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HOMOTOPY EQUIVALENCE OF SHIFTED COTANGENT BUNDLES

RICARDO CAMPOS

Abstract. Given a bundle of chain complexes, the algebra of functions on its shifted
cotangent bundle has a natural structure of a shifted Poisson algebra. We show that if two
such bundles are homotopy equivalent, the corresponding Poisson algebras are homotopy
equivalent.

We apply this result to L∞-algebroids to show that two homotopy equivalent bundles
have the same L∞-algebroid structures.
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1. Introduction

The classical notion of a Lie algebroid consists of a vector bundle A over a manifold M
together with a compatible Lie algebra structure on the space of sections Γ(A) of A. More
recently, due to the application of homotopy theoretical tools to theoretical physics [KS10,
KS15] and to differential geometry (resolution of singular foliations) [Lav16, Lav16], there
has been much interest in a derived version of Lie algebroids.

In the early 90’s, T. Lada and J. Stasheff [LS93] introduced L∞ algebras in the context
of mathematical physics as a natural extension of differential graded Lie algebras, in which
the Jacobi identity is only satisfied up to higher coherent homotopies given by multilinear
brackets. The same approach of intertwining L∞ algebras and manifolds give rise to the
homotopical version of Lie algebroids, the so-called L∞ algebroids [SSS12, Sev01].

It is often convenient to work in the dual setting of differential graded (dg) manifolds
which are generalizations of smooth manifolds to higher geometry, in which spaces are
locally modeled by chain complexes. We recall that in [Vor10] Voronov shows that given
a graded vector bundle E, L∞ algebroids over E are in one-to-one correspondence with
non-positive dg manifold structures on E. Given this correspondence, we call E a split
graded manifold.

Assume now that E dg vector bundle i.e., E is a sequence of vector bundles (Ei)i∈Z

endowed with a global differential d : Ei → Ei+1 squaring to zero. The goal of this man-
uscript is to understand the behavior of the space L∞ algebroid structures on E when we
replace E by a homotopy equivalent split dg manifold F over the same base manifold M.

Our main result states that two homotopy equivalent split dg manifolds have essentially
the same L∞ algebroid structures.

Theorem 4.1 Let E and F be homotopy equivalent split dg manifolds concentrated in
non-positive degrees. Then, there is a bijection

1
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{
L∞ algebroid

structures on E

} /
gauge eq.

1:1
←→

{
L∞ algebroid

structures on F

} /
gauge eq.

The crucial object to prove this result is the shifted cotangent bundle T ∗[1]E [Roy99].
The commutative algebra of functions of this space extends to a shifted Poisson algebra
via the big bracket [KS04, Kra07, Vor10].

There is an of analog of Voronov’s result stating that the space of L∞ algebroid structures
over E can be identified with the set of Maurer–Cartan elements of algebra of functions on
T ∗[1]E, the shifted cotangent bundle of E.

This prompts us to understand how the shifted cotangent bundle behaves under homo-
topy equivalence. Our other main result, in the form of Theorem 3.1 and Corollary 3.6,
states that if E and F are two homotopy equivalent dg vector bundles, their algebras of
functions are homotopy equivalent as Poisson algebras.

Theorem Let E and F be two homotopy equivalent split dg manifolds. Then, there exist
C∞(M)-linear ∞-quasi-isomorphisms OT ∗[1]E  OT ∗[1]F and OT ∗[1]F  OT ∗[1]E of shifted
Poisson algebras.

When E is concentrated in degree 0, L∞ algebroids are precisely Lie algebroids, and
1-shifted Poisson structures are seen to be what is refereed to in the literature as quasi-Lie
bialgebroids (see [Roy02b] for a definition of those and, e.g. [Ant08], for the description in
terms of big bracket). Quasi-Lie bialgebroids are the infinitesimal version of quasi-Poisson
groupoids (see [IPLGX12]).

The results that we present here are connected to the theory of shifted Poisson structures
[CPT+17]. In section 4.2 we see that under certain conditions our result allows us to
conclude that two homotopy equivalent L∞ algebroids have equivalent spaces of shifted
Poisson structures. This matches recent advances by [BCSX17] and [Saf17].

1.1. Acknowledgments. I would like to thank Camille Laurent-Gengoux for proposing
the problem and many useful discussions. I would also like to thank Damien Calaque for
discussions related to Poisson structures. I acknowledge support by the Swiss National
Science Foundation Early Postdoc.Mobility grant number P2EZP2 174718.

1.2. Notation and conventions. Throughout this manuscript the phrase differential graded
or dg should be implicit everywhere. Concretely, unless otherwise explicit, a vector space
V is a dg vector space (i.e. a cochain complex), Lie algebras are differential graded Lie
algebras, locally ringed spaces are dg R-algebras etc. We use cohomological conventions,
i.e. all differentials have degree +1. In particular this means that taking linear duals re-
verses degrees V∗i = (V−i)∗.

The vector spaces (such as the ones arising from dg manifolds) being considered are
assumed to be finite dimensional in every degree and but not necessarily of bounded degree.

Given two differential graded vector spaces A and B, the induced differential on the
space Hom(A, B) is the commutator, denoted by [d,−], satisfying [d, f ] = f ◦dA+(−1)ddB◦

f , for f ∈ Hom(A, B) of degree d.
Finally, we consider the ground field to be R for concreteness but the reader will notice

that all algebraic proofs hold over any field.

1.2.1. Remark about degree shifts. Given a vector space V , the notation [k] denotes a shift
of degree by k units, such that (V[k])i = Vk+i. Throughout the text we will encounter
algebraic structures whose operations are not in degree zero. Concretely, the functions on
the shifted cotangent bundle form a 2-shifted Lie algebra or a Lie{2} algebra, a Lie algebra
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whose Lie bracket has degree −2. When it is unambiguous, we might omit the shifts for
simplicity.

As a precise definition one can define a Lie{k} algebra structure on V to be a Lie algebra
structure on V[−k]. One should notice that this means that for odd k, a Lie{k} algebra has
symmetric brackets, but when shifts are even, all formulas (and signs) stay the same.

We remark that one of the consequences of the degree shifts and the cohomological
conventions is that on a Lie{k} algebra, a Maurer–Cartan element has degree 3.

2. Differential graded manifolds and the shifted cotangent bundle

In this section we intend to recall in detail the constructions and results associated to the
shifted cotangent bundle of a split dg manifold. We recommend the texts [Fai17, Ant10,
BP13] for a more thorough introduction to the topics of this section.

2.1. Dg manifolds. The origins of graded geometry and dg (differential graded) geometry
can be traced back to physics, where (Z/2Z graded) manifolds give for instance a proper
treatment of ghosts in BRST deformation. Graded (resp. dg) manifolds are locally modeled
by a graded (resp. dg) vector space V in the sense that a function on such a manifold is
locally given by a function on the base manifold and a polynomial function on V .

Definition 2.1. A graded manifold is a locally ringed spaceM = (M,OM), where the base
M is a smooth manifold and around every point x ∈ M there is an open set U 3 x such that
the structure sheaf OM(U) = C∞(U) ⊗ S (V∗) is for some some graded vector space V.

A dg manifold (also called a Q-manifold) a graded manifold equipped with a degree
+1 cohomological vector field Q, i.e., a derivation of the algebra of functions such that
Q2 = 0.

In the present text we will be mostly interested in a subclass of dg manifolds that origi-
nate from bundles.

Example 2.2 (Dg vector bundles). Given a differential graded vector bundle E over M,
i.e., a sequence of vector bundles (Ei)i∈Z with differentials d

... Ei−1
d //

##FFFFFFFF Ei

��

d // Ei+1...

||xxxxxxxx

M
such that d2 = 0, one has a naturally associated dg manifold also denoted by E, given

by its sheaf of sections E = (M,OE = Γ(S (E∗))).
Notice that d : E → E induces a degree +1 map Q : E∗ → E∗ ↪→ S (E∗) that extends to

a square zero C∞(M)-linear derivation on Γ(S (E∗)).
Such dg manifolds are called split dg manifolds.

In fact, every non-negatively graded manifold originates from such a construction (Batch-
elor’s theorem [Bat80]), even though the vector bundle E is non-canonically determined.

2.2. Shifted cotangent bundle and the big bracket. Given a graded vector bundle E →
M, one can consider its shifted cotangent bundle T ∗[1]E = (M,OT ∗[1]E) (see [Roy02a,
Ant10] for the constructions in the ungraded setting). Locally this space has coordinates
xi ∈ M, ξa ∈ E, pi ∈ T M, θa ∈ E∗︸               ︷︷               ︸

momentum coordinates

.

In these coordinates, the cohomological degree in the algebraOT ∗[1]E is given by deg(xi) =

0, deg(pi) = 2, deg(ξa) = d + 1 for ξa ∈ Ed and deg(θa) = −d + 1 for θa ∈ (Ed)∗. We will
also consider a biweight w on OT ∗[1]E compatible with the product, where w(xi) = (0, 0),
w(pi) = (1, 1), w(ξa) = (0, 1) and w(θa) = (1, 0).

Notice that there are natural global inclusions
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C∞|M ↪→ OT ∗[1]E

Γ(E) ↪→ OT ∗[1]E

Γ(E∗) ↪→ OT ∗[1]E

Remark 2.3. Given the choices of a connections ∇i : T M → E one can also define a
(non-canonical) inclusion Γ(T M) ↪→ OT ∗[1]E . With this choice one can identify

OT ∗[1]E �∇ S (T M[−2] ⊕ E∗[−1] ⊕ E[−1]).

Besides the commutative product, the space OT ∗[1]E has a natural Lie bracket {−,−}, the
so-called big bracket [KS04, Roy02a] extending the natural pairing of E∗ and E.

More concretely, the bracket has degree −2, biweight (−1,−1) and it satisfies the fol-
lowing identities on generators

{X, f } = X · f , for X ∈ Γ(T M), f ∈ C∞|M ,

{ε, e} = 〈ε, e〉, for e ∈ Γ(E), ε ∈ Γ(E∗),

Even though the bracket is intrinsically defined, with the choice of a connection ∇ as in
Remark 2.3 we also have {X, e} = ∇X(e) and {X, ε} = ∇X(ε).

The bracket is extended to the full algebra OT ∗[1]E by the Leibniz rule with respect to
the product of functions, making OT ∗[1]E a shifted version of a Poisson algebra, also called
a Pois3 or e3 algebra in the literature.

Remark 2.4. Notice that since the differential has weight zero and the bracket has weight
(−1,−1), the (shifted) Poisson algebra OT ∗[1]E can be decomposed into a direct sum of
(shifted) Lie algebras

OT ∗[1]E =
⊕
k≥0

Wk,

where the Lie algebra Wk =
⊕

n≥0 W(n,n+k) is spanned by all the elements whose biweights
components have a common difference, i.e, elements of biweight (0, k), (1, k + 1), (2, k + 2)
and so on.

Suppose now that E was a dg vector bundle with differential dE . It is easy to see that
these constructions are compatible with the differential and that in this case OT ∗[1]E is a dg
Poisson algebra. Another way to see this is that dE a Maurer–Cartan element of OT ∗[1]E ,
i.e. {dE , dE} = 0. Indeed, it follows from d2

E = 0 that {{dE , dE}, x} = 0 for every x element
of E or E∗. Therefore, {dE , dE} is central in S (E ⊕ E∗) but the center of this Lie algebra is
R and therefore {dE , dE} = 0.

By twisting the space OT ∗[1]E by this Maurer–Cartan element, we recover a dg Poisson
algebra structure on OdE

T ∗[1]E that we will denote by OT ∗[1]E only.

2.3. (Infinity) Algebroids. The constructions from the previous section allow us to en-
code neatly some classical notions. For example, a Lie algebroid structure over M i.e.,
an ungraded Lie algebra bundle E with a compatible anchor map ρ : E → T M, can be
expressed as a solution of the Maurer–Cartan equation on T ∗[1]M:

Proposition 2.5 ([Vai97, Roy99]). Let M be a manifold and E → M a vector bundle
concentrated in degree zero. The data of a Lie algebroid structure on E is equivalent to an
element µ ∈ OT ∗[1]E(M) of biweight (1, 2) such that {µ, µ} = 0.

The identification is given by ρ(X) · f = {{X, µ}, f } and [X,Y] = {{X, µ},Y}, for X,Y ∈
Γ(T M,M) and f ∈ C∞(M),



HOMOTOPY EQUIVALENCE OF SHIFTED COTANGENT BUNDLES 5

The same way the homotopically correct version of a Lie algebra is an L∞ algebra, the
notion of a Lie algebroid over a manifold M can be homotopically relaxed leading to the
concept of an L∞ algebroid. For technical reasons, for what follows we will suppose that
all objects are non-positively graded.

Definition 2.6. Let M be a smooth manifold and let (E = (Ei)i≤0, d) be a dg vector bundle
over M concentrated in non-positive degree. An L∞ algebroid structure on E is:

(1) A dg bundle map ρ : E → T M called the anchor and
(2) A sequence of antisymmetric brackets lk = [. . . ]k : Γ(E⊗k)→ Γ(E) of degree 2− k,

for k ≥ 2.
such that

(1) All brackets are C∞(M) linear except the binary bracket if one of the entries is in
degree 0. If that is the case, then it behaves as a vector field in the sense that if
X ∈ Γ(E0) and e ∈ Γ(E),

[X, f e]2 = f [X, e]2 + (ρ(X) · f )e.

(2) The anchor intertwines l2 and the bracket of vector fields

[ρ(x), ρ(y)] = ρ([x, y]),∀x, y ∈ Γ(E0).

(3) These brackets satisfy the structural axioms of an L∞ algebra (3).

Remark 2.7. Some authors such as [Get10] consider all brackets to be symmetric and of
degree 1 (from an operadic perspective one would call these L∞{−1} algebroids) while we
follow conventions such as the ones of [BP13]. These are equivalent up to a degree shift of
E.

Analogous to Proposition 2.5 one can show that L∞ algebroids are also given as solu-
tions of the Maurer–Cartan equation.

Proposition 2.8 (Folklore). Let E → M be a split dg manifold concentrated in non-
positive degrees, finite dimensional in every degree. The set of L∞ algebroid structures
over E is in biunivocal correspondence with the space of solutions of the Maurer–Cartan
equation in OT ∗[1]E of biweight (∗, 1) such that the term in E∗ ⊗ E = Hom(E, E) is the
differential d : E → E.

Sketch of proof. Due to the assumption of finite dimension, a map of bundles E → T M is
equivalent to a section of E∗ ⊗ T M and the data of the brackets corresponds to a section of
S (E∗) ⊗ E. The degree conditions imply that these correspond to elements of degree 3 in
OT ∗[1]E .

The bracket condition its easy to verify: The Maurer–Cartan equation can be split by left
weight. On high weights we find the L∞ structure equations and on left weight 2 the terms
with the differential do not exist due to our degree restraints on E so the Maurer–Cartan
equation gives us the same compatibility with the anchor as in the usual Lie algebroid
case. �

Remark 2.9. Some authors suppose that E is a graded manifold from the start and the
L∞ algebroid structure includes the datum of the differential d as a unary bracket l1. The
natural analog of the previous proposition holds, with the differential is recovered from
the E∗ ⊗ E part. If we recall that the differential dE is itself a Maurer–Cartan element
of OT ∗[1]E , the two results are related from the general fact that if g is a Lie algebra and
µ ∈ MC(g), then ν ∈ MC(gµ)⇔ ν + µ ∈ MC(g).

3. Proof of the main result

This section is devoted prove the main Theorem.
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Theorem 3.1. Let E and F be split dg manifolds over M. Suppose that there exist bundle
maps f : E → F and g : F → E that are quasi-isomorphisms and a homotopy HE : E• →
E•−1 such that idE − g ◦ f = HEdE + dE HE .

E

  @@@@@@@HE 99

f
)) F

~~~~~~~~~
g

ii

M

Then, here exists a C∞(M) linear L∞{2} quasi-isomorphismU : OT ∗[1]E  OT ∗[1]F .
Furthermore, this map:

• is compatible with the symmetric algebra product,
• is compatible with the biweight in the sense that it preserves each component Wk

from Remark 2.4 (Un has biweight (−n + 1,−n + 1)),
• its first componentU1 is the natural extension f and g∗.

Precisely, by compatibility with the symmetric algebra product we mean that every
(Un)n≥2 acts as a derivation with respect to the map U1. In particular, this means that U
actually defines a weak equivalence of shifted Poisson algebras (an ∞ − Pois3 algebra
quasi-isomorphism).

3.1. The case M = ∗. In this section we prove the main theorem 3.1 over M = ∗ a point,
which reduces to a problem in homotopical algebra. As we will see, this is the main part
of the proof, as the formulas we will obtain over a point readily extend to a more general
base.

In this case, E and F are just two dg vector spaces that are quasi-isomorphic with a
prescribed homotopy.

EHE 99

f
)) F

g

hh

The functions on the shifted cotangent bundle T ∗[1]E are given by the symmetric alge-
bra S (E[−1] ⊕ E∗[−1]).

We define a mapU1 : S (E[−1]⊕E∗[−1])→ S (F[−1]⊕F∗[−1]) by extending f : E → F
and g∗ : E∗ → F∗ to a map of commutative algebras.

Recall that given a dg vector space V , the space S (V) admits a bialgebra structure given
by the canonical coproduct ∆ : S (V)→ S (V) ⊗ S (V) by

∆(v1 . . . vn) =
∑
p≤n
σ∈Sn

±vσ−1(1) . . . vσ−1(p) ⊗ vσ−1(p+1) . . . vσ−1(n).

Notice that under this description, the Poisson bracket on S (E[−1] ⊕ E∗[−1]) = OT ∗[1]E
has the following nice form
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∆

;;;;;;; ∆

�������

lT ∗[1]E B {−,−} = 〈−,−〉 ,

m

where m stands for the multiplication (in the symmetric algebra) and 〈−,−〉 denotes the
pairing between E∗ and E being zero otherwise. By convention, elements of E∗ will be
placed on the first entry of 〈−,−〉 and elements of E will be placed on the second entry.

We define the operator R2 B OT ∗[1]E ⊗ OT ∗[1]E → OT ∗[1]E

∆

AAAAAAAA ∆

}}}}}}}}

〈−,HE−〉 ,

m

Finally, we defineU2 : OT ∗[1]E → OT ∗[1]F to beU2 B U1 ◦ R2.
Notice that besides the homotopy, all the operations involved in U2 commute with the

differentials, from which it follows that

(1)

[d,U2] =

∆

;;;;;;; ∆

�������

〈−,−〉

m

U1

−

∆

<<<<<<< ∆

�������

〈−, g ◦ f (−)〉

m

U1

C U1 ◦ lT ∗[1]E −U1 ◦ l̃T ∗[1]E
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and a similar formula without the terms U1 holds if we replace U2 by R2. One can
easily check on generators that the second term of the equation, U1 ◦ l̃T ∗[1]E is equal to
{U1(−),U1(−)}T ∗[1]E from where the case n = 2 from equation (4) follows.

To define the higher components of the L∞ morphism we require some set-up. Let Treen

be the set of trees with n labeled vertices. To an element T ∈ Treen one can associate a
map T : O⊗n

T ∗[1]E → OT ∗[1]E of degree n− 1. The value of T (x1, x2, . . . , xn) is obtained in the
following way:

Let e1, . . . , en−1 be the set of edges of T and consider a choice of 2n − 2 elements
α1, β1, . . . , αn−1, βn−1 each one of that from either E or E∗ such that:

• For every k, if ek connects vertices i and j, αk is a factor of xi and βk is a factor of
x j,

• There is no repetition of choices.

Given such a choice one can consider the product 〈α1,H(β1)〉 . . . 〈αn−1,H(βn−1)〉x1x2 . . . xn̂,
where x1x2 . . . xn̂ denotes the product of all xi’s but with our choice of α’s and β’s removed1

together with the appropriate Koszul sign corresponding to the elements removed.
Finally, the value of T (x1, x2, . . . , xn) =

∑
choices of
α1,...,βn−1

〈α1,H(β1)〉 . . . 〈αn−1,H(βn−1)〉x1x2 . . . xn̂

is obtained by summing over all possible choices the products described.
Heuristically, every edge of a tree corresponds to an application of R2 and indeed R2 =

1 2
∈ Tree2.

Remark 3.2. Notice that some choices regarding the ordering and orientation of edges of
T has to be done to compute T (x1, x2, . . . , xn). Since the target OT ∗[1]E is commutative, all
choices lead to the same result up to a sign.

We fix the convention that edges are oriented from the smaller vertex to the bigger vertex
and the ordering of edges is done by comparing the smaller label and then the bigger label.

In particular it follows that natural the action of Sn permuting the labels of the vertices
produces signs.

For all n ≥ 1 we define the operators Rn : O⊗n
T ∗[1]E → OT ∗[1]E of degree n − 1 as

Rn =
∑

T∈Treen
T . Notice that this definition gives R1 = idOT∗ [1]E .

We also defineUn B U1 ◦ Rn ◦ O
⊗n
T ∗[1]E → OT ∗[1]F .2

Proposition 3.3. The maps Rn defined above satisfy the following equations, for all n ≥ 2:

(2) [d,Rn] =
∑

σ∈Sh−1
2,n−2

sgn(σ)(Rn−1 ◦1 lT ∗[1]E)σ −
∑

p+q=n
σ∈Sh−1

p,q

sgn(σ)(−1)p−1 l̃T ∗[1]E ◦ (Rp,Rq)σ

where l̃T ∗[1]E is the twisted bracket defined in equation (1).

Before proving this proposition notice that by composing the equations above withU1
and using the observation that U1 ◦ l̃T ∗[1]E = lT ∗[1]F ◦ (U1,U1) we recover exactly the
equations (4) defining an L∞ morphism.

Corollary 3.4. The mapsUn defined above form an L∞ algebra morphism.

Proof of Proposition 3.3. Given a tree T ∈ Treen and e an edge of T , we denote by T e the
same tree T but with the edge e replaced by a dashed edge. Similarly, we denote by T∼e

the same edge e replaced by a wavy edge instead.

1Keep in mind the convention that 〈a, b〉 is zero unless one of a, b is in E and the other one in E∗.
2We bring attention to the fact that there is some similarity of the formulas forUn and the ones appearing in

the homotopy transfer theorem [Val14, LV12].
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T =
1

2 3 4
5e
, T e =

1

2 3 4
5 , T∼e =

1

2 3 4
5

For T ∈ Treen we define an action of these modified trees, T e,T∼e : O⊗n
T ∗[1]E → OT ∗[1]E of

degree n− 2 by the same formula as T , except that on the action of the edge corresponding
to e connecting vertices i and j, with T e we perform the pairing 〈αi, β j〉 and with T∼e we
perform the twisted pairing 〈αi, g ◦ f (β j)〉.

Notice that since the commutator with the differential [d,−] acts by derivations, the
computation of [d,Rn] produces the same kind of composition, except that it replaces one
instance of 〈−,H−〉 by 〈−,−〉 − 〈−, g ◦ f−〉, just as in equation (1). In terms of trees, we
have that [d,T ] =

∑
e edge T e − T∼e, so we can also interpret [d,Rn] as a sum of all possible

trees of n vertices with a dotted edge, minus a sum of all trees with n vertices with a wavy
edge.

We claim that the summands corresponding to the terms T e correspond to the terms∑
σ∈Sh−1

2,n−2
sgn(σ)(Rn−1 ◦1 lT ∗[1]E)σ.

This follows from the observation that given a tree Γ ∈ Treen−1, the operation T ({x1, x2}, x3, . . . , xn)
can be expressed as a sum of trees with a dotted edge. Concretely, as a quick inspection
shows, Γ ◦1 lT ∗[1]E is obtained by inserting an graph

1 2
on the vertex labeled by 1 of

Γ and summing over all possible ways (i.e. 2valence of 1) of reconnecting the incident edges,
followed by a shift by 1 of all other labels.

1 2

3

◦1 lT ∗[1]E =

1

2 3

4

+

1

2 3

4

+

1

2 3

4

+

1

2 3

4

This allows us to conclude that all terms of (Rn−1 ◦1 lT ∗[1]E)σ are dotted trees. We just
need to show that every dotted tree appears exactly once on the sum over all (2, n − 2)
unshuffles.

Let us consider an arbitrary dotted tree T e, where T ∈ Treen. Suppose that e connects
vertices i < j. There is a unique unshuffle τ ∈
S h−1

2,n−2 sending i to 1 and j to 2. It is then clear that only (Rn−1 ◦1 lT ∗[1]E)τ produces trees
with a dotted edge connecting vertices i and j. Conversely, if we denote by T/e ∈ Treen−1
be the graph obtained by the contraction of the edge e one sees that we recover T e from the
insertion of lT ∗[1]E in T/e.3

To finish the proof it remains to show that∑
p+q=n
σ∈Sh−1

p,q

sgn(σ)(−1)p−1 l̃T ∗[1]E ◦ (Rp,Rq)σ =
∑

T∈Treen

∑
e edge of T

T∼e.

The proof is analogous to the other case. We start by noting that for Tp ∈ Treep and
Tq ∈ Treeq, l̃T ∗[1]E◦(Ti,Tq) is obtained summing over all possible ways (p×q) of connecting
Tp and Tq with a wavy edge, and shifting the labels of Tq up by p units. It follows that
l̃T ∗[1]E ◦ (Rp,Rq)σ is a sum of elements of the form T∼e, where T ∈ Treen. To see that every
tree appears exactly once, one just notices that given a tree with a wavy edge, removing
the wavy edge results in a disconnected graph composed of two trees, one in Treep and the
other one in Treen−p whose labels are uniquely retained by an element of Sh−1

p,q. �

3.2. The global case. Suppose now that E and F are split dg manifolds over an arbitrary
manifold M with maps f , g and a homotopy HE as before. The two maps f and g induce
a mapU1 : OT ∗[1]E → OT ∗[1]F of commutative algebras by extending the maps f : E → F,

3Notice that there is an appearance of a sign factor sgn(τ) due to the considerations from Remark 3.2.
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g∗ : E∗ → F∗, id : : Γ(T M,M) ⊂ OT ∗[1]E → Γ(T M,M) ⊂ OT ∗[1]F
4 and id : : C∞(M) ⊂

OT ∗[1]E → C∞(M) ⊂ OT ∗[1]F .
It is easy to see thatU1 intertwines the Lie brackets on OT ∗[1]E and OT ∗[1]F whenever at

least one of the elements being bracketed does not belong to S (E ⊕ E∗).
We note that the formulas used for Un, n ≥ 2 can be defined over any manifold, since

the homotopy HE is globaly defined on the bundle E. It follows that the natural extension
ofUn give a well defined L∞ quasi-isomorphism OT ∗[1]E  OT ∗[1]F :

Un(x1, . . . , xn) B
{

same formula as before if all xi ∈ S (E ⊕ E∗)
0 otherwise.

3.3. Remarks about the hypothesis of homotopy equivalence. The reader might be sur-
prised that it seems that we almost did not use F at all in the proofs in this section, by
reducing the problem to work with Rn instead ofUn.

The reason for this is that one can consider a “twisted shifted cotangent bundle” ÕT ∗[1]E

given by the same base space space but with the twisted Lie bracket l̃T ∗[1]E . What we have
shown is that (Rn)n>1 realise an L∞ isomorphism OT ∗[1]E → ÕT ∗[1]E extending the identity
map. The result follows from the fact that U1 defines a strict Lie quasi-isomorphism
ÕT ∗[1]E → OT ∗[1]F .

However, over manifolds M different from a point, the author advises against saying
that T ∗[1]E and T ∗[1]F are homotopy equivalent as locally ringed spaces. The reason for
this is that OT ∗[1]E and OT ∗[1]F are indeed homotopy equivalent as R-Lie algebras, since
quasi-isomorphisms are (quasi-)invertible over R, but that is not necessarily the case over
C∞(M).

This problem can be circumvented if we suppose E and F are homotopic.

Definition 3.5. Two split dg manifolds E and F over M are homotopy equivalent if there
exist bundle maps f : E → F and g : F → E and global homotopies HE : E• → E•+1 and
HF : F• → F•+1 such that idE − g ◦ f = HEdE + dE HE and idF − f ◦ g = HFdF + dF HF

E

  @@@@@@@HE 99

f
)) F

~~~~~~~~~
g

ii HFee

M

Applying Theorem 3.1 on both directions we conclude that homotopy equivalent split
dg manifolds have indeed homotopy equivalent shifted tangent bundles.

Corollary 3.6. Let E and F be homotopy equivalent split dg manifolds. Then, T ∗[1]E and
T ∗[1]F are homotopy equivalent in the sense that there exist L∞{2} quasi-isomorphisms
OT ∗[1]E  OT ∗[1]F and OT ∗[1]F  OT ∗[1]E over C∞(M) inverse to each other.

Moreover, these maps preserve the biweights.

4. Applications

4.1. L∞ algebroids. Let E and F be non-positively graded split dg manifolds and maps
f ,g and HE such as in the conditions of the main Theorem 3.1.

Recall from Proposition 2.8 that L∞ algebroid structures over E are the same as Maurer–
Cartan elements of OT ∗[1]E(M) of biweight (∗, 1). SinceUn has biweight (−n + 1,−n + 1),
it sends n elements of biweight (∗, 1) to an element of biweight (∗, 1). It follows that
U : OT ∗[1]E  OT ∗[1]F maps Maurer–Cartan elements of biweight (∗, 1) to Maurer–Cartan
elements of biweight (∗, 1). It follows from the Goldman–Millson Theorem A.7 and the
main Theorem 3.1 that E and F have the same L∞ algebroid structures.

4Strictly speaking, these inclusions depend on a choice, but clearly the map is canonically defined.
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Theorem 4.1. Let E and F be split dg manifolds concentrated in non-positive degrees that
are homotopy equivalent. Then, there is a bijection

{
L∞ algebroid

structures on E

} /
gauge eq.

1:1
←→

{
L∞ algebroid

structures on F

} /
gauge eq.

4.2. Shifted Poisson structures. The results that we present here are certainly connected
to the theory of shifted Poisson structures [CPT+17], see also [BCSX17, Saf17].

Let E be a split dg manifold and (E, φE) an L∞ algebroid structure on E, i.e., φE is
a Maurer–Cartan element of OT ∗[1]E , as in the previous section. One can then twist the
Poisson algebra OT ∗[1]E by φE the Lie algebra Oφ

E

T ∗[1]E = (OT ∗[1]E , dE + {φE ,−}, {−,−}). We
propose the following definition of a 1-shifted Poisson structure.

Definition 4.2. A 1-shifted Poisson structure over the L∞ algebroid (E, φE) is a Maurer–
Cartan element in Oφ

E

T ∗[1]E of biweight (∗,≥ 2).

From Corollary 3.6 and Lemma A.5 we obtain the following result.

Corollary 4.3. Let E and F be homotopy equivalent split dg manifolds. Suppose that
φE and φF are L∞ algebroid structures on E and F respectively, such that the map U
constructed in Theorem 3.1 satisfiesU(φE) = φF . Then, E and F have the same 1-shifted
Poisson structures up to gauge equivalence.

Appendix A. Recollections about L∞ algebras andMaurer–Cartan elements

In this Appendix we recall some of the classical homotopy theory of Lie algebras and
their Maurer–Cartan elements that are used in this paper. We assume that the Lie alge-
bras are unshifted, i.e., the bracket has degree zero, but all statements hold for shifted Lie
algebras c.f. Section 1.2.1.

Recall that an L∞ algebra structure on the differential graded vector space (A, d) is a
family of multilinear antisymmetric maps (the multibrackets) [−, . . . ,−] = ln : A⊗n → A of
degree |ln| = 2 − n for n ≥ 2 satisfying the higher Jacobi identities:

(3)
∑

p+q=n+1
p,q>1

∑
σ∈Sh−1

q,p−1

sgn(σ)(−1)(p−1)q(lp ◦1 lq)σ = [d, ln],

where Sh−1
q,p−1 ⊂ Sq+p−1 denotes the (q, p − 1) unshuffles.

Most results in this section can be generalized to L∞ algebras but since they are not
necessary for us they are stated in terms of Lie algebras and L∞ morphisms for simplicity
of formulas.

Definition A.1. An L∞ morphism U : A  B between two Lie algebras (A, lA, dA) and
(B, lB, dB) is a sequence of maps Un : S nA → B,∀n ≥ 1 of degree 1 − n such that U1
commutes with the differentials, i.e [d,U1] = 0 and

(4) [d,Un] =
∑

σ∈Sh−1
2,n−2

sgn(σ)(Un−1 ◦1 lA)σ −
∑

p+q=n
σ∈Sh−1

p,q

sgn(σ)(−1)p−1lB ◦ (Up,Uq)σ

Definition A.2. Let g be a differential graded Lie algebra. We say that a degree 1 element
µ ∈ g1 is a Maurer–Cartan element if it satisfies the quadratic equation

dµ +
1
2

[µ, µ] = 0

The set of Maurer–Cartan elements of a Lie algebra g is denoted by MC(g).
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Definition A.3. A filtered Lie algebra is a Lie algebra g equipped with a complete de-
scending filtration F • of Lie algebras i.e. g = F 1g ⊃ F 2g ⊃ F 2g ⊃ . . . satisfying[
F ig,F jg

]
⊂ F i+ jg, such that g is complete with respect to this filtration

g = lim
←−−

k

g/F k
g.

Let g and h be filtered Lie algebras. It is easy to check that given an L∞ morphism
U = (Uk)k≥1 : g h compatible with the filtrations5 and a Maurer-Cartan element µ ∈ g,
then, the element

(5) U(µ) B
∞∑

n=1

Un(µ, . . . , µ) ∈ lim
←−−
h/F k

h = h

is a Maurer-Cartan element of h.
Given a Maurer-Cartan element µ of a Lie algebra g one often considers the correspond-

ing twisted Lie algebra gµ.

Definition A.4. Let g be a Lie algebra and µ ∈ MC(g). The Lie algebra g twisted by µ is
a Lie algebra denoted by gµ, that is equal to g as a graded vector space, with the same Lie
bracket [−,−]g = [−,−]gµ but with a twisted differential given by

dgµ = dg + [µ,−].

Twisting is a homotopically stable property. The following result follows from a simple
spectral sequence argument.

Proposition A.5 ([Dol05], Proposition 1). Let g and h be Lie algebras and U : g → h be
an L∞ morphism.

If for all k, U1 : F kg → F kh is a quasi-isomorphism, then for any µ ∈ MC(g), the
induced mapUµ : gµ  hU(µ) is an L∞ quasi-isomorphism.

Given a Lie algebra g and an commutative algebra A, the space g ⊗ A inherits a natural
Lie algebra structure by declaring the bracket to be A-bilinear, i.e., [X ⊗ a, X′ ⊗ a′] =

[X, X′] ⊗ aa′. In the concrete case of the polynomial forms A = Ωpoly([0, 1]) = K[t, dt], we
get a natural Lie algebra structure on g[t, dt].

Definition A.6. Let g be a Lie algebra. Two Maurer–Cartan elements µ0, µ1 ∈ MC(g) are
said to be gauge equivalent if there is a Maurer–Cartan element µt ∈ g[t, dt] interpolating
µ0 and µ1.

This definition amounts to say that µt can be written as

µt = mt + htdt

where mt can be understood as a family of Maurer-Cartan elements in g, connected by a
family of infinitesimal homotopies (gauge transformations) ht. The Maurer–Cartan equa-
tion for µt translates into the two equations

dmt +
1
2

[mt,mt] = 0, ṁt
∂mt

∂t
+ dht + [ht,mt] = 0.

Remarkably, the Goldman–Millson theorem states that under appropriate conditions
one can identify the Maurer–Cartan spaces of quasi-isomorphic Lie algebras.

Theorem A.7 (Goldman–Millson [DR15]). Let U : g → h be an L∞ morphism of fil-
tered Lie algebras. Suppose furthermore that on the associated graded level the map
gr U : gr g =

⊕
F •g/F •+1g → gr h is a quasi-isomorphism. Then, formula 5 induces

a bijection
U : MC(g)/gauge equiv.→ MC(h)/gauge equiv.

5In the sense thatUk(F i1g, . . . , Fikg) ⊂ Fi1+···+ikh.
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