
HAL Id: hal-01723999
https://hal.science/hal-01723999v1

Preprint submitted on 6 Mar 2018 (v1), last revised 29 Aug 2018 (v3)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Relational Quantum Mechanics and Probability
M. Trassinelli

To cite this version:

M. Trassinelli. Relational Quantum Mechanics and Probability. 2018. �hal-01723999v1�

https://hal.science/hal-01723999v1
https://hal.archives-ouvertes.fr


Noname manuscript No.
(will be inserted by the editor)

Relational Quantum Mechanics and Probability

M. Trassinelli

the date of receipt and acceptance should be inserted later

Abstract We present a discussion on the three postulates of Relational Quan-
tum Mechanics (RQM) and the definition of probability within this framework.
The first two RQM postulates are based on the information that can be ex-
tracted from interaction of different systems, and the third postulate defines
the properties of the probability function. Here we demonstrate that from a
rigorous definition of the conditional probability for the possible outcomes of
different measurements, the third postulate is unnecessary and the Born’s rule
naturally emerges from the first two postulates by applying the Gleason’s the-
orem. We demonstrate in addition that the probability function is uniquely
defined for classical and quantum phenomena. The presence or not of inter-
ference terms is demonstrated to be related to the precise formulation of the
conditional probability where distributive property on its arguments cannot
be taken for granted. In the particular case of Young’s slits experiment, the
two possible argument formulations correspond to the possibility or not to
determine the particle passage through a particular path.

Keywords quantum mechanics interpretation · relational quantum me-
chanics · information · conditional probability · Young’s slits · distributive
property · orthomodular lattice · yes/no experiment

1 Introduction

After more than 100 years from the first attempt to formulate Quantum Me-
chanics (QM) by postulates [1], its interpretation is still in discussion in the
scientific community. The origin of this open issue partially lies in the fact
that our process of understanding is strongly based on the ability to make
analogies with something familiar to us. In the case of quantum phenomena,
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this approach fails because in our daily environment these kinds of events are
not evident. In the Young’s slit experiment for example, where a massive par-
ticle or photons pass through the slits and form an interference pattern on a
screen, we compare this phenomenon to common systems such as a ping-pong
ball or sea waves. The non-compatibility and contradictions between these two
analogies create the impression to deal with paradoxes producing a sense of
discomfort. This difficulty to deal with quantum phenomena is well manifested
by the famous phrase of R. Feynman who, in his sixth lecture The character
of physical law at Cornell University in 1964 [2], provocatively stated “I think
I can safely say that nobody understands quantum mechanics”. Without going
into the discussion of the meaning of understanding, different interpretations of
quantum phenomena and different choices of QM postulates can be discussed.
Several approaches have been formulated since the early days of Quantum
Mechanics and have been amply discussed in the literature (see e.g. Ref. [3]
and references therein). New approaches continue to be proposed also in recent
years [4, 5, 6, 7, 8, 9, 10] demonstrating a strong interest in this subject still
nowadays.

To choose among the different QM interpretations and postulates formula-
tions, a pragmatic approach is to consider two important criteria (i) the sim-
plicity of the theory, following the Ockham’s razor philosophical principle1,
and (ii) an interpretation that uses as ingredients for the postulates formula-
tion, the concepts that are most familiar to our common experience. These two
criteria are, to the author’s opinion, fully satisfied by the Relational Quantum
Mechanics (RQM) approach formulated by Rovelli in 1996 [11]. In RQM frame-
work, no system is privileged (there is no observable and observer, both are
considered simply different systems) and everything depends on the reciprocal
relationship through the mutual interaction, hence the name “Relational” in
RQM. The aspect of the quantisation of nature is dictated in the first postulate
by imposing a maximum limit on the information that can be extracted from a
system (e.g. the spin of an atom in a Stern-Gerlach type experiment, discrete
atomic spectra, etc.). The probabilistic aspect of the theory is introduced by
the second postulate that states that, even when all possible information is
available, new one can be extracted from a system (e.g. in measurements of
magnetic spin particle with a series of Stern-Gerlach type apparatus or light
and polarisers). These first two postulates are based on the concept of infor-
mation, a concept familiar to contemporary human beings and then easier to
accept with respect to other abstract entities. The third and last postulate,
less intuitive, defines the way to compute probabilities, imposing, accordingly
to experimental observations (Young’s slits for ex.), the calculation via squares
of amplitudes and sums of amplitudes (Born’s rule).

In this article, after a presentation of the first two postulates of RQM and
their connection with the logical structure of series of measurements, we will

1 From the English Franciscan friar William of Ockham statement “Non sunt multipli-

canda entia sine necessitate” , “Entities must not be multiplied beyond necessity” from
William of Ockham (1287-1347), which can be interpreted in a more modern form as“Among
competing hypotheses, the one with the fewest assumptions should be selected”.
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demonstrate that the third RQM postulate is not necessary to reconstruct QM
formalism. We will demonstrate in particular how to build a probability func-
tion and how the Born’s rule emerges from the first two RQM postulates and
the Gleason’s theorem. To clearly present different aspects of this approach,
we will consider the example of Young’s slits experiment and we will calculate
probabilities in cases of distinguishability or indistinguishability of the par-
ticle path through the slits pair. We will in particular demonstrate that the
probability function is uniquely defined for both cases. The presence or not
of interference terms is related to the precise formulation of the conditional
probability where distributive property on its arguments cannot be taken for
granted.

The article is organised as follows: in Sec. 2 we present the first two RQM
postulates and their relation to the measurement processes and Hilbert spaces.
In Sec. 3, we discuss how we can built a probability function and we will study
its properties. Section 4 analyses the Young’s slits experiment in the framework
of the formalism developed. In Sec. 5 we will discuss on the interpretation
and consequences. We will end the article with the sections of conclusions
(Sec. 6) and an appendix for an introduction to orthomodular lattices and
their connections with “yes/no” experiments.

2 Relational Quantum Mechanics postulates, measurements
algebra and Hilbert space

2.1 Interacting systems and measurement processes

The basic assumption of RQM is that the world can be decomposed into a
collection of systems, each of which can be equivalently considered as an ob-
serving system or as an observed system. The information is exchanged via
physical interaction between systems. The process of acquisition of informa-
tion can be described as a “question” that a system (observing system) asks
another system (observed system). Since information is discrete, any process of
acquisition of information can be decomposed into acquisitions of elementary
bits of information by a series of “yes/no” experiment, i.e. a click or not of a
specific measurement apparatus. An answer to a question correspond then to
one bit of acquired information.

On another hand, a set of “yes/no” measurements on a same system can
be seen as a set of propositions linked to each other by an ordered relationship
“�” [12, 13, 14, 15]. If i, j represent two possible measurement results, the
relationship i � j indicates that each time we have a certain yes outcome for
i also we have a certain yes outcome for j. The ensemble of propositions and
the order relation between them form a structure called partially ordered set
(poset) with some particular properties (orthocomplementation) that will be
essential to define from it a Hilbert space.

It is not the intent of this article to make an introduction to poset and
orthocomplemented lattices. Here we will present only their basic properties in
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the relation with RQM postulates. For the readers that are not familiar to these
structures, their properties and their connection to “yes/no” measurements of
classical and quantum phenomena, a short introduction is presented in the
appendix at the end of the article. An exhaustive presentation on this topic
can be found in Refs. [14, 15].

2.2 First postulate of RQM and orthocomplemented lattices

The first postulate of RQM is [11]

Postulate 1 (Limited information): there is a maximum amount of
relevant information that can be extracted from a system.

If there is a maximal amount of information that can be extracted from the
system, it exists an ensemble of N ′ questions Qi that completely describes the
system. These questions can be represented by different experimental results:
the detection of a particle with spin up or down or the measurement of a
particle momentum within a value interval. If the information is limited, this
means that exist a list of limited yes/no questions Qi with i = 1, . . .N ≤ N ′

independent from each other that describes completely the system. With the
operations of conjunction “∧” (“AND”), disjunction “∨” (“OR”) and negation
“¬” (“NOT”), we can in addition build another list of mutually exclusive ques-
tions Qi

α where Qi
α ∧ Qj

α = ∅ for i 6= j [11], where the Greek letter indicate
belonging to the same complete set of questions and “∅” defines an empty set.
For each pair of questions, the combinations Qi

α ∧ Qj
α and Qi

α ∨ Qj
α are uni-

vocally defined. Because we have a complete set of questions, we have that
∨

i Q
i
α = 1, the ensemble of all possible positive answers, defines certainty

(represented here by “1”).
For each question Qi

α (e.g. “is the spin up?”) its positive answer corre-
spond to a statement i (“the spin is up”). A negative answer corresponds to
its complementary statement i⊥ (“the spin is not up”), which correspond to a
positive answer to the question ¬Qi

α opposite to Qi
α.2 The different possible

answers {i, i⊥} together with the operations“∧”,“∨”constitute a logical struc-
ture called lattice, indicated by L. This lattice is orthocomplemented because
for each element i (a positive answer), it exist is complement i⊥ (a negative
anwer to the same question, with the properties i ∨ i⊥ = 1 and i ∧ i⊥ = ∅,
where 1, ∅ are also part of the lattice L (a complete lattice).

Another important property of the lattice defined by a complete series of
mutually exclusive questions is the distributivity, which corresponds to the
property

i ∧ (j ∨ k) = (i ∧ j) ∨ (i ∧ k), i ∨ (j ∧ k) = (i ∨ j) ∧ (i ∨ k) (1)

for any triplet i, j, k ∈ L. As we will see in the following sections where we
will consider more than one set of complete questions, distributivity, or more

2 In other words we have ¬Qi
α = Qi⊥

α
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Fig. 1 Left: artistic scheme of a Stern-Gerlach experiment with vertically aligned magnets.
Right: graph of the orthocomplemented lattice corresponding to the detection of the three
emerging beams.

precisely its absence, will play an important role to calculate interference phe-
nomena in the probability calculation. Note, a distributive orthocomplemented
lattice is also called Boolean lattice.

A simple example of a complete set of questions can be built considering a
spin-1 particle passing through a Stern-Gerlach apparatus with a defined axis
orientation, vertical for example (see Fig. 1 left). Here the spin orientation
of the particle is determined by the deflection of the particle itself passing
through a non-homogeneous magnetic field. The complete set of question is
constituted by a series of three particle detectors that correspond to the ques-
tions {QV } = Q+

V , Q
0
V and Q−

V , one for each spin projection. The ensemble
of the corresponding answers {V+, V0, V−, V

⊥
+ , V ⊥

0 , V ⊥
− } forms a orthocomple-

mented distributive (Boolean) lattice represented in Fig. 1 right (see Appendix
for more details on lattices properties).

From the output of the three detectors we can extract only a limited
amount of information. In opposite, in a classical case as the measurement of
egg holes by different calibers (see Appendix), from the use of additional holes
with different diameters, additional information can be always be extracted.3

2.3 Second postulate of RQM and orthomodular lattices

The second postulate of RQM is [11]

Postulate 2 (Unlimited questions): it is always possible to acquire
new information about a system.

When a particle coming out from a Stern-Gerlach apparatus, vertically
oriented for example, is injected into another Stern-Gerlach apparatus with a

3 If we do not consider the atomic structure of the eggs and calibers, the extractable
information is in fact limitless.
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different orientation, e.g. horizontal, the new output can be used to extract
new information with a loss of old information because its total quantity is
bounded. The new results {H+, H0, H−, H

⊥
+ , H⊥

0 , H⊥
−} correspond to a new set

of questions {QH} = Q+

H , Q0
H (which corresponding to a new context in the

framework of the Context-System-Modality developed by Auffèves et Granger
[9, 16]). As for the vertical case, the new possible outcomes alone have a
mutual relation similar to the scheme in Fig. 1 (right). But when horizontal and
vertical measurement apparatus are considered together, they form a lattice
that is no more distributive, contrary to classical cases as a egg measured by
two different sets of calibers (see Appendix).

The non-distributivity of the lattice is related to the fact that each set
of questions is complete, but the sets are not compatible each other because
each apparatus can extract an information Imax and the maximal quantity
of information that can be extracted is also I = Imax. The absence of the
distributive property has major consequences. It implies in fact that the order
on which the questions/measurements are made matters and is related to the
commutation of operators in standard QM.

As pointed in the early years of QM [12], proposition lattices defined by set
of measurements of classical or quantum cases, have still in common an impor-
tant property, orthomodularity, which is a weaker property than distributivity4

consisting in

i = j ∨ (i ∧ j⊥) (2)

for each pair of elements i, j ∈ L with i � j. In the next subsection we will se
that this property is essential to build a Hilbert space.

A final comment to the second postulate is that it can be actually con-
sidered, as a lower bound on the information, in complement to the first pos-
tulate that determine the higher bound. Absolute certainty corresponds to a
zero information gain. Postulate 2 of RQM assure that we can extract always
information larger than zero.

2.4 Reconstruction of the Hilbert space

It can be demonstrated that if we have an orthomodular lattice, which is in
addition atomic (that correspond essentially to the existence of pure states)
and has covering properties (that correspond to the requirement that a pure
state transforms in a pure state) an Hilbert space H can be reconstructed
[3, 14]. This is the case of the lattices we can built from yes/no measurements
(see Appendix). The choice of the numbered field of the Hilbert space (reals,
complex, quaternion, p-adic, etc. ) is not yet defined. However, it can be addi-
tionally demonstrated that the complex case satisfies the basic requirements
for describing quantum phenomena without redundancy [14].

4 Orthomodularity derives from the modularity property, i∨ (j∧k) = (i∨ j)∧k if k � i a
special case of distributivity, and the property of orthocompleteness [12, 14, 15]. All Boolean
lattices, which are distributive, are automatically orthomodular.
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Because a system can be described by a complete set of questions, each
complete set {Qi

α} can be associated to a basis {|iα〉} of H. Moreover, from
any |iα〉 we can built a projector P i

α = |iα〉 〈iα|. Different sets of questions
{|iα〉}, {|jβ〉} correspond to different complete bases that are related to each
other via unitary matrices U with |jβ〉 = U |iα〉. The unitarity of U is guaran-
teed by the completeness and orthogonality of each basis element [17]. In this
context, a pure state, |iα〉, correspond to a certain positive answer to a ques-
tion of a complete set. A mixed state is the results of an uncertainty between
answers of among questions.

3 Probability function and properties

3.1 Probability function construction

Taking into account two complete families of questions {Qi
α}, {Q

j
β} and the

second RQM postulate, we can consider the probability for obtaining a posi-
tive answer to the question Q

j
β after a positive answer to the question Qi

α from
subsequent interactions between the system we want to study and our system,
on which the form of our question depends. This is a perfect example of condi-
tional probability that can be indicated by p[Qj

β |Q
i
α]. To underline that we are

dealing with measurements that corresponds to answers to questions, in the
previous expression and in the following paragraphs we implicitly indicates by
Qi its corresponding positive answer.

Different approaches can be used to define the probability function p [14,
15, 18, 18, 19]. In the case of RMQ framework, the sets possible answers to
the different sets of questions, can be considered as a set of propositions that
can be true or false. In this general context, if we require consistency and that
p is represented by a positive number, the probability can be defined by the
following axioms [18, 20, 21]

0 ≤ p[Qj
β|Q

i
α] ≤ 1, (3a)

p
[

∨

j

Q
j
β

∣

∣

∣
Qi

α

]

= 1, (3b)

p[Qj
β ∨Qk

β |Q
i
α] = p[Qj

β |Q
i
α] + p[Qk

β|Q
i
α], (3c)

for a defined set of questions Q
j
β knowing a positive question Qi

α. The second
axiom states that the probability of certainty, here represented by the con-
junction of all questions

∨

j Q
j
β ≡ 1 of the the complete set {Qj

β}, is equal

to one, which is equivalent to the statement p[Qj
β|Q

j
β ] =1. The last axiom is

valid for mutually exclusive questions only, i.e. for questions with Q
j
β ∧Qk

β = ∅

corresponding to p[Qj
β ∧ Qk

β|Q
i
α] = 0, which is exactly our case. A fourth ax-

iom can be provided for conditional probabilities for specific circumstances,
on which Bayes’ theorem is based and on which we will discuss below. For a
given answer of the question Qi

α the probability function p[·|Qi
α] defined by
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these three axioms is compatible with Kolmogorov’s axiomatic definition [22],
more commonly used for physical quantities. In particular, p respects the basic
probability properties to be used in the Gleason’s theorem [23], the implemen-
tation of which is discussed in the next section. Differently from Kolmogorov
approach, we will see that the explicit dependency on the prior answers pro-
vides a clear use of p in the different contexts.

3.2 The Gleason’s theorem

In the previous sections we saw that from the first and the second postulates of
RQM we can build a Hilbert space. Considering the definition of the probability
function with Eqs. (3), we can then apply the Gleason’s theorem [23] reported
here from an adaption of Refs. [3, 14]:

In a separable Hilbert space H of dimension ≥ 3, whether real, complex or
quaternion, every probability measure (that respect Eqs. (3) n.a.) on a closed
subspace HS can be written in the form

p[HS ] = tr[ρPS ], (4)

where PS denotes the orthogonal projection on HS and ρ is a density operator.

In our notation, for a pure state, defined by a positive answer to a question
Qi

α for example, the probability for having a positive answer to the question
Q

j
β is

p[Qj
β |Q

i
α] = tr[ραP

j
β ] = | 〈jβ |iα〉 |

2 = |Uij |
2, (5)

with

ρα = |iα〉 〈iα| , (6)

and where U is the unitary matrix allowing the transformation between the
complete bases {|iα〉} and {|jβ〉} complete bases transformation. Thus, we
see that Born’s rule can be deduced solely from the first two postulates and
from Gleason’s theorem, without the need of any further assumption: a third
postulate devoted to probabilities does not appear necessary. Furthermore, we
have

p[Qj
β|Q

i
α] = p[Qi

α|Q
j
β], (7)

a property that was only assumed as valid in the original formulation of RQM
[11].

Considering the previous equation and Eqs. (3), we have in addition

∑

i

p[Qj
β|Q

i
α] =

∑

j

p[Qj
β|Q

i
α] = p[

∨

j

Q
j
β|Q

i
α] = 1, (8)

which is completely compatible with the unitary properties of U in Eq. (5)
[11, 17].
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3.3 Conditional probability and Bayes’ theorem

Other non-trivial properties of the conditional probability function p can be
discussed considering three sets of complete questions. If we have three sub-
sequent specific questions Qi

α, Q
j
β, Q

k
γ from three different sets of complete

questions, we can consider the probability p[Qk
γ |Q

j
β > Q

i
α] for having a posi-

tive answer for Qk
γ knowing a positive answer for Q

j
β after a positive answer

for Qi
α. To take into account the order of the questions we introduce the new

non-symmetric relation operator “ >”, similar to the “AND” logical operator
“∧” but where Qi

> Q
j 6= Qj

> Q
i. We underline the importance of the se-

quence of the questions because it is related to the non-commutativity of the
operators P i

α and P
j
β , i.e. P i

αP
j
β 6= P

j
βP

i
α. As we will see, when the sequence

of the questions is not important, the operator “ >” reduces to the conjugation
operator “∧”.

From Gleason’s theorem (Eq. (5)) and the properties of the density oper-
ator, and in particular Lüders’ rule for conditional probabilities, we have for
pure states

p[Qk
γ |Q

j
β > Q

i
α] =

tr[P j
βραP

j
βP

k
γ ]

tr[ραP
j
β ]

=
tr[P j

βP
i
αP

j
βP

k
γ ]

tr[P i
αP

j
β ]

=

=
tr[P j

βP
i
αP

j
βP

k
γ ]

p[Qi
α|Q

j
β ]

=
| 〈kγ |P

j
β |iα〉 |2

| 〈jβ |iα〉 |2
. (9)

Because of the trace properties tr[MNL] = tr[NLM ] = tr[LMN ] (but 6=
tr[MLN ]), the nominator of Eq. (9) is completely symmetric with respect to
the interchange of P i

α and P k
γ . The difference between p[Qk

γ |Q
j
β > Q

i
α] and

p[Qk
γ > Q

j
β|Q

i
α] is only the denominator,

p[Qk
γ > Q

j
β|Q

i
α] = tr[P j

βP
i
αP

j
βP

k
γ ] = | 〈kγ |P

j
β |iα〉 |

2, (10)

which is required for the probability normalisation. In other words, we have

p[Qk
γ |Q

j
β > Q

i
α] =

p[Qk
γ > Q

j
β |Q

i
α]

p[Qi
α|Q

j
β]

, (11)

which is very similar to Bayes’ theorem for conditional probability except for
the presence of the operator “ >” instead of the conjunction “∧”.

If the projectors relative to questions commute5 additional simplifications
can be applied [14]. In this case we have P

j
βP

k
γ = P k

γ P
j
β that, together with

5 This conditions is satisfied if the orthomodular lattice associated to the set of measure-
ments is distributive.
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Fig. 2 Artistic scheme of the Young’s slit experiment.

Eq. (9) gives

p[Qk
γ |Q

i
α > Q

j
β] =

tr[P j
βραP

j
βP

k
γ ]

tr[ραP
j
β ]

=
tr[ραP

j
βP

k
γ ]

tr[ραP
j
β ]

=

=
p[Qk

γ ∧Q
j
β|Q

i
α]

p[Qj
β|Q

i
α]

≡ p[Qk
γ |Q

i
α ∧Q

j
β ], (12)

which is nothing else the Bayes’ theorem with “ >” equivalent to “∧”. We note
that the demonstration of the Bayes’ theorem provided by Cox and Jaynes
[21, 24] is based on the assumption that the conditional probability p[Qk

γ ∧

Q
j
β|Q

i
α] can be written as function of p[Qk

γ |Q
i
α∧Q

j
β ] and p[Qj

β |Q
i
α] [18, 21, 24].

This is clearly not true for the general case described by Eq. (9) where the
conjunction ‘∧′ between non-compatible questions is not defined [20]. In the
other way around, we note also that Bayes’ theorem can be easily derived
using the distributive property, as demonstrated by D’Agostini [25] (page 61),
which underlines once more the important role of distributivity.

4 An example: the Young’s slits

To see the implication of the previous formulas and their interpretation, we
consider the classical example of the a ‘Young’s slits’-like experiment, exten-
sively considered in the literature (see e.g. [14, 15, 26]).

We consider here the ideal experiment represented in Fig. 2 where a particle
is emitted by a source S and detected by a series of detectors D0, . . . , DN after
passing through a pair of slits, A and B. We assume that the walls of the slits
themselves, indicated by C, can detect the arrival of particles.

The initial state, i.e. the initial question Qi
α = QS

α, corresponds to the
emission or not of a particle from the source S. The detection in proximity of
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the slits correspond to the questions Q
j
β with j = {A,B,C} for the passage

through the slits A,B or the hitting of the slits walls C. The final set of ques-
tions corresponds to the detection on the the different detectors on the screen
with Qk

γ with k = {D0, . . . , DN}. Each set of questions {QA
β , Q

B
β , Q

C
β } and

{QD0

γ , . . . , QDN

γ } are complete and corresponds to complete bases of Hilbert
space {|Aβ〉 , |Bβ〉 , |Cβ〉} and {|D0〉γ , . . . , |DN 〉γ}.

We consider two different cases. In the first one we consider the possibility
to distinguish the passage of a particle through A or B (for ex. following the
trajectory of the particle if the particle is a ball or another macroscopic object)
before being detected on the screen. In the second case, we consider that only
the information from the slits wall C is available and we cannot access to the
information of the passage through A or B. In both case we will study the
detection from one particular detector only D = Dn ∈ {D0, . . . , DN}.

In the first case, because we can distinguish a path between A or B, we are
considering a detection that correspond to the question structure (QD

γ > Q
A
β )∨

(QD
γ > Q

B
β ): we want to determine the probability to detect a particle from

D passed through A or to detect a particle from D passed throuhg B. We
are only interested to the detection in D (from here the operator “∨′′) but
we could in principle detect from which slit the particle passed (from here
the operator “ >”). The probability we are interested is then p[(QD

γ > Q
A
β ) ∨

(QD
γ > Q

B
β )|QS

α] where QS
α = TRUE correspond to a particle emission from

the source. Detection of a passage through A or B correspond to mutually
exclusive questions QA

β ∧ QB
β = ∅. Any combination with these questions,

(QD
γ > Q

A
β ) and (QD

γ > Q
B
β ) in our case, is also mutually exclusive as well.6

Applying Eq. (3c), we have then

p[(QD
γ > Q

A
β ) ∨ (QD

γ > Q
B
β )|QS

α] = p[QD
γ > Q

A
β |Q

S
α] + p[QD

γ > Q
B
β |Q

S
α] =

= | 〈Dγ |P
A
β |Sα〉 |

2 + | 〈Dγ |P
B
β |Sα〉 |

2 =

= | 〈Dγ |Aβ〉 〈Aβ |Sα〉 |
2 + | 〈Dγ |Bβ〉 〈Bβ |Sα〉 |

2. (13)

The final probability is the sum of the individual probabilities (composed each
by the square product of different terms) to pass through the slit A and the
slit B.

In the second case we consider that we cannot distinguish in principle the
passage through one specific slit. The non-detection on the walls C after an
emission from S corresponds however to the certainty of the passage of a

particle through A or B. Symbolically it means that ¬QC
β ≡ QC⊥

β ≡ QA
β ∨QB

β .
In this case, using Eq. (10), the probability to detect a particle from D is

p[QD
γ > (Q

A
β ∨QB

β )|QS
α] = | 〈Dγ |P

A∨B
β |Sα〉 |

2 (14)

6 Because we can distinguish the trajectories, each pair (QD
γ > Q

A
β ) and (QD

γ > Q
B
β ) can

be considered related to two distinct detectors to which correspond the questions QDA and
QDB with QDA ∧QDB = ∅.
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with PA∨B
β the projector operator corresponding to the positive answer to the

question “Is the particle passed through A or B?”.
Considering that {|jβ〉} basis is orthonormal (formed by mutual exclusive

questions), we have that 〈jβ |kβ〉 = P
j
βP

k
β = 0 for j 6= k. Then [27]

PA∨B
β = I − PA⊥

∧B⊥

β = I − (I − PA
β )(I − PB

β ) = PA
β + PB

β . (15)

We have then that the final probability is

p[QD
γ > (Q

A
β ∨QB

β )|QS
α] = | 〈Dγ |(P

A
β + PB

β )|Sα〉 |
2 =

= | 〈Dγ |Aβ〉 〈Aβ |Sα〉 + 〈Dγ |Bβ〉 〈Bβ |Sα〉 |
2. (16)

Compared to the discernible case (Eq. (13)), we have the square of the sum
of two terms with the possibility of interference terms. We have then the
well known property of probability calculation of QM without introducing
additional postulates or axioms.7

5 Discussions

As presented in the previous section, the interference effect on the final proba-
bility by one of the detectors D0, D1, . . . , DN is directly related to the possibil-
ity to distinguish from where the particle passed, i.e. the possibility or not to
access to the information relative to the passage through a particular slit. Be-
cause of the first RQM postulate, this information can be in fact intrinsically
limited. The possibility to distinguish or not the particle path correspond to
different conditional probability expressions, Eqs. (13) and (16) respectively.
Their equivalence cannot be assumed a priori in the slits experiment example
because the distributive property, habitually assumed as valid as in common
(classical) cases, is not justified and can be violated, with in our specific case

QD
γ > (Q

A
β ∨QB

β ) 6= (QD
γ > Q

A
β ) ∨ (QD

γ > Q
B
β ). (17)

This property is in fact non-valid in question/experiment lattices involving
a limited amount of information and it cannot be assumed by default, as
presented in a specific example in the Appendix. If distributive property is not
given for granted, we have to distinguish the different cases as in the example
of Young’s slits experiment. Different cases correspond to different expressions
of the probability function p, which is uniquely defined by Eqs. (3). What it
changes is the proposition combination (question combination) for which we
are calculating the probability.

Because of the contradiction with daily experience phenomena where the
distributive property is valid, its abandon is, to the opinion of the author, the
largest intellectual difficulty in this framework to reconstruct QM formalism

7 An alternative demonstration of the derivation of the superposition property can be
found in Ref. [14] (Section 26.3).



Relational Quantum Mechanics and Probability 13

from RQM postulates. The other advantage of RQM formulation is the possi-
bility to transpose the series of questions/measurements to a set of propositions
that can be studied then in the context of general logic. In the case of the slits
experiment, once a particle has been emitted and detected, the sentence “The
particle passed through the slit A OR the particle passed through the slit B” is
always true. In opposite the sentence “The particle passed through both slits A
and B” is always false because questions is always false. QA

β and QB
β are in fact

compatible and mutually exclusive and QA
β ∧ QB

β = ∅ (PA
β PB

β = 0). Finally,
the sentences “The particle passed through the slit A” and “The particle passed
through the slit B” are completely indeterminate if we do not measure where
the particle passed through. This is similar to an analog case discussed by
Aristotle (reported in Ref. [28]) well before the formulation of quantum me-
chanics. The sentences ‘Tomorrow there will be a sea-battle” and its negation
‘Tomorrow there will not be a sea-battle” have today no definite truth-value
(they are indeterminate), but their disjunction “Either tomorrow there will be
a sea-battle or tomorrow there will not be a sea-battle” is true. As discussed
in Refs. [3, 28], this structure can be related to the  Lukasiewicz three-valued
logic approach [29] where in addition to the true and false logical values for
propositions, an indeterminate or unknown third value is considered.

6 Conclusions

In conclusion, after a critical analysis and discussion of the postulates of Rela-
tional Quantum Mechanics, we demonstrate that the third one in unnecessary.
From the first two postulates and the logical structure of “yes/no” measure-
ments, the Hilbert space can be in fact reconstructed, and a rigorous definition
of the conditional probability for the possible outcomes of different measure-
ments can be built. The Born’s rule and the more general rule with the density
operator can be then derived from the Hilbert space structure applying Glea-
son’s theorem. The presence or not of interference terms, which characterises
Born’s rule, is demonstrated to be related to the precise formulation of the con-
ditional probability where distributive property cannot be taken for granted.

In the specific case of Young’s slits, this is translated to a difference be-
tween the probability to detect a particle that passed through the pair of slits A
and B (QD

γ > (Q
A
β ∨QB

β )) and the probability to detect a particle that passed

through slit A OR to detect a particle that passed through slit B ((QD
γ > Q

A
β )∨

(QD
γ > Q

B
β )). Even if the two propositions are apparently equivalent in com-

mon language, there is a important difference linked to the possibility or not
to determine the particle passage through a particular slit bringing to the
disequality QD

γ > Q
A
β ) ∨ (QD

γ > Q
B
β ) 6= QD

γ > (QA
β ∨ QB

β ). The non-validity
of distributive property in the logical structure of “yes/no” measurements de-
rives from the boundaries of the information that can be extracted from a
system and from the possibility to always obtain new information. This is
related to the well know Quantum Mechanics structure with compatible or
non-compatible measurements (operators) and their commutativity.
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Fig. 3 Left: artistic scheme of a egg size measurement with two calibers. Right: graph of
the orthocomplemented lattice corresponding to the possible outcomes on the egg size.
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Appendix A: Yes/No measurements and orthomodular lattices

A1 A simple case of distributive and orthocomplemented lattice

To present orthomodular lattices, their properties and their link to a set of
yes/no experiments, we will consider two simple cases: a classic case relative to
the measurement of the size of eggs using two calibers (an example introduced
originally by Piron [27]), and a case of measurement of a spin-1 particle with
a Stern-Gerlach apparatus.

In the case of the egg measurement, the questions {Qα} associated to these
measurements are composed by Qs =“is the egg small?”, which positive answer
correspond to an egg passing through the small hole with diameter ds, and
by Qℓ = “is the egg large?” corresponding to an egg not passing through the
large hole with diameter dℓ > ds (see Fig. 3 left). From the combination of
these two questions we can deduce three sizes: “s” small (Qs), “ℓ” large (Qℓ)
and “m” medium from the combination Qm ≡ ¬Qs ∧ ¬Qℓ.

The different answers (positive or negative) can be interpreted as proposi-
tions that can be true or false and are related to each other. As example, if we
have a positive answer to the question Qs, this corresponds to the proposition
“the egg is small” ≡ s. If the we have a negative answer (positive to its nega-
tion ¬Qs), this corresponds to the proposition “the egg is not small” ≡ s⊥,
where“⊥”indicates complementation (orthogonality) of negative answers with
respect to positive answers. In addition to the complementation “⊥” we can
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introduces the operations of conjunction “∧” (“AND”), disjunction “∨” (“OR”)
between the propositions s,m, ℓ, s⊥,m⊥, ℓ⊥.

The different answers/propositions and their relation constitute a logical
structure of a lattice. As example, a negative answer to the question Qℓ, i.e.
¬Qℓ, implies a positive answer to Qm or Qs. In this specific example, we have
ℓ⊥ =⇒ m ∨ s (“not large implies medium or small”). This means that for
every egg measurement result giving as answers “the egg is medium” or “the
egg is small”, we are sure that the proposition “the egg is not large” is true.
This order relation (related to the logical implication =⇒ ) can be indicated
by “�”. In the specific example considered, we have that ℓ⊥ � m, ℓ⊥ � s

and ℓ⊥ � m ∨ s. This order relation is represented by a graph (Fig. 3 right)
by descending lines and where the elements i ∧ j and i ∨ j can be determined
joining the two lower or upper lines, respectively, generating from the elements
i and j.

Due to the question/answer basic structure, each element i of the partially
ordered set so defined has a complement i⊥ with the properties i∨ i⊥ = 1 and
i ∧ i⊥ = ∅. 1, ∅ are also part of the set with 1 corresponding to all type of
eggs and ∅ to no one. Because of these properties, our partially ordered set is
actually a orthocompletemented lattice8 L. Another important property of the
algebra of the lattice defined by this series of measurement is the distributivity
(Eq. (1).

Another simple example is the case of a spin-1 particle passing through a
Stern-Gerlach apparatus discussed in Sec. 2.2. The complete set of the answers
to the questions {Q−

V } has the same structure as the eggs measurement.

A2 A more complex case; orthomodularity and distributivity

In the classic case of the egg-size determination, a new set of questions {Qβ}
corresponds to a new set of calibers with different diameters. We can consider
for example, slightly larger holes dS , dL with ds < dS < dℓ < dL that corre-
spond to QS and QL questions and that generate a new set of possible five
measurable sizes.9 The corresponding lattice is represented in Fig. 4 (left). It
is more complex but still distributive.10 As discussed by Piron [27, 30] and
Beltrametti and Cassinelli [14], this reflects the fact that the two set of ques-
tions (two pairs of calibers) are compatible with each other and that the final
measurement output does not depend on the order on which the two pairs of
calibers are implemented.

8 The considered poset is a lattice because for any elements i, j, we can define the element
combinations i∧j and i∨j are part also of the considered ensemble of propositions (answers).
It is a orthocomplemented lattice because for any element i, there is an element i⊥ with the
properties i ∨ i⊥ = 1 and i ∧ i⊥ = ∅ and (i⊥)⊥=i and i � j =⇒ j⊥ � i⊥.

9 As in the previous example, the measurement “m” medium come from the combination
Qm ≡ ¬Qs ∧ ¬Qℓ), with the set of questions Qs, QS , Qℓ, QL different sizes can be defined
as e.g. “not very small” corresponding to ¬Qs ∧¬QS the intermediate size between the two
smaller diameters (the egg pass through the S hole but not the s one.
10 Similar example of such a lattice can be found in Ref. [15].
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Fig. 4 Graphs of the orthocomplemented lattice corresponding to the measurement of
egg size with four different calibers (left) and to the measurement with two Stern-Gerlach
apparatus, one vertical and one horizontal.

In the case of the spin-1 particle, in addition to a vertically Stern-Gerlach
apparatus, we can consider a horizontally oriented one. This new measure-
ment apparatus is related to a new set of questions {QH} = Q+

H , Q0
H , Q−

H that
corresponds to new possible measurement results {H+, H0, H−, H

⊥
+ , H⊥

0 , H⊥
−}.

When the two sets of measurements are considered together, they form a non-
trivial but relatively simple lattice represented in Fig. 4 (right). The perpen-
dicularity of the two apparatus axes determines the fact that a particle giving
the measurement result H0 in the horizontal apparatus (V0) corresponds to a
measurement V+ ∨ V− in the vertical apparatus (H+ ∨ H− in the horizontal
one). The most important characteristic is that the lattice is no more distribu-
tive. For example, if we consider the possible outcomes H+, V−, V

⊥
− , we have

that
H+ ∨ (V− ∧ V ⊥

− ) 6= (H+ ∨ V−) ∧ (H+ ∨ V ⊥

− ). (18)

In fact11 the left term is equal to H+ and the right term is equal to V ⊥
− .

Additional examples of non-distributive orthomodular lattices can be found
in the literature, as the lattice corresponding to the measurement of polarised
light [27] or a quantised vector in the real space [15].

As discussed by [27], the distributive property is related to the logical
structure of the orthomodular lattice L corresponding to the ensemble of the
measurements. For two elements (yes/no measurements) i, j ∈ L, we have that

“i true′′ or “j true′′ =⇒ “i ∨ j true′′, (19)

but
“i ∨ j true′′ =⇒ “i true′′ or “j true′′, (20)

11 In the right term, V−∧V ⊥

−
= ∅ because of the complementarity and then H+∨∅ = H+.

In the left term H+ ∨ V− = 1 (the is no other common elements) and H+ ∨ V ⊥

−
= V ⊥

−

because of the lattice hierarchy.
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is valid only if the lattice L is also distributive, which is not the case for
measurements reaching the limit of the extractable information, i.e, the quan-
tisation aspects [12, 13, 27] (a simple presentation of this aspect in a Hilbert
space can be found in [28, p. 37] and in [15, p. 190]).
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