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Multicore system analysis requires efficient solutions for architectural parameter and scalability exploration. Long simulation time is the main drawback of current simulation approaches. In order to reduce the simulation time while keeping the accuracy levels, trace-driven simulation approaches have been developed. However, existing approaches do not allow multicore exploration or do not capture the behavior of multithreaded programs. Based on the gem5 simulator, we developed a novel synchronization mechanism for multicore analysis based on the trace collection of synchronization events, instruction and dependencies. It allows efficient architectural parameter and scalability exploration with acceptable simulation speed and accuracy.

I. INTRODUCTION

S Imulation is widely used in system design for evaluating different design options. Depending on the abstraction level considered for simulating a given system configuration, there is a tradeoff between the obtained precision and speed. Generally, simulating a detailed system model provides accurate evaluation results at the price of potentially high simulation time. On the other hand, less detailed or more abstract system representations usually provide less accurate evaluation results, but in a fast and costless manner. In practice, such representations are defined such that they only capture system features that are mostly relevant to the problem addressed by a designer. Trace-driven simulation is a popular technique that enables fast design evaluation by considering system models where inputs are derived from a reference system execution, referred to as traces.

Considering multicore architectures, a typical trace-driven simulation relies on collecting reference traces in a tracecollection phase based on an accurate reference architecture with a low core count. Because traces are collected on such an accurate reference architecture, most relevant phenomena are captured such as CPU microarchitecture events, memory transaction events, event jitter due to the underlying operating system execution, etc. The resulting traces can be then reused in a number of target trace-driven simulations in which CPU cores are replaced with trace injectors as an abstraction, thereby enabling to refocus the simulation effort on other performance-critical system sub-components such as caches, communication architecture and memory sub-system.

Elastic Traces (ET) framework [START_REF] Jagtap | Exploring system performance using elastic traces: Fast, accurate and portable[END_REF] is an extension of the gem5 environment [START_REF] Binkert | The gem5 simulator[END_REF] that allows to collect and playback micro-architecture dependency and timing annotated traces attached to the Out-of-Order (OoO) CPU model. The focus of this tool is to achieve memory performance exploration in a fast and accurate way compared to the slow gem5 OoO CPU model. It relies on extensive modifications of the OoO CPU model. Probe points have been added in the pipeline stages. Each instruction is monitored and a data dependency graph is created by recording data Read-After-Write dependencies and order dependencies between loads and stores [START_REF]ElasticTraces[END_REF]. Two different traces are produced: one for instruction fetch requests and one for data memory requests. To ease the capture of a large amount of trace data, the Google protobuf format is used [START_REF]Protocol Buffers[END_REF]. While Elastic Traces simulation provides an attractive design evaluation support, it does not enable to address multicore architecture.

In this paper, we present the ElasticSimMATE (ESM) tool, which extends Elastic Traces with inter-core synchronization features, in order to make possible multicore architectures simulation. ElasticSimMATE enables to conduct explorations belonging to two categories as follows:

• fast system parameter exploration: because trace-driven simulation is fast, the influence of various parameters such as cache sizes, coherency policy, memory speed can be rapidly assessed through replaying the same traces on different system configurations. • system scalability: this approach relies on replicating traces for emulating more cores, thereby analyzing how performance scales when increasing the number of cores. This approach requires to record and carefully handle the synchronization semantics in the trace-replay phase so as to carefully account for the execution semantics on such an architecture.

This paper is organized as follows. Section II discusses related work. In Section III, describes the main concpets of the ElasticSimMATE approach. In Section IV we present the experimental results on selected applications. Finally, we conclude this paper in Section V.

978-1-5386-3344-1/17/$31.00 c 2017 European Union II. RELATED WORK Simulation speed and accuracy are two crucial considerations for architectural and scalability analysis exploration. In the sequel, we review some relevant simulation approaches.

A. Traditional simulators

Existing techniques can be classified into two fundamental families [START_REF] Heegaard | Speed-up techniques for simulation[END_REF].

The first family focuses on the increasing of computational power, e.g., increasing the number of simulated events per second. Usually it is achieved by running the simulation distributed across multiple host machines [START_REF] Lis | Scalable, accurate multicore simulation in the 1000-core era[END_REF], [START_REF] Alian | pd-gem5: Simulation infrastructure for parallel/distributed computer systems[END_REF]. Distributed simulation is a known difficult technique as one must carefully deal with simulation partitioning and event synchronizations among available hosts. Another popular approach for accelerating simulation is just-in-time (JIT) dynamic binary translation, e.g., OVP [START_REF]OVP. open virtual platforms[END_REF] and QEMU [9]. JIT-based simulators are instrumented with timing models so that basic architecture block models and their inter-operations can be driven according to the annotated timing information. The second family of techniques includes approaches reducing the number of simulation events required for accurate results. It concentrates on optimizing component descriptions (e.g. CPUs, interconnect infrastructure) following the transaction-level modeling strategy [START_REF] Cai | Transaction level modeling: an overview[END_REF] or by using trace-driven simulation [START_REF] Rico | Trace-driven simulation of multithreaded applications[END_REF]. The above approaches lack expressive modeling supports such as those related to cache hierarchies, coherency protocols and communication architecture which are of bold importance. Such simulators can achieve speeds close to thousands MIPS at the cost of a limited accuracy. They often focus on functional validation rather than architectural exploration.

In order to allow architectural parameter and scalability exploration with acceptable accuracy, trace-driven simulation is an alternative approach. In [START_REF] Jagtap | Exploring system performance using elastic traces: Fast, accurate and portable[END_REF], authors proposed a collection and replay mechanism defined in gem5 simulation framework. However, its application is restricted to mono-core execution and no synchronization mechanism is presented. On the other hand, a synchronization mechanism for multi-threaded application is presented in [START_REF] Butko | A trace-driven approach for fast and accurate simulation of manycore architectures[END_REF]. In a similar way, authors in [START_REF] Nilakantan | Synchrotrace: synchronization-aware architectureagnostic traces for light-weight multicore simulation[END_REF] proposed a collection mechanism for parallel events and a playback methodology to allow architectural exploration.

B. Trace-driven extensions of gem5

In Elastic Traces [START_REF] Jagtap | Exploring system performance using elastic traces: Fast, accurate and portable[END_REF], the replay phase allows to play back traces for architecture exploration. Instruction traces and data dependency traces are injected on the I-side and Dside generators respectively (see Fig. 1). This trace replayer supports only single-threaded applications which is one main limitation. Elastic Traces demonstrates a speedup of 6-8x compared to a reference Out-of-Order core and is accurate, with less than 10% error versus the reference [START_REF] Jagtap | Exploring system performance using elastic traces: Fast, accurate and portable[END_REF].

SimMATE [START_REF] Butko | A trace-driven approach for fast and accurate simulation of manycore architectures[END_REF] is a trace-driven simulator that operates on top of gem5 and is devoted to the exploration of in-order manycore architectures. Traces collected on a reference architecture in Full-System mode are made of outgoing memory transactions collected at Level-1 caches, i.e. cache misses. In 

III. ELASTICSIMMATE FRAMEWORK

Figure 2 conceptually depicts the ElasticSimMATE workflow, from the OpenMP application source files to the replay on different target architecture configurations. The red-colored #pragma omp statements listed in the source are read by the pre-processor in the usual case and result in the insertion of calls to the OpenMP runtime. In ElasticSimMATE, these calls further require to call a tracing function that will make it possible to record the start and end of a parallel region in the trace. The resulting binaries are then executed in a Full-System (FS) simulation (Trace Collection phase) so as to generate the execution traces. Three traces are created: instruction and data dependencies trace files (as per the Elastic Traces approach) and an additional trace file that embeds synchronization information. These three trace files are used in the trace replay phase devoted to the architecture exploration.

ElasticSimMATE supports the following gem5 features: ARMv7 and ARMv8 ISAs, O3 CPU model and SimpleMemory model (required by Elastic Traces). Recording synchronization traces requires using a specific gem5 pseudo-instruction created for this purpose: m5_trace(). This pseudo-instruction requires to be inserted either manually or automatically by means of using an instrumented runtime system.

A. ElasticSimMATE workflow

ElasticSimMATE simulation is composed of four steps: code annotation, checkpoint creation, trace collection and replay, introduced in the following subsections.

1) Code Annotation: First of all, it is necessary to annotate the code with m5_trace() pseudo-instruction before compilation either manually or automatically. This pseudoinstruction takes care of recording synchronization information in the trace, such as the program counter and the number of instructions and dependencies. It must be inserted at the beginning and at the end of each event.

While manual insertion of the tracing calls are possible at source code level this is rather cumbersome and therefore two other options have been considered:

• Source to source approach. This approach relies on parsing application input files and automatically inserting the m5_trace calls wherever needed. We have verified that the proposed approach works for C/C++ but would require to be ported for other languages. • Automatic tracing call insertion. This solution relies on modifying the API runtime so that whenever a parallel code region is detected a tracing call gets automatically inserted right at the precise instant where parallel execution starts. It is regarded as the most suitable solution as it is accurate and only requires to work with a specific version of the runtime system.

Automatic tracing call insertion is the option selected at this stage and is available for OpenMP using the Nanos++ runtime system / Mercurium compiler [START_REF] Balart | Nanos mercurium: a research compiler for openmp[END_REF]. Mercurium source to source compiler automatically inserts Nanos++ function calls whenever a specific runtime handling is required. Figure 3 illustrates the process and the function calls inserted before being passed on to gcc: nanos_create_team() and nanos_end_team() alongside the nested nanos_enter_team() and nanos_leave_team() are displayed at respectively the beginning and end of the parallel region. The approach here relies on modifying those functions so as these carry out the required work for tracing. 2) Checkpoint creation: a) Principle: once the desired architecture parameters are decided for the trace capture, the simulation is launched in order to create a checkpoint after system boot and before application execution. It makes possible to obtain clean traces without OS boot phase information. This checkpoint resets all statistics in gem5 and allows to resume simulation from that point.

Checkpoints are acquired by setting cpu-type to arm_detailed. While this model is slow because of its accuracy, this only applies to the trace capture which is to be performed only once per application.

3) Traces collection: a) Principle: In this phase, ElasticSimMATE restores the system state from the checkpoint and begins trace collection. Three types of events are considered during parallel sections: instruction executed, dependencies (load/store), and synchronization events. Instruction and data dependency traces It has to be noted that for each thread under analysis the Tick and PC information will be the same since all threads are created at the same time. It means that the information on the synchronization traces is the same. In the case of the dependency trace, the load and store information are only collected between the CPU and the L1 caches. At the end of the trace collection phase, three Google Protobuf files are obtained per simulated CPU core with the required data for the replay phase:

• Instruction Executed Trace File.

• Dependency Trace File (LOAD/STORE).

• Synchronization Event Trace File.

4) Traces replay:

a) Principle: As illustrated in Figure 4a, collected traces can be replayed in target architecture configurations in different ways. Letting N be the number of cores used in trace collection and M in trace replay, two main purposes are considered as follows:

• Parameters exploration: we perform an architectural exploration in which we replay the exact number of simulated cores, i.e., N = M. The objective is to analyze the influence of a number of architectural parameters such as cache sizes, interconnect bandwidth or memory latency.

• Replication: we perform a scalability analysis, by targeting a higher core count compared to that of the initial system from which given traces are captured, i.e., M ∧ N. This is achieved by simulating more trace injectors. Noted that the replication mechanism allows us to perform weak-scaling analysis as the problem size is increased by the ration of M N . In addition, current implementation is performed with no address offsetting mechanism. This means that most of the resources are shared among cores. b) Implementation: Figure 4b shows the interplay of the principal objects involved during the replay phase in ElasticSimMATE. A number of TraceCPU objects operate and check if LOAD/STORE dependencies are met on the basis of the traces they access, as per the Elastic Traces base model. These further read out the synchronization trace and keep track of the parallel regions.

The actual behaviour when entering a parallel region is as follows:

• Init: whenever one such region is detected on a TraceCPU, a notification is sent to the arbiter so as to properly handle the synchronizations. Further results are reported concerning scalability analysis. They rely on the "trace replication" approach (see Section III-A4), which is based on trace reuse for emulating the presence of more cores in the considered targeted system. As traces are replicated on a per-core basis, these results account for weak-scaling analysis. Finally, parameters explorations are performed considering different L2 cache sizes.

A. Experimental Setup 1) Baseline system: As reference model we consider an

Out-of-Order (or O3) CPU model in gem5 that represents an ARMv7 architecture. Figure 5 depicts a four-core architecture along with the cache hierarchy, an interconnect and a main memory. For the trace collection, we set up the same configuration from 1 to 4 cores while omitting the L2 cache in a similar way as Elastic Traces approach.

Unless otherwise stated, all experiments are done using the parameters shown in Table II. Each core has its own L1 Data and Instruction caches. The unique L2 cache is shared between all cores through a bus. We run FS simulation which is instrumented for capturing traces. All experiments are conducted on a 56-core server (Xeon E5 clocked at 2.6GHz). workload therefore remains unchanged, as well as synchronization semantics: a synthetic synchronization barrier is emulated by the arbiter that ensures all TraceCPU objects reach the end of any parallel region before resuming the execution of the subsequent statements in a code. These experiments are conducted on the matrix multiplication workload (up to 512x512 matrix sizes) and 3 compute-intensive applications defined in Rodinia [START_REF] Che | Rodinia: A benchmark suite for heterogeneous computing[END_REF] and Parsec [START_REF] Bienia | The parsec benchmark suite: Characterization and architectural implications[END_REF] benchmark suites respectively: Hotspot, K-means and Blackscholes. • Architectural parameter exploration: we use K-means application with 1, 2 and 4 cores for collection. Then, we replay varying the L2 cache size. FS simulations are also run to serve as references.

B. Accuracy and Speedup Evaluation

In this section we evaluate how correlated are the results obtained with ESM in relation to ET and FS. In all cases, the deviation percentage is calculated based on FS results (

V F S -V ET,ESM V F S
). Table III shows the execution times reported by the three tools. We observe that ElasticSimMATE preserves Elastic Traces accuracy with negligible deviation in predicted execution time for single core experiments. On the other hand, error tends to decrease on multicore experiments. 2) Speedup Evaluation: Figure 6 shows the simulation speedups achieved by respectively Elastic Traces and Elas-ticSimMATE compared to gem5 FS simulation. Speedups are in the same order of magnitude for both solutions. Modest speedups of around 3x for small input set sizes find root in the short application execution time for which gem5 spends 

C. Trace Replication

Results shown in this section use trace replication only. Though traces can be collected on an arbitrary number of cores (up to 4 in our setup), all figures reported here are made on the basis of 1 core trace collection that is replicated according to the target core count. Similar results were obtained when using two and four cores count. All of the experiments in this section are carried out using only ESM, since FS simulation up to 128 cores would take a prohibitive amount of time. Figures 8a and8b show the corresponding execution times accounting for weak scaling. The rather early increase in execution time obviously relates to contention in the interconnect / memory subsystem (shared bus in these experiments). Note that trace replication is in the current version made without any address offsetting i.e. all cores issue requests to the same addresses (encoded in the trace) which results in unrealistic data sharing during replay. This is confirmed after analyzing gem5 execution statistics which report well above 80% data sharing in most experiments.

Similar experiments have been carried out on sample applications extracted from Rodinia and Parsec benchmark suites. Blackscholes, Hotspot and K-means have been selected for their different memory access patterns. Figures 9a and9b give simulation times and execution times for systems comprising up to 128 cores. Better weak-scaling is observed compared to the matrix multiplication. Interconnect saturation occurs from 32 cores for hotspot. Simulation times are in the tens of hours for the chosen applications / input set sizes for 128 core systems which is acceptable.

D. Architectural Parameter Exploration

By using ElasticSimMATE in an architectural parameter exploration mode we vary the L2 cache size and measure the execution time. We our results regard to gem5 Full-System simulation for one, and four cores. Here we focus on relative accuracy between FS and ESM instead of absolute accuracy. Execution time results are shown in Figure 10. While the observed execution times for ESM and FS differ, they globally follow the same tendency. For instance, given any pair of configurations (i.e., L2 cache size) the relative comparison of their associated execution times is similar for both simulation approaches. In addition, for a given cache configuration the relative comparison of the execution times obtained with different core counts is similar for both simulation approaches. The above observations suggest the soundness of ESM with regard to FS. Since ESM is in average 3x faster than FS, designer can therefore exploit the capabilities of our approach to perform detailed and complex architecture parameter exploration in a fast way. To illustrate this opportunity, let us consider a simple exploration of typical design decisions that can have an impact on system performance. Here, we vary the size of the L2 cache in the memory hierarchy and we analyze the resulting effect on the related performance metrics such as the total cache miss rate and the total cache miss latency. Table IV reports the experimental results for K-means in FS and ESM simulations. In FS changing the L2 cache from 16kB to 1MB represents a reduction in the cache miss rate of 57.7% while ESM shows 60.3% reduction. Furthermore, increasing the L2 cache from 16kB to 2MB reduces the cache misses for about 65.6% with FS and 67.7% with ESM. In this case, a designer would consider 1MB L2 cache as a preferable choice instead of 2MB cache size, as the improvement in the performance is marginal in the latter case. This in turn would reduce the cost in area and power consumption. A similar analysis can be made based on the total cache miss latency. 

E. Summary

The displayed results show that overall simulation accuracy remains in the same range compared to that of Elastic Traces for low core counts while a slight error is observed towards higher numbers of cores. This finds roots in the lack of address offsetting when emulating more cores in the target simulation, as well as a coarse grained handling of instructions and data synchronizations. Simulation time scales satisfactorily and most simulations completed in usually hours, occasionally days when selecting large input sets and core counts. Trace collection, even though done once for each application is timeconsuming and produces large trace files, in the order of tens of gigabytes for the applications used in these experiments. Synchronization trace account for well below 1% of overall trace files, the rest being related to intrinsic Elastic Traces tracing approach.

V. CONCLUSION AND FUTURE WORK

This paper describes a gem5 trace-driven simulation solution. It relies on two former contributions, Elastic Traces and SimMATE. The resulting tool, ElasticSimMATE, preserves the accuracy at the heart of Elastic Traces and makes it possible to conduct a fast architectural parameter exploration. We illustrated the opportunity offered by ESM for fast and sound architecture exploration through the impact analysis of L2 cache size on system performance. In addition, we showed the scalability of ESM based simulations, thanks to an adequate trace replication mechanism. This mechanism relies on reusing traces collected on a reference architecture onto more cores thereby enabling to perform weak scaling experiments (workload/problem size remains same per core). Experimental results confirmed that ESM can simulate up to 128 cores. Furthermore, based on the application complexity, ESM is at least 3x faster than FS simulation.

One important extension to the current work is to enhance the considered trace format in order to enable strong-scaling experiments. Indeed, it will make possible complementary evaluations of multicore architectures such that a given workload could be divided and allocated to available cores, i.e., workload/problem size could be adapted to the number of cores. Beyond the simple architectural exploration reported in this work, we plan to address further design issues, e.g., interconnect topologies and protocols, memory hierarchy, etc. Finally, our tool will be freely-available once we have make the proposed improvements.
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 3 Figure 3: Function insertion while using Nanos++ and mercurium

  (a) Trace replay: N represents the number of cores for the collection and M the number of cores for the replay (b) Replay overview including modified TraceCPU and arbiter
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 5 Figure 5: Reference system with 4 cores
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 6 Figure 6: Simulation speedup for matrix multiplication
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 7 Figure 7: Simulation time for matrix multiplication Figures 7a and 7b show the simulation time versus core count for the matrix multiplication for 2 sets of input sizes, small (16x16 to 64x64) and large (128x128 to 512x512).
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 8 Figure 8: Execution time for matrix multiplication
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 9 Figure 9: Trace replication analysis for selected applications
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 10 Figure 10: K-means execution time for different L2 cache size

Table I :

 I Table I describes the currently supported set of OpenMP constructs. OpenMP constructs supported in Nanos++ tracing tool

	OpenMP Event	Position	Nanos++ Call
	Parallel / Parallel for	Beginning	nanos_enter_team()
		End	nanos_leave_team()
	Critical	Beginning	nanos_set_lock()
		End	nanos_unset_lock()
	Barrier	Beginning	nanos_omp_barrier()

  TraceCPU model continues the execution.

	The length of a region is encoded in the trace in form
	of a number of instructions to be executed alongside a
	number of data dependencies to be met. Local counters
	keep track of both instruction and dependency counts.
	• Stall: when counters reach the two values (number of
	executed instructions and number of executed dependen-
	cies) listed in the synchronization trace record TraceCPU
	stalls (locked state) and simultaneously notifies the arbiter
	it has reached a barrier.

• Processing: • End: when the arbiter has received lock notifications from all TraceCPU objects it unlocks them all and execution is resumed.

Table II :

 II Reference baseline system

		Parameter	Value
	CPU	Model	O3
		Size	32kB
	I Cache	Associativity	2-way
		Cycle Hit Latency	1
		Size	32kB
	D Cache	Associativity	2-way
		Cycle Hit Latency	1
		Size	1MB
	L2 Cache	Associativity	16-way
		Cycle Hit Latency	12
	Main	Model	SimpleMemory
	Memory	latency	30ns

Table III :

 III Simulation accuracy for the matrix multiplication:

	Execution time comparison		
		#Core	FS [ms]	ET [ms]	ESM [ms]	FS vs ET [%]	FS vs ESM [%]
		1	115.61	98.55	98.72	14.76	14.61
	16x16	2	99.36		102.15		-2.80
		4	105.75		106.79		-0.99
		1	116.83	99.77	99.77	14.60	14.60
	32x32	2	100.19		102.82		-2.63
		4	106.25		107.46		-1.14
		1	126.34	109.30	109.31	13.48	13.48
	64x64	2	106.84		106.58		0.25
		4	110.43		109.42		0.91
		1	225.39	183.92	183.92	18.40	18.40
	128x128	2	159.96		142.41		10.97
		4	132.67		127.47		3.92

Table IV :

 IV Parameter exploration analysis for k-means.

	L2 Cache Size	16kB	1MB	2MB
	Simulation Approach	FS	ESM	FS	ESM	FS	ESM
	Cache Miss Rate (%)	75.9	76.7	18.3	16.4	10.3	8.9
	Cache Miss Latency (ms)	59.6	59.1	13.6	12.4	7.5	6.8