
HAL Id: hal-01723606
https://hal.science/hal-01723606

Submitted on 21 Oct 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Runtime Failure Prevention and Reaction
Yliès Falcone, Leonardo Mariani, Antoine Rollet, Saikat Saha

To cite this version:
Yliès Falcone, Leonardo Mariani, Antoine Rollet, Saikat Saha. Runtime Failure Prevention and Reac-
tion. Lectures on Runtime Verification, 10457, Springer, pp.103-134, 2018, Lecture Notes in Computer
Science, �10.1007/978-3-319-75632-5_4�. �hal-01723606�

https://hal.science/hal-01723606
https://hal.archives-ouvertes.fr


Runtime Failure Prevention and Reaction

Yliès Falcone1, Leonardo Mariani2, Antoine Rollet3, and Saikat Saha2

1 Univ. Grenoble Alpes, CNRS, Inria, Grenoble INP, LIG, 38000 Grenoble, France
ylies.falcone@univ-grenoble-alpes.fr

2 Univ. of Milano Bicocca, 20126 Milano, Italy, {mariani,saha}@disco.unimib.it
3 LaBRI, Bordeaux INP, University of Bordeaux, Bordeaux, France,

antoine.rollet@labri.fr

Abstract. This chapter describes how to use in-the-field runtime techniques to
improve the dependability of software systems. In particular, we first present an
overall vision of the problem of ensuring highly-dependable behaviours at run-
time based on the concept of autonomic monitor, and then we present the two
families of relevant approaches for this purpose. First, we present techniques
related to runtime enforcement that can prevent the system producing bad be-
haviours. Second, we describe healing techniques that can detect if the system
has produced a bad behaviour and react to the situation accordingly (e.g., moving
the system back to a correct state).

Keywords: runtime enforcement, prevention of failures, reaction to failures, self-healing,
autonomic computing

1 Introduction

Fully assessing the quality of software systems in-house is infeasible for several well-
known reasons. For instance, the space of the behaviours and the configurations that
must be validated in-house and their combination might be intractable; many real usage
scenarios might be impossible to reproduce and validate in-house; and the context of
execution of a system might be only partially known, such as for the many software
applications that can be extended directly by their end-users through the installation of
plug-ins, which makes the problem of verifying software in-house extremely hard.

To improve the dependability of software systems, the software running in the field
can be equipped with solutions to prevent, detect, and react to failures. These solutions
attempt to handle the faults that have not been revealed in-house directly in the field,
once they produce observable effects. The range of solutions to cope with failures at
runtime is quite broad. It spans from fault tolerance techniques, which exploit various
forms of redundancy to overcome the impact of failures, to self-healing approaches,
which can automatically heal executions before they produce an observable effect.

In this chapter, we discuss approaches concerning two complementary, although re-
lated, aspects: runtime enforcement techniques, which can prevent a monitored program
from misbehaviouring by enforcing the program to run according to its specification,
and healing techniques, which can react to misbehaviours and failures to restore the



normal execution of the monitored program, possibly completely masking any observed
failure.

Runtime enforcement and healing techniques look at the same problem from the
opposite sides. The former affects executions with the objective of preventing failures,
for instance preventing that a wrong result is ultimately generated by a program. The
latter affects executions with the objective of restoring normal executions once a failure
has been observed, possibly masking the failure to any external observer (e.g., the users
of a system).

Runtime enforcement typically requires a specification of a system, for instance the
specification of a property that must be satisfied by an application, to properly steer
executions. When such a specification is available, it can be extremely effective in pre-
venting failures. However, its effectiveness is limited by the scope and availability of the
specifications. On the other hand, healing techniques often exploit source of informa-
tion alternative to ad-hoc specifications (e.g., program versions, redundancy, and failure
patterns) to be able to remedy to the observed problems. The two classes of solutions
together represent a relevant range of options to deal with failures at runtime.

Of course, the boundaries between enforcement and healing are not always sharp,
and some approaches in one category may have some characteristics present also in
the approaches in the other category, and vice versa. In this chapter, we do not aim
to exhaustively discuss the approaches in the two areas or claim that the distinction
between enforcement and healing is effective in all the cases, but rather we aim to
give a general and coherent vision of these techniques and to provide an initial set of
references for the readers interested in more details. The discussion is mostly informal,
and specific details are provided only when needed.

The chapter is organised as follows. Section 2 presents the concept of autonomic
monitoring, which is exploited to discuss as part of the same conceptual framework both
runtime enforcement and healing techniques. Section 3 discusses techniques to prevent
failures by enforcing the correct behaviours. Section 4 presents techniques to react to
failures by restoring the correct behaviour. Section 5 discusses some open challenges,
and finally Section 6 provides final remarks.

2 Autonomic Monitors

Runtime enforcement and healing techniques have to deal with faults, anomalous be-
haviours and failures. In this chapter, a failure is the inability of a system or component
to perform its required functions within previously specified limits, a fault is an incor-
rect step, process or data definition, and an anomalous behaviour (or a bad behaviour)
is anything observed in the operation of software that deviates from expectations based
on previously verified software products, reference documents, or other sources of in-
dicative behaviour [53]. A fault present in a software may cause anomalous behaviours
and even worse failures.

We present solutions for runtime enforcement and healing referring to the same
high-level software architecture. Since both runtime enforcement and healing repre-
sent specific cases of autonomic computing technologies, we adapt the architecture of
a general autonomic manager proposed by IBM [56] to the case of an Autonomic Mon-

2



Monitored	Program	

Knowledge	

Sensors	 Actuators	

Analyse	 Plan	

Observe	 Execute	

Monitored	Applica/on	

Autonomic	Monitor	

Fig. 1: General architecture for enforcement and healing at runtime.

itor that can perform enforcement and healing at runtime. The resulting architecture is
shown in Figure 1.

The two main components of the architecture are the Monitored Program and the
Autonomic Monitor. The Monitored Program is coupled with the Autonomic Monitor,
which adds behaviour enforcement and healing capabilities to the monitored program.
The interaction between these two components is possible through Sensors, which are
probes or gauges that collect information about the monitored program, and Effectors,
which are handles that can be used to change the behaviour of the monitored program
according to the decisions taken by the Autonomic Monitor. We consider here the Mon-
itored Program in a general sense, meaning that for instance its configuration or its
environment is included in this definition.

The behaviour of the Autonomic Monitor is determined by a feedback loop that
comprises four phases: Observe, Analyse, Plan, and Execute. These four phases exploit
some Knowledge about the monitored program to work effectively. In particular, the
Observe phase collects information and data from the monitored program using sen-
sors, and filters the collected data until events that need to be analysed are generated
and passed to the analysis phase. The Observe phase can also update the Knowledge
based on the collected information. The Analyse phase performs data analysis depend-
ing on the knowledge and the events that have been produced. Should an action need
to be taken, the control is passed to the Plan phase, which identifies the appropriate
procedures to enforce a given behaviour or to heal the monitored program. The Exe-
cute phase actuates the changes to the behaviour of the monitored program based on
the decision taken by the Plan. The Execute phase also performs the preparation tasks,

3



such as locking resources, that might be necessary before the monitored program can
be affected. When the monitored program is modified, the Knowledge can be updated
accordingly.

In this chapter, we describe the enforcement and healing techniques based on:

– the requirements on the monitored program, and on the sensors and effectors that
must be introduced into the monitored program;

– the behaviour of the four phases Observe, Analyse, Plan and Execute that charac-
terise an autonomic monitor, note that some phases might be extremely simple for
some techniques;

– the knowledge about the system that must be provided and updated to let the auto-
nomic monitor work properly.

The following two sections organise the approaches distinguishing between runtime
enforcement and healing techniques.

3 Enforce the Correct Behaviour

We overview some of the research efforts in the domain of runtime enforcement [35,59].
Runtime enforcement is a “branch" of runtime verification focusing on preventing and
reacting to misbehaviours and failures. While runtime verification generally focuses
on the oracle problem, namely assigning verdicts to a system execution, runtime en-
forcement focuses on ensuring the correctness of the sequence of events by possibly
modifying the system execution.

Structure of this section. The rest of this section is organised as follows. Section 3.1
introduces runtime enforcement and presents how it contributes to the runtime quality
assurance and fits into the general software architecture presented in Section 2. Sec-
tion 3.2 overviews the main existing models of enforcement mechanisms. Section 3.3
focuses on the notion of enforceability of a specification, namely the conditions under
which a specification can be enforced. Section 3.4 presents work related to the synthe-
sis of enforcement mechanisms. Section 3.5 discusses some implementation issues and
solutions, and presents some tool implementations of runtime enforcement frameworks.

3.1 Introduction and Definitions

Research efforts in runtime enforcement generally abstract away from implementation
details and more precisely on how the specification is effectively enforced on the sys-
tem. That is, in regard of Figure 1, one generally assumes that sensors and effectors
are available by means of instrumentation and one focuses on the Analyse and Plan
phases instead of the Observe and Execute ones. Moreover, runtime enforcement prob-
lems revolve mainly on defining input-output relationships on sequences of events (see
Figure 2a). That is, the actual execution, made available through the Observe module,
is abstracted into a sequence of events of interest (according to the specification). More
precisely, a runtime enforcement framework shall describe how to transform a (pos-
sibly incorrect according to the specification) input sequence of events into an output

4



σ
EM

EM (σ)

ϕ

(a) Conceptual view of the run-
time enforcement problem

Sys 1

Sys 2

input
sanitiser

S
reference
monitor

output
sanitiser

file
system

(b) Scenario illustrating the possible usages of an
enforcement mechanism

σ
EM S

EM (σ)

(c) EM as input sanitiser

EM (σ)
S EM

σ

(d) EM as output sanitiser

S EM
σ

EM (σ)

(e) EM as reference monitor

Fig. 2: Illustration of the runtime enforcement problem: an enforcement mechanism
EM transforms an input σ to an output EM (σ) according to property ϕ and for a
system S .

sequence of events by means of a so-called enforcement mechanism.4 The transforma-
tion is performed according to the given specification which is used to synthesise the
enforcement mechanism.

Before elaborating on the different ways an enforcement mechanism can transform
the input sequence and how the enforcement mechanism can be synthesised (in Sec-
tion 3.2 and Section 3.4 respectively), we relate the implicit assumptions made in
runtime enforcement endeavours to the architecture of a general autonomic manager
(Figure 1). In particular, one should note that the conceptual presentation of the run-
time enforcement problem in Figure 2a abstracts away several architectural setups. We
present some examples of more concrete architectural setups and illustrate them on a
scenario in Example 1. First, an enforcement mechanism can be used for input saniti-
sation (see Figure 2c). In such a case, the mechanism is used to “protect" the system
from its (untrusted) environment. All inputs to the system shall enter first the enforce-

4 We follow the terminology of [40] which generalises previous terminologies used in runtime
enforcement. We use the term enforcement mechanism to encompass definitions of mecha-
nisms dedicated to enforcement described at different abstraction levels. Moreover, using the
term enforcement mechanism allows us to abstract away the architecture of the autonomic
monitor and its placement w.r.t. the monitored system.

5



ment mechanism which filters out those that could harm the system or ensure that all
the necessary inputs are provided to the system. Examples of such situations include
using the enforcement mechanism as a firewall (to discard or alter some inputs) or us-
ing it to ensure that the pre-conditions required to use the system are met when, for
instance, the system is supposed to receive inputs from two external parties. Second, an
enforcement mechanism can be used for output sanitisation (see Figure 2d). All outputs
of the system shall enter first the mechanism which filters or transforms them. Exam-
ples of such situations include using the enforcement mechanism to prevent leaking of
sensitive information or a transformation of the trace produced by the system. Third, an
enforcement mechanism can be used as reference monitor (see Figure 2e). This archi-
tecture is close to the one of the autonomic monitor presented in Figure 1. There is a
closed loop between the system and the enforcement mechanism. All actions of interest
or relevant state changes are first submitted to the enforcement mechanism which then
grants, denies or alters state changes. Examples of such situations include using the
enforcement mechanism to grant access to sensitive primitives or system operations.

Example 1 (Using enforcement mechanisms). Consider the example system S depicted
in Figure 2b where enforcement mechanisms are used to enforce the correct behaviour
and ensure quality at runtime. Let us assume that S is purposed to realise some be-
haviour based on services provided by external systems Sys1 and Sys2. Actions of S
are driven by some users (not depicted in Figure 2b) and the actions should be logged
to a file system. The input sanitiser is used to forward to S information only when both
Sys1 and Sys2 provide the expected service, possibly discard or reformat some infor-
mation from the users. The reference monitor is used to monitor the important actions
of S by for instance rescheduling the actions or not letting S execute some actions when
these are not allowed. The output sanitiser is used to ensure that actions are logged prop-
erly by enforcing a pre-defined log format, anonymising user sensitive information, or
discarding irrelevant information.

The input-output relationship realised by the enforcement mechanism should fulfill the
following constraints.

– Soundness: the output sequence should be correct w.r.t. the specification.
– Transparency: a correct input sequence should not be modified, if possible.5

Remark 1 (Runtime enforcement vs supervisory control theory). Runtime enforcement
share the same objectives with supervisory control theory, which was introduced by
Ramadge and Wonham [81,82]. In supervisory control theory, one uses an automaton
modelling the system to synthesise a supervisor and a list of forbidden states. Events of
the system are partitioned into the so-called controllable and non-controllable events.
Intuitively, the supervisor is composed with an automaton model of the system (syn-
chronous product) and ensures the most permissive behaviour of the initial system while
preventing bad behaviour (rejected by the automaton). Should the system try to execute

5 This is the notion of transparency adopted in a majority of papers on runtime enforcement.
Some research efforts notice that this notion of transparency only constrains correct execu-
tion sequences; and they advocate that constraints should be placed on how an enforcement
mechanism transforms incorrect execution sequences [11,12,58].

6



References Models of enforcement mechanisms Specification formalisms used for synthesis

[88] security automata Büchi automata
[62] edit-automata deterministic finite-state automata
[37] generalised enforcement monitors Streett automata
[20] edit automata Rabin automata
[76] delayers timed automata
[40] delayers with suppression timed automata
[65] security automata µ-calculus formulae
[42] generalised enforcement monitors labelled transition systems
[39] enforcement mechanisms with rollback finite-state automata
[15] safety shields safety automata
[92] shields for burst errors temporal logic (safety)
[13] iteration suppression automata deterministic finite-state automata

Table 1: Summary of existing models of enforcement mechanisms with the specification
formalism from which they can be synthesised.

an action that could lead the system to exhibit a bad behaviour, the supervisor disables
this action which then cannot execute on the system anymore.

3.2 Models of Enforcement Mechanisms/Monitors

The first model of enforcement mechanism was security automata (SA) [88]. An SA is
a finite-state machine that executes in parallel with the monitored program. Whenever
the target programs want to execute an action in the scope of the enforced property, two
cases arise. Either the transition is defined and then the SA lets the target system execute
the action, otherwise the target system is halted. We note the follow up work [50] which
corrects and extends the results in [88] related to the enforcement abilities of security
automata (see Section 3.3).

Ligatti et al. later extended the work of Schneider et al. by noticing that security
automata are (only) sequence recognisers. They propose the model of edit-automata
(EA) [62] which are sequence transformers. In addition of halting the target system,
edit-automata can insert and suppress actions (originating from the target system or
not). For instance, an EA can suppress and memorise an action of the target system
for later replay. In an EA, the memorisation of actions is realised using the state-space.
Several variants of edit-automata have been proposed [11].

Falcone et al. generalised edit automata with the so-called generalised enforcement
monitors (GEMs) [43]. Contrarily to EAs, a GEM clearly separates sequence recogni-
tion from sequence transformation: GEMs are based on finite-state machines extended
with generic enforcement operations that act on an internal memory. Separating se-
quence recognition from action memorisation has several advantages. First, GEMs are
more amenable to implementation. Second, one can define easily formal composition
operations on GEMs by computing the product state space and composing memory
operations.

7



Bielova and Massacci proposed Iterative Suppression Automata (ISAs) [13], as a
variant of EAs. They noticed that the usual requirements of soundness and transparency
(and their implementation with EAs) do not distinguish what should happen when the
input execution does not satisfy the specification. The underlying motivation is to be
able to compare EAs in the manners they intervene on incorrect executions.

As noticed in [37], EAs and GEMs suffer from a practical limitation. Both of these
models assume being able to freeze an unbounded number of actions to be replayed
later. This amounts to assuming that an enforcement mechanism is able to predict the
result of any action. To address this issue, Dolzhenko et al. introduce Mandatory Re-
sults Automata (MRAs) [64,30]. Upon the observation of any action, an MRA should
return a result to the target application before seeing the next action. An MRA is placed
between the untrusted target application and the executing system, and enforces the
actions executed by the target as well as the results returned. Then, an MRA has to
consider input and output events on traces.

In [24,39], Charafeddine et al. propose enforcement mechanism with k-step roll-
back abilities. Such enforcement mechanism allows the system to deviate from the
desired property up to k observable execution steps. Should the system not return to
a correct state after k steps, the enforcement mechanism rolls the (non-deterministic)
system back to the last correct state and forces it to explore alternative executions. An
instantiation with 1 step of such general definition enforcement mechanisms is then
implemented and integrated in component-based systems (cf. [6]).

Similar to the above models are the so-called safety shields [15] for reactive hard-
ware systems, i.e. systems with Boolean signals as inputs and outputs. A shield is a
Mealy machine which ensures soundness and minimum interference according to a no-
tion of distance measuring the deviation between the output and the input of the shield.
When a state where a property violation becomes unavoidable is reached, the shield
enters in a recovery period, called k-stabilisation, and is allowed to deviate from its in-
put for at most k consecutive steps. Bloem et al. assume here that the violation should
be a rare event, and then the monitor keeps track of all possibilities assuming that it
was an isolated error. If another violation arises during this recovery period, the shield
enters in a fail-safe mode, where correctness is still ensured, but no minimal deviation.
Note, a shield cannot buffer events. Wu et al. extends shields and propose enforcement
mechanisms that respond immediately to violations and guarantees the safety under
burst errors [92]. Similar to the model in [24], k-stabilising shields (which recover the
system in a finite time) and admissible shields (which collaborate with the system) are
introduced in [52].

Models with memory constraints. Most of the above models of enforcement mecha-
nisms are endowed with an infinite memory as they allow the possible memorisation
of an unbounded number of events. Several models have been proposed to account for
practical memory limitations and bound the memory needed by enforcement mech-
anisms. Fong proposed Shallow History Automata (SHAs) [44] as security automata
that do not keep track of the order of event arrival. Fong generalised SHA as α-SA
which are SA endowed with a morphism α abstracting the current input sequence. Talhi
et al. introduced Bounded Security Automata (BSAs) and Bounded Edit-Automata
(BEAs) [91]. BSAs and BEAs are SAs and EAs with a bounded memory to memorise

8



the input sequence respectively. The previous models bound the size of the memory of
the enforcement mechanism (with an integer). Beauquier et al. introduced finite EAs
and deterministic context-free EAs, that is EAs with a finite set of states [10]. They
prove that finite EAs are strictly less expressive than EAs and study the conditions un-
der which a property can be enforced by a finite EA.

Models with real-time enforcement primitives. The previously described models of
enforcement mechanisms feature untimed sequence recognition mechanisms and en-
forcement primitives. In particular, when they do not account for the time that elapses
between the occurrence of two received events. Moreover, the amount of time during
which an event remains in the memory of the enforcement mechanism is not taken into
account. Models for enforcing timed properties have been defined as delayers in [77,76]
to enforce timed properties. Such models account for the physical time elapsing during
the reception of actions, storing and releasing actions in real-time. Later, the model of
delayers has been extended into delayers with suppression [40] where actions are dis-
carded from the memory when releasing such events would irremediably make the un-
derlying property violated. Since physical time has consequences on the implementabil-
ity of enforcement mechanisms, soundness and transparency need to be redefined and
additional constraints such as optimality are required on how such enforcement mech-
anisms release actions.

Models supporting uncontrollable events. Closer to controllers in supervisory-control
theory (see Remark 1), enforcement mechanisms accounting for uncontrollable actions
(i.e., actions that cannot be affected by the enforcement mechanism) have been de-
fined [85,57]. In addition to the current satisfaction of the output execution, such mod-
els take into account the possible reception of uncontrollable events. Uncontrollable
actions as clock ticks were first introduced by Basin et al. in [5]. Unrestricted uncon-
trollable actions were later introduced in extensions of GEMs in [85,84,86] and of EAs
in [57].

Predictive enforcement mechanisms. Inspired by the predictive semantics of runtime
verification monitors [94], predictive enforcement mechanisms were proposed in [78,79].
Predictive enforcement mechanisms leverage some apriori knowledge of the system to
output some events faster, instead of delaying them until more events are observed (or
permanently).

3.3 Enforceable Specifications

We now turn our attention to the existing characterisations of the so-called enforceable
specifications, i.e., specifications that can be enforced. Before elaborating on the ex-
isting characterisation, we first narrow down the term specification. As suggested by
Schneider [88], one can distinguish properties from policies when specifying systems.
A property (can be seen as a predicate that) partitions individual executions, while a
policy (can be seen as a predicate that) partitions sets of executions. Hence, not all
policies are properties. When observing a system execution, it is possible to determine

9



the membership to a property; while determining membership to a policy generally re-
quires observing additional executions.6 Examples of properties include deadlock and
starvation freedom, fairness, access control constraints, formalised requirements over
executions. The classical example of policy (which is not a property, i.e., it can not be
expressed with predicates over single execution) is information-flow because it requires
checking for potential correlation between executions.

Enforceability of a property depends on several factors:

– the formalism used to specify the property, and more particularly whether the for-
malism describes finite or infinite executions;7

– the enforcement primitives endowed to the monitors and how these enforcement
primitives are mapped to actual system effectors;

– constraints stemming from the system in which enforcement monitors are to be
integrated.

In the pioneering work of Schneider on security automata, safety properties were char-
acterised as enforceable [88]. Since a security automaton can only either 1) let a system
action execute or 2) halt permanently the system, its decisions are irremediable. Concur-
rently, Kim et al. noticed that any monitoring mechanism (evaluating the execution of
a system against a property) should be able to determine if the current execution is out-
side the set of allowed executions [60]. Thus, properties should be also co-recursively
enumerable, that is, the non-membership test should be computable. We note that the
results in [88] were later refined in [50]8, with the insights given in [60].

Ligatti et al. proved that, compared to security automata, using the additional en-
forcement primitives, edit-automata can enforce the so-called renewal properties [8,62,63].
In the safety-liveness classification of properties [71], renewal properties form a super-
set of safety properties which contains some liveness properties. Intuitively, a property
is a renewal if a) any infinite execution sequence in the property contains infinitely many
prefixes in the property, and b) any infinite execution sequence not in the property con-
tains only finitely many prefixes in the property. Falcone et al. proved that Generalised
Enforcement Monitors instantiated with the store and dump operations, which respec-
tively memorise and release events, can enforce the so-called response properties [38]
in the Safety-Progress hierarchy of properties [21]. Response properties are properties

6 We note that some ongoing research efforts study hyper-properties [26], which resemble poli-
cies. We also note ongoing work advocating monitoring hyper-properties [16].

7 As was the case in runtime verification, early work on runtime enforcement considered infinite
executions.

8 Hamlen et al. [50] additionally introduce the notion of RW-enforceable policies (policies en-
forceable by enforcement mechanisms with Program Rewriting abilities), and use it to define
a more precise characterisation of enforceable security policies. They model the untrusted
programs as Türing machines with deterministic transition relations with three infinite-length
tapes. They divide enforcement mechanisms into three categories: static analysers, reference
monitors, and program rewriters. Static analysers operate strictly prior to running the untrusted
program. Reference monitors intercept events or actions the program under scrutiny and in-
tervene before occurrence of an event violating the policy, by terminating it or applying some
other corrective action. Program rewriters modify in a finite time the program under scrutiny
prior to execution.

10



for which some expected good behaviour should happen infinitely often. They can be
intuitively understood as repeated transactions.

Moreover, we note that on finite sequences all properties are renewals. This ob-
servation is in line with the fact that (pure) response properties coincide with renewal
properties, as noticed in [38].

Ligatti et al. proved that the MRA approach permits the enforcement of a new
variant of properties, named result-sanitization or monitor-centric policies which are
simpler and more expressive than usual definitions (target-centric ones). They also
provide a hierarchical characterisation of the policies enforceable or not with MRAs.
For instance, they show that MRAs precisely enforce a strict subset of safety proper-
ties, whereas Non-deterministic MRAs (NMRAs) precisely enforce a strict superset of
safety properties. Depending on the definition chosen for non-safety properties or with
additional assumptions, MRAs can also enforce some non-safety properties.

Falcone and Jaber [24,39] showed that stutter-free safety properties are enforceable
on component-based systems with monitors that can roll the system back by one observ-
able execution step. Stutter-invariance is required on properties because of constraints
stemming from the nature of synchronisation of components. A hierarchy of enforce-
able properties according to the number of steps the enforcement mechanism can roll
the system back (the so-called k-step enforceability) is defined [39]. While 1-step en-
forceable properties are characterised, a general characterisation of k-step enforceable
properties is left open.

Basin et al. extend the characterisation given in [88,50] of enforceable properties by
additionally considering a universe of possible (input) traces and a set of controllable
actions [5]. A property is enforceable if it is a safety and is such that violations are not
caused by uncontrollable actions, and the set of prefixes of sequences in the universe
and the property is decidable.

3.4 Synthesising Enforcement Mechanisms

We now report on some of the existing techniques used to synthesise enforcement
mechanisms from properties described in several specification languages/formalisms
(Table 1, p. 7, gives the specification formalism from which each type of enforce-
ment mechanisms can be synthesised). Schneider et al. synthesise SAs from Büchi
automata [88]. Ligatti et al. synthesise EAs from deterministic finite-state automata
describing renewal properties [62]. Falcone et al. synthesise GEMs from Streett au-
tomata [37]. Chabot et al. synthesise EAs from Rabin automata [20]. Pinisetty et al.
synthesise delayers in [74,73,76] and Falcone et al. synthesise delayers with suppression
in [40], from timed automata. Using partial model-checking techniques, Mateucci and
Martinelli synthesise SAs from µ-calculus formulae [65]. Enforcement mechanisms are
described as algebraic operators driven by controller programs. Falcone and Marchand
synthesise GEMs from labelled transition system marked with secret states to enforce
opacity properties [42]. Charafedine et al. transforms deterministic finite-state automata
into enforcement mechanisms with 1-step roll-back abilities and integrate them into a
component-based system [24,39]. Bloem et al. synthesise safety shields from safety
automata by solving 2-player safety games [15]. Wu et al. synthesise shields that han-
dle burst errors using a game-based algorithm [92]. Bielova and Masacci adapt the

11



construction of EAs to synthesise a variant called iteration suppression automata for
iterative properties described by deterministic finite-state automata. Iterative properties
are such that the good executions are formed of “iterations" that can repeat an arbitrary
number of times.

3.5 Implementations and Applications

The principles of runtime enforcement have been implemented and applied to several
domains. Most of these approaches are based on either SAs, EAs, or GEMs.

Tool implementations. While there is a plethora of tools for runtime verification [4],
there are only a few tool implementations for the runtime enforcement of properties
on systems: Polymer [9], Mobile [49], TiPeX [75], and more recently GREP [86,83].
Polymer is a language and system for the definition and composition of enforcement
mechanisms for Java applications. Mobile is a language-support for verified enforce-
ment on .NET. Whenever a Mobile program type-checks with respect to a security pol-
icy, it is guaranteed that the program respects the policy. TiPEX implements algorithms
for enforcing timed properties described as timed automata. TiPEX enforcement mech-
anisms correct input sequences by delaying actions. GREP also implements algorithms
for enforcing timed properties described as timed automata with the ability to handle
uncontrollable events. These algorithms are based on game theory.

We note that runtime verification tools can perform for free basic form of runtime
enforcement as in security automata by halting the target system whenever a viola-
tion of the property occurs. Java-MOP [25] is a tool for runtime verification which
arguably provides some support for ad-hoc runtime enforcement. Java-MOP provides
self-recovery mechanisms in case of violation in the form of handlers. Handlers are
code snippets that can be integrated in the target program in order to handle the viola-
tion (or validation) of a property using contextual execution information retrieved using
aspect-oriented programming.

Application domains. One of the first domains of application is the security domain; and
enforcement mechanisms were initially defined as security devices. Runtime enforce-
ment was applied to enforce security policies [34], availability requirements in [28],
privacy policies [54] and [61], opacity properties in [41,42], role-based access con-
trol security policies in [72], usage-control policies [66], the confidentiality of artifacts
in [48]. There is also a body of work applying runtime enforcement principles on mobile
devices such as Android-based mobile phones [36,67,68,1,31,69].

Limitations of enforcement. Even if a system is equipped with an enforcement mecha-
nism, it may reach a failing situation. This is due to several reasons. Firstly, the enforce-
ment mechanism considers only the described property and then acts according to this
latter only. Any other (maybe unexpected) event not taken into account by the property
may lead to a failure. Moreover, an enforcement mechanism has a restricted enforcing
power since it follows a specific set of rules. If the necessary correcting action is not in-
cluded in this set, then a failure may arise. As shown by [85], there are some situations
in case of uncontrollable events where it is not possible to avoid an incorrect situation.

12



Finally, there may be a gap between the abstract description of the enforcement mecha-
nism and its real implementation. In this case, this is more a problem of instrumentation
of the approach.

4 Healing Failures

In this section, we discuss techniques that can be used to heal executions after the failure
has been observed by the autonomic monitor. In this context, a failure is defined as an
execution that deviates from the intended semantics of the monitored program.

In order to automatically react to failures, it is first necessary to detect them. We
can distinguish between domain independent failures, that is, failures that do not de-
pend on the specific semantics of an application (e.g., crashes, uncaught exceptions,
and deadlocks) and domain-dependent failures, that is, failures that depend on the spe-
cific semantics of the system (e.g., the generation of a wrong output).

Domain-independent failures can be trivially detected with an implicit oracle, that
is, an oracle that can simply recognise the event that represents the failure (e.g., the ap-
plication that quits abruptly, an exception reported in a log file, and the application that
stops responding). Domain-dependent failures can be detected with program-specific
oracles, that is, oracles obtained from a definition of the semantics of the program.
These oracles detect failures by comparing the observed behaviour to the behaviour
defined in the specification, for instance, an oracle might be obtained from a logical
specification of the input/output behaviour of the system to detect incorrect outputs [3].

Detecting failures is a responsibility shared between the Observer and the Anal-
yser components of the Autonomic Monitor architecture introduced in Section 2. The
Observer is responsible for collecting events that can be processed by the Analyser to
establish if the monitored program has failed. In the case of domain independent fail-
ures, the Observer has to simply detect the events that characterise failures and notify
them to the Analyser, which reacts by triggering the healing process. In the case of
domain dependent failures, the Observer collects the events relevant to the classes of
failures that can be recognised, while the Analyser processes these events based on its
Knowledge of the expected behaviour of the system. If a mismatch between the ex-
pected behaviour and the actual behaviour of the monitored program is observed, the
Analyser triggers the healing process.

The healing process is driven by the Planner that activates appropriate mechanisms,
based on its knowledge of the system and the available strategies, as described in the
rest of this chapter. The Executor concretely actuates the plan elaborated by the Planner.

Since techniques that react to failures can affect a monitored program only after
a failure has been observed, they need to incorporate mechanisms to either rollback
the execution to a safe point before the failure happened, to successively influence the
execution preventing any failure, or to compensate the effect of an observed failure
moving the monitored system to the same state that would be observed if the failure has
never happened.

Techniques for reacting to failures rely to one of the following three main sources of
information: knowledge about the redundant elements of a system that can be exploited
to workaround a failure, knowledge about the actions that can be taken to react to some

13



Applica'on	

Redundancy	

Events	 Control	+	
API	

Iden'fy	Useful	
Redundancy	

Determine	How	to	
Exploit		
Redundancy	

Collect	
Events	 Execute	

Monitored	Applica/on	

Autonomic	Monitor	

Fig. 3: General architecture for reacting to failures exploiting redundancy

specific types of failures, and knowledge about the actions that can be taken to explore
program and configuration variants in response to an unknown type of failure.

The rest of this section presents the techniques for reacting to failures organised
according to the knowledge that is exploited for the reaction: Section 4.1 presents tech-
niques that exploit the knowledge of the redundant elements, Section 4.2 presents tech-
niques that exploit the knowledge of specific failure types, and Section 4.3 presents
techniques that exploit the knowledge of the existing program variants.

4.1 Techniques that Exploit Redundancy

We say that two processing units (e.g., two components or two code fragments) are
functionally redundant if they produce the same outputs for the same inputs. Note that
redundant units are allowed to show behavioural differences, for instance in their inter-
nal structure, or in their non-functional characteristics, such as performance and usabil-
ity. A monitored program may include functionally redundant units, either introduced
intentionally or incidentally. Techniques relying on redundancy may exploit both forms
of redundancy.

Techniques based on explicit redundancy exploit the redundant elements intention-
ally introduced into the monitored system, such as the multiple redundant copies of a
same fault-tolerant component, to workaround failures, while the techniques based on
intrinsic redundancy exploit the redundant elements incidentally present in the moni-
tored system to workaround failures. An example of incidentally redundant elements
is the case of two different functionalities that, although not designed to be redundant,

14



might be used to achieve the same result in specific situations (e.g., for some specific
inputs).

The general architecture of the techniques exploiting redundancy is shown in Fig-
ure 3. The sensor sends events from the monitored application to the Observer. The
types of collected events might change depending on the specific technique and appli-
cation, for instance they could be method invocations or http requests. The Observer
collects these events, maintains the relevant parts of the history of the execution and
intercepts failure signals, such as crashes and uncaught exceptions.

When a failure is detected, the Analyser matches the collected sequence of events
with its knowledge of the redundancy of the system to identify the useful redundancy,
that is, the redundant units that might be exploited to avoid the failure. If some use-
ful redundancy is present in the system (e.g., a redundant copy of a component or a
functionality involved in the failure), the Planner has to determine how to specifically
exploit the redundancy in the system to avoid the failure. For instance, the Planner may
decide to transfer the execution to another component or to rollback the execution to
a safe point and then execute a redundant copy of the operation that has failed. The
Executor concretely executes the plan, exploiting its knowledge of the implementation
of the system. The Effectors are the elements that support the execution of the plan
within the target application, that is, the Executor interacts with them to run the plan.
They usually consist of the API of the monitored system, sometime suitably extended
with mechanisms to control the execution, for instance to transfer the execution across
components or to rollback executions.

In the rest of this section we discuss some techniques exploiting these two forms of
redundancy.

Explicit Redundancy. A well-known way to tolerate failures is through the deployment
of multiple redundant components into the same system. The general intuition is that if
a component fails, the failure might be worked around by transferring the execution to a
redundant copy of the same component. This solution has been extensively investigated
in the context of fault-tolerant systems, especially in N-version programming [2].

In addition to classic fault-tolerance, there are other ways of taking advantage of
the redundancy explicitly introduced into a monitored program. In particular, recent
approaches investigate scenarios that might be less effort-demanding than N-version
programming, which requires the independent implementation of multiple copies of
the same component. An interesting approach is the one investigated by Hosek and
Cadar [51], who exploited the multiple versions available for the same program to au-
tomatically react to failures caused by faulty software updates.

The key idea is to maintain alive both versions of a software system after an up-
date. The two versions are then executed side by side and when a failure is experienced
in one version, the other one is exploited to overcome the failure. To achieve this ca-
pability, the execution of the two versions must be monitored and synchronised. The
monitor collects and compares the system calls performed by the monitored programs.
When a diverging behaviour is observed, appropriate actions are taken. The execution is
also synchronised, that is one version cannot proceed with the execution until the other
version has produced the same system call. In this way, the execution might be timely
switched from one version to the other.

15



A divergent behaviour might produce different reactions depending on the kind of
divergence. If the two versions produce different system calls, the result produced by
one version is simply preferred to the other, for instance the new version of the system
might be preferred to the old one. If one program crashes, the approach performs a
lightweight rollback to the last system call, executes the code in the other version until
the next system call is produced, and then continues with the execution of the version
that produced the failure. This strategy de facto reuses the code in the other version
to avoid failures, and it might be effective to overcome bugs introduced with faulty
upgrades. Note that this explicit form of redundancy does not require special effort to
be generated because it is naturally introduced with the evolution of a software system.

Intrinsic Redundancy. Since intrinsic redundancy is not documented explicitly, discov-
ering the intrinsically redundant operations might be hard and expensive, indeed it is
undecidable in general. The effort required to discover these elements is compensated
by the possibility to augment systems that have not been designed to react to failures
with the capability to handle them.

Intrinsic redundancy can be extracted in various ways, for instance using testing
and analysis techniques [45], and can be suitably integrated with mechanisms to either
rollback executions or compensate the effect of failures to obtain systems with high
reliability. When integrated with rollback mechanisms, failures can be handled by first
bringing the execution back to a safe point and then running an intrinsically-redundant
alternative operation with the one that has failed [18]. When integrated with compensa-
tion mechanisms, failures can be handled by first compensating their effects, if any, and
then again executing an alternative operation intrinsically redundant with the one that
has failed [19].

The knowledge of the intrinsically redundant operations can be encoded using rewrit-
ing rules, which associate a sequence of operations to another sequence of operations
that has the same observable behaviour of the original sequence. As discussed in [19],
examples of intrinsically redundant operations typically present in container classes are:

addAll(a,b) → add(a); add(b)
add(a) → addAll(a,b); remove(b)

The first rule indicates that adding the elements a and b using the addAll method
produces the same effect as adding first a and then b using the add method. Alterna-
tively, the second rule indicates that adding element a with the add method produces
the same effect as adding the element a and an element b using the addAll method
and then removing b.

When a failure is detected, the sequence of the operations performed by the moni-
tored program is analysed, checking if any rewriting rule can be exploited to change the
failing sequence into an alternative sequence. The intuition for exploiting intrinsically
redundant operations is that a failing execution might be worked around by replaying
the execution using some alternative but equivalent operations. For instance, if a failure
has been observed when running the sequence of operations

newList(); addAll(a,b)
the sequence might be automatically replaced with the alternative sequence

newList(); add(a); add(b)
using the first rewriting rule.

16



Note that the rewriting rules above allow substituting a sequence of operations with
alternative, but equivalent, sequences of operations that do not share any operation with
the original sequence. Avoiding to reuse operations executed during the failure intu-
itively increases the probability to produce a new sequence that does not fail.

If the opportunity to workaround the failure is detected, the planner elaborates a
suitable strategy, which could be based either on rollback or on compensation mecha-
nisms. If multiple rules could be exploited, the plan may attempt to execute a sequence
of rollback/compensation operations followed by the execution of a rewritten sequence
until the failure is overcame or no more options are available. The order of application
of the rules might be based on historical information, giving precedence to the rules that
have been most successful in the past.

The choice of using rollback or compensation before executing a rewritten sequence
of operations depends on the nature of the system that must react to errors. For instance,
rollback has been used to overcome failures in container classes [18], while compen-
sation has been exploited with Web applications where it is often sufficient to reload a
Web page to cancel the effect of a failure [19].

In general, not all the systems can be addressed with rollback or compensation
mechanisms. For instance, the state of a system might be too large, complex and difficult
to observe and control to be rolled back. Similarly, the impact of a failure may have
consequences that cannot be cancelled by any other system operation. However, when
at least one of the two approaches can be feasibly applied to a software system, the
system could be potentially extended with healing capabilities.

4.2 Failure-Specific Techniques

Failure-specific techniques exploit the knowledge about some specific classes of fail-
ures to effectively recognise and react to them. These techniques have a narrow appli-
cability compared to techniques addressing broader classes of failures, such as the ones
based on redundancy (see Section 4.1) and the ones exploring variants (see Section 4.3).
However, when an observed failure is in their scope, they can be dramatically effective.

The general architecture of failure-specific techniques is shown in Figure 4. The
sensor sends events from the monitored application to the Observer, which collects
these events, maintains the relevant parts of the history of the execution, and intercepts
failure signals, such as crashes and uncaught exceptions. When a failure is detected,
the Analyser matches the failure and the collected sequence of events with the known
failure types. If the observed failure matches with some known failure types, the cor-
responding reactions are retrieved. The Planner is then responsible for defining a strat-
egy to apply the selected reactions, contextualising them to the monitored program, if
needed, and defining their order of application. The Executor concretely executes the
plan, exploiting its knowledge of the implementation of the system. The Effectors are
the elements that support the execution of the plan, that is, the Executor interacts with
the Effectors when running the plan. In this case, the Effectors usually consist of the
API of the monitored system whose operations are invoked while applying a selected
reaction.

17



Applica'on	

Failures	Types	
and	Reac'ons	

Events	 API	

Match	Observed		
Failure	With		

Failure		
Types	

Apply	Reac'ons	

Collect	
Events	 Execute	

Monitored	Applica/on	

Autonomic	Monitor	

Fig. 4: General architecture for reacting to specific failures types

In the following, we present two failure-specific techniques, one addressing a pre-
defined set of failure types, and another that can dynamically learn how to react to
failures based on a set of samples.

Pre-defined Failure Types. Techniques addressing pre-defined failure types are tech-
niques designed to handle specific situations in specific systems. A notable example is
the case of healing connectors [23,22], which are connectors that can be deployed on
a component-based system to react to failures caused by incorrect interactions between
components.

Healing connectors implement reaction mechanisms that are activated when a com-
ponent throws exceptions that should not be raised. To react correctly and efficiently,
they exploit the knowledge of how the interaction between components may fail due
to some specific classes of integration problems that may result in some exceptions.
When an exception is caught, healing connectors check if the cause of the exception
is a known problem, and if it is the case, they apply the pre-defined reaction. The re-
actions may follow four patterns [23]: parameter translation, component preparation,
alternative operation, and environmental changes.

Parameter translation can be used to react to the failures caused by the use of a
wrong parameter value in the invocation of an operation. It reacts by replaying the
failed interaction while replacing the incorrect value with the correct one. For instance,
parameter translation can be used to automatically fix a wrongly encoded URI stored in
a parameter.

Component preparation can be used to react to the failures caused by the compo-
nents that produce exceptions because they are in a state that is not suitable to accept

18



a given request. It reacts by replaying the failed interaction after having modified the
state of the component. For instance, component preparation can be used to initialise an
uninitialised component.

An alternative operation can be used to react to the failures caused by the use of
a specific faulty operation. It reacts by replaying the failed interaction while replacing
the faulty operation with an alternative operation, similarly to methods exploiting re-
dundancy. For instance, alternative operation can be used to replace the invocation of a
deprecated method with the invocation of an up-to-date method.

Finally, an environmental change can be performed to react to the failures caused by
problems in the environment. It works by replaying the failed interaction after having
modified the environment in a way that may prevent the failure from occurring again.
For instance, an environmental change can be used to create the missing folders that
cause an application to fail.

When an uncaught exception is raised, multiple healing patterns might be eligible
to react to the failure. The Planner is responsible for organising the applicable patterns
in a pipeline. Healing connectors do not require special effectors, but they simply take
advantage of the API of the monitored program. If necessary, depending on the failure,
they may incorporate actions to compensate the effect of a failure so that the failed
interaction can be safely re-executed.

Sample-Based Approaches. Sample-based approaches exploit the knowledge of how
failures have been (manually) handled in the past to automatically react to new occur-
rences of the same failures [29]. They thus rely on the assumption that a repository of
failures and corresponding countermeasures is available.

Sample-based approaches are failure-specific because they can only address the
failures that have been observed in the past. However, the set of supported failures
is changed every time by simply providing a different set of samples to learn from,
potentially increasing the generality of the technique.

Comparing actual failures to sample failures is challenging because failures caused
by the same problem are never exactly the same. The same failures may occur in many
different circumstances, such as different states of the system, different inputs, and in
different environment conditions. To match a pair of failures, sample-based approaches
distill a signature that characterises a failure regardless of the specific circumstances in
which it occurred. In their work, Ding et al. [29] apply concept and contrast analysis to
the log files collected during failures to produce signatures that characterise failures in
terms of the key events reported in the log files.

Signatures are derived for both the sample failures and the newly observed failures.
When an observed failure has a signature matching the signature of a failure in the
repository, an appropriate reaction can be automatically extracted from the repository
and executed.

Reactions that have been taken in the past necessarily refer to a specific situation.
For instance, they may concern rebooting specific machines and changing specific con-
figurations. When the same failure is observed, it might occur in slightly different cir-
cumstances, which may require slightly different reactions. For instance, if in the past
machine hostA has been rebooted because it stopped responding, and in the actual
execution the machine that is not responding is machine hostB, the reboot operation

19



Applica'on	

Search	Space	

Events	

Explore		
Alterna'ves	

Synthesize		
Change	

Collect	
Events	 Deploy	Change	

Monitored	Applica/on	

Autonomic	Monitor	

Instrumenta'on	

Fig. 5: General architecture for reacting to failures by exploring variants

should be executed on hostB and not on hostA. The approach described in [29]
can achieve this capability by executing an operation called contextualisation of the re-
action. Contextualisation extracts the parameters used in the sample reaction (e.g., the
name of the machine), matches the observed failure with the sample failure in the repos-
itory identifying the actual value for all the extracted parameters (e.g., the actual name
of the machine that is not responding), and executes the reaction replacing parameters
with actual values.

This strategy has been mostly experienced with large service-based systems to turn
the manual reactions executed in the past by the operators into automatic reactions,
reducing maintenance cost and increasing system reliability.

4.3 Techniques Exploring Variants

Techniques that react to failures by exploring variants are not usually explicitly tied to
any class of failures. The general intuition is that these techniques may try to replay a
failing execution many times until finding a change that might be operated on the mon-
itored program to prevent the failure without breaking the other functionalities of the
system. The change might be either on the configuration [90] or in the code [46] of the
monitored program. Of course, a suitable environment is needed to replay an execution
many times regardless of the side-effects that might be introduced by a failing execu-
tion. For this reason, these approaches must have access to a protected environment
where a copy of the application can be executed many times until finding a solution that
can be deployed on the real instance of the program.

20



These techniques do not require any specific knowledge about the failures that may
occur on the target system, but they require to know how to explore the space of the
possible variants. For instance, they need to know what the space of the possible con-
figurations looks like, to be able to systematically execute a program with different
configurations, or they need to know how the code of a program can be modified, to
explore the space of the code changes that might fix a faulty program.

The general architecture of techniques reacting to failures by looking for variants
is shown in Figure 5. The sensor sends events from the monitored application to the
Observer. The collected events usually consist of the inputs received by the monitored
program and failure signals. When a failure is detected, the control is transferred to the
Analyser that exploits the knowledge of the search space to explore alternatives that
might prevent the occurrence of the failure. Each alternative is checked by replaying
the observed failure.

Alternatives might consist of different configurations of the monitored applications
or even program variants. When a suitable alternative is identified, the Planner synthe-
sises a change that the Executor can deploy on the monitored program. The Effectors
consist of mechanisms that allow the modification of either the program or its environ-
ment.

In the following, we present two techniques, one that reacts to failures by explor-
ing alternative configurations and the other that reacts to failures by synthesising code
changes.

Alternative Configurations. The assumption made by approaches exploring the space
of the possible configurations of a program is that there may exist a configuration un-
der which a failed functionality may run correctly. The strategy to find a workaround
consists of transferring the control to a separate instance of the monitored program run-
ning in a sandboxed environment to replay the failed execution several times for many
different configurations, until finding a configuration that makes the program pass. In
order to apply this process, the knowledge of the autonomic monitor has to incorporate
information about the shape of the space of all the legal configurations. Such a space
must be sampled efficiently to quickly find a solution to an observed problem.

REFRACT implements this strategy using a feature model as representation of the
configuration space [90]. In practice, when a failure is observed, REFRACT replays
the failed execution in a separate environment and samples the configuration space de-
scribed by the feature model according to three possible strategies: n-hops sampling,
random sampling, and covering array sampling.

The n-hops sampling strategy systematically investigates all the configurations that
can be obtained from the configuration of the monitored program by changing n op-
tions. The random sampling generates a completely random configuration. Covering
array sampling considers a set of configurations that include every possible combination
of values for up to t configuration options. If a configuration that prevents the failure is
detected, the configuration is further modified using the delta-debugging algorithm [93]
to minimise the set of changes that must be operated on the current configuration to
workaround the failure.

The new configuration can then be deployed to the monitored program. If the exe-
cution in the monitored program could be suspended while waiting for a better config-

21



uration, the monitored program may immediately benefit from the new configuration,
otherwise only future occurrences of the failure will be prevented by the deployment of
the updated configuration.

Alternative Implementations. When a failure is observed, alternative implementations
that may include a fix to the problem that caused the failure can be generated using auto-
matic program repair techniques. While these techniques have been originally designed
to assist developers when fixing programs, they can also be exploited to automatically
react to failures, as proposed in GenProg [46]. The idea is that automatic program repair
can be used to generate many tentative program fixes that are deployed and tested in a
separate instance of the monitored program. The separate instance runs in a sandboxed
environment to prevent the generation of any harmful side-effect. If a fix can be found,
it is deployed on the original instance of the monitored program to prevent future oc-
currences of the same failure. If the execution in the original instance can be suspended,
the fix can also be exploited to turn the currently failing execution into a correct one.

To synthesise fixes automatically, the knowledge must include information on how
to change a monitored program and how to verify the correctness of the tentative fixes.
In GenProg, the synthesis of the fixes is driven by a genetic programming algorithm
that modifies the program exploiting single-point crossover and three mutation opera-
tors. The mutation operators can change a program by deleting a statement, adding a
statement copied elsewhere from the program, and replacing a statement with another
statement copied elsewhere from the program. The locations where the mutant oper-
ators should be applied to are identified using spectrum-based fault localisation [55],
which can automatically assign to each statement a score representing its likelihood to
be faulty. To increase the probability to produce mutations that can affect the faults in
a program, the probability to mutate a statement is proportional to its suspiciousness,
so that the statements that are more likely to be faulty are more likely to be modified.
The verification strategy simply runs the available test suite to check the correctness of
a fix, that is, a fix that passes all the available test cases is assumed to be correct.

GenProg has been exploited to react to failures produced by programs that respond
to http requests (e.g., a Web server) [46]. The idea is that the monitored system can
be extended with anomaly detection techniques to detect if an untrusted input causing
a suspicious execution has been received. When an anomalous execution is detected,
the program is suspended and the control is transferred to GenProg, which runs an
automatic repair process in a separate machine. If GenProg can find a fix, that is, a
change in the program that prevents the anomalous execution without causing the failure
of any of the available test cases, the fix is deployed on the original program and the
execution resumed. This strategy may prevent the immediate failure of the program, but
also prevent any similar failure in the future.

5 Open challenges

There are still several open challenges to achieve effective failure prevention and reac-
tion. In this section, we discuss some of the main open challenges. We note that some
of these challenges apply more broadly to runtime verification.

22



Gap between models and software Enforcement models might be difficult to imple-
ment into the corresponding autonomic monitors because they may require a strong
adaptation and instrumentation effort resulting from the gap between the abstraction
used in the model and the concrete behaviour of the software. Solutions that can reduce
this gap to make monitors easier to implement and reuse are necessary to make runtime
enforcement more practical.

Property specification Usually the languages proposed by the tools are rather simple
and do not permit to describe complex properties. Effort should be done in designing
formalism in order to describe and manage more complex properties in an intuitive way.

Distributed and multi-threaded systems Nowadays, many systems are distributed
and need to be observed and controlled in several points. The generation of distributed
enforcement mechanisms, communicating together in a minimal way, in order to en-
sure a global property is still an open challenge. A similar challenge is present in
the case of multi-threaded programs, where the effect of the monitors on multiple
partially-independent threads must be coordinated and controlled. In both cases, it will
require means to decentralise enforcement mechanisms. For this purpose, one can in-
spire from the decentralisation of runtime verification monitors [7,27], the monitoring
of decentralised specifications [33,32] and the decentralised enforcement of document
lifecyles [47].

The oracle problem In order to react to a failure, it is necessary to recognise that a
failure has happened. While some failures are trivial to detect (e.g., crashes), other fail-
ures (e.g., wrong results) require a thorough and detailed knowledge of the system to be
recognised. Unfortunately this knowledge is seldom available, and when it is available
it is typically expensive to encode in a machine-processable form. Researchers have
investigated how to automatically extract this knowledge from software artefacts pro-
duced for other purposes, but despite these early attempts, how to systematically extract
and exploit such knowledge to detect non-trivial failures is still an open challenge.

Specific vs general Solutions Techniques for reacting to failures might be defined to
be either general, that is, to be able to potentially address a large family of failures,
or specific, that is, to be able to address a restricted family of software failures. While
general approaches might be frequently useful, since they cover a broad range of situa-
tions, their effectiveness is intrinsically limited by their generality. In practice, general
approaches can hardly react to a failure in an optimal way because their strategies are
designed to be broadly useful. On the other hand, failure-specific approaches are use-
ful in a limited number of cases, but they can be extremely effective when applicable.
Finding a good compromise between generality and specificity in designing techniques
that may optimally address an extensive number of cases is still a challenge.

Non-intrusiveness Both techniques for preventing and reacting to failures work in the
field directly in the end-user environment. Any operation that is performed in the field

23



in the attempt to prevent or react to a failure may potentially cause even more serious
consequences than the failure itself to the user data and processes. Although there are
several environments providing a degree of isolation (e.g., virtual machines and con-
tainers), how to employ them in a resource-constrained environment for preventing and
reacting to failures is still an open challenge. More in general, it is hard to design tech-
niques that can prevent and react to failures providing the guarantee of not affecting the
user.

Provably-correct monitoring To ensure a better confidence in enforcement mecha-
nisms, or more generally, in the mechanisms protecting the system from faults, it is
desirable to ensure that the monitoring code conforms to the property or security policy
at hand. This check can then be performed (using a proof checker) by a third-party who
does not necessarily trust the monitoring process. Preliminary work has been carried out
on this topic in [89] to verify the soundness and transparency of SAs, in [14] to check
the transition function of monitors generated from regular expressions, and in [87] to
verify the lack of interference between enforcers.

6 Conclusions

Society demands for highly-dependable, large and dynamic systems that can serve citi-
zens in their daily operations. Such systems are increasingly difficult to verify in-house
due to their size, complexity and dynamic nature. Runtime techniques, in particular
enforcement and healing solutions, can be exploited in the field to compensate the val-
idation and verification activities performed in-house. The joint collaboration of en-
forcement techniques, which can prevent failures, and healing techniques, which can
overcome an observed failure, can significantly increase the dependability of software
systems.

This chapter discusses some of the achievements in these related areas, providing an
overview of the available solutions. The material presented in this chapter can represent
a valuable starting point for researchers interested in enforcement and healing solutions.

Acknowledgment. The authors would like to thank Antoine El-Hokayem, Raphaël Khoury,
and Srinivas Pinisetty for commenting on the section related to runtime enforcement.
The authors warmly thank the reviewers for their comments on a preliminary version
of this chapter.

References

1. Arzt, S., Rasthofer, S., Fritz, C., Bodden, E., Bartel, A., Klein, J., Traon, Y.L., Octeau,
D., McDaniel, P.D.: FlowDroid: precise context, flow, field, object-sensitive and lifecycle-
aware taint analysis for android apps. In: O’Boyle, M.F.P., Pingali, K. (eds.) ACM SIGPLAN
Conference on Programming Language Design and Implementation, PLDI ’14, Edinburgh,
United Kingdom - June 09 - 11, 2014. pp. 259–269. ACM (2014)

24



2. Avizienis, A.: The n-version approach to fault-tolerant software. IEEE Transactions on Soft-
ware Engineering (TSE) 11(12), 1491–1501 (1985)

3. Barr, E.T., Harman, M., McMinn, P., Shahbaz, M., Shin, Y.: The oracle problem in software
testing: A survey. IEEE Transactions on Software Engineering (TSE) 41(5), 507–525 (May
2015)

4. Bartocci, E., Falcone, Y., Bonakdarpour, B., Colombo, C., Decker, N., Havelund, K., Joshi,
Y., Klaedtke, F., Milewicz, R., Reger, G., Rosu, G., Signoles, J., Thoma, D., Zalinescu, E.,
Zhang, Y.: First international competition on runtime verification: rules, benchmarks, tools,
and final results of CRV 2014. International Journal on Software Tools for Technology Trans-
fer (Apr 2017)

5. Basin, D., Jugé, V., Klaedtke, F., Zălinescu, E.: Enforceable security poli-
cies revisited. ACM Trans. Inf. Syst. Secur. 16(1), 3:1–3:26 (Jun 2013),
http://doi.acm.org/10.1145/2487222.2487225

6. Basu, A., Bensalem, S., Bozga, M., Combaz, J., Jaber, M., Nguyen, T., Sifakis, J.: Rigor-
ous component-based system design using the BIP framework. IEEE Software 28(3), 41–48
(2011)

7. Bauer, A., Falcone, Y.: Decentralised LTL monitoring. Formal Methods in System Design
48(1-2), 46–93 (2016)

8. Bauer, L., Ligatti, J., Walker, D.: More enforceable security policies. In: Proceedings of the
Workshop on Foundations of Computer Security (FCS’02), Copenhagen, Denmark (2002)

9. Bauer, L., Ligatti, J., Walker, D.: Composing security policies with polymer. In: Sarkar, V.,
Hall, M.W. (eds.) Proceedings of the ACM SIGPLAN 2005 Conference on Programming
Language Design and Implementation, Chicago, IL, USA, June 12-15, 2005. pp. 305–314.
ACM (2005)

10. Beauquier, D., Cohen, J., Lanotte, R.: Security policies enforcement using fi-
nite and pushdown edit automata. Int. J. Inf. Sec. 12(4), 319–336 (2013),
http://dx.doi.org/10.1007/s10207-013-0195-8

11. Bielova, N., Massacci, F.: Do you really mean what you actually enforced? - edited automata
revisited. Int. J. Inf. Sec. 10(4), 239–254 (2011)

12. Bielova, N., Massacci, F.: Predictability of enforcement. In: Erlingsson, Ú., Wieringa, R.,
Zannone, N. (eds.) Engineering Secure Software and Systems - Third International Sym-
posium, ESSoS 2011, Madrid, Spain, February 9-10, 2011. Proceedings. Lecture Notes in
Computer Science, vol. 6542, pp. 73–86. Springer (2011)

13. Bielova, N., Massacci, F.: Iterative enforcement by suppression: Towards practical enforce-
ment theories. Journal of Computer Security 20(1), 51–79 (2012)

14. Blech, J.O., Falcone, Y., Becker, K.: Towards certified runtime verification. In: Aoki, T.,
Taguchi, K. (eds.) Formal Methods and Software Engineering - 14th International Confer-
ence on Formal Engineering Methods, ICFEM 2012, Kyoto, Japan, November 12-16, 2012.
Proceedings. Lecture Notes in Computer Science, vol. 7635, pp. 494–509. Springer (2012)

15. Bloem, R., Könighofer, B., Könighofer, R., Wang, C.: Shield synthesis: - runtime enforce-
ment for reactive systems. In: Tools and Algorithms for the Construction and Analysis of
Systems - 21st International Conference, TACAS 2015, Held as Part of the European Joint
Conferences on Theory and Practice of Software, ETAPS 2015, London, UK, April 11-18,
2015. Proceedings. pp. 533–548 (2015)

16. Bonakdarpour, B., Finkbeiner, B.: Runtime verification for hyperltl. In: Falcone, Y., Sánchez,
C. (eds.) Runtime Verification - 16th International Conference, RV 2016, Madrid, Spain,
September 23-30, 2016, Proceedings. Lecture Notes in Computer Science, vol. 10012, pp.
41–45. Springer (2016)

17. Bultan, T., Sen, K. (eds.): Proceedings of the 26th ACM SIGSOFT International Symposium
on Software Testing and Analysis, Santa Barbara, CA, USA, July 10 - 14, 2017. ACM (2017)

25



18. Carzaniga, A., Gorla, A., Mattavelli, A., Perino, N., Pezzè, M.: Automatic recovery from
runtime failures. In: Proceedings of the International Conference on Software Engineering
(ICSE). pp. 782–791. IEEE Press (2013)

19. Carzaniga, A., Gorla, A., Perino, N., Pezzè, M.: Automatic workarounds: Exploiting the
intrinsic redundancy of web applications. ACM Transactions on Software Engineering and
Methodology (TOSEM) 24(3), 16 (2015)

20. Chabot, H., Khoury, R., Tawbi, N.: Generating in-line monitors for rabin automata. In:
Jøsang, A., Maseng, T., Knapskog, S.J. (eds.) Identity and Privacy in the Internet Age, 14th
Nordic Conference on Secure IT Systems, NordSec 2009, Oslo, Norway, 14-16 October
2009. Proceedings. Lecture Notes in Computer Science, vol. 5838, pp. 287–301. Springer
(2009), http://dx.doi.org/10.1007/978-3-642-04766-4

21. Chang, E., Manna, Z., Pnueli, A.: The Safety-Progress Classification. Tech. rep., Stanford
University, Dept. of Computer Science (1992)

22. Chang, H., Mariani, L., Pezzè, M.: In-field healing of integration problems with COTS com-
ponents. In: Proceedings of the International Conference on Software Engineering (ICSE)
(2009)

23. Chang, H., Mariani, L., Pezzè, M.: Exception handlers for healing component-based systems.
ACM Transactions on Software Engineering and Methodology (TOSEM) 22(4), 30 (2013)

24. Charafeddine, H., El-Harake, K., Falcone, Y., Jaber, M.: Runtime enforcement for
component-based systems. In: Wainwright, R.L., Corchado, J.M., Bechini, A., Hong, J.
(eds.) Proceedings of the 30th Annual ACM Symposium on Applied Computing, Salamanca,
Spain, April 13-17, 2015. pp. 1789–1796. ACM (2015)

25. Chen, F., d’Amorim, M., Roşu, G.: Checking and correcting behaviors of java programs
at runtime with java-mop. Electronic Notes in Theoretical Computer Science 144(4), 3–20
(2006)

26. Clarkson, M.R., Schneider, F.B.: Hyperproperties. In: Proceedings of the 21st IEEE Com-
puter Security Foundations Symposium, CSF 2008, Pittsburgh, Pennsylvania, 23-25 June
2008. pp. 51–65. IEEE Computer Society (2008)

27. Colombo, C., Falcone, Y.: Organising LTL monitors over distributed systems with
a global clock. Formal Methods in System Design 49(1-2), 109–158 (2016),
https://doi.org/10.1007/s10703-016-0251-x

28. Cuppens, F., Cuppens-Boulahia, N., Ramard, T.: Availability enforcement by obligations and
aspects identification. In: Availability, Reliability and Security, 2006. ARES 2006. The First
International Conference on. pp. 10–pp. IEEE (2006)

29. Ding, R., Fu, Q., Lou, J.G., Lin, Q., Zhang, D., Shen, J., Xie, T.: Healing online service sys-
tems via mining historical issue repositories. In: Proceedings of the IEEE/ACM International
Conference on Automated Software Engineering (ASE). pp. 318–321. IEEE (2012)

30. Dolzhenko, E., Ligatti, J., Reddy, S.: Modeling runtime enforcement with mandatory results
automata. International Journal of Information Security 14(1), 47–60 (Feb 2015)

31. El-Harake, K., Falcone, Y., Jerad, W., Langet, M., Mamlouk, M.: Blocking advertisements on
android devices using monitoring techniques. In: Margaria, T., Steffen, B. (eds.) Leveraging
Applications of Formal Methods, Verification and Validation. Specialized Techniques and
Applications - 6th International Symposium, ISoLA 2014, Imperial, Corfu, Greece, October
8-11, 2014, Proceedings, Part II. Lecture Notes in Computer Science, vol. 8803, pp. 239–
253. Springer (2014)

32. El-Hokayem, A., Falcone, Y.: Monitoring decentralized specifications. In: Bultan and Sen
[17], pp. 125–135

33. El-Hokayem, A., Falcone, Y.: THEMIS: a tool for decentralized monitoring algorithms. In:
Bultan and Sen [17], pp. 372–375

26



34. Erlingsson, Ú., Schneider, F.B.: SASI enforcement of security policies: a retrospective. In:
Kienzle, D.M., Zurko, M.E., Greenwald, S.J., Serbau, C. (eds.) Proceedings of the 1999
Workshop on New Security Paradigms, Caledon Hills, ON, Canada, September 22-24, 1999.
pp. 87–95. ACM (1999)

35. Falcone, Y.: You should better enforce than verify. In: Barringer, H., Falcone, Y., Finkbeiner,
B., Havelund, K., Lee, I., Pace, G.J., Rosu, G., Sokolsky, O., Tillmann, N. (eds.) Runtime
Verification - First International Conference, RV 2010, St. Julians, Malta, November 1-4,
2010. Proceedings. Lecture Notes in Computer Science, vol. 6418, pp. 89–105. Springer
(2010)

36. Falcone, Y., Currea, S., Jaber, M.: Runtime verification and enforcement for Android appli-
cations with RV-Droid. In: Qadeer and Tasiran [80], pp. 88–95

37. Falcone, Y., Fernandez, J.C., Mounier, L.: Synthesizing enforcement monitors wrt. the
safety-progress classification of properties. In: Sekar, R., Pujari, A. (eds.) Information Sys-
tems Security, Lecture Notes in Computer Science, vol. 5352, pp. 41–55. Springer Berlin
Heidelberg (2008)

38. Falcone, Y., Fernandez, J.C., Mounier, L.: What can you verify and enforce at runtime?
International Journal on Software Tools for Technology Transfer 14(3), 349–382 (2012)

39. Falcone, Y., Jaber, M.: Fully automated runtime enforcement of component-based systems
with formal and sound recovery. International Journal on Software Tools for Technology
Transfer pp. 1–25 (2016)

40. Falcone, Y., Jéron, T., Marchand, H., Pinisetty, S.: Runtime enforcement of regular timed
properties by suppressing and delaying events. Systems & Control Letters 123, 2–41 (2016)

41. Falcone, Y., Marchand, H.: Runtime enforcement of k-step opacity. In: Proceedings of
the 52nd IEEE Conference on Decision and Control, CDC 2013, December 10-13, 2013,
Firenze, Italy. pp. 7271–7278. IEEE (2013)

42. Falcone, Y., Marchand, H.: Enforcement and validation (at runtime) of vari-
ous notions of opacity. Discrete Event Dynamic Systems 25(4), 531–570 (2015),
http://dx.doi.org/10.1007/s10626-014-0196-4

43. Falcone, Y., Mounier, L., Fernandez, J., Richier, J.: Runtime enforcement monitors: composi-
tion, synthesis, and enforcement abilities. Formal Methods in System Design 38(3), 223–262
(2011)

44. Fong, P.W.L.: Access control by tracking shallow execution history. In: 2004 IEEE Sympo-
sium on Security and Privacy (S&P 2004), 9-12 May 2004, Berkeley, CA, USA. pp. 43–55.
IEEE Computer Society (2004)

45. Goffi, A., Gorla, A., Mattavelli, A., Pezzè, M., Tonella, P.: Search-based synthesis of equiva-
lent method sequences. In: Proceedings of the ACM SIGSOFT International Symposium on
Foundations of Software Engineering (FSE) (2014)

46. Goues, C.L., Nguyen, T., Forrest, S., Weimer, W.: Genprog: A generic method for automatic
software repair. IEEE Transactions on Software Engineering (TSE) 38(1), 54–72 (2012)

47. Hallé, S., Khoury, R., Betti, Q., El-Hokayem, A., Falcone, Y.: Decentralized enforcement of
document lifecycle constraints. Information Systems (2017)

48. Hallé, S., Khoury, R., El-Hokayem, A., Falcone, Y.: Decentralized enforcement of artifact
lifecycles. In: Matthes, F., Mendling, J., Rinderle-Ma, S. (eds.) 20th IEEE International En-
terprise Distributed Object Computing Conference, EDOC 2016, Vienna, Austria, September
5-9, 2016. pp. 1–10. IEEE Computer Society (2016)

49. Hamlen, K.W., Morrisett, G., Schneider, F.B.: Certified in-lined reference monitoring on .net.
In: Sreedhar, V.C., Zdancewic, S. (eds.) Proceedings of the 2006 Workshop on Programming
Languages and Analysis for Security, PLAS 2006, Ottawa, Ontario, Canada, June 10, 2006.
pp. 7–16. ACM (2006)

27



50. Hamlen, K.W., Morrisett, G., Schneider, F.B.: Computability classes for enforcement mecha-
nisms. ACM Transactions on Programming Languages and Systems (TOPLAS) 28(1), 175–
205 (2006)

51. Hosek, P., Cadar, C.: Safe software updates via multi-version execution. In: Proceedings of
the International Conference on Software Engineering (ICSE) (2013)

52. Humphrey, L., Könighofer, B., Könighofer, R., Topcu, U.: Synthesis of admissible shields.
In: Bloem, R., Arbel, E. (eds.) Hardware and Software: Verification and Testing - 12th In-
ternational Haifa Verification Conference, HVC 2016, Haifa, Israel, November 14-17, 2016,
Proceedings. Lecture Notes in Computer Science, vol. 10028, pp. 134–151 (2016)

53. IEEE: Systems and Software Engineering - Vocabulary. Tech. Rep. ISO/IEC/IEEE 24765,
IEEE International Standard (2010)

54. Johansen, H.D., Birrell, E., van Renesse, R., Schneider, F.B., Stenhaug, M., Johansen, D.:
Enforcing privacy policies with meta-code. In: Kono, K., Shinagawa, T. (eds.) Proceedings
of the 6th Asia-Pacific Workshop on Systems, APSys 2015, Tokyo, Japan, July 27-28, 2015.
pp. 16:1–16:7. ACM (2015)

55. Jones, J.A., Harrold, M.J.: Empirical evaluation of the tarantula automatic fault-localization
technique. In: Proceedings of the International Conference on Automated software engineer-
ing (ASE) (2005)

56. Kephart, J.O., Chess, D.M.: The vision of autonomic computing. Computer 36(1), 41–50
(2003)

57. Khoury, R., Hallé, S.: Runtime enforcement with partial control. In: García-Alfaro, J.,
Kranakis, E., Bonfante, G. (eds.) Foundations and Practice of Security - 8th International
Symposium, FPS 2015, Clermont-Ferrand, France, October 26-28, 2015, Revised Selected
Papers. Lecture Notes in Computer Science, vol. 9482, pp. 102–116. Springer (2015)

58. Khoury, R., Tawbi, N.: Corrective enforcement: A new paradigm of security policy enforce-
ment by monitors. ACM Trans. Inf. Syst. Secur. 15(2), 10:1–10:27 (Jul 2012)

59. Khoury, R., Tawbi, N.: Which security policies are enforceable by runtime monitors? A
survey. Computer Science Review 6(1), 27–45 (2012)

60. Kim, M., Kannan, S., Lee, I., Sokolsky, O., Viswanathan, M.: Computational analysis of run-
time monitoring - fundamentals of java-mac. Electr. Notes Theor. Comput. Sci. 70(4), 80–94
(2002)

61. Kumar, A., Ligatti, J., Tu, Y.: Query monitoring and analysis for database privacy - A security
automata model approach. In: Wang, J., Cellary, W., Wang, D., Wang, H., Chen, S., Li, T.,
Zhang, Y. (eds.) Web Information Systems Engineering - WISE 2015 - 16th International
Conference, Miami, FL, USA, November 1-3, 2015, Proceedings, Part II. Lecture Notes in
Computer Science, vol. 9419, pp. 458–472. Springer (2015)

62. Ligatti, J., Bauer, L., Walker, D.: Enforcing non-safety security policies with program mon-
itors. In: di Vimercati, S.D.C., Syverson, P.F., Gollmann, D. (eds.) Computer Security - ES-
ORICS 2005, 10th European Symposium on Research in Computer Security, Milan, Italy,
September 12-14, 2005, Proceedings. Lecture Notes in Computer Science, vol. 3679, pp.
355–373. Springer (2005)

63. Ligatti, J., Bauer, L., Walker, D.: Run-time enforcement of nonsafety policies. ACM Trans.
Inf. Syst. Secur. 12(3), 19:1–19:41 (Jan 2009)

64. Ligatti, J., Reddy, S.: A theory of runtime enforcement, with results. In: Gritzalis, D., Preneel,
B., Theoharidou, M. (eds.) Computer Security - ESORICS 2010, 15th European Symposium
on Research in Computer Security, Athens, Greece, September 20-22, 2010. Proceedings.
Lecture Notes in Computer Science, vol. 6345, pp. 87–100. Springer (2010)

65. Martinelli, F., Matteucci, I.: Through modeling to synthesis of security automata. Electr.
Notes Theor. Comput. Sci. 179, 31–46 (2007), http://dx.doi.org/10.1016/j.entcs.2006.08.029

28



66. Martinelli, F., Matteucci, I., Mori, P., Saracino, A.: Enforcement of U-XACML history-based
usage control policy. In: Barthe, G., Markatos, E.P., Samarati, P. (eds.) Security and Trust
Management - 12th International Workshop, STM 2016, Heraklion, Crete, Greece, Septem-
ber 26-27, 2016, Proceedings. Lecture Notes in Computer Science, vol. 9871, pp. 64–81.
Springer (2016)

67. Martinelli, F., Matteucci, I., Saracino, A., Sgandurra, D.: Remote policy enforcement for
trusted application execution in mobile environments. In: Bloem, R., Lipp, P. (eds.) Trusted
Systems - 5th International Conference, INTRUST 2013, Graz, Austria, December 4-5,
2013, Proceedings. Lecture Notes in Computer Science, vol. 8292, pp. 70–84. Springer
(2013)

68. Martinelli, F., Matteucci, I., Saracino, A., Sgandurra, D.: Enforcing mobile application secu-
rity through probabilistic contracts. In: Joosen, W., Martinelli, F., Heyman, T. (eds.) Proceed-
ings of the 2014 ESSoS Doctoral Symposium co-located with the International Symposium
on Engineering Secure Software and Systems (ESSoS 2014), Munich, Germany, February
26, 2014. CEUR Workshop Proceedings, vol. 1298. CEUR-WS.org (2014)

69. Martinelli, F., Mori, P., Saracino, A.: Enhancing android permission through usage control:
a BYOD use-case. In: Ossowski [70], pp. 2049–2056

70. Ossowski, S. (ed.): Proceedings of the 31st Annual ACM Symposium on Applied Comput-
ing, Pisa, Italy, April 4-8, 2016. ACM (2016)

71. Owicki, S., Lamport, L.: Proving liveness properties of concurrent programs. ACM Transac-
tion Programming Languages and Systems 4(3), 455–495 (1982)

72. Pavlich-Mariscal, J., Michel, L., Demurjian, S.: A formal enforcement framework for role-
based access control using aspect-oriented programming. In: Model Driven Engineering
Languages and Systems, pp. 537–552. Springer (2005)

73. Pinisetty, S., Falcone, Y., Jéron, T., Marchand, H.: Runtime enforcement of parametric timed
properties with practical applications. In: Lesage, J., Faure, J., Cury, J.E.R., Lennartson,
B. (eds.) 12th International Workshop on Discrete Event Systems, WODES 2014, Cachan,
France, May 14-16, 2014. pp. 420–427. International Federation of Automatic Control
(2014)

74. Pinisetty, S., Falcone, Y., Jéron, T., Marchand, H.: Runtime enforcement of regular timed
properties. In: Cho, Y., Shin, S.Y., Kim, S., Hung, C., Hong, J. (eds.) Symposium on Applied
Computing, SAC 2014, Gyeongju, Republic of Korea - March 24 - 28, 2014. pp. 1279–1286.
ACM (2014)

75. Pinisetty, S., Falcone, Y., Jéron, T., Marchand, H.: Tipex: A tool chain for timed property en-
forcement during execution. In: Bartocci, E., Majumdar, R. (eds.) Runtime Verification - 6th
International Conference, RV 2015 Vienna, Austria, September 22-25, 2015. Proceedings.
Lecture Notes in Computer Science, vol. 9333, pp. 306–320. Springer (2015)

76. Pinisetty, S., Falcone, Y., Jéron, T., Marchand, H., Rollet, A., Nguena-Timo, O.: Runtime
enforcement of timed properties revisited. Formal Methods in System Design 45(3), 381–
422 (2014)

77. Pinisetty, S., Falcone, Y., Jéron, T., Marchand, H., Rollet, A., Nguena-Timo, O.L.: Runtime
enforcement of timed properties. In: Qadeer and Tasiran [80], pp. 229–244

78. Pinisetty, S., Preoteasa, V., Tripakis, S., Jéron, T., Falcone, Y., Marchand, H.: Predictive
runtime enforcement. In: Ossowski [70], pp. 1628–1633

79. Pinisetty, S., Preoteasa, V., Tripakis, S., Jéron, T., Falcone, Y., Marchand, H.: Predictive
runtime enforcement. Formal Methods in System Design pp. 1–46 (2017)

80. Qadeer, S., Tasiran, S. (eds.): Runtime Verification, Third International Conference, RV
2012, Istanbul, Turkey, September 25-28, 2012, Revised Selected Papers, Lecture Notes in
Computer Science, vol. 7687. Springer (2013)

81. Ramadge, P.J., Wonham, W.M.: Supervisory control of a class of discrete event processes.
SIAM journal on control and optimization 25(1), 206–230 (1987)

29



82. Ramadge, P.J., Wonham, W.M.: The control of discrete event systems. Proceedings of the
IEEE 77(1), 81–98 (1989)

83. Renard, M.: GREP. https://github.com/matthieurenard/GREP (2017)
84. Renard, M., Falcone, Y., Rollet, A., Jéron, T., Marchand, H.: Optimal enforcement of (timed)

properties with uncontrollable events. Mathematical Structures in Computer Science pp. 1–
46 (2017)

85. Renard, M., Falcone, Y., Rollet, A., Pinisetty, S., Jéron, T., Marchand, H.: Enforcement of
(timed) properties with uncontrollable events. In: Leucker, M., Rueda, C., Valencia, F.D.
(eds.) Theoretical Aspects of Computing - ICTAC 2015 - 12th International Colloquium
Cali, Colombia, October 29-31, 2015, Proceedings. Lecture Notes in Computer Science, vol.
9399, pp. 542–560. Springer (2015)

86. Renard, M., Rollet, A., Falcone, Y.: Runtime enforcement using Büchi games. In: Proceed-
ings of Model Checking Software - 24th International Symposium, SPIN 2017, Co-located
with ISSTA 2017, Santa Barbara, USA. pp. 70–79. ACM (July 2017)

87. Riganelli, O., Micucci, D., Mariani, L., Falcone, Y.: Verifying policy enforcers. In: Proceed-
ings of the International Conference on Runtime Verification (RV) (2017)

88. Schneider, F.B.: Enforceable security policies. ACM Trans. Inf. Syst. Secur. 3(1), 30–50 (Feb
2000)

89. Sridhar, M., Hamlen, K.W.: Flexible in-lined reference monitor certification: Challenges and
future directions. In: Proceedings of the 5th ACM Workshop on Programming Languages
Meets Program Verification. pp. 55–60. PLPV ’11 (2011)

90. Swanson, J., Cohen, M.B., Dwyer, M.B., Garvin, B.J., Firestone, J.: Beyond the rainbow:
Self-adaptive failure avoidance in configurable systems. In: Proceedings of the ACM SIG-
SOFT International Symposium on Foundations of Software Engineering (FSE) (2014)

91. Talhi, C., Tawbi, N., Debbabi, M.: Execution monitoring enforcement un-
der memory-limitation constraints. Inf. Comput. 206(2-4), 158–184 (2008),
http://dx.doi.org/10.1016/j.ic.2007.07.009

92. Wu, M., Zeng, H., Wang, C.: Synthesizing runtime enforcer of safety properties under burst
error. In: Rayadurgam, S., Tkachuk, O. (eds.) NASA Formal Methods - 8th International
Symposium, NFM 2016, Minneapolis, MN, USA, June 7-9, 2016, Proceedings. Lecture
Notes in Computer Science, vol. 9690, pp. 65–81. Springer (2016)

93. Zeller, A., Hildebrandt, R.: Simplifying and isolating failure-inducing input. IEEE Transac-
tions on Software Engineering (TSE) 28(2) (Feb 2002)

94. Zhang, X., Leucker, M., Dong, W.: Runtime verification with predictive semantics. In: Good-
loe, A., Person, S. (eds.) NASA Formal Methods - 4th International Symposium, NFM 2012,
Norfolk, VA, USA, April 3-5, 2012. Proceedings. Lecture Notes in Computer Science, vol.
7226, pp. 418–432. Springer (2012)

30


