond the questions QDA and QDB

with QDA ∧QDB = ∅.
12 An alternative demonstration of the derivation of the superposition property can be

found in Ref. [37] (Section 26.3).
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4.2 Non-distributivity of the probability argunents

As presented in the previous section, the interference effect on the final proba-
bility by one of the detectors D0, D1, . . . , DN is directly related to the possibil-
ity to distinguish from where the particle passed, i.e. the possibility or not to
access to the information relative to the passage through a particular slit. Be-
cause of the first RQM postulate, this information can be in fact intrinsically
limited. The possibility to distinguish or not the particle path correspond to
different conditional probability expressions, Eqs. (14) and (17) respectively.
Their equivalence cannot be assumed a priori in the slits experiment example
because the distributive property, habitually assumed as valid as in common
(classical) cases, is not justified here and can be violated, with in our specific
case

QDγ > (Q
A
β ∨QBβ ) 6= (QDγ > Q

A
β ) ∨ (QDγ > Q

B
β ). (18)

Distributive property is non-valid in question/experiment lattices involving
a limited amount of information and it cannot be assumed by default, as
presented in a specific example in the Appendix. If distributive property is not
given for granted, we have to distinguish the different cases as in the example
of Young’s slits experiment. Different cases correspond to different expressions
of the probability function p, which is uniquely defined by Eqs. (5). What it
changes is the proposition combination (question combination) for which we
are calculating the probability.

Because of the contradiction with daily experience phenomena where the
distributive property is valid, its abandon is, to the opinion of the author, the
largest intellectual difficulty in this framework to reconstruct QM formalism
from RQM postulates. However the other advantage of RQM formulation is
the possibility to transpose the series of questions/measurements to a set of
propositions that can be studied then in the context of proposition logic. In the
case of the slits experiment, once a particle has been emitted and detected,
the sentence “The particle passed through the slit A OR the particle passed
through the slit B” is always true. In opposite the sentence “The particle passed
through both slits A and B”, equivalent to QAβ ∧ QBβ is always False because

QAβ and QBβ are in fact compatible and mutually exclusive with QAβ ∧QBβ = ∅
(PAβ P

B
β = 0). Finally, the sentences “The particle passed through the slit A”

and “The particle passed through the slit B” are completely indeterminate
if we do not measure where the particle passed through. This is similar to
an analog case discussed by Aristotle (reported in Ref. [39]) well before the
formulation of quantum mechanics. The sentences ‘Tomorrow there will be a
sea-battle” and its negation ‘Tomorrow there will not be a sea-battle” have
today no definite truth-value (they are indeterminate), but their disjunction
“Either tomorrow there will be a sea-battle or tomorrow there will not be a
sea-battle” is true. As discussed in Refs. [3, 39], this structure can be related
to the  Lukasiewicz three-valued logic approach [57] where in addition to the
True and False logical values for propositions, an Indeterminate or Unknown
third value is considered.
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5 Conclusions

In conclusion we demonstrated that from a rigorous definition of the condi-
tional probability for the possible outcomes of different measurements, the
Born’s rule and the more general rule with the density operator naturally
emerges from the first two postulates of Relational Quantum Mechanics by
the use of the Gleason’s theorem. Thus this eliminates the need of introducing
a third postulate. In the context of Relational Quantum Mechanics, the ap-
proach of the presented work is an alternative to the method adopted by Höhn
[23, 24, 25]. There, the complex field of the reconstructed Hilbert space is uni-
vocally determined, but it requires additional postulates and the assumption
of the symmetric properties of the probability function p. This is not the case
in the presented work where symmetric properties of p are derived together
with the Born’s rule.

The presence or not of interference terms is demonstrated to be related
to the precise formulation of the conditional probability where distributive
property cannot be taken for granted. In the specific case of Young’s slits,
the violation of distributive property corresponds to a difference between the
probability to detect a particle that passed through the pair of slits A and
B (QDγ > (QAβ ∨ QBβ )) and the probability to detect a particle that passed

through slit A OR to detect a particle that passed through slit B ((QDγ > QAβ )∨
(QDγ > QBβ )). Even if the two propositions are apparently equivalent in com-
mon language, there is a important difference linked to the possibility or not
to determine the particle passage through a particular slit bringing to the dise-
quality QDγ > QAβ )∨(QDγ > QBβ ) 6= QDγ > (QAβ ∨QBβ ) in the possible probability
arguments. The already well known non-validity of distributive property in the
logical structure of “yes/no” measurements manifests here once more in the
formulation of the probability function p.
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Appendix A: “Yes/No” measurements and orthomodular lattices

A1 A simple case of distributive and orthocomplemented lattice

To present orthomodular lattices, their properties and their link to a set of
“yes/no” experiments, we will consider two simple cases: a classic case relative
to the measurement of the size of eggs using two calibers (an example intro-
duced originally by Piron [52]), and a case of measurement of a spin-1 particle
with a Stern-Gerlach apparatus.
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Fig. 3 Left: artistic scheme of a egg size measurement with two calibers. Right: graph of
the orthocomplemented lattice corresponding to the possible outcomes on the egg size.

In the case of the egg measurement, the questions {Qα} associated to
these measurements are composed by Qs =“is the egg small?”, which positive
answer correspond to an egg passing through the small hole with diameter ds,
and by Q` = “is the egg large?” corresponding to an egg not passing through
the large hole with diameter d` > ds (see Fig. 3 left). From the combination of
these two questions we can deduce three sizes: “s” small (Qs), “`” large (Q`)
and “m” medium from the combination Qm ≡ ¬Qs ∧ ¬Q`.

The different answers (positive or negative) can be interpreted as propo-
sitions that can be true or false and are related to each other. As example, if
we have a positive answer to the question Qs, this corresponds to the propo-
sition “the egg is small” ≡ s. If the we have a negative answer (positive to
its negation ¬Qs), this corresponds to the proposition “the egg is not small”
≡ s⊥, where “⊥” indicates complementation (orthogonality) of negative an-
swers with respect to positive answers. In addition to the complementation
“⊥” we can introduces the operations of conjunction “∧” (“AND”), disjunc-
tion “∨” (“OR”) between the propositions s,m, `, s⊥,m⊥, `⊥.

The different answers/propositions and their relation constitute a logical
structure of a lattice. As example, a negative answer to the question Q`, i.e.
¬Q`, implies a positive answer to Qm or Qs. In this specific example, we have
`⊥ =⇒ m ∨ s (“not large implies medium or small”). This means that for
every egg measurement result giving as answers “the egg is medium” or “the
egg is small”, we are sure that the proposition “the egg is not large” is true.
This order relation (related to the logical implication =⇒ ) can be indicated
by “�”. In the specific example considered, we have that `⊥ � m, `⊥ � s
and `⊥ � m ∨ s. This order relation is represented by a graph (Fig. 3 right)
by descending lines and where the elements i ∧ j and i ∨ j can be determined
joining the two lower or upper lines, respectively, generating from the elements
i and j.

Due to the question/answer basic structure, each element i of the partially
ordered set so defined has a complement i⊥ with the properties i∨ i⊥ = 1 and
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Fig. 4 Graphs of the orthocomplemented lattice corresponding to the measurement of
egg size with four different calibers (left) and to the measurement with two Stern-Gerlach
apparatus, one vertical and one horizontal.

i∧ i⊥ = ∅. 1, ∅ are also part of the set with 1 corresponding to all type of eggs
and ∅ to no one. Because of these properties, our partially ordered set is ac-
tually a orthocompletemented lattice13 L. Another important property of the
algebra of the lattice defined by this series of measurement is the distributivity
(Eq. (1).

Another simple example is the case of a spin-1 particle passing through a
Stern-Gerlach apparatus discussed in Sec. 2.2. The complete set of the answers
to the questions {Q−V } has the same structure as the eggs measurement.

A2 A more complex case; orthomodularity and distributivity

In the classic case of the egg-size determination, a new set of questions {Qβ}
corresponds to a new set of calibers with different diameters. We can consider
for example, slightly larger holes dS , dL with ds < dS < d` < dL that corre-
spond to QS and QL questions and that generate a new set of possible five
measurable sizes.14 The corresponding lattice is represented in Fig. 4 (left).
It is more complex but still distributive.15 As discussed by Piron [52, 53] and
Beltrametti and Cassinelli [37], this reflects the fact that the two set of ques-

13 The considered poset is a lattice because for any elements i, j, we can define the element
combinations i∧j and i∨j are part also of the considered ensemble of propositions (answers).
It is a orthocomplemented lattice because for any element i, there is an element i⊥ with the
properties i ∨ i⊥ = 1 and i ∧ i⊥ = ∅ and (i⊥)⊥=i and i � j =⇒ j⊥ � i⊥.
14 As in the previous example, the measurement “m” medium come from the combination
Qm ≡ ¬Qs ∧ ¬Q`), with the set of questions Qs, QS , Q`, QL different sizes can be defined
as e.g. “not very small” corresponding to ¬Qs ∧QS the intermediate size between the two
smaller diameters (the egg pass through the S hole but not the s one.
15 Similar example of such a lattice can be found in Ref. [38].
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tions (two pairs of calibers) are compatible with each other and that the final
measurement output does not depend on the order on which the two pairs of
calibers are implemented.

In the case of the spin-1 particle, in addition to a vertically Stern-Gerlach
apparatus, we can consider a horizontally oriented one. This new measurement
apparatus is related to a new set of questions {QH} = Q+

H , Q
0
H , Q

−
H that cor-

responds to new possible measurement results {H+, H0, H−, H
⊥
+ , H

⊥
0 , H

⊥
−}.

When the two sets of measurements are considered together, they form a non-
trivial but relatively simple lattice represented in Fig. 4 (right). The perpen-
dicularity of the two apparatus axes determines the fact that a particle giving
the measurement result H0 in the horizontal apparatus (V0) corresponds to a
measurement V ⊥+ ∨ V ⊥− in the vertical apparatus (H⊥+ ∨H⊥− in the horizontal
one). The most important characteristic is that the lattice is no more distribu-
tive. For example, if we consider the possible outcomes H+, V−, V

⊥
− , we have

that

H+ ∨ (V− ∧ V ⊥− ) 6= (H+ ∨ V−) ∧ (H+ ∨ V ⊥− ). (19)

In fact16 the left term is equal to H+ and the right term is equal to V ⊥− .
Additional examples of non-distributive orthomodular lattices can be found

in the literature, as the lattice corresponding to the measurement of polarised
light [52] or a quantised vector in the real space [38].

As discussed by [52], the distributive property is related to the logical
structure of the orthomodular lattice L corresponding to the ensemble of the
measurements. For two elements (“yes/no” measurements) i, j ∈ L, we have
that

“i True′′ or “j True′′ =⇒ “i ∨ j True′′, (20)

but

“i ∨ j True′′ =⇒ “i True′′ or “j True′′, (21)

is valid only if the lattice L is also distributive, which is not the case for
measurements reaching the limit of the extractable information, i.e, the quan-
tization aspects [35, 36, 52] (a simple presentation of this aspect in a Hilbert
space can be found in [39, p. 37] and in [38, p. 190]).
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