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Abstract 

Early nutrition may have long-lasting metabolic impacts in adulthood. Even though breast 

milk is the gold standard, most infants are at least partly formula-fed. Despite obvious 

improvements, infant formulas remain perfectible to reduce the gap between breastfed and 

formula-fed infants. Improvements such as reducing the protein content, modulating the lipid 

matrix, and adding prebiotics, probiotics and synbiotics, are discussed regarding metabolic 

health. Numerous questions remain to be answered on how impacting the infant formula 

composition may modulate the host metabolism and exert long-term benefits. Interactions 

between early nutrition (composition of human milk and infant formula) and the gut 

microbiota profile, as well as mechanisms connecting gut microbiota to metabolic health, are 

highlighted. Gut microbiota stands as a key actor in the nutritional programming but 

additional well-designed longitudinal human studies are needed.  

 

Key words: early nutrition, gut microbiota, metabolism, neonatal feeding, nutritional 

programming  
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Over the last decades, metabolic diseases such as insulin resistance (IR), type-2 diabetes 

(TD2) and obesity have dramatically increased in both children and adults. Thus, worldwide 

prevalence of obesity has more than doubled between 1980 and 2014.1 The pandemic of 

obesity and associated comorbidities may find part of its origin in the early postnatal life. 

Indeed, according to the developmental origins of health and disease (DOHaD), the foetal 

period and the first few months of postnatal life are a critical window for determining the 

flexibility of the system to cope with challenges in later life.2,3,4 Quality and quantity of early 

nutrition plays a crucial role since it can have a great influence on developing infants’ 

metabolism, impacting weight gain, adiposity and energy metabolism on the short and long-

term through physiological and behavioural pathways.5 Breast milk is recognized as the ideal 

nutrition for the full-term newborn. An exclusive breastfeeding for the first six months of life 

is therefore recommended by the World Health Organization. However, despite these 

recommendations, breastfeeding rates remain low. In 2013 in the United States, 81.1% of 

infants were breastfed at birth but only 22.3% were exclusively breastfed at the age of 6 

months.6 The same occurs in Europe, despite large disparities between countries, with 

breastfeeding rates beyond 4-6 months well below optimum levels.7 When breastfeeding is 

not possible or wanted, the only alternatives are infant formulas (IF). Despite obvious 

improvements over the past 50 years, IF remain perfectible to better approach the physiologic 

effects of breast milk. The objective of this review is to summarize differences between 

breastfed and formula-fed infants on long-term metabolic health, focusing on vaginal, term-

born, healthy infants. It will then highlight the modifications that have already been made and 

that can further be made to IF in order to better mimic the physiological effects of breast milk 

on both the short- and long-terms. Finally, it will attempt to approach the mechanisms, 

focusing on the ones involving gut microbiota, as it is known to be impacted by early nutrition 

and has a key role in regulating metabolism. For space reasons, the effects of early-life 
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nutritional exposures on infections and immune diseases such as allergy and the interactions 

between gut microbiota and the immune system, recently published elsewhere,8,9 will not be 

addressed in this review. Similarly, behavioural mechanisms, such as programming of food 

preferences and eating behaviour, will not be discussed, even though the early postnatal 

period is known to be essential for the establishment of odors and taste preferences and their 

maintenance in later life.10,11,12,13  

Metabolic health benefits of breastfeeding compared to formula-feeding 

Early nutrition is known to play a fundamental role in regulating body development and 

maturation of tissue functions with short- and long-term organ- specific and time of 

intervention-specific responses.14,15 The first months of life are thus a critical time for 

preventing metabolic and cardiovascular disorders and obesity in later life. Infant growth 

trajectory and weight gain during the first year of life are one of the best predictors of obesity 

in later life, with an increase of 1 SD in weight z-score being associated with a 2-fold higher 

obesity risk in childhood and a 23% higher obesity risk in adulthood.16,17 More precisely, 

weight gain during the first 6 months of life is a better indicator of body composition in 

adolescence than weight gain from 6 months to 2 years of age.18,19 The early pattern of body 

fatness is also indicative of later obesity: obese adults have often had an earlier adiposity 

rebound (at 3 years of age) than non-obese adults (at 6 years of age).20 Indeed, the early 

period of life is a sensitive period during which adipose tissue expands dramatically since the 

proliferative capacity of adipose precursor cells from sub-cutaneous adipose tissue is at its 

highest.21 Therefore, numerous studies aiming at understanding the relationship between 

nutrition, growth in the first years of life and later risks for cardio-metabolic disorders focused 

on the comparison between breastfed and formula-fed infants. 
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Growth and body composition 

Breastfed infants have a slower growth trajectory during the first months of life compared to 

formula-fed infants.22,23,24,25 The advanced growth tempo, higher weight gain and earlier 

adiposity rebound of formula-fed children could lead to a higher obesity risk.20,23,26,27,28 

Indeed, formula-fed neonates would have a 22% higher risk of obesity in infancy compared to 

breastfed infants.29 Although the magnitude of breastfeeding protection may decrease over 

time, a 13% reduction in overweight and obesity has still been observed among adults.30 An 

exclusive breastfeeding would be more efficient to prevent childhood obesity than mixed-

feeding (breast milk and IF), itself more efficient than exclusive formula-feeding.31 

Introducing an IF before 3 months may indeed increase odds of rapid growth in the first 6 

years and is associated with higher mean body mass index (BMI) 20 years later.27 However, 

the results of other clinical studies do not allow a clear conclusion on the relationship between 

an exclusive breastfeeding and a lower risk of childhood obesity.32,33,34,35 The influence of 

non-investigated confounding factors such as the composition of human milk and its 

oligosaccharide content may explain the discrepancies between studies.36 As Beyerlein and 

von Kries already stated, it appears doubtful whether there will ever be a study conducted that 

will have the appropriate methodology and the statistical power to conclude for or against a 

potential protective effect of breastfeeding against childhood overweight.37 

 

Metabolism / Metabolic disorders 

Insulin resistance and type-2 diabetes 

Milk composition has a strong influence on metabolic programming. Besides, weight gain 

between birth and 3 years of age predicted insulin sensitivity, BMI and waist circumference at 

the age 8 years.38 Formula-fed infants are at higher risk for IR and T2D in later life than the 

breastfed ones.30,39,40 Much higher urinary C-peptide concentrations (used as a measure of 
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insulin secretion) were found in formula-fed infants compared to breastfed infants41 as well as 

higher pre- and postprandial blood glucose levels.39 If higher glycaemia of formula-fed 

compared to breastfed infants no more persist in later life, differences in insulinaemia do 

continue. Breastfed infants have 3% lower insulin levels in later life (childhood and 

adulthood) compared to the formula-fed ones.39 At 8 years of age, overweight and obese 

infants formula-fed for 4 months or longer were more insulin-resistant than the ones that were 

breastfed, and they compensated their lesser sensitivity by a higher insulin secretion.42 These 

greater insulin levels in formula-fed infants may explain their greater deposition of 

subcutaneous adipose tissue43 and may be due to a faster increase in serum branched-chain 

amino acids44 as demonstrated in both animal45 and human46,47,48,49,50 studies.  

 

Cardiovascular risks factors 

Early nutrition may also have an impact on cardiometabolic risk factors (dyslipidaemia and 

hypertension) and atherosclerosis in later life. Formula-fed infants could be at higher risk of 

atherosclerosis as a negative correlation has been found between inflammatory markers serum 

levels (serum monocyte chemoattractant protein-1 level and uric acid) and duration of 

breastfeeding.51 Besides, observational studies suggested that formula-feeding could be 

associated with higher blood pressure levels in childhood compared to breastfeeding.52,53 A 

prospective study on Mexican children concluded that an exclusive and prolonged 

breastfeeding had a beneficial effect on later cardiometabolic health through lower total 

cholesterol, low-density lipoprotein cholesterol and triglycerides levels at the age of 4.54 Some 

studies demonstrated that these lower levels persisted even later in adulthood (from 17 to 64 

years).55 Yet, earlier at 4 and 8 weeks of life, formula-fed infants have lower serum 

cholesterol, triglyceride and transaminase level (ALAT, ASAT, γGT) compared to breastfed 

infants.56 The higher levels of cholesterol in breastfed infants before 1 year of age can be 
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explained by the higher level of cholesterol in breast milk compared to IF made with 

vegetable oils.55 The twist in cholesterol levels between formula-fed and breastfed infants 

may be due to a nutritional programming of cholesterol synthesis by early postnatal diet.57 In 

a pig model, the lower serum cholesterol concentration in formula-fed piglets compared to the 

breastfed ones was associated with an increase in mRNA encoding cholesterol 7 alpha-

hydroxylase.58 Despite the above studies, the long-term benefits of breastfeeding on 

preventing cardiovascular diseases remain controversial30,59,60,61 and further studies are 

required. Clearer results are mandatory to decipher whether reduced cholesterol level in early 

life has long-term deleterious consequences or not. A modest decrease in cholesterol level in 

adulthood could lead to a 5% reduction in coronary heart disease incidence.57 

 

Improving infant formulas to approach the physiologic effects of breast 

milk 

Breast milk remains the gold standard and the objective is therefore to improve the 

composition of IF to better approach its physiologic effects. Breast milk has a unique 

composition that leads to specific metabolic and physiological responses.62 Several factors 

have been suggested to explain the association between formula-feeding, growth, body 

composition and later risk of obesity and metabolic diseases. Differences in qualitative and 

quantitative intake in nutrients, hormones and milk bacteria may be involved. Since IF 

composition has greatly evolved and been improved over the last decades, cautiousness is 

needed when interpreting results from older cohorts.63  
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Macronutrients 

Proteins 

Cow’s milk proteins are the unique source of proteins in most IF but have a lower quality 

compared to breast milk, partly because of differences in their amino acid contents. Over the 

last decades, the amount of protein per energy content has generally been higher in IF than in 

human milk (0.9g/100 mL in mature milk, 1.29-1.38g/100 kcal)64 to meet infant’s protein and 

amino acid requirements.65 Old studies from the 1990s reported that formula-fed infants aged 

3-12 months had 10-18% higher energy intakes and 55-80% higher protein supply per kg of 

body weight than breastfed infants.66,67 A high protein intake in early infancy has been 

associated with an increased growth and higher later adiposity.68,69,70,71 A high protein intake 

during the first year of life thus affected fat distribution in healthy children with an enhanced 

pre-peritoneal fat (a marker of visceral fat) but not subcutaneous fat tissue accumulation at the 

age 5 years70 and higher fat mass but not fat free mass at the age 6 years71. According to the 

early protein hypothesis, the higher protein content in IF could lead to increased circulating 

concentrations of insulin-releasing amino acids, stimulating the release of insulin and insulin-

like growth factor I (IGF-1) and resulting in an accelerated growth, a faster weight gain and a 

greater adiposity.72 Formula-fed infants have higher levels of IGF-1 than breastfed infants at 

several ages and IGF-1 levels at 7-8 years of age was associated with the history of 

breastfeeding.73,74,75 The early protein hypothesis was supported by a systematic literature 

review that assessed that a higher protein intake in infancy and early childhood was 

convincingly associated with increased growth and higher BMI in childhood, the first 2 years 

of life being likely most sensitive to high protein intake.76 However, inconsistent evidence is 

available on the association beyond infancy and on later childhood overweight or obesity.77 

An improvement of IF has consisted in decreasing their protein content without altering the 

plasma amino acid profile. Two approaches has been considered: an increase in the proportion 
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of α-lactalbumin78,79 and, if necessary, the addition of free limiting amino acids.80 However, 

the addition of free amino acids in IF may have long-term metabolic outcomes since they will 

be absorbed and oxidized more rapidly than protein-bound amino acids.81  

Infants fed a low-protein IF were lighter at the age 2 but had similar height than infants fed a 

high-protein IF,82 and their weight and BMI as well as their metabolism were closer to the 

ones of BF infants.83 At the age 6, their obesity risk was lower84 and at the age 14-16 years, it 

is expected to be 13% lower.83 Other factors than IGF-1 may also impact growth velocity 

since decreasing the IF protein content did not impact plasma IGF-1, insulin and C-peptide 

concentrations during the first year of life and body composition during the first 60 months of 

life but affected length and head circumference growth in a French randomised controlled 

trial.85 Decreasing the protein content in IF may also decrease the level of metabolic stress45 

by decreasing plasma levels of insulinogenic amino acids close to those induced by breast 

milk as well as urinary C-peptide level.41 

An ideal protein content of 1.8 g/100 kcal was therefore established for standard milk 

protein-based IF86 and protein content in IF is now relatively close to the one found in breast 

milk.87 Human milk also contains bioactive proteins such as lactoferrin (present at higher 

concentration in human milk compared to IF),88 hormones and cytokines that may affect 

growth, body composition and metabolism in later life and explain differences observed 

between breastfed and formula-fed infants.89,90,91,92 The supplementation of IF with bovine 

lactoferrin may help narrow the gap between breastfed and formula-fed infants.93 However, 

long-term and mechanistic studies are still missing. 

 

Fat quality and structure 

If in the early 20th century the fat matrix of IF was made of cow’s milk fat and butterfat, 

today the fat matrix of most IF is exclusively made of a blend of vegetable oils. The use of 
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vegetable oils enabled to better mimic the human milk mono- and polyunsaturated fatty acid 

profiles21 but induced major differences in the fat globule and triglycerides structure. 

Regarding fatty acid profile, IF usually contain more long-chain polyunsaturated fatty acids 

(LC-PUFAs) of the ω3 and ω6 families due to their supplementation. If ω3 LC-PUFAs have 

been associated with improved insulin sensitivity, reduced body weight gain and adiposity 

and counteraction of dyslipidaemia in adult human and animal studies,94 data on nutritional 

programming by postnatal ω3 LC-PUFAs are limited. In a male murine model, postnatal 

supplementation with ω3 PUFAs reduced body fat deposition during adulthood and led to less 

hypertrophic adipocytes and healthier plasma lipid profile and glucose homeostasis.95 Similar 

beneficial effects were observed with a low ω6 PUFA diet96. Both diets (high in ω3 and low 

in ω6) affected permanently the development of the central regulatory circuits controlling 

energy balance.97 The higher amount of ω6 fatty acids in IF than in breast milk may promote 

the adipose tissue development by enhancing the formation of pre-adipocytes21 and the 

arachidonic acid (ARA, ω6) and its metabolites may directly be involved.21,98 However, a 

recent systematic review has concluded on the lack of evidence on consumption of LC-

PUFA-supplemented IF and later risk of obesity.99 Moreover, the supplementation of IF with 

ARA and docosahexaenoic acid (DHA, ω3) has proven to be efficient to lower blood pressure 

in children at the age 6 years and potentially their cardiovascular risk in adulthood compared 

to their counterparts who had received a non-supplemented formula.100 A balanced ratio 

between ω3 and ω6 is essential101,102 however, the addition of DHA (20-50 mg/100 kcal) but 

not ARA is now mandatory in IF for full-term healthy neonates,103 which raises questions 

regarding the suitability and safety of these IF.104,105,106 

Beyond fatty acid composition, the lipid matrix is also of great importance. Indeed, breast 

milk contains fat globules surrounded by a complex trilayer membrane called milk fat globule 

membrane (MFGM) rich in phospholipids (~30% of total lipid weight, mainly sphingomyelin, 
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phosphatidylcholine and phosphatidylethanolamine), cholesterol and proteins (lipid:protein 

weight ratio of 1:1).107 Due to homogenization and thermal treatments, the structure of fat in 

IF is different in size of lipid droplets, interfacial composition and architecture, and fatty acid 

profile.108,109 Besides, IF with a lipid matrix made only with vegetable oils do not contain 

MFGM. A clinical study displayed no effect of MFGM supplementation in IF on growth and 

LDL:HDL ratio, but a higher plasma cholesterol trajectory from 2 to 6 months, that did not 

persist at 12 months of age.110 In another study, providing an IF supplemented with cream and 

a bovine MFGM concentrate for 2 months normalized cholesterol and LDL concentrations to 

levels of breastfed infant.111 Animal studies can provide a better understanding of the 

importance of the structure and composition of fat matrix. In a murine model, male pups 

given an experimental formula with large lipid droplets coated with MFGM mimicking milk 

fat globules from 16 until 42 days of age displayed lower fat accumulation (by 30%) and 

lower fasting plasma leptin, resistin, glucose and lipid concentrations as adults compared to 

mice given a standard vegetable-fat-based formula.112 Their adipocyte size was lower yet not 

their number and some key regulators of metabolic activity, such as PPARγ, were less 

expressed in their white adipose tissue reducing their susceptibility to obesity in later life.113 

Baars et al.114 recently demonstrated that both the large droplets and the MFGM coating were 

mandatory to induce such effects. A suggested mechanism would be a reduction in lipid 

storage capacity and a decline in lipogenesis in white adipose tissue. In infants, such an IF 

containing large, phospholipid-coated lipid droplets was found to support adequate growth in 

healthy Asian infants during the first 4 months of life compared to a standard IF.115 

Besides, the supplementation of IF with cholesterol by a direct addition of cholesterol or 

by replacing a fraction of vegetable oils by dairy lipids may have a beneficial effect on 

cholesterol level in adulthood. The addition of dairy lipids in IF enabled a normal growth 

during the 4 months of feeding.116 Supplementation in cholesterol (3.44 mmol/l vs. 0.85 
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mmol/l in the regular cow’s milk protein-based formula) of IF given to full-term healthy 

neonates did not modify plasma cholesterol concentrations at 4, 11 and 12 months of age. 

Both cholesterol-supplemented and not-supplemented formula-fed groups differed from the 

breastfed group at 4 months for plasma total-cholesterol but not at 11 and 12 months.117 In 

another study, differences were observed at 4 months but did not persist at 18 months.118 The 

lack of differences might be explained by the short-term follow-ups or by the bioavailability 

of the added cholesterol (unesterified in formula vs. free and esterified in breast milk). The 

efficiency of cholesterol absorption may also be decreased by phytosterols present in infant 

formulas, competing in bile salt/lecithin micelles.119 In order to ressemble the animal/plant 

sterol ratio of human milk, plant sterols should be reduced.120 Long-term human and animal 

studies are still needed to conclude on the outcomes of the addition of cholesterol in infant 

formulas. 

 

Carbohydrates and oligosaccharides 

Human milk vs. formula-feeding 

Lactose is the main carbohydrate source in both human milk and standard IF and also the 

most stable of all macronutrients with a concentration of about 67-74.4 g/L (10.3-11.4g/100 

kcal) in human milk.90,121 Animal studies have demonstrated adverse long-term effects of an 

increased intake of carbohydrate in early life. Indeed, the supply of a high-carbohydrate 

(polycose) formula to 4-day-old rat pups during the suckling period led to chronic 

hyperinsulinemia and adult-onset obesity. These effects were mediated by numerous 

adaptations in 12-day-old rats targeting pancreatic islets, including the autonomic regulation 

of insulin secretion, the gut (increased GLP-1 levels) and possibly the hypothalamus. The 

phenotype was also spontaneously transmitted to the progeny.122 Yet, carbohydrates levels in 

IF do fit that of breast milk and such high carbohydrate IF are not available. 
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Human milk also contains a high quantity of oligosaccharides (third largest component 

after lactose and lipids, 5-20 g/L in mature milk) (HMOs), which are unconjugated glycans 

composed of 5 monosaccharide building blocks (D-glucose, D-galactose, N-

acetylglucosamine, L-fucose, and sialic acid derivative N-acetyl-neuraminic acid) associated 

under more than 200 distinct forms. The total amount and composition of HMOs are highly 

variable between women, depending on maternal genetic, lactation stages and environmental 

factors (such as geographic localization, diet and physical activity).123,124,125,126,127 Resistant to 

digestion, HMOs reach intact the distal small intestine and colon where they are fermented by 

the gut microbiota, sometimes in a strain-specific manner. For instance, B. infantis grows well 

on several HMOs, but most bifidobacterial species only metabolize the lacto-N-tetraose, one 

of the predominant HMOs.123,124,125,126,128 Members of the genus Bacteroides are also known 

to consume specific HMOs.129 Different HMOs may therefore differently shape gut 

microbiota composition and activity through modulation of human milk microbiota.130 For 

instance, 2’-fucosyllactose (2’FL) has been linked to a greater abundance of gut bifidobacteria 

and infants whose mother are non-secretor would have a delayed establishment of 

bifidobacteria-laden microbiota,131 with lasting consequences on the gut microbiota at 2 to 3 

years of age.132 Milk HMOs can be positively or negatively correlated with a number of 

bacteria in the stool of breastfed infants.133 In addition to their action on gut microbiota, 

HMOs may exert direct effects on intestinal epithelial cells134,135,136 or potential systemic 

effects by reaching the circulation.137,138 Therefore, either directly or indirectly, they can 

impact health on both the short- and long-terms. For instance, milk HMO diversity and 

evenness at 1 and 6 months of lactation were associated to the suckling infant’s weight and 

body composition (lean and fat mass). These preliminary results need to be corroborated by 

higher sample sizes and longer follow-up to elucidate the exact contribution of specific HMOs 

to infant development.139 
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Prebiotics in infant formulas 

Until recently, individual HMOs were not available at large-scale and therefore could not 

be added to IF. Furthermore, the complex mixture of HMOs cannot be reproduced in IF. The 

addition of prebiotics, substrates “selectively utilized by host microorganisms conferring a 

health benefit”,140 has been a first step to approach HMOs benefits in IF. Studied prebiotics in 

IF have mainly been a 9:1 mixture of short-chain galacto-oligosaccharides (scGOS) and long-

chain fructo-oligosaccharides (lcFOS), or (used single or combined) GOS, FOS, acidic 

oligosaccharides, oligofructose, inulin, polydextrose or lactulose, with considerable variations 

in doses and duration of administration between clinical studies.141 If prebiotic 

supplementation has been associated with a slightly greater weight gain in a systematic review 

of randomized controlled trials,142 small sample sizes and the lack of statistical power and 

long-term follow-up complicate the interpretation of the effects of prebiotic-supplemented IF. 

A routine use of prebiotic-supplemented IF is therefore not legally recommended.141 Besides, 

prebiotics commonly added to IF are much simpler structures than HMOs and cannot 

reproduce all their benefits, most of them being structure-specific. For instance, prebiotics 

such as FOS and GOS are known to be broadly bifidogenic whereas HMOs are metabolized 

by a smaller array of bifidobacteria.126 Short-chain fatty acids (SCFAs), such as acetate, 

propionate and butyrate, are a major product of gut microbiota fermentation. They are a 

source of metabolizable energy and they can be used as signalling molecules and involved in 

de novo lipid synthesis.143 SCFAs may have a beneficial role on weight gain and adiposity in 

infants.144 However, prebiotic supplementation does not seem to affect the biochemical 

parameters in the blood and urine samples145 and different combination of prebiotics have 

demonstrated similar efficacy on gut microbiota composition146 and on growth rate.147 Long-

term health outcomes of neonatal prebiotic supplementation in IF have not been extensively 

Acc
ep

ted
 m

an
us

cri
pt



Lemaire, Le Huërou-Luron and Blat                   Infant formula and long-term metabolic health 

15 

 

described yet. A small explorative study on a specific population of hepatitis C virus-infected 

mothers demonstrated differences in gut microbiota composition at the age of 12 months 

between infants fed a scGOS/lcFOS-supplemented IF during the first 6 months of life 

compared with the placebo group.148  

Other potential prebiotics are oligosaccharides present in the milk of farm animals such as 

cows and goats. Even if their oligosaccharide concentrations are 100-1000-fold lower than in 

human milk and less diverse,123 they may represent an alternative source of prebiotics.149 

Individual HMOs like 2’FL and lacto-N-neotetraose (LNnT), which account for ~37% of total 

HMOs, are now commercially available and provide more promising opportunities for the 

development of IF closer to breast milk.150 The supplementation with 2 HMOs (2’FL and 

LNnT) for 6 months did not induce differences in weight, length, BMI or corresponding z-

scores through 12 months compared to a non-supplemented IF,151 but induced a faecal 

microbiota and metabolic signature closer to that of breastfed infants at 3 months of age.152 

No significant differences were further observed for weight, length, or head circumference 

growth during a 4-month study period between infants fed IF containing GOS and 

supplemented or not with 2’FL.153 

If the smallest and most abundant HMOs are now available, the more complex ones are 

not. Besides, several questions remain regarding which HMO composition should be 

considered as ideal and therefore which HMOs should be added to IF, their dosage and their 

short- and long-term health consequences.154 

 

Probiotics and synbiotics 

Formerly considered to be sterile, human milk has recently been recognized as a 

continuous source of viable commensal and potentially probiotic bacteria such as 

Staphylococcus, Streptococcus, Bifidobacterium and Lactobacillus.125 If over 200 different 
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bacterial species (from 50 different genera) have previously been identified in human milk,155 

recent studies revealed a larger microbial diversity with over 200 different genera and 700 

species.156,157 The origin of bacteria present in breast milk is not fully elucidated but the 

current hypothesis is that bacteria from the maternal gut may be trapped by dendritic cells and 

spread to the mammary gland via the lymphatic and blood circulation,125 although an 

additional retro-contamination of mammary gland by infant oral microbiota cannot be ruled 

out. Core milk microbiomes composed of genera present in most human milk samples have 

been identified with 9 genera accounting for half of the microbial community155 or 12 genera 

accounting for more than 81% and 73% of the taxa identified before week 6 and at week 12 of 

lactation, respectively,157 with 3 genera shared between these two studies. Human milk 

microbiome is affected by external factors such as maternal nutrition, gestational age, health 

status and delivery mode, and also varies across lactation.125,158 The daily ingestion of 

bacterial cells by an infant receiving 800 mL of breast milk would be up to 107-108.159 

Therefore in a recent 12-month longitudinal study,160 it was estimated that breast milk 

accounted for almost one-third of total bacteria present in the gut of breastfed infants during 

the first month of life. Moreover, metagenome predictions indicated that breast milk harbours 

bacteria with prominent carbohydrate, amino acid, and energy metabolism functions, 

suggesting a dual regulatory role of human milk bacteria as a continuous inoculum and on the 

physiological and metabolic development of neonates via their metabolites.  

Introducing bacteria in IF can be a clever way to better adjust IF to breast milk. Such 

bacteria, called probiotics, are therefore added in IF. 
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Probiotics 

Probiotics are defined as “live microorganisms that, when administered in adequate 

amounts, confer a health benefit on the host”.161,162 The most commonly probiotics used in 

infant nutrition are strains of Bifidobacterium (Bifidobacterium infantis, Bifidobacterium 

lactis, Bifidobacterium longum) and Lactobacillus (Lactobacillus acidophilus, Lactobacillus 

fermentum, Lactobacillus reuteri, Lactobacillus rhamnosus) isolated from the human 

gastrointestinal tract, human breast milk or dairy products.141,163 The effects of probiotics such 

as the normalization of perturbed microbiota or the production of SCFAs are widespread 

among probiotics while particular changes in the microbial composition of the gut are specie- 

or even strain-dependent.162,163 Probiotics are usually administered alone or in 2-3 strains 

combination, far from the microbial diversity of human milk. The efficacy of specific 

probiotics has been demonstrated for the treatment of acute gastroenteritis and the prevention 

of necrotizing enterocolitis, antibiotic-associated diarrhoea and nosocomial diarrhoea in 

infants and children.164,165,166 

The long-term effects of early probiotic consumption on growth have been investigated in 

a few studies 2 to 13 years after the intervention. No effect of supplementation with L. 

rhamnosus GG or L. fermentum CECT5716 in the first months of life was observed on growth 

and microbiota composition at 2,167 3,168 5169 and 13 years.170 In contrast, an impact of 

maternal probiotic supplementation with L. rhamnosus GG was observed on children’s body 

weight development, with a lesser weight gain until 2-4 years, especially among children who 

later became overweight, resulting in a lower BMI until 7 years of age.171 However, there is 

no study investigating the effects of probiotic supplementation on metabolic syndrome 

progression in adulthood. In animal studies, early probiotic administration has been associated 

with the maintenance of eubiosis, intestinal tract maturation, and improved immunity and 

reduced pathogen infection.172 
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The ESPGHAN Committee on Nutrition concluded in 2011 that the administration of 

currently evaluated probiotic-supplemented formula to healthy infants did not raise safety 

concerns with regard to growth and adverse effects. However, because of high variability in 

responses, probably due to the small size and insufficient statistical power of studies, the 

different probiotic strains, doses, timing and duration of administration used, the lack of data 

on the long-term after the cessation of the probiotic and the different methods used for 

microbiota analysis, the relevance of supplementation of IF with probiotics remains unclear 

and the routine use of probiotic-supplemented IF is not currently mandatory.141,158,163 

 

Synbiotics 

Supplementation of IF with prebiotics or probiotics alone does not fully mimic the 

complexity of human milk, which provides both, and has some limitations. Probiotics would 

transiently colonize the infant’s gut173 (further studies are needed174) and prebiotics can only 

have an impact on bacteria that are already present in the gut. Therefore, beneficial synergistic 

effects may be expected from a combination of probiotics and prebiotics, called synbiotic, 

using prebiotics to selectively increase abundance of both endogenous beneficial bacteria and 

probiotics in the infant gut. However, due to the limited available data on synbiotics, the 

ESPGHAN Committee on Nutrition does not currently recommend the use of IF 

supplemented with synbiotics even though the available data suggest that they are safe.141 

Besides, the superiority of synbiotics over probiotics or prebiotics is not yet clearly 

established.175 The impact on microbial profile, particularly the bifidogenic effect, of 

synbiotic IF containing Lactobacillus reuteri and GOS/FOS, Lactobacillus paracasei and 

GOS/FOS or Bifidobacterium animalis and bovine milk-derived oligosaccharides did not 
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result in any differences in infant growth parameters during the first year of life compared to 

control IF (without prebiotics and/or probiotics).176,177,149 

To conclude, even if some prebiotics and/or specific probiotic strains display promising 

results, more randomized controlled clinical trials with longer follow-up are needed for the 

determination of tailored combinations and of their physiological and metabolic impact on the 

host (Fig. 1). 

 

Effects of the infant formula composition on gut microbiota: a possible 

mechanistic link? 

Early establishment of gut microbiota and differences between formula-fed and breastfed 

infants 

Recent advances in sequencing technologies of the microbiota have questioned the sterile 

womb paradigm, suggesting a mother-to-child transfer of commensal bacteria in 

utero.178,179,180,181 If there is currently no clear consensus regarding the prenatal life, it is well 

established that the first months of life are crucial for the establishment of the gut microbiota 

and host-microbiota symbiosis. Gut microbiota exerts several functions such as facilitating 

nutrient utilization, synthesizing amino acids and vitamins, educating the naïve immune 

system and programming the metabolic system in neonates.8,182,183 It modulates infant growth 

and body composition184,185,186,187 and plays a crucial role in lifelong health. In mice, an early 

exposure to antibiotics during the suckling period was associated with an increased fat mass 

and a negative modulation of hepatic metabolism in adulthood though gut microbiota was 

only transiently altered.188 Mainly consisting of facultative anaerobes and then obligate 

anaerobes within the 2 first weeks of life, gut microbiota slowly achieves a more complex 

structure and evolves towards an adult-like configuration throughout the first three years of 
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life.189,190,191 Among the influencing factors of gut colonization, early nutrition plays a 

predominant role.8,192 Formula-feeding has been associated with a less stable microbiota over 

time, different overall bacterial composition and higher bacterial richness and diversity 

(although controversial)133 compared to breastfeeding.193,194,195,196,197 However, 

inconsistencies exist between studies on the impact of formula-feeding on gut microbiota 

composition and may be explained by several factors such as changes in IF composition over 

time and differences in oligosaccharides composition between breast milk and IF.163 Early gut 

microbiota may influence later microbiota198,199 but the sustainability of early microbiota 

changes in later infancy and adulthood remains uncertain.148,167 In addition, alterations in the 

gut microbiota profile during the first months of life may precede overweight 

development.186,200,201,202 If the exact role of specific bacterial families or genera is not clear, a 

higher abundance of the genus Bifidobacterium has been observed during the first year of life 

in infants who remained normal weight at 7 years compared to children who became 

overweight.202 Infants not primarily breastfed had higher abundance of Bacteroidaceae160 and 

positive correlations were found between a higher abundance of Bacteroides spp. (in 

particular B. fragilis) and BMI at the age of 3 and 26 weeks but disappeared at approximately 

2.5 years of age.201 In overall, these data suggest that gut microbiota primocolonization is 

crucial and may affect infant growth trajectories. However, further investigations are needed 

to determine the time length of this early critical window and why early microbiota changes 

are not always observed in later life. 

Beyond the taxonomic level, it is necessary to investigate the infant gut microbiota in 

terms of functionality since bacteria belonging to different taxonomic groups may perform 

similar functions.203 Formula-fed infants had an accelerated functional maturity compared to 

breastfed infants, characterized by enrichment in functions characteristic of the adult 

microbiome at 4 months, despite a small overall functional difference.204,205 Formula-fed 
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infants also had high stool levels of SCFAs such as propionate, butyrate, acetate, 5-amino-

valerate and free amino acids at 3 and 6 months of age while breastfed infants had high 

concentrations of fucosylated oligosaccharides and lactic acid, as a result of a higher 

fermentation of HMOs.206 

Gut microbiota can be modulated by the macronutrient composition of IF. A whey-

predominant IF led to a faecal microbiota closer to that of breastfed infants at 2 months of 

age, compared to a casein-predominant IF.207 Proteins, such as lactoferrin, may also function 

as prebiotics and impact gut microbiota composition.208,209 The structure of triglycerides could 

also affect gut microbiota. Indeed, a high β-palmitate formula was shown to increase 

Lactobacillus and Bifidobacteria counts in faecal stools of 6 week-old infants at abundances 

similar to breastfed infants, compared to infants receiving a low β-palmitate IF.210 A recent 

study in a germ-free mice model demonstrated that the fatty acid composition and 

phospholipid types may differently affect gut microbiota establishment.211 The addition of 

MFGM alone did not lead to changes in gut microbiota composition in 28 day-old piglets 

compared to standard IF but the addition of both dairy lipids and MFGM affected gut 

microbiota composition, with an increase in Proteobacteria and a decrease in Firmicutes phyla 

compared to piglets fed a standard vegetable-oil IF.212 These changes were similar to those 

observed at 3 months of age between breastfed infants and infants fed a vegetable-oil-based 

IF.213 

To conclude, relationships have been described between macronutrients and specific 

bacteria but further studies are needed to better understand them and evaluate their long-term 

impact on health.159 
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Mechanisms linking gut microbiota and long-term health 

Several mechanisms have been proposed to connect gut microbiota to metabolic health. 

One mechanism relies on the property of gut microbiota to harvest energy in relation with the 

enrichment of genes coding enzymes that utilize non-digestible dietary carbohydrates to 

produce SCFAs. Indeed, breast milk butyrate was inversely associated with 12-month 

skinfolds and BMI, 3-12 month skinfold gain and weight gain in a prospective birth cohort. 

Associations were also found for acetate and formic acid and BMI and skinfolds at 3 months 

but not for adiposity at 12 months.214 SCFAs are key mediators of the crosstalk between gut 

microbiota and host cells, able to act as signalling molecules by bonding to their receptors, 

expressed by different cell types such as enterocytes and intestinal enteroendocrine cells. 

SCFAs can bind to the free fatty acid receptor (FFAR) 2 and 3 (formerly known as G-protein 

coupled receptor (GPR) 43 and 41, respectively), the affinity for these receptors depending on 

the size of their aliphatic tail215,216 and stimulate the release of enteroendocrine hormones such 

as glucagon-like peptide-1 (GLP-1) and peptide YY (PYY). For instance, propionate lowered 

hepatic glucose production in healthy rats in vivo,217 and prevented weight gain in overweigh 

adult humans218 via the stimulation of the release of GLP-1 and PYY.219,220 GLP-1 is an 

incretin exerting several functions, from increasing insulin and decreasing glucagon secretion 

and stimulating beta-cell growth to decreasing appetite and food intake. GLP-1 secretion is 

not only stimulated by SCFAs but also by the digestion of macronutrients.221,222,223,224  

Bacteria and their metabolites (SCFAs but also other signalling molecules) may also 

regulate the expression of key regulatory and functional genes such as those that are important 

for fat storage (adipocyte development and lipolysis) and oxidation, and gastrointestinal 

hormone production.225 For instance, butyrate inhibited intestinal cholesterol biosynthesis in 

vitro, thus possibly lowering plasma cholesterol levels226 and improved insulin sensitivity in 

mice, through the promotion of energy expenditure and induction of mitochondrial 
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function.227 SCFAs also regulate leptin secretion by adipocytes.228,229 SCFAs may therefore be 

mediators of the long-term effects exerted by early nutrition.   

Host-microbiota interactions could also be mediated by other mechanisms. Diverse 

metabolites and signalling molecules produced by gut microbiota such as SCFAS and folate 

may directly or indirectly modify the epigenome and therefore regulate host genes and shape 

long-term phenotype.230,231 There are three distinct epigenetic mechanisms: DNA methylation, 

histone modifications and non-coding microRNAs (miRNAs). Epigenome and microbiome 

would be interrelated and influenced by each other but their interaction in responses to early-

life environment remain unclear.232,233 SCFAs, such as butyrate and propionate are thought to 

modulate host cellular processes through inhibition of histone deacetylase activity and to alter 

the expression of specific genes.234,235,236 Interactions between gut microbiota composition 

and epigenetic regulation of genes have been demonstrated in obese and diabetic adult 

patients with a significant correlation between a higher BMI and lower methylation of 

FFAR3.237 In a germ-free mice model, supplementation with SCFAs was sufficient to 

recapitulate chromatin modification states and transcriptional responses associated with 

colonization.238 Besides, a clear association has been demonstrated in pregnant women 

between a microbiome dominated by Firmicutes and blood DNA methylation patterns, 

associated with greater susceptibility to diseases such as cardiovascular disease and obesity.239 

Breastfeeding would contribute, via the modulation of gut microbiota composition, to the 

production of larger amounts of folate, inducing DNA methylation marks. On the contrary, 

the higher protein content of infant IF may lead to a higher amount of protein reaching the 

colon and therefore to an enrichment in proteolytic bacteria, producing butyrate, at the 

expense of carbohydrate-fermenting bacteria, promoting histone acetylation, known to be a 

key factor of epigenetic regulation of cholesterol and lipid metabolism.240 Other nutrients such 

as LC-PUFAs may also have an effect on epigenetic processes.241,242 Thus, both the 
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supplementation of IF with probiotics and prebiotics and its composition in macronutrients 

may induce epigenetic modifications by impacting gut microbiota composition and 

metabolism.  

Early life nutrition may also alter miRNA profiles and therefore gene expression since 

miRNA expression depends on gut microbiota community.231,243,244 Human and bovine milks 

contain miRNAs and so do IF but with much lower expression.245,246,247,248 

Targeting gut microbiota seems to be relevant to prevent metabolic diseases on the long-

term. Integrative approaches of metagenomic, epigenetic and metabolomic/lipidomic data are 

necessary to better understand their dynamic interactions with early-life environment and 

improve long-term health (Fig. 2). 

 

Conclusion 

Early nutrition plays a predominant role in health and well-being of the newborn and in 

later life by modulating its metabolism. Improving the functional effects of IF to reduce the 

gap between breastfed and formula-fed infants is crucial and has been the topic of great 

research over the past years. Yet, numerous questions remain to be answered about which 

components should be added to IF and in which quantity depending on their metabolic fate 

and outcomes. Indeed, when it comes to human milk composition and infant nutrition in 

general, there is no “one-size-fits-all construct”.127 Regarding metabolic health of infants, an 

improved IF would consist in modulating all macronutrients: proteins (to decrease the 

quantity but mostly improve their quality), lipids (to resemble the size, structure and 

composition of the fat globule by the addition of dairy lipids, cholesterol and MFGM, and 

also a balanced ω3:ω6 LC-PUFA ratio) and to supplement with prebiotics, probiotics or 

synbiotics. However, further studies are needed to improve IF composition and gain 

comprehension on how it may modulate the interplay between host metabolism and gut 
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microbiome and exert long-term health benefits. Gut microbiota development plays a key role 

but due to its complexity, the underlying pathways impacting the infant biology remain 

largely unknown. Animals such as the nonhuman primate and the neonatal piglet, excellent 

preclinical models for the human infant,93,249 proved to be useful to control and account for 

some confounding factors found in human studies and to investigate the mechanisms involved 

in the long-term effects of early nutrition. They allow for the screening of potential nutritional 

factors and the selection of the most promising ones. Yet there is still a need for a 

standardized model for infant growth and development. Besides, they remain models and 

additional well-designed longitudinal human studies are needed to investigate the effects of 

the IF composition on host metabolism beyond infancy.  
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Figure legends 

Fig. 1. Short- and plausible long-term effects of neonatal feeding 

BF, breastfed infants; CHD, coronary heart disease; FA, fatty acid; HMOs, human milk 

oligosaccharides; IF, infant formula; IGF-1, insulin-like growth factor-1; IR, insulin 

resistance; LDL, low density lipoprotein; MFGM, milk fat globule membrane; TD2, type-2 

diabetes; TG, triglycerides 

 

Fig. 2. Long-term metabolic health: the potential pathways involving gut microbiota 

GLP-1, glucagon-like peptide-1; HMOs, human milk oligosaccharides; IGF-1, insulin-like 

growth factor-1; miRNAs, non-coding microRNAs; PYY, peptide YY; SCFAs, short-chain 

fatty acids 
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Figure 2 
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