Garside combinatorics for Thompson's monoid F^{+}and a hybrid with the braid monoid $B _\infty^{+}$

Patrick Dehornoy, Emilie Tesson

To cite this version:

Patrick Dehornoy, Emilie Tesson. Garside combinatorics for Thompson's monoid F^{+}and a hybrid with the braid monoid $B _\infty^{+}$. 2018. hal-01723604v2

HAL Id: hal-01723604
 https://hal.science/hal-01723604v2

Preprint submitted on 8 Mar 2018

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

GARSIDE COMBINATORICS FOR THOMPSON'S MONOID F^{+} AND A HYBRID WITH THE BRAID MONOID B_{∞}^{+}

PATRICK DEHORNOY AND EMILIE TESSON

Abstract

On the model of simple braids, defined to be the left divisors of Garside's elements Δ_{n} in the monoid B_{∞}^{+}, we investigate simple elements in Thompson's monoid F^{+}and in a larger monoid H^{+}that is a hybrid of B_{∞}^{+} and F^{+}: in both cases, we count how many simple elements left divide the right lcm of the first $n-1$ atoms, and characterize their normal forms in terms of forbidden factors. In the case of H^{+}, a generalized Pascal triangle appears.

1. Introduction

Since the seminal work of F.A. Garside [18], as extended in [16] and [4], it is known that Artin's braid group B_{n} is a group of fractions for the monoid B_{n}^{+} of positive n-strand braids and that the now called Garside element Δ_{n} plays a prominent role in the study of B_{n}^{+}. In particular, the divisors of Δ_{n} in B_{n}^{+}, called simple braids, form a family of n ! elements in one-to-one correspondence with the permutations of $\{1, \ldots, n\}$, leading to a remarkable combinatorics now at the heart of the algebraic study of $B_{n}[1,17]$, see [15, Chapter IX]. Subsequently, it was realised that such a situation can be found in many different contexts of groups and categories, always around a family of so-called simple elements resembling simple braids, and leading to various combinatorics, like, for instance, the dual Garside structure on B_{n} [3], whose combinatorics is that of noncrossing partitions.

Our aim in this paper is to investigate a Garside structure arising on Thompson's group $F[28,8]$ in connection with its submonoid F^{+}generated by the standard (infinite) sequence of generators, corresponding to the presentation

$$
\begin{equation*}
\left.F^{+}:=\left\langle\tau_{1}, \tau_{2}, \ldots\right| \tau_{j} \tau_{i}=\tau_{i} \tau_{j+1} \quad \text { for } \quad j \geqslant i+1\right\rangle^{+} . \tag{1.1}
\end{equation*}
$$

To explain the similarity with braids and the natural questions in this non-finitely generated case, one should start from the infinite braid monoid

$$
B_{\infty}^{+}=\left\langle\sigma_{1}, \sigma_{2}, \ldots \left\lvert\, \begin{array}{cll}
\sigma_{j} \sigma_{i}=\sigma_{i} \sigma_{j} & \text { for } & j \geqslant i+2 \tag{1.2}\\
\sigma_{j} \sigma_{i} \sigma_{j}=\sigma_{i} \sigma_{j} \sigma_{i} & \text { for } & j=i+1
\end{array}\right.\right\rangle^{+}:
$$

in this case, Garside's braid Δ_{n} is the right lcm of the $n-1$ first atoms $\sigma_{1}, \ldots, \sigma_{n-1}$ of B_{∞}^{+}(see Section 2.1 for a reminder about the terminology), and simple braids are those braids that left divide at least one element Δ_{n} in B_{∞}^{+}.

In the case of the monoid F^{+}, the atoms are the elements τ_{i}, and we shall see that there exists for each n a well defined element Δ_{n} that is, in F^{+}, the right lcm of the first $n-1$ atoms. Then we shall investigate the derived simple elements, namely the elements of F^{+}that left divide at least one element Δ_{n}. The main results proved

[^0]here are that, for every n, there exist 2^{n-1} simple elements left dividing Δ_{n} in F^{+}, in explicit one-to-one correspondence with the subsets of $\{1, \ldots, n-1\}$, and that simple elements form a Garside family in $F^{+}[15$, Def. III.1.31], thus guaranteeing the existence and properties of an associated greedy normal form in F^{+}. These results are established by combining the existence of a convergent rewrite system on F^{+}and the reversing technique $[10,12]$ for analyzing the divisibility relations of a presented monoid.

The above results are technically easy, and we then switch to a combinatorially more involved situation related to another monoid H^{+}, which is a hybrid of the braid monoid B_{∞}^{+}and the Thompson monoid F^{+}. Various hybrids of the groups B_{∞} and F have already been considered, in particular the group $\widehat{B V}$ of $[5,6,11]$, which is a group of fractions for a monoid, that is a Zappa-Szép product of F^{+}and B_{∞}^{+}and, therefore, inherits their Garside structures. Here we shall introduce and investigate a new hydrid, which is not a product but rather a mixture of the initial monoids F^{+} and B_{∞}^{+}. Indeed, we consider

$$
H^{+}:=\left\langle\theta_{1}, \theta_{2}, \ldots \left\lvert\, \begin{array}{ccc}
\theta_{j} \theta_{i}=\theta_{i} \theta_{j+1} & \text { for } \quad j \geqslant i+2 \tag{1.3}\\
\theta_{j} \theta_{i} \theta_{j}=\theta_{i} \theta_{j} \theta_{i+3} & \text { for } \quad j=i+1
\end{array}\right.\right\rangle^{+},
$$

in which the length 2 relations are Thompson's relations as in (1.1), whereas the length 3 relations are directly reminiscent of braid relations of (1.2), but with a shift of one index. Here, we investigate the basic properties of the monoid H^{+}and, specifically, the associated Garside combinatorics, if this makes sense. Actually, it does: we shall see that, for every n, the atoms $\theta_{1}, \ldots, \theta_{n-1}$ admit a right lcm, again denoted by Δ_{n}, so that it is natural to investigate simple elements, defined to be those that left divide some element Δ_{n}. The main results proved here are that, for every n, there exist $2 \cdot 3^{n-2}$ simple elements left dividing Δ_{n} in H^{+}, with an explicit description of a distinguished expression for each of them. As in the case of F^{+}, these results are established using a convergent rewrite system on H^{+}and the reversing technique; the proofs are more difficult than for F^{+}and some of them require delicate inductive arguments. We hope that the existence of this nontrivial combinatorics will draw some attention to the monoid H^{+}, and to the group H presented by (1.3), which remains essentially mysterious.

The paper is divided into four sections after this introduction. In Section 2, we investigate the monoid F^{+}and the derived simple elements, providing a good warm-up for the sequel. In Section 3, we establish various general properties of the monoid H^{+}, in particular the fact that it admits cancellation on both sides. Next, in Section 4, we study the elements Δ_{n} of H^{+}and count their left divisors by partitioning them into several families. Finally, in Section 5, we explicitly characterize the normal form (in the sense of some convergent rewrite system) of simple elements of H^{+}.

Acknowledgement. The authors thank Matthieu Picantin for having pointed at the connection between the numbers $N_{k, \ell}$ of Section 4.3 and directed animals.

2. Thompson's monoid F^{+}

Here we study the case of Thompson's monoid F^{+}, an easy first step. It is standard that (1.1) is a presentation of Thompson's group F, and, as the relations involve no inverse of the generators, it makes sense to introduce the associated monoid F^{+}and to consider the associated Garside combinatorics, if it exists.

The section is divided into four parts. In Section 2.1, we recall the standard terminology for the divisibility relations in a monoid, extensively used throughout the text. Next, in Section 2.2, we define a convergent rewrite system that selects a distinguished expression for every element of F^{+}. In Section 2.3, we recall basic notions about word reversing, here in the new version of [14], and use them to show that F^{+}is cancellative and admits right lcms (least common right multiples). Finally, in Section 2.4, we investigate the elements Δ_{n} and describe their left divisors explicitly.
2.1. The divisibility relations of a monoid. Let M be a monoid (possibly, in particular, a free one, i.e., a monoid of words). For a, b in M, we say that a left divides b in M, or, equivalently, that b is a right multiple of a, written $a \preccurlyeq b$, if $a x=b$ holds for some x (of M). If M is left cancellative (meaning that $x a=x b$ implies $a=b$) and 1 is the only invertible element in M, the relation \preccurlyeq is a partial ordering on M.

For a, b in M, we say that c is a right lcm (least common right multiple) of a and b if $a \preccurlyeq c$ and $b \preccurlyeq c$ hold, and the conjunction of $a \preccurlyeq x$ and $b \preccurlyeq x$ implies $c \preccurlyeq x$: in other words, c is a lowest upper bound of a and b with respect to \preccurlyeq.

The symmetric notions of a right divisor and a left multiple are defined similarly, replacing $a x=b$ with $x a=b$. Finally, we say that a is a factor of b if $x a y=b$ holds for some x, y.

An element a of M is said to be an atom if it admits no decomposition $a=b c$ with $b \neq 1$ and $c \neq 1$.
2.2. A normal form on F^{+}. We begin our investigation of the monoid F^{+}. We recall that F^{+}is defined by the presentation

$$
\left.F^{+}:=\left\langle\tau_{1}, \tau_{2}, \ldots\right| \tau_{j} \tau_{i}=\tau_{i} \tau_{j+1} \quad \text { for } \quad j \geqslant i+1\right\rangle^{+}
$$

hereafter denoted by \mathcal{P}_{F}. We put $T:=\left\{\tau_{i} \mid i \geqslant 1\right\}$, write T^{*} for the free monoid of all words in the alphabet T, and \equiv for the congruence on T^{*} generated by the relations of \mathcal{P}_{F}. We use ε for the empty word. Our first tool for studying F^{+} consists in defining a unique normal form using a rewrite system on T^{*}.

Lemma 2.1. Let \mathcal{E}_{F} be the rewrite system on T^{*} defined by the rules

$$
\begin{equation*}
\tau_{i} \tau_{j+1} \rightarrow \tau_{j} \tau_{i} \quad \text { for } i \geqslant 1 \text { and } j \geqslant i+1 \tag{2.1}
\end{equation*}
$$

Then \mathcal{E}_{F} is convergent.
Proof. As is standard, see for instance [26], we shall check that \mathcal{E}_{F} is noetherian and locally confluent. We write \Rightarrow for the one-step rewrite relation associated with the rules of (2.1), that is, for the family of all pairs

$$
\left(w_{1} \tau_{i} \tau_{j+1} w_{2}, w_{1} \tau_{j} \tau_{i} w_{2}\right) \quad \text { with } j \geqslant i+1
$$

and \Rightarrow^{*} for the reflexive-transitive closure of \Rightarrow. For w in T^{*}, let $\rho(w)$ be the sum of the indices of the generators τ_{i} occurring in w. Then $w \Rightarrow w^{\prime}$ implies $\rho(w)>\rho\left(w^{\prime}\right)$, and, therefore, there is no proper infinite sequence for \Rightarrow. So \mathcal{E}_{F} is noetherian.

Next, assume $w \Rightarrow w^{\prime}$ and $w \Rightarrow w^{\prime \prime}$. By definition, w^{\prime} and $w^{\prime \prime}$ are obtained from w by replacing some length 2 factor $\tau_{i} \tau_{j+1}$ with the corresponding word $\tau_{j} \tau_{i}$. For local confluence, the case of disjoint factors is trivial, and the critical case of
overlapping factors corresponds to $w=\tau_{i} \tau_{j+1} \tau_{k+2}$ with $j \geqslant i+1$ and $k \geqslant j+1$, leading to $w^{\prime}=\tau_{j} \tau_{i} \tau_{k+2}$ and $w^{\prime \prime}=\tau_{i} \tau_{k+1} \tau_{j+1}$. One then obtains

$$
\begin{array}{rllll}
\tau_{i} \tau_{j+1} \tau_{k+2} & \ngtr & \tau_{j} \tau_{i} \tau_{k+2} & >2 & \tag{2.2}\\
& \searrow & \tau_{i} \tau_{k+1} \tau_{j+1} & \nearrow^{2} & \tau_{k} \tau_{j} \tau_{i},
\end{array}
$$

It follows that \mathcal{E}_{F} is locally confluent, hence convergent by Newman's diamond lemma [22].

For every word w of T^{*}, we shall denote by $\operatorname{red}(w)$ the unique \mathcal{E}_{F}-reduced word w^{\prime} satisfying $w \Rightarrow^{*} w^{\prime}$. By definition, the words w and $\operatorname{red}(w)$ represent the same element of F^{+}, and $\operatorname{red}(w)$ is the unique \mathcal{E}_{F}-reduced word in the equivalence class of w in F^{+}. Thus, Lemma 2.1 implies

Proposition 2.2. \mathcal{E}_{F}-reduced words provide a unique normal form for the elements of the monoid F^{+}.

It directly follows from the definition that a word of T^{*} is \mathcal{E}_{F}-reduced if, and only if, it has no length 2 factor $\tau_{i} \tau_{j+1}$ with $j \geqslant i+1$, which implies that, for every n, the set of \mathcal{E}_{F}-reduced words lying in $\left\{\tau_{1}, \ldots, \tau_{n}\right\}^{*}$ is a regular language [17, 20].
2.3. Using word reversing. The second method for investigating the monoid F^{+} is word reversing [12], a distillation of an argument that ultimately stems from Garside's approach to braid monoids [18]. Here we shall describe reversing using the new formalism of [14], which is specially convenient in the current case (and in that of H^{+}in Section 3.3). So we introduce reversing as a binary relation on pairs of words connected with a particular type of van Kampen diagram.

Definition 2.3. [14] A reversing grid for a monoid presentation $(\mathcal{S}, \mathcal{R})$, or $(\mathcal{S}, \mathcal{R})$ grid, is a rectangular diagram consisting of finitely many matching $\mathcal{S} \cup\{\varepsilon\}$-labeled pieces of the types

For u, v, u_{1}, v_{1} in \mathcal{S}^{*}, we say that an $(\mathcal{S}, \mathcal{R})$-grid Γ goes from (u, v) to $\left(u_{1}, v_{1}\right)$ if the labels of the left and top edges of Γ form the words u and v, respectively, whereas the labels of the right and bottom edges form the words u_{1} and v_{1}. We write $(u, v) \curvearrowright_{\mathcal{R}}\left(u_{1}, v_{1}\right)$ if there exists a $(\mathcal{S}, \mathcal{R})$-grid from (u, v) to $\left(u_{1}, v_{1}\right)$.

Example 2.4. Two typical \mathcal{P}_{F}-grids are

witnessing for the relations $\left(\tau_{2}, \tau_{1} \tau_{3}\right) \curvearrowright\left(\varepsilon, \tau_{1}\right)$ and $\left(\tau_{2}, \tau_{2} \tau_{1}\right) \curvearrowright\left(\varepsilon, \tau_{1}\right)$, respectivelywe omit the index in \curvearrowright when there is no ambiguity. Note that, because all relations
of \mathcal{P}_{F} involve words of length 2 , the pieces of the first type in Definition 2.3 are squares: the right and bottom edges each consist of one single \mathcal{S}-labeled arrow.

The following result is (a special case of a result) established in [14]. Below we say that a monoid presentation $(\mathcal{S}, \mathcal{R})$ is homogeneous if every relation in \mathcal{R} has the form $w=w^{\prime}$ with w, w^{\prime} of the same length, and right complemented if it contains no relation $s \ldots=s \ldots$ and at most one relation $s \ldots=t \ldots$ for all $s \neq t$ in \mathcal{S}. On the other hand, two $(\mathcal{S}, \mathcal{R})$-grids Γ from (u, v) to $\left(u_{1}, v_{1}\right)$ and Γ^{\prime} from $\left(u^{\prime}, v^{\prime}\right)$ to $\left(u_{1}^{\prime}, v_{1}^{\prime}\right)$ are equivalent if we have $u^{\prime} \equiv_{\mathcal{R}} u, v^{\prime} \equiv_{\mathcal{R}} v, u_{1}^{\prime} \equiv_{\mathcal{R}} u_{1}$, and $v_{1}^{\prime} \equiv_{\mathcal{R}} v_{1}$, where $\equiv_{\mathcal{R}}$ is the congruence on \mathcal{S}^{*} generated by \mathcal{R}-so that the monoid $\langle\mathcal{S} \mid \mathcal{R}\rangle^{+}$is $\mathcal{S}^{*} / \equiv_{\mathcal{R}}$.
Lemma 2.5. [14, Propositions 1.12, 1.14, 1.16] Assume that $(\mathcal{S}, \mathcal{R})$ is a homogeneous right complemented monoid presentation and, for every s in \mathcal{S} and every relation $w=w^{\prime}$ in \mathcal{R},
for every grid from (s, w), there is an equivalent grid from $\left(s, w^{\prime}\right)$, and vice versa.
(i) Two words u, v of \mathcal{S}^{*} represent the same element of the monoid $\langle\mathcal{S} \mid \mathcal{R}\rangle^{+}$if, and only if, $(u, v) \curvearrowright(\varepsilon, \varepsilon)$ holds.
(ii) The monoid $\langle\mathcal{S} \mid \mathcal{R}\rangle^{+}$is left cancellative.
(iii) Two elements a, b of $\langle\mathcal{S} \mid \mathcal{R}\rangle^{+}$represented by u and v in \mathcal{S}^{*} admit a common right multiple if, and only if, $(u, v) \curvearrowright_{\mathcal{R}}\left(u_{1}, v_{1}\right)$ holds for some u_{1}, v_{1}; in this case, the element represented by $u v_{1}$ is a right lcm of a and b. In the special case when, for all $s \neq t$ in \mathcal{S}, there exist s^{\prime}, t^{\prime} in \mathcal{S} such that $s t^{\prime}=t s^{\prime}$ is a relation of \mathcal{R}, there always exist u_{1}, v_{1} as above, and any two elements of $\langle\mathcal{S} \mid \mathcal{R}\rangle^{+}$admit a right lcm.

Applying Lemma 2.5, we deduce:
Proposition 2.6. The monoid F^{+}is left and right cancellative. Any two elements of F^{+}admit a right lcm. Any two elements of F^{+}that admit a common left multiple admit a left lcm.
Proof. In view of applying Lemma 2.5, we observe that the presentation \mathcal{P}_{F} is homogeneous (all relations are of the form $w=w^{\prime}$ with w and w^{\prime} of length two), right complemented with one relation $\tau_{i} \ldots=\tau_{j} \ldots$ for all i, j, and that Condition (\diamond) holds for every τ_{i} and every relation of \mathcal{P}_{F}. To this end, we consider all pairs $\left(\tau_{i}, \tau_{j} \tau_{k+1}\right)$ with $k \geqslant j+1$, and compare the reversing grids from $\left(\tau_{i}, \tau_{j} \tau_{k+1}\right)$ and from $\left(\tau_{i}, \tau_{k} \tau_{j}\right)$: the two grids of Example 2.4 are typical, corresponding to $i=2, j=1$, and $k=2$, and they are indeed equivalent, since both admit as output $\left(\varepsilon, \tau_{1}\right)$. The number of triples (i, j, k) to consider is infinite but only finitely many patterns may occur, according to the position of i with respect to j and k. We skip the details, which are fairly obvious. Having established (\diamond), we deduce from Lemma 2.5(ii) that the monoid F^{+}is left cancellative and from Lemma 2.5(iii) that any two elements of F^{+}admit a right lcm.

To study left multiples, we observe that the presentation \mathcal{P}_{F} is also left complemented (in the obvious sense), and consider the notion of a left reversing grid, which is symmetric to the above notion of a right reversing grid (which amounts to considering the opposed monoid). To this end, we replace each elementary diagram

 one easily checks that the counterpart of (\diamond) is satisfied and one deduces, by the counterpart of Lemma 2.5(ii), that F^{+}is right cancellative. Finally, the counterpart of Lemma 2.5(iii) implies that any two elements of F^{+}that admit a common left multiple admit a left lcm. However, two elements of F^{+}need not always admit a common left multiple: there is no relation $\ldots \tau_{1}=\ldots \tau_{2}$ in \mathcal{P}_{F}, and, therefore, the counterpart of Lemma 2.5(iii) implies that τ_{1} and τ_{2} admit no common left-multiple in F^{+}.

It follows from Proposition 2.6 and Ore's classical theorem [23] that the monoid F^{+} embeds in its enveloping group, which is the group presented by \mathcal{P}_{F}, namely Thompson's group F, and that the latter is a group of right fractions for F^{+}, that is, every element of F can be expressed as $a b^{-1}$ with a, b in F^{+}. The expression is unique if, in addition, we require that the fraction be irreducible, meaning that a and b admit no common right divisor.

Remark 2.7. As explained in [13], there exists a (more redundant) positive presentation \mathcal{P}_{F}^{*} of the group F in terms of a family of generators τ_{s}^{*} with s a finite sequence of 0 s and 1 s such that τ_{i} coincides with $\tau_{1_{i-1}}^{*}$ and that F is a group both of left and right fractions for the monoid F^{+*} defined by \mathcal{P}_{F}^{*}. The latter admits left and right lcms and is a sort of counterpart for the dual braid monoid of [3]. The main relations in \mathcal{P}_{F}^{*} correspond to the MacLane-Stasheff pentagon.
2.4. Garside combinatorics for F^{+}. The monoid F^{+}resembles the braid monoid B_{∞}^{+}in that it is cancellative and admits right lcms and, therefore, it makes sense to consider the counterpart of the Garside elements Δ_{n} and their divisors.

As the presentation \mathcal{P}_{F} is homogeneous, the atoms of F^{+}are the elements τ_{i} with $i \geqslant 1$. So, exactly as in the case of B_{∞}^{+}, we shall consider the element Δ_{n} that is the right lcm of $\tau_{1}, \ldots, \tau_{n-1}$-we might use a different notation, for instance Δ_{n}^{F}, but there will be no risk of ambiguity here. We start from an explicit expression.

Definition 2.8. We put $\underline{\Delta}_{1}:=\varepsilon$, and, for $n \geqslant 2$, we put $\underline{\Delta}_{n}:=\tau_{1} \tau_{3} \tau_{5} \cdots \tau_{2 n-3}$. We denote by Δ_{n} the class of $\underline{\Delta}_{n}$ in F^{+}.

It is clear that Δ_{n} left divides Δ_{n+1} for each n, and one inductively checks that the \mathcal{E}_{F}-normal form of Δ_{n} is $\tau_{n-1} \tau_{n-2} \cdots \tau_{2} \tau_{1}$.

Lemma 2.9. For every $n \geqslant 2$, the element Δ_{n} is the right lcm of $\tau_{1}, \ldots, \tau_{n-1}$. No element τ_{i} with $i \geqslant n$ left divides Δ_{n}.

Proof. We prove using induction on $n \geqslant 2$ that Δ_{n} is the right lcm of $\tau_{1}, \ldots, \tau_{n-1}$. The result is trivial for $n=2$. Assume $n \geqslant 3$. A direct computation gives

$$
\left(\tau_{n-1}, \underline{\Delta}_{n-1}\right) \curvearrowright\left(\tau_{2 n-3}, \underline{\Delta}_{n-1}\right) .
$$

By Lemma 2.5(iii), this implies that $\underline{\Delta}_{n}$ represents the right lcm of τ_{n-1} and Δ_{n-1}. By induction hypothesis, Δ_{n-1} is the right lcm of $\tau_{1}, \ldots, \tau_{n-2}$, so Δ_{n} is the right lcm of $\tau_{1}, \ldots, \tau_{n-1}$. On the other hand, for $i \geqslant n$, we find $\left(\tau_{i}, \underline{\Delta}_{n}\right) \curvearrowright\left(\tau_{i+n-1}, \underline{\Delta}_{n}\right)$, which shows that the right lcm of τ_{i} and Δ_{n} is not Δ_{n}, so τ_{i} does not left divide Δ_{n}.

The main notion in Garside theory [15] is the notion of a simple element, defined as the (left) divisors of the distinguished element(s) Δ.

Definition 2.10. An element a of F^{+}is called simple if $a \preccurlyeq \Delta_{n}$ holds for some n.
Our aim is to understand the structure of simple elements of F^{+}, typically to characterize their normal forms. To this end, the key point will be the following exhaustive description of the expressions of Δ_{n}. Below, we write \mathfrak{S}_{n} for the group of all permutations of $\{1, \ldots, n\}$, and s_{i} for the transposition $(i, i+1)$.
Lemma 2.11. The expressions of Δ_{n} are the words w_{f} with f in \mathfrak{S}_{n-1}, where, for $p \leqslant n-1$, we put

$$
\widehat{f}(p):=\#\left\{i<f^{-1}(p) \mid f(i)>p\right\} \quad \text { and } \quad \widetilde{f}(p):=2 f^{-1}(p)-1-\widehat{f}(p),
$$

and let w_{f} be the word $\tau_{\tilde{f}(1)} \tau_{\widetilde{f}(2)} \cdots \tau_{\widetilde{f}(n-1)}$.
Proof. We first establish the following technical result:
If $f^{-1}(p)<f^{-1}(p+1)$ (resp., $>$) holds, then so does $\widetilde{f}(p)+1<\widetilde{f}(p+1)$ (resp., $\widetilde{f}(p)>\widetilde{f}(p+1)$); applying a relation of \mathcal{P}_{F} to w_{f} in position p yields the word $w_{s_{p} f}$.
So assume $f^{-1}(p+1)=f^{-1}(p)+m$ with $m \geqslant 1$. The definition gives

$$
\widehat{f}(p+1)=\widehat{f}(p)+\#\left\{i \mid f^{-1}(p)<i<f^{-1}(p+1) \text { and } f(i)>p+1\right\}
$$

whence $\widehat{f}(p+1) \leqslant \widehat{f}(p)+m-1$ and, for there, $\widetilde{f}(p+1) \geqslant \widetilde{f}(p)+2$. Let $g:=s_{p} f$. We find $g^{-1}(p)=f^{-1}(p+1), g^{-1}(p+1)=f^{-1}(p)$, then $\widehat{g}(p)=\widehat{f}(p+1)+1$ and $\widehat{g}(p+1)=\widehat{f}(p)$, because $f^{-1}(p)$ contributes to $\widehat{g}(p)$ but not to $\widehat{f}(p+1)$, and, finally, $\widetilde{g}(p)=\widetilde{f}(p+1)-1$ and $\widetilde{g}(p+1)=\widetilde{f}(p)$, with $\widetilde{g}(q)=\widetilde{f}(q)$ for $q \neq p, p+1$. So w_{g} is the result of applying the rule $\tau_{\widetilde{f}(p)} \tau_{\widetilde{f}(p+1)} \rightarrow \tau_{\widetilde{f}(p+1)-1} \tau_{\widetilde{f}(p)}$ to w_{f} in position p.

On the other hand, for $f^{-1}(p)=f^{-1}(p+1)+m$ with $m \geqslant 1$, we find $\widehat{f}(p) \leqslant \widehat{f}(p+$ $1)+m$, leading to $\widetilde{f}(p) \geqslant \widetilde{f}(p+1)+1$. For $g:=s_{p} f$, we find now, $\widehat{g}(p)=\widehat{f}(p+1)$ and $\widehat{g}(p+1)=\widehat{f}(p)-1$, whence $\widetilde{g}(p)=\widetilde{f}(p+1)$ and $\widetilde{g}(p+1)=\widetilde{f}(p)+1$, with $\widetilde{g}(q)=\widetilde{f}(q)$ for $q \neq p, p+1$. So w_{g} is the result of applying the rule $\tau_{\widetilde{f}(p)} \tau_{\widetilde{f}(p+1)} \rightarrow \tau_{\widetilde{f}(p+1)} \tau_{\widetilde{f}(p)+1}$ to w_{f} in position p.

Now, (2.4) implies that the family $W:=\left\{w_{f} \mid f \in \mathfrak{S}_{n-1}\right\}$ is closed under \equiv. As the transpositions s_{i} generate \mathfrak{S}_{n-1}, this family W is the \equiv-equivalence class of the word $w_{\text {id }}$, which, by definition, is $\underline{\Delta}_{n}$.

From there, a complete description of simple elements of F^{+}follows:
Proposition 2.12. For every a in F^{+}, the following are equivalent:
(i) The element a is simple, i.e., a left divides some element Δ_{n};
(ii) The element a is a factor of some element Δ_{n};
(iii) The normal form of a has the form $\tau_{i_{1}} \cdots \tau_{i_{\ell}}$ with $i_{1}>\cdots>i_{\ell}$.

Moreover, a left divides Δ_{n} if, and only if, $\operatorname{NF}(a)$ is $\tau_{i_{1}} \cdots \tau_{i_{\ell}}$ with $n>i_{1}>\cdots>i_{\ell}$.
Proof. By definition, (i) implies (ii). Next, assume that a is a factor of Δ_{n}, say $\Delta_{n}=a_{1} a a_{2}$. Let w_{1}, w, w_{2} be the normal forms of a_{1}, a, and a_{2}, respectively. Then $w_{1} w w_{2}$ is an expression of Δ_{n}, so, by Lemma 2.11(ii), it is a word w_{f} for some permutation f. Moreover, because w is \mathcal{E}_{F}-reduced, no rule of \mathcal{E}_{F} may apply to it: by (2.4), this implies that the indices of the generators τ_{i} in w make a decreasing sequence. So (ii) implies (iii).

Assume now $w=\tau_{i_{1}} \cdots \tau_{i_{\ell}}$ with $i_{1}>\cdots>i_{\ell}$. By inserting intermediate letters when $i_{p} \geqslant i_{p+1}+2$, we obtain a word w^{\prime} that is the normal form of $\Delta_{i_{1}+1}$. Then,
repeatedly applying to w^{\prime} some relations $\tau_{i} \tau_{j} \rightarrow \tau_{j} \tau_{i+1}$, we push the new letters to the right starting with the last one and finishing with the first one. In this way, one obtains a new expression of $\Delta_{i_{1}+1}$ that begins with w. So w is the normal form of a prefix of $\Delta_{i_{1}+1}$, hence of a simple element. Si (iii) implies (i).

For the last sentence, if a left divides Δ_{n}, then so does the first generator of $\mathrm{NF}(a)$: by Lemma 2.9, the latter cannot be τ_{i} with $i \geqslant n$. Conversely, the above proof of (iii) \Rightarrow (i) shows that $\tau_{i_{1}} \cdots \tau_{i_{\ell}}$ left divides $\Delta_{i_{1}+1}$, hence Δ_{n} for $n>i_{1}$.

Corollary 2.13. (i) For every n, the number of left divisors of Δ_{n} in F^{+}is 2^{n-1}. (ii) Simple elements of F^{+}make a Garside family in F^{+}.

Proof. (i) By the last statement in Proposition 2.12, mapping a subset of $\{1, \ldots, n-1\}$ to the decreasing enumeration of the corresponding elements τ_{i} establishes a one-to-one correspondence between $\mathfrak{P}(\{1, \ldots, n-1\})$ and the left divisors of Δ_{n}.
(ii) By definition, the family of simple elements in F^{+}is closed under right lcm: the conjunction of $a \preccurlyeq \Delta_{n}$ and $b \preccurlyeq \Delta_{p}$ implies that the right lcm of a and b left divides $\Delta_{\max (n, p)}$. On the other hand, a right divisor of a simple element must be a factor of some Δ_{n}, hence, by Proposition 2.12, it is simple. By [15, Coro. IV.2.29], this implies that simple elements form a Garside family.

As simple elements form a Garside family, every element of F^{+}admits a unique greedy decomposition in terms of simple elements, namely a decomposition a_{1}, \ldots, a_{p} with a_{1}, \ldots, a_{p} simple, $a_{p} \neq 1$, and, for each i, the entry a_{i} is the maximal simple left divisor of $a_{i} \cdots a_{p}$, [15, Prop. IV.1.20]. In the current case, the greedy decomposition is directly connected with the \mathcal{E}_{F}-normal form: $\mathrm{NF}\left(a_{1}\right), \ldots, \mathrm{NF}\left(a_{p}\right)$ are the maximal decreasing factors of $\operatorname{NF}(a)$. For instance, for $\operatorname{NF}(a)=\tau_{4} \tau_{3} \tau_{2} \tau_{3} \tau_{1} \tau_{1} \tau_{2}$, the greedy decomposition has four entries, namely $\tau_{4} \tau_{3} \tau_{2}, \tau_{3} \tau_{1}, \tau_{1}$, and τ_{2}.

From there, all results involving greedy decompositions are valid in F^{+}. However, this Garside structure of F^{+}is mostly trivial, exactly parallel to the case of the free commutative monoid $\mathbb{Z}_{\geqslant 0}^{(\infty)}$, where simple elements also correspond to finite subsets of generators. In fact, the relations of \mathcal{P}_{F} are in essence a shifted version of the commutation rules of a free commutative monoid.

3. The monoid H^{+}

The previous results are elementary and easy, and we now switch to a combinatorially more intricate and interesting situation, connected with the new hybrid H^{+} between Thompson's monoid F^{+}and Artin's braid monoid B_{∞}^{+}mentioned in the introduction. Our aim will be to develop the same analysis as in the case of F^{+}, namely understanding the structure of simple elements, defined as the left divisors of the right lcms of atoms. To this end, we shall follow the same scheme as in Section 2 and use both a normal form associated with a rewrite system (Section 3.2) and the reversing transformation associated with the presentation (Section 3.3).
3.1. Presentation and first properties. We recall that H^{+}is the monoid defined by the explicit presentation called (1.3) in the introduction

$$
H^{+}:=\left\langle\theta_{1}, \theta_{2}, \ldots \left\lvert\, \begin{array}{ccc}
\theta_{j} \theta_{i}=\theta_{i} \theta_{j+1} & \text { for } & j \geqslant i+2 \\
\theta_{j} \theta_{i} \theta_{j}=\theta_{i} \theta_{j} \theta_{i+3} & \text { for } & j=i+1
\end{array}\right.\right\rangle^{+},
$$

hereafter denoted by \mathcal{P}_{H}. We put $\Theta:=\left\{\theta_{i} \mid i \geqslant 1\right\}$, and write \equiv for the congruence on Θ^{*} generated by the relations of \mathcal{P}_{H}. For w a word of Θ^{*}, we write $[w]$ for
the \equiv-class of w. The relations of \mathcal{P}_{H} should appear as a mixture of the Thompson relations (as for length 2 relations), and of braid relations (as for length 3 relations). We immediately see that \mathcal{P}_{H} is a homogeneous presentation, and we can refer without ambiguity to the length $|a|$ of an element a of H^{+}, defined to be the common length of all words of Θ^{*} that represent a. We also observe that the relations are invariant under shifting the indices of the $\theta_{i} \mathrm{~s}$ by +1 , implying that mapping θ_{i} to θ_{i+1} for each i induces a well defined endomorphism of H^{+}.

Unlike the case of B_{∞}^{+}, the family of generators occurring in a word is not invariant under \equiv : for instance, $\theta_{3} \theta_{1}$ is equal to $\theta_{1} \theta_{4}$. However, we can easily construct an upper bound on the indices of the generators possibly occurring in the expressions of an element.

Lemma 3.1. Define the ceiling $\lceil w\rceil$ of a nonempty word $w=\theta_{i_{1}} \cdots \theta_{i_{\ell}}$ of Θ^{*} by

$$
\begin{equation*}
\lceil w\rceil:=\max \left\{i_{p}+\ell-p \mid p=1, \ldots, \ell\right\} \tag{3.1}
\end{equation*}
$$

Then $\lceil w\rceil$ is invariant under \equiv.
Proof. It suffices to consider the case of two words w, w^{\prime} deduced from one another by applying one relation of \mathcal{P}_{H}. For $w=u \theta_{j} \theta_{i} v$ and $w^{\prime}=u \theta_{i} \theta_{j+1} v$, with $j \geqslant i+2$, one finds $\lceil w\rceil=\max (\lceil u\rceil+|v|+2, j+1+|v|,\lceil v\rceil)=\left\lceil w^{\prime}\right\rceil$. Similarly, for $w=u \theta_{i} \theta_{i+1} \theta_{i+3} v$ and $w^{\prime}=u \theta_{i+1} \theta_{i} \theta_{i+1} v$, one obtains $\lceil w\rceil=\max (\lceil u\rceil+|v|+3, i+$ $3+|v|,\lceil v\rceil)=\left\lceil w^{\prime}\right\rceil$.

For a in H^{+}, we write $\lceil a\rceil$ for the common value of $\lceil w\rceil$ for w representing a. A direct application is the following a priori nontrivial result:

Proposition 3.2. The word problem for \mathcal{P}_{H} is decidable.
Proof. For every word w in Θ^{*}, the \equiv-class of w is finite: indeed, $w^{\prime} \equiv w$ implies both $\left|w^{\prime}\right|=|w|$ and $\left\lceil w^{\prime}\right\rceil=\lceil w\rceil$, and the number of words w^{\prime} satisfying these conditions is bounded above by $\lceil w\rceil^{|w|}$. Therefore, starting from two words w, w^{\prime}, one can decide whether $w^{\prime} \equiv w$ holds by saturating $\{w\}$ with respect to the relations of \mathcal{P}_{H}, eventually obtaining in finitely many steps an exhaustive enumeration of the \equiv-class of w. Then one compares w^{\prime} with the elements of the list so constructed.

Another property that directly follows from the presentation is the fact that the monoid F^{+}is a quotient of H^{+}:

Proposition 3.3. The map $\pi: \theta_{i} \mapsto \tau_{i}$ induces a surjective homomorphism from the monoid H^{+}onto the Thompson monoid F^{+}.

Proof. Let π^{*} be the extension of π into a homomorphism from the free monoid Θ^{*} to the monoid F^{+}. We claim that $w \equiv w^{\prime}$ implies $\pi^{*}(w)=\pi^{*}\left(w^{\prime}\right)$. It is enough to check this when $w=w^{\prime}$ is a relation of \mathcal{P}_{H}. The case of length 2 relations is trivial, as the latter are relations of \mathcal{P}_{F}. For length 3 relations, we find in F^{+}

$$
\pi^{*}\left(\theta_{i+1} \theta_{i} \theta_{i+1}\right)=\tau_{i+1} \tau_{i} \tau_{i+1}=\tau_{i} \tau_{i+2} \tau_{i+1}=\tau_{i} \tau_{i+1} \tau_{i+3}=\pi^{*}\left(\theta_{i} \theta_{i+1} \theta_{i+3}\right)
$$

So π^{*} induces a homomorphism from H^{+}to F^{+}. The latter is surjective since each generator τ_{i} lies in the image.

The projection π from H^{+}to F^{+}provided by Proposition 3.3 is not injective: $\theta_{2} \theta_{1}$ and $\theta_{1} \theta_{3}$ are distinct in H^{+}since no relation of \mathcal{P}_{H} applies to the corresponding words, but they both project to $\tau_{2} \tau_{1}$ in F^{+}.
3.2. A normal form on H^{+}. Like in the case of F^{+}, our first method for investigating the monoid H^{+}is to construct a normal form using a rewrite system.
Lemma 3.4. Let \mathcal{E}_{H} be the rewrite system on Θ^{*} defined by the rules

$$
\begin{gather*}
\theta_{i} \theta_{j+1} \rightarrow \theta_{j} \theta_{i} \quad \text { for } i \geqslant 1 \text { and } j \geqslant i+2, \tag{3.2}\\
\theta_{i} \theta_{i+1} \theta_{i+3} \rightarrow \theta_{i+1} \theta_{i} \theta_{i+1} \quad \text { for } i \geqslant 1 \tag{3.3}
\end{gather*}
$$

Then \mathcal{E}_{H} is convergent.
Proof. As in the case of \mathcal{E}_{F}, we show that \mathcal{E}_{H} is noetherian and locally confluent, and appeal to Newman's diamond lemma. Let π denote the homomorphism from Θ^{*} on T^{*} that maps θ_{i} to τ_{i} for every i. Then, for every w in Θ^{*} and every integer m, (3.4) $\quad w \Rightarrow{ }_{H}^{m} w^{\prime} \quad$ implies $\pi(w) \Rightarrow^{p} \pi\left(w^{\prime}\right) \quad$ for some p satisfying $m \leqslant p \leqslant 2 m$.

Indeed, up to applying π, (3.2) is a rule of \mathcal{E}_{F}, whereas, for (3.3), we find

$$
\pi\left(\theta_{i} \theta_{i+1} \theta_{i+3}\right)=\tau_{i} \tau_{i+1} \tau_{i+3} \Rightarrow \tau_{i} \tau_{i+2} \tau_{i+1} \Rightarrow \tau_{i+1} \tau_{i} \tau_{i+1}=\pi\left(\theta_{i+1} \theta_{i} \theta_{i+1}\right)
$$

Then an infinite nontrivial sequence of \mathcal{E}_{H}-reductions would project to an infinite nontrivial sequence of \mathcal{E}_{F}-reductions, so the noetherianity of \mathcal{E}_{F} implies that of \mathcal{E}_{H}.

We now check local confluence. As in Lemma 2.1, it is sufficient to consider the critical cases where two rules overlap. As there are two types of rules, four patterns are possible. Twice using (3.2) has already been seen (up to a change of letters) in (2.2). The remaining three cases then correspond to the confluence diagrams

$$
\begin{align*}
& \tag{3.5}\\
\theta_{i} \theta_{i+1} \theta_{i+3} \theta_{i+4} \theta_{i+6} & \theta_{i+1} \theta_{i} \theta_{i+1} \theta_{i+4} \theta_{i+6} \tag{3.6}
\end{align*} \text { 为 } \theta_{i} \theta_{i+1} \theta_{i+4} \theta_{i+3} \theta_{i+4} \text { त्रit } \theta_{i+2} \theta_{i+1} \theta_{i+2} \theta_{i} \theta_{i+1},
$$

which complete the verification.
We deduce:
Proposition 3.5. \mathcal{E}_{H}-reduced words provide a unique normal form for the elements of the monoid H^{+}.

For a in H^{+}, we shall denote by $\operatorname{NF}(a)$ the unique \mathcal{E}_{H}-reduced word that represents a. For w in Θ^{*}, we denote by $\operatorname{red}(w)$ the unique $\mathcal{E}_{H^{\prime}}$-reduced word to which w is \mathcal{E}_{H}-reducible. As in Section 2.2 , we note that a Θ-word is \mathcal{E}_{H}-reduced if, and only if, it contains no factor in a list of obstructions, here

$$
\begin{equation*}
\mathcal{O}:=\left\{\theta_{i} \theta_{j} \mid j \geqslant i+3\right\} \cup\left\{\theta_{i} \theta_{i+1} \theta_{i+3} \mid i \geqslant 1\right\} . \tag{3.8}
\end{equation*}
$$

This implies that, for every n, the family of all \mathcal{E}_{F}-reduced words lying in $\left\{\theta_{1}, \ldots, \theta_{n}\right\}^{*}$ is a regular language. The above characterization of \mathcal{E}_{H}-reduced words implies the following useful properties:

Corollary 3.6. (i) Every factor of an \mathcal{E}_{H}-reduced word is \mathcal{E}_{H}-reduced.
(ii) A word w is \mathcal{E}_{H}-reduced if, and only if, all length 3 factors of w are.
(iii) If uv and vw are \mathcal{E}_{H}-reduced, then uvw is \mathcal{E}_{H}-reduced, except for:

- $|v|=0, u=u^{\prime} \theta_{i}$, and $w=\theta_{j} w^{\prime}$ with $j \geqslant i+3$,
$-|v|=0, u=u^{\prime} \theta_{i}$, and $w=\theta_{i+1} \theta_{i+3} w^{\prime}$,
$-|v|=0, u=u^{\prime} \theta_{i} \theta_{i+1}$, and $w=\theta_{i+3} w^{\prime}$,
$-|v|=1, u=u^{\prime} \theta_{i}, v=\theta_{i+1}$, and $w=\theta_{i+3} w^{\prime}$.
Proof. Points (i) and (ii) directly follow from the characterization of \mathcal{E}_{H}-reduced words, and so does the fact that $u v w$ is not \mathcal{E}_{H}-reduced if one is in one of the four listed cases. The point is, assuming that $u v w$ is not \mathcal{E}_{H}-reduced, to prove that one is necessarily in one of the listed cases. Now the assumption that $u v w$ is not $\mathcal{E}_{H^{-}}$ reduced means that at least one rule of \mathcal{E}_{H} can be applied, and, owing to (ii), the assumption about $u v$ and $v w$ requires that v has length at most one. Considering the various possibilities yields the four identified cases.

The next result shows that, if w is an \mathcal{E}_{H}-reduced word, then the \mathcal{E}_{H}-reduced form of $w \theta_{i}$ is obtained by pushing θ_{i} to the left as much as possible:.

Lemma 3.7. If w is \mathcal{E}_{H}-reduced, then, for every i, we have $\operatorname{red}\left(w \theta_{i}\right)=w_{1} \theta_{i-\left|w_{2}\right|} w_{2}$ for some decomposition $\left(w_{1}, w_{2}\right)$ of w.

Proof. We use induction on the length of w. For w empty, the result is obvious. So assume $|w| \geqslant 1$. Then we have $w=w^{\prime} \theta_{k}$ for some k. As $w^{\prime} \theta_{k}$ is \mathcal{E}_{H}-reduced, the possible rewritings of $w^{\prime} \theta_{k} \theta_{i}$ necessarily involve the final letter θ_{i}.

For $i \leqslant k+1$, no rule applies to $w^{\prime} \theta_{k} \theta_{i}$, so $w \theta_{i}$ is \mathcal{E}_{H}-reduced, and the result is true for $\left(w_{1}, w_{2}\right):=(w, \varepsilon)$.

For $i \geqslant k+3$, we have $w^{\prime} \theta_{k} \theta_{i} \Rightarrow_{H} w^{\prime} \theta_{i-1} \theta_{k}$. Now w^{\prime} is \mathcal{E}_{H}-reduced and shorter than w. Hence, by induction hypothesis, there exists a decomposition $w^{\prime}=w_{1}^{\prime} w_{2}^{\prime}$ satisfying red $\left(w^{\prime} \theta_{i-1}\right)=w_{1}^{\prime} \theta_{j} w_{2}^{\prime}$ with $j=i-1-\left|w_{2}^{\prime}\right|$. Now $w_{1}^{\prime} \theta_{j} w_{2}^{\prime}$ is \mathcal{E}_{H}-reduced, and so is $w_{2}^{\prime} \theta_{k}$ as a factor of the \mathcal{E}_{H}-reduced word $w_{1}^{\prime} w_{2}^{\prime} \theta_{k}$. By Corollary 3.6, $w_{1}^{\prime} \theta_{j} w_{2}^{\prime} \theta_{k}$ is \mathcal{E}_{H}-reduced, as we have $j \geqslant k+2-\left|w_{2}^{\prime}\right|$. Hence, $\operatorname{red}\left(w \theta_{i}\right)$ is $w_{1}^{\prime} \theta_{j} w_{2}^{\prime} \theta_{k}$, and the result is true with $\left(w_{1}, w_{2}\right):=\left(w_{1}^{\prime}, w_{2}^{\prime} \theta_{k}\right)$.

There remains the case $i=k+2$. For $w^{\prime}=\varepsilon$, we have $w \theta_{i}=\theta_{i-2} \theta_{i}$, which is \mathcal{E}_{H}-reduced, and the result is true for $\left(w_{1}, w_{2}\right):=(w, \varepsilon)$. Otherwise, we write $w^{\prime}=w^{\prime \prime} \theta_{\ell}$. For $\ell \neq i-3$, we find $w \theta_{i}=w^{\prime \prime} \theta_{\ell} \theta_{i-2} \theta_{i}$, which is \mathcal{E}_{H}-reduced as, by assumption, $w^{\prime \prime} \theta_{\ell} \theta_{i-2}$ is \mathcal{E}_{H}-reduced. So the result is true for $\left(w_{1}, w_{2}\right):=(w, \varepsilon)$.

Finally, for $\ell=i-3$, we have $w^{\prime \prime} \theta_{i-3} \theta_{i-2} \theta_{i} \equiv w^{\prime \prime} \theta_{i-2} \theta_{i-3} \theta_{i-2}$. As $w^{\prime \prime}$ is $\mathcal{E}_{H^{-}}$ reduced and shorter than w, the induction hypothesis gives a decomposition $w^{\prime \prime}=$ $w_{1}^{\prime \prime} w_{2}^{\prime \prime}$ satisfying $\operatorname{red}\left(w^{\prime \prime} \theta_{i-2}\right)=w_{1}^{\prime \prime} \theta_{j} w_{2}^{\prime \prime}$ with $j=i-2-\left|w_{2}^{\prime \prime}\right|$. It remains to show that $w_{1}^{\prime \prime} \theta_{j} w_{2}^{\prime \prime} \theta_{i-3} \theta_{i-2}$ is \mathcal{E}_{H}-reduced. Now $w_{1}^{\prime \prime} \theta_{j} w_{2}^{\prime \prime}$ is \mathcal{E}_{H}-reduced, and so is $w_{2}^{\prime \prime} \theta_{i-3} \theta_{i-2}$, as a factor of the \mathcal{E}_{H}-reduced word $w_{1}^{\prime \prime} w_{2}^{\prime \prime} \theta_{i-3} \theta_{i-2}$. By Corollary 3.6, $w_{1}^{\prime \prime} \theta_{j} w_{2}^{\prime \prime} \theta_{i-3} \theta_{i-2}$ is \mathcal{E}_{H}-reduced, and $j=i-2-\left|w_{2}^{\prime \prime}\right|$ holds. Therefore, red $\left(w \theta_{i}\right)$ is $w_{1}^{\prime \prime} \theta_{j} w_{2}^{\prime \prime} \theta_{i-3} \theta_{i-2}$, and the result is true for $\left(w_{1}, w_{2}\right):=\left(w_{1}^{\prime \prime}, w_{2}^{\prime \prime} \theta_{i-3} \theta_{i-2}\right)$.

We shall now apply the normal form provided by \mathcal{E}_{H} to studying right cancellativity in H^{+}. At this point, we shall not obtain a complete answer, but only a (surprising) connection between left and right cancellativity.

Proposition 3.8. If H^{+}is left cancellative, then it is right cancellative as well.

Proof. We assume that H^{+}is left cancellative, and aim at proving that any equality $a \theta_{i}=b \theta_{i}$ implies $a=b$. So assume $a \theta_{i}=b \theta_{i}$. Let $u:=\mathrm{NF}(a)$ and $v:=\mathrm{NF}(b)$. By Lemma 3.7, there exist $u_{1}, u_{2}, v_{1}, v_{2}$ satisfying

$$
\begin{array}{rlll}
u=u_{1} u_{2} & \text { and } & \operatorname{red}\left(u \theta_{i}\right)=u_{1} \theta_{j} u_{2} & \text { with } j=i-\left|u_{2}\right|, \\
v=v_{1} v_{2} & \text { and } & \operatorname{red}\left(v \theta_{i}\right)=v_{1} \theta_{k} v_{2} & \text { with } k=i-\left|v_{2}\right| . \tag{3.10}
\end{array}
$$

By assumption, we have $a \theta_{i}=b \theta_{i}$, hence $\operatorname{red}\left(u \theta_{i}\right)=\operatorname{red}\left(v \theta_{i}\right)$, and, from there, $u_{1} \theta_{j} u_{2}=v_{1} \theta_{k} v_{2}$. We consider the various possible cases.

Assume first $j \neq k$, say $j<k$. By (3.9) and (3.10), we obtain

$$
\left|u_{2}\right|=i-j>i-k=\left|v_{2}\right|, \quad \text { whence } \quad\left|u_{1}\right|<\left|v_{1}\right| .
$$

So u_{1} is a proper prefix of v_{1}, and v_{2} is a proper suffix of u_{2}. As u_{1} is a proper prefix of v_{1}, the word $u_{1} \theta_{j}$ is a prefix of v_{1}, and there exists w satisfying $v_{1}=u_{1} \theta_{j} w$. We find $u_{1} \theta_{j} u_{2}=u_{1} \theta_{j} w \theta_{k} v_{2}$, hence $u_{2}=w \theta_{k} v_{2}$. Therefore, we have

$$
u=u_{1} w \theta_{k} v_{2}, \quad v=u_{1} \theta_{j} w v_{2}, \quad \text { and } \quad \operatorname{red}\left(u \theta_{i}\right)=\operatorname{red}\left(v \theta_{i}\right)=u_{1} \theta_{j} w \theta_{k} v_{2}
$$

The equality red $\left(v \theta_{i}\right)=u_{1} \theta_{j} w \theta_{k} v_{2}$ implies $v \theta_{i} \equiv u_{1} \theta_{j} w \theta_{k} v_{2}$, that is, $u_{1} \theta_{j} w v_{2} \theta_{i} \equiv$ $u_{1} \theta_{j} w \theta_{k} v_{2}$. As H^{+}is left cancellative, left cancelling $u_{1} \theta_{j} w$ yields $v_{2} \theta_{i} \equiv \theta_{k} v_{2}$. By assumption, u_{1} is \mathcal{E}_{H}-reduced, hence, by Corollary 3.6(i), so is its suffix $\theta_{k} v_{2}$. The equivalence $v_{2} \theta_{i} \equiv \theta_{k} v_{2}$ implies red $\left(v_{2} \theta_{i}\right)=\theta_{k} v_{2}$, hence $v_{2} \theta_{i} \Rightarrow_{H}^{*} \theta_{k} v_{2}$, whence $u \theta_{i}=u_{1} w \theta_{k} v_{2} \theta_{i} \Rightarrow{ }_{H}^{*} u_{1} w \theta_{k} \theta_{k} v_{2}$. Now, as a prefix of u, the word $u_{1} w \theta_{k}$ is $\mathcal{E}_{H^{-}}$ reduced, whereas $\theta_{k} \theta_{k}$ is \mathcal{E}_{H}-reduced by definition. By Corollary 3.6(iii), $u_{1} w \theta_{k} \theta_{k}$ is reduced. On the other hand, as a suffix of u_{1}, the word $\theta_{k} v_{2}$ is \mathcal{E}_{H}-reduced, so, by Corollary 3.6 (iii) again, $\theta_{k} \theta_{k} v_{2}$ is \mathcal{E}_{H}-reduced. Finally, $u_{1} w \theta_{k} \theta_{k}$ and $\theta_{k} \theta_{k} w$ are \mathcal{E}_{H}-reduced, hence, by Corollary $3.6(\mathrm{ii}), u_{1} w \theta_{k} \theta_{k} v_{2}$ is \mathcal{E}_{H}-reduced. So the two words $u_{1} \theta_{j} w \theta_{k} v_{2}$ and $u_{1} w \theta_{k} \theta_{k} v_{2}$ are \mathcal{E}_{H}-reduced, both equivalent to $u \theta_{i}$. Hence they must coincide: $u_{1} w \theta_{k} \theta_{k} v_{2}=u_{1} \theta_{j} w \theta_{k} v_{2}$ holds. Deleting the prefix u_{1} and the suffix $\theta_{k} v_{2}$ on both sides, we deduce

$$
\begin{equation*}
w \theta_{k}=\theta_{j} w \tag{3.11}
\end{equation*}
$$

An induction on $|w|$ shows that the word equality (not equivalence) (3.11) is possible only for $j=k$: for $|w| \geqslant 2$, a word w satisfying (3.11) must begin with θ_{j} and finish with θ_{k}, leading to $w=\theta_{j} w^{\prime} \theta_{k}$ with w^{\prime} satisfying $w^{\prime} \theta_{k}=\theta_{j} w^{\prime}$. But this contradicts the assumption $j \neq k$.

So, the only possibility is $j=k$. Then (3.9) and (3.10) imply $\left|u_{2}\right|=\left|v_{2}\right|$, whence $u_{2}=v_{2}$, and, from there, $u_{1}=v_{1}$ and $u=v$, implying $a=b$.

Another application of the normal form in H^{+}is a solution for the word problem of the presentation \mathcal{P}_{H} that is much more efficient than the "stupid" solution of Proposition 3.2: two words w, w^{\prime} represent the same element in H^{+}if, and only if, $\operatorname{red}(w)$ and $\operatorname{red}\left(w^{\prime}\right)$ coincide. It is easy to see that, from a word of length ℓ, at most $\binom{\ell}{2}$ rules can be applied, leading to a solution for the word problem whose overall complexity is quadratic in ℓ. We do not go into details here.
3.3. Reversing for H^{+}. Continuing as in Section 2.3 for F^{+}, we now investigate the (right) reversing relation associated with the presentation \mathcal{P}_{H} of H^{+}, in view of possibly establishing that it is left cancellative and admits right lcms.

For applying Lemma 2.5, the first step is to check Condition (\diamond).

Lemma 3.9. For every generator θ_{i} and for every relation $w=w^{\prime}$ of \mathcal{P}_{H}, Condition (\diamond) is satisfied: for every \mathcal{P}_{H}-grid from $\left(\theta_{i}, w\right)$, there is an equivalent grid from $\left(\theta_{i}, w^{\prime}\right)$, and vice versa.
Proof. Because there exists exactly one relation of the form $\theta_{i} \ldots=\theta_{j} \ldots$ in \mathcal{P}_{H} for all i, j, a \mathcal{P}_{H}-grid is unique when it exists, so we only have to check that the involved grids either exist and are equivalent, or they do not exist. As in the case of F^{+}, there are infinitely many generators and relations, but only finitely many patterns occur, according to the relative positions of the indices of the involved generators. In the case of θ_{i} and the relation $\theta_{j} \theta_{j+1} \theta_{j+3}=\theta_{j+1} \theta_{j} \theta_{j+1}$, the only cases that do not just result in shifting the indices are $j=i+1$ and $j=i-2$, for which we find (for readability, we draw the diagrams for $i=1, j=2$, and for $i=3, j=1$)

and we check $\theta_{2} \theta_{4} \theta_{5} \theta_{7} \equiv \theta_{2} \theta_{5} \theta_{4} \theta_{5} \equiv \theta_{4} \theta_{2} \theta_{4} \theta_{5}$, so the grids are equivalent, and

and we check $\theta_{1} \theta_{2} \theta_{4} \theta_{5} \equiv \theta_{2} \theta_{1} \theta_{2} \theta_{5} \equiv \theta_{2} \theta_{1} \theta_{4} \theta_{2} \equiv \theta_{2} \theta_{3} \theta_{1} \theta_{2}$, so the grids are equivalent. Similarly, in the case of θ_{i} and a relation $\theta_{j} \theta_{k+1}=\theta_{k} \theta_{j}$ with $k \geqslant j+2$, the only nontrivial case is for $i=j+1$ and $k=j+2$, where we find (here for $i=2$, $j=1$, and $k=3$)

and we check $\theta_{1} \theta_{2} \theta_{5} \theta_{7} \equiv \theta_{1} \theta_{4} \theta_{2} \theta_{7} \equiv \theta_{3} \theta_{1} \theta_{2} \theta_{7} \equiv \theta_{3} \theta_{1} \theta_{6} \theta_{2} \equiv \theta_{3} \theta_{5} \theta_{1} \theta_{2}$, so the grids are equivalent.

Lemma 3.9 shows that the presentation \mathcal{P}_{H}, which is homogeneous, is eligible for Lemma 2.5. So, in particular, for all u, v in Θ^{*}, we have the equivalence

$$
\begin{equation*}
u \equiv v \quad \Longleftrightarrow \quad(u, v) \curvearrowright(\varepsilon, \varepsilon) \tag{3.15}
\end{equation*}
$$

that is, u and v represent the same element of H^{+}if, and only if there exists a $\mathcal{P}_{H^{-}}$grid from (u, v) to $(\varepsilon, \varepsilon)$. As an application, we deduce

Proposition 3.10. The monoid H^{+}is left and right cancellative.

Proof. Lemma 2.5(ii) implies that H^{+}is left cancellative. By Proposition 3.8, this implies that H^{+}is right cancellative as well.

As for common right multiples, owing to the fact that a \mathcal{P}_{H}-grid with a given source is unique when it exists, Lemma 2.5(iii) directly implies:

Proposition 3.11. Two elements $[u],[v]$ of H^{+}admit a common right multiple in H^{+}if, and only if, there exists a $\mathcal{P}_{H^{-}}$grid from (u, v); in this case, $[u]$ and $[v]$ admit a right lcm, represented by $u v_{1}$ with $\left(u_{1}, v_{1}\right)$ the output of the grid from (u, v).

Proposition 3.11 is optimal: there exist elements of H^{+}without a common right multiple, typically θ_{2} and $\theta_{1} \theta_{3}$. Indeed, if we try to construct a $\mathcal{P}_{H^{-}}$grid from $\left(\theta_{2}, \theta_{1} \theta_{3}\right)$, we must start with

and the process cannot terminate, since the pending pattern $\left(\theta_{2} \theta_{4}, \theta_{3}\right)$ is, up to a symmetry, the image of $\left(\theta_{2}, \theta_{1} \theta_{3}\right)$ under shifting the indices. By Proposition 3.11, this is enough to conclude that θ_{2} and $\theta_{1} \theta_{3}$ admit no common right multiple in H^{+}.

Remark 3.12. In the above example, the non-existence of a common right multiple is easily established, as constructing a \mathcal{P}_{H}-grid enters an explicit non-terminating loop. The general question of the existence of a $\mathcal{P}_{H^{-}}$grid from a given pair of words is a priori difficult, and it is not clear whether it is algorithmically decidable. In fact, it is, but this is nontrivial. The method consists in identifying an explicit family of words Θ^{\prime} that is closed under reversing, in the sense that, if u and v belong to Θ^{\prime} and $(u, v) \curvearrowright\left(u_{1}, v_{1}\right)$ holds, then u_{1} and v_{1} lie in Θ^{\prime}. Then, one easily shows that, if the existence of common multiples can be decided for pairs of words of Θ^{\prime}, it can decided for arbitrary pairs of words. So the question is to find a convenient family Θ^{\prime} and analyze the existence of $\mathcal{P}_{H^{-}}$grids for words of Θ^{\prime}. In the case of \mathcal{P}_{H}, this program is successfully completed in [27] for $\Theta^{\prime}:=\Theta_{1} \cup \Theta_{2} \cup\{\varepsilon\}$ with

$$
\begin{gather*}
\Theta_{1}:=\left\{\theta_{i} \theta_{i+2} \theta_{i+4} \cdots \theta_{i+2 k} \mid i \geqslant 1, k \geqslant 0\right\}, \tag{3.16}\\
\Theta_{2}:=\left\{\theta_{i} \theta_{i+2} \theta_{i+4} \cdots \theta_{i+2 k} \theta_{i+2 k+1} \mid i \geqslant 1, k \geqslant 0\right\}, \tag{3.17}
\end{gather*}
$$

Therefore the existence of common right multiples in H^{+}is decidable.
Trying to apply the same approach to studying right cancellativity and left multiples in H^{+}fails. Indeed, one easily checks that the left diagram below is a legitimate "left \mathcal{P}_{H}-grid" from $\left(\theta_{6}, \theta_{2} \theta_{1} \theta_{2}\right)$, whereas the right diagram shows that constructing an equivalent left \mathcal{P}_{H}-grid from $\left(\theta_{6}, \theta_{1} \theta_{2} \theta_{4}\right)$ fails, since there is no relation $\ldots \theta_{2}=\ldots \theta_{3}$ in \mathcal{P}_{H} :

So the counterpart of Condition (\diamond) fails for θ_{6} and the relation $\theta_{1} \theta_{2} \theta_{4}=\theta_{2} \theta_{1} \theta_{2}$, and the counterpart of Lemma 2.5 cannot be appealed to. This says nothing about H^{+}, but just leaves the questions open. As for right cancellativity, the question was solved using the normal form of Section 3.2. As for left multiples, nothing is clear, in particular about the possible existence of left lcms. However, what is clear is that, for instance, θ_{i} and θ_{i+1} admit no common left multiple, since their projections in F^{+}do not.

4. Garside combinatorics for H^{+}

We now show that the monoid H^{+}admits interesting combinatorial properties similar to those of F^{+}, in connection with distinguished elements Δ_{n} defined as right lcms of atoms, and with the left divisors of the latter, called simple elements. So our goal is to establish for H^{+}results similar to those of Section 2.4. We shall see that the results are indeed similar, but with more delicate and interesting proofs.
4.1. The elements Δ_{n} and their divisors. The atoms of the monoid H^{+}are the elements θ_{i} with $i \geqslant 1$. On the shape of the braid and Thompson cases, we shall introduce for every n a distinguished element of H^{+}, again denoted Δ_{n}, which is the right lcm of the first $n-1$ atoms. As in Section 2, it will be convenient to start from explicit word representatives. Moreover, in view of subsequent computations, we shall simultaneously introduce, for every n, an element $\Delta_{n+0.5}$ that is intermediate between Δ_{n} and Δ_{n+1}.
Definition 4.1. We put $\underline{\Delta}_{1}=\underline{\Delta}_{1.5}:=\varepsilon, \underline{\Delta}_{2}:=\theta_{1}$, and, for $n \geqslant 2$,

$$
\begin{equation*}
\underline{\Delta}_{n}:=\underline{\Delta}_{n-1} \theta_{3 n-7} \theta_{3 n-5} \quad \text { and } \quad \underline{\Delta}_{n+0.5}:=\underline{\Delta}_{n} \theta_{3 n-4} \tag{4.1}
\end{equation*}
$$

We denote by $\Delta_{n}\left(\right.$ resp., $\left.\Delta_{n+0.5}\right)$ the class of $\underline{\Delta}_{n}\left(\right.$ resp., $\left.\underline{\Delta}_{n+0.5}\right)$ in H^{+}.
So, by definition, the word $\underline{\Delta}_{n}$ (resp., $\underline{\Delta}_{n+0.5}$) is the increasing enumeration from 1 to $3 n-5$ (resp., $3 n-4$) of all generators θ_{i} with $i \neq 0 \bmod 3$. We immediately obtain for every $n \geqslant 2$

$$
\begin{equation*}
\Delta_{n} \preccurlyeq \Delta_{n+0.5} \preccurlyeq \Delta_{n+1}, \tag{4.2}
\end{equation*}
$$

where we recall \preccurlyeq denotes the left divisibility relation. For $n \geqslant 3$, the word $\underline{\Delta}_{n}$ is not \mathcal{E}_{H}-reduced; an easy induction gives the values

$$
\begin{gather*}
\operatorname{NF}\left(\Delta_{n}\right)=\theta_{n-1} \cdot \theta_{n-2} \theta_{n-1} \cdot \theta_{n-3} \theta_{n-2} \cdot \cdots \cdot \theta_{2} \theta_{3} \cdot \theta_{1} \theta_{2}, \tag{4.3}\\
\operatorname{NF}\left(\Delta_{n+0.5}\right)=\theta_{n-1} \theta_{n} \cdot \theta_{n-2} \theta_{n-1} \cdot \theta_{n-3} \theta_{n-2} \cdot \cdots \cdot \theta_{2} \theta_{3} \cdot \theta_{1} \theta_{2} . \tag{4.4}
\end{gather*}
$$

Note that (4.4) implies that $\Delta_{n+0.5}$, which left divides $\Delta_{n+1.5}$ by (4.2), also right divides it. It also implies, for $n \geqslant 2$, the equality

$$
\begin{equation*}
\Delta_{n}=\theta_{n-1} \Delta_{n-0.5} \tag{4.5}
\end{equation*}
$$

The first step in studying the element Δ_{n} is to establish that it is indeed the right lcm of the expected atoms.

Lemma 4.2. For every $n \geqslant 2$, the element Δ_{n} is the right lcm of $\theta_{1}, \ldots, \theta_{n-1}$. No element θ_{i} with $i \geqslant n$ left divides either Δ_{n} or $\Delta_{n+0.5}$.

Proof. We first prove using induction on $n \geqslant 2$ that Δ_{n} is the right lcm of $\theta_{1}, \ldots, \theta_{n-1}$. The result is trivial for $n \geqslant 2$, so assume $n \geqslant 3$. A direct computation gives

$$
\left(\theta_{n-1}, \underline{\Delta}_{n-1}\right) \curvearrowright\left(\theta_{3 n-7} \theta_{3 n-5}, \underline{\Delta}_{n-0.5}\right)
$$

By Lemma 2.5(iii), this implies that $\underline{\Delta}_{n}$ represents the right lcm of θ_{n-1} and Δ_{n-1}. By induction hypothesis, Δ_{n-1} is the right lcm of $\theta_{1}, \ldots, \theta_{n-2}$, so Δ_{n} is the right lcm of $\theta_{1}, \ldots, \theta_{n-1}$. On the other hand, for $i \geqslant n$, similar computations give

$$
\left(\theta_{i}, \underline{\Delta}_{n+0.5}\right) \curvearrowright\left(\theta_{i+2 n-2}, \underline{\Delta}_{n+0.5}\right)
$$

showing that the right lcm of θ_{n} and $\Delta_{n+0.5}$ exists but is not $\Delta_{n+0.5}$, so θ_{i} does not left divide $\Delta_{n+0.5}$. Hence, by (4.2), θ_{i} does not left divide Δ_{n} either.

We already mentioned that θ_{1} and θ_{2} admit no common left multiple in H^{+}: it follows that Δ_{n} cannot be a left lcm for $\theta_{1}, \ldots, \theta_{n-1}$.
Definition 4.3. An element a of H^{+}is called simple if $a \preccurlyeq \Delta_{n}$ holds for some n; in this case, the least such n is called the index of a, denoted by ind (a). For $n \geqslant 1$ and $\ell \geqslant 0$, we put

$$
\Sigma_{n, \ell}:=\left\{a \in H^{+} \mid a \preccurlyeq \Delta_{n} \text { and }|a|=\ell\right\}, \quad \text { and } \quad \Sigma_{n}:=\bigcup_{\ell \geqslant 0} \Sigma_{n, \ell} .
$$

For instance, Σ_{3} is the family of all left divisors of Δ_{3}; one easily checks that it consists of the six elements $1, \theta_{1}, \theta_{2}, \theta_{1} \theta_{2}, \theta_{2} \theta_{1}$, and Δ_{3}. On the other hand, Lemma 4.2 implies that $\Sigma_{n, 1}$ is equal to $\left\{\theta_{1}, \ldots, \theta_{n-1}\right\}$ for every n.

As Δ_{n} left divides Δ_{n+1} for every n, if a is simple, the values of n satisfying $a \preccurlyeq \Delta_{n}$ make an interval $\left[p, \infty\left[\right.\right.$, and $\operatorname{ind}(a)$ is the number p. Thus, $a \preccurlyeq \Delta_{n}$ is equivalent to $\operatorname{ind}(a) \leqslant n$, and $\operatorname{ind}(a)=n$ is equivalent to the conjunction of $a \preccurlyeq \Delta_{n}$ and $a \nprec \Delta_{n-1}$.

We shall subsequently need an upper bound for the ceiling of simple elements (as introduced in Lemma 3.1). This can be deduced from Lemma 4.2.
Lemma 4.4. For $a \preccurlyeq \Delta_{n+0.5}$ in H^{+}with $n \geqslant 2$, one has

$$
\begin{equation*}
\lceil a\rceil \leqslant n+|a|-2 \tag{4.6}
\end{equation*}
$$

Proof. Use induction on $|a| \geqslant 1$. For $|a|=1$, Lemma 4.2 implies $a=\theta_{i}$ with $i \leqslant n-1$, whence $\lceil a\rceil=i \leqslant n-1=n+|a|-2$.

Assume now $|a| \geqslant 2$, and write $a=b \theta_{i}$. Then $b \preccurlyeq \Delta_{n+0.5}$ holds as well, and the induction hypothesis implies $\lceil b\rceil \leqslant n+|a|-3$. Write $b \theta_{i} c=\Delta_{n+0.5}$. By definition, the contribution of θ_{i} to the ceiling of $\Delta_{n+0.5}$ is $i+|c|$, i.e., $i+2 n-|a|-2$. The explicit definition of (4.1) gives $\left\lceil\Delta_{n+0.5}\right\rceil=3 n-4$, and we deduce $i \leqslant n+|a|-2$, whence, finally, $\lceil a\rceil=\left\lceil b \theta_{i}\right\rceil=\max (\lceil b\rceil+1, i) \leqslant n+|a|-2$.
4.2. Expressions of Δ_{n} and $\Delta_{n+0.5}$. Our aim is to analyze simple elements of H^{+} precisely. To this end, it will be crucial to control the various expressions of the elements Δ_{n} and $\Delta_{n+0.5}$, and we establish here technical results in this direction. Obtaining a complete description as in Lemma 2.11 seems hopeless, but it will be sufficient to connect the expressions of Δ_{n} with those of $\Delta_{n-0.5}$ (i.e., of $\Delta_{n-1} \theta_{3 n-7}$). A similar connection will be stated between the expressions of $\Delta_{n-0.5}$ and $\Delta_{n-1.5}$ in Lemma 4.6 below.

Lemma 4.5. For $n \geqslant 2$, every expression of Δ_{n} has the form $w_{1} \theta_{k} w_{2}$ with $w_{1} w_{2} \equiv \underline{\Delta}_{n-0.5}$ and $k=n+\left|w_{1}\right|-1$; in this case, $w_{1} \theta_{k} \equiv \theta_{n-1} w_{1}$ holds.
Proof. The result is trivial for $n=2$. We assume $n \geqslant 3$, and establish the existence of w_{1} and w_{2} for an expression w of Δ_{n} using induction on the combinatorial distance d between $\underline{\Delta}_{n}$ and w, i.e., the minimal number of relations of \mathcal{P}_{H} needed to transform $\underline{\Delta}_{n}$ to w. For $d=0$, the result is trivial with $w_{1}:=\underline{\Delta}_{n-0.5}$
and $w_{2}:=\varepsilon$. Assume now $d \geqslant 1$, and let w^{\prime} satisfying $\operatorname{dist}\left(\underline{\Delta}_{n}, w^{\prime}\right)=p-1$ and $\operatorname{dist}\left(w^{\prime}, w\right)=1$. Write $w^{\prime}=u_{1} v^{\prime} u_{2}, w=u_{1} v u_{2}$ with $v^{\prime}=v$ a relation of \mathcal{P}_{H}. By induction hypothesis, there exist $w_{1}^{\prime}, w_{2}^{\prime}$ satisfying $w^{\prime}=w_{1}^{\prime} \theta_{k^{\prime}} w_{2}^{\prime}$ with $w_{1}^{\prime} w_{2}^{\prime} \equiv \underline{\Delta}_{n-0.5}$ and $k^{\prime}:=n+\left|w_{1}^{\prime}\right|-1$.

We consider the various possibilities for the position of v^{\prime} inside w^{\prime}. If $u_{1} v^{\prime}$ is a prefix of w_{1}^{\prime}, i.e., if we have $w_{1}^{\prime}=u_{1} v^{\prime} u_{1}^{\prime \prime}$ for some $u_{1}^{\prime \prime}$, we find $w^{\prime}=u_{1} v^{\prime} u_{1}^{\prime \prime} \theta_{k^{\prime}} w_{2}^{\prime}$ and $w=u_{1} v u_{1}^{\prime \prime} \theta_{k^{\prime}} w_{2}^{\prime}$. Now we have $u_{1} v u_{1}^{\prime \prime} w_{2}^{\prime} \equiv u_{1} v^{\prime} u_{1}^{\prime \prime} w_{2}^{\prime}=w_{1}^{\prime} w_{2}^{\prime} \equiv \underline{\Delta}_{n-0.5}$, whence the result with $w_{1}:=u_{1} v u_{1}^{\prime \prime}, w_{2}:=w_{2}^{\prime}$, and $k:=k^{\prime}$. The argument is similar if $v^{\prime} u_{2}$ is a suffix of w_{2}^{\prime}.

There remain the cases when $\theta_{k^{\prime}}$ occurs in v^{\prime}, i.e., $\theta_{k^{\prime}}$ is involved in going from w^{\prime} to w. Assume first that $v^{\prime}=v$ is a length 2 relation. Then v^{\prime} is either $\theta_{i} \theta_{j}$ with $j \geqslant i+3$, or $\theta_{i} \theta_{j}$ with $j \leqslant i-2$. As $\theta_{k^{\prime}}$ occurs in v^{\prime} in position either 1 or 2 , four cases are to be considered.
(i) θ_{i} is the last letter of w_{1}^{\prime} and $j=k^{\prime} \geqslant i+3$ holds. Putting $w_{1}^{\prime}:=w_{1}^{\prime \prime} \theta_{i}$, we obtain $w^{\prime}=w_{1}^{\prime \prime} \theta_{i} \theta_{k^{\prime}} w_{2}^{\prime}$ and $w=w_{1}^{\prime \prime} \theta_{k^{\prime}-1} \theta_{i} w_{2}^{\prime}=w_{1}^{\prime \prime} \theta_{n+\left|w_{1}^{\prime \prime}\right|-1} \theta_{i} w_{2}^{\prime}$. Moreover, $w_{1}^{\prime \prime} \theta_{i} w_{2}^{\prime} \equiv \underline{\Delta}_{n-0.5}$ holds, whence the result for $w_{1}:=w_{1}^{\prime \prime}, w_{2}:=\theta_{i} w_{2}^{\prime}$, and $k:=k^{\prime}-1$.
(ii) θ_{i} is the last letter of w_{1}^{\prime} and $j=k^{\prime} \leqslant i-2$ holds. This is impossible, because a letter θ_{i} in this position would contribute $i+1+\left|w_{2}^{\prime}\right|$, hence at least $k^{\prime}+3+\left|w_{2}^{\prime}\right|$, i.e., $3 n-2$, to the ceiling $\left\lceil w^{\prime}\right\rceil$, which is that of Δ_{n}, namely $3 n-5$.
(iii) θ_{i} is $\theta_{k^{\prime}}$ and θ_{j} is the first letter of w_{2}^{\prime}, with $j \geqslant i+3$. This is impossible for the same ceiling reason as in (ii).
(iv) θ_{i} is $\theta_{k^{\prime}}$ and θ_{j} is the first letter of w_{2}^{\prime}, with $j \leqslant i-2$. This is similar to (i). We now similarly handle the case when $v^{\prime}=v$ is a length 3 relation. Then v^{\prime} is either $\theta_{i} \theta_{i+1} \theta_{i+3}$, or $\theta_{i+1} \theta_{i} \theta_{i+1}$. This time, $\theta_{k^{\prime}}$ occurs in v^{\prime} in position 1,2 , or 3 , so six cases are a priori possible.
(i) $\theta_{i} \theta_{i+1}$ is the final factor of w_{1}^{\prime}, and $i+3=k^{\prime}$ holds. Putting $w_{1}^{\prime}:=w_{1}^{\prime \prime} \theta_{k^{\prime}-3} \theta_{k^{\prime}-2}$, we obtain $w^{\prime}=w_{1}^{\prime \prime} \theta_{k^{\prime}-3} \theta_{k^{\prime}-2} \theta_{k^{\prime}} w_{2}^{\prime}$ and $w=w_{1}^{\prime \prime} \theta_{k^{\prime}-2} \theta_{k^{\prime}-3} \theta_{k^{\prime}-2} w_{2}^{\prime}$. Moreover, we find $w_{1}^{\prime \prime} \theta_{k^{\prime}-3} \theta_{k^{\prime}-2} w_{2}^{\prime} \equiv \underline{\Delta}_{n-0.5}$, whence the result for $w_{1}:=w_{1}^{\prime \prime}, w_{2}:=\theta_{k-3} \theta_{k-2} w_{2}^{\prime}$, and $k:=k^{\prime}$.
(ii), (iii) θ_{i} is the last letter of w_{1}^{\prime} with $i+1=k^{\prime}$, and θ_{i+3} is the first letter in w_{2}^{\prime}, or we have $i=k^{\prime}$ and $\theta_{i+1} \theta_{i+3}$ is a prefix of w_{2}^{\prime}. These cases are impossible because $\left\lceil w^{\prime}\right\rceil=3 n-5$ holds, whereas the letter $\theta_{k^{\prime}+2}$ would contribute $n+\left|w_{1}^{\prime}\right|+1+\left|w_{2}^{\prime}\right|-1=$ $n+2 n-3-1=3 n-4$ to the ceiling of w^{\prime}.
(iv), (v) $\theta_{i+1} \theta_{i}$ is a suffix of w_{1}^{\prime} and $i+1=k$ holds, or θ_{i+1} is the last letter of w_{1}^{\prime} and $i=k$ holds and θ_{i+1} is the first letter of w_{2}^{\prime}. These cases are impossible because θ_{k+2} would contribute $3 n-3$ to the ceiling of w^{\prime}.
(vi) $\theta_{i} \theta_{i+1}$ is a prefix of w_{2}^{\prime}, with $i+1=k^{\prime}$. Putting $w_{2}^{\prime}=\theta_{k^{\prime}-1} \theta_{k^{\prime}} w_{2}^{\prime \prime}$, we obtain $w^{\prime}=w_{1}^{\prime} \theta_{k^{\prime}} \theta_{k^{\prime}-1} \theta_{k^{\prime}} w_{2}^{\prime \prime}$ and $w=w_{1}^{\prime} \theta_{k^{\prime}-1} \theta_{k^{\prime}} \theta_{k^{\prime}+2} w_{2}^{\prime \prime}$. Moreover, we find $w_{1}^{\prime} \theta_{k^{\prime}-1} \theta_{k^{\prime}} w_{2}^{\prime \prime} \equiv \underline{\Delta}_{n-0.5}$, whence the result for $w_{1}:=w_{1}^{\prime} \theta_{k^{\prime}-1} \theta_{k^{\prime}}, w_{2}:=w_{2}^{\prime \prime}$, and $k:=k^{\prime}+2$.

This completes the induction. For the final equivalence, we find, using (4.5),

$$
w_{1} \theta_{k} w_{2} \equiv \underline{\Delta}_{n} \equiv \theta_{n-1} \underline{\Delta}_{n-0.5} \equiv \theta_{n-1} w_{1} w_{2}
$$

By right cancelling w_{2}, we deduce $w_{1} \theta_{k} \equiv \theta_{n-1} w_{1}$.
We now state a similar result for the expressions of $\Delta_{n-0.5}$. The latter is equal to $\Delta_{n-1.5} \theta_{3 n-8} \theta_{3 n-7}$ and the two letters $\theta_{3 n-8}$ and $\theta_{3 n-7}$ can be moved left.

Lemma 4.6. For $n \geqslant 3$, every expression of $\Delta_{n-0.5}$ has the form $w_{1} \theta_{k} w_{2} \theta_{\ell} w_{3}$ with $w_{1} w_{2} w_{3} \equiv \underline{\Delta}_{n-1.5}, k=n-2+\left|w_{1}\right|$, and $\ell=n-1+\left|w_{1} w_{2}\right|$; in this case, $w_{1} \theta_{k} w_{2} w_{3}$ represents Δ_{n-1}.

We skip the proof, which is entirely similar to that of Lemma 4.5-but with more cases, as one has to take care of the positions of two letters.

Applying Lemmas 4.5 and 4.6, we can now easily establish various properties of simple elements, paving the way for a partition of these elements in several families.

Lemma 4.7. (i) For $n \geqslant 2$, every left divisor of Δ_{n} either left divides $\Delta_{n-0.5}$, or has the form $a \theta_{k} b$ with $a b \preccurlyeq \Delta_{n-0.5}, k=n+|a|-1$, and $a \theta_{k}=\theta_{n-1} a$.
(ii) For $n \geqslant 2$ and $a \preccurlyeq \Delta_{n}$, the conditions $a \preccurlyeq \Delta_{n-0.5}$ and $\theta_{n-1} \nprec a$ are equivalent.
(iii) For $n \geqslant 3$, every left divisor of $\Delta_{n-0.5}$ either left divides Δ_{n-1}, or has the form $\theta_{n-2} \theta_{n-1} a$ with $a \preccurlyeq \underline{\Delta}_{n-1.5}$.

Proof. (i) If $[w] \preccurlyeq \Delta_{n}$ holds, then Δ_{n} has an expression of form $w w^{\prime}$ for some w^{\prime}. By Lemma 4.5, we can write $w w^{\prime}=w_{1} \theta_{k} w_{2}$ with $w_{1} w_{2} \equiv \underline{\Delta}_{n-0.5}$. Then either w is a prefix of w_{1}, and then we have $[w] \preccurlyeq \Delta_{n-0.5}$, or w has the form $w_{1} \theta_{k} w_{2}^{\prime}$ with w_{2}^{\prime} a prefix of w_{2}, and then we have $[w]=\left[w_{1}\right] \theta_{k}\left[w_{2}^{\prime}\right]$ with $\left[w_{1}\right]\left[w_{2}^{\prime}\right]=\left[w_{1} w_{2}^{\prime}\right] \preccurlyeq \Delta_{n-0.5}$. Moreover, $w_{1} \theta_{k} \equiv \theta_{n-1} w_{1}$ implies $\left[w_{1}\right] \theta_{k}=\theta_{n-1}\left[w_{1}\right]$.
(ii) Assume $a \preccurlyeq \Delta_{n-0.5}$. By Lemma 4.2, θ_{n-1} does not left divide $\Delta_{n-0.5}$, so, a fortiori, θ_{n-1} does not left divide a.

Conversely, assume $a \preccurlyeq \Delta_{n}$ and $\theta_{n-1} \npreceq a$. By (i), there are two possibilities: either we have $a \preccurlyeq \Delta_{n-0.5}$, as expected, or a can be decomposed as $b \theta_{k} c$ with $b c \preccurlyeq \Delta_{n-0.5}$ and $b \theta_{k}=\theta_{n-1} b$, implying $\theta_{n-1} \preccurlyeq a$ and contradicting the assumption. So $a \preccurlyeq \Delta_{n-0.5}$ is the only possibility.
(iii) If $[w] \preccurlyeq \Delta_{n-0.5}$ holds, then $\Delta_{n-0.5}$ has an expression of form $w w^{\prime}$ for some w^{\prime}. By Lemma 4.6 , we can write $w w^{\prime}=w_{1} \theta_{k} w_{2} \theta_{\ell} w_{3}$ with $w_{1} w_{2} w_{3} \equiv \underline{\Delta}_{n-1.5}$, $k=n-2+\left|w_{1}\right|$, and $\ell=n-1+\left|w_{1} w_{2}\right|$. Then three cases may arise. Either w is a prefix of w_{1}, and then we have $[w] \preccurlyeq \Delta_{n-1.5}$, whence a fortiori $[w] \preccurlyeq \Delta_{n-1}$. Or w is $w_{1} \theta_{k} w_{2}^{\prime}$ for some prefix w_{2}^{\prime} of w_{2}. By Lemma 4.6, we have $[w] \preccurlyeq \Delta_{n-1}$ again. Or w is $w_{1} \theta_{k} w_{2} \theta_{\ell} w_{3}^{\prime}$ for some prefix w_{3}^{\prime} of w_{3}, say $w_{3}=w_{3}^{\prime} w_{3}^{\prime \prime}$. Applying (4.4), we find $w w_{3}^{\prime \prime} \equiv \underline{\Delta}_{n-0.5} \equiv \theta_{n-2} \theta_{n-1} \underline{\Delta}_{n-1.5} \equiv \theta_{n-2} \theta_{n-1} w_{1} w_{2} w_{3}^{\prime} w_{3}^{\prime \prime}$. Right cancelling $w_{3}^{\prime \prime}$, we deduce $\bar{w} \equiv \theta_{n-2} \theta_{n-1} w_{1} w_{2} w_{3}^{\prime}$, with $w_{1}, w_{2}, w_{3}^{\prime}$ satisfying $\left[w_{1} w_{2} w_{3}^{\prime}\right] \preccurlyeq \Delta_{n-1.5}$.
4.3. Partitioning the sets $\Sigma_{n, \ell}$. With the preparatory results of Section 4.2, it is now easy to describe the simple elements of the monoid H^{+}more precisely. To this end, we introduce subfamilies of H^{+}. We shall eventually see that these subfamilies form a partition of the set $\Sigma_{n, \ell}$ of all length ℓ left divisors of Δ_{n}.

Definition 4.8. For $n \geqslant 2$ and $0 \leqslant \ell \leqslant 2 n-3$, we put
(type 0) $\quad \Sigma_{n, \ell}^{0}:=\left\{a \mid a \preccurlyeq \Delta_{n-1}\right.$ and $\left.|a|=\ell\right\}$ for $n \geqslant 2, \ell \geqslant 0$,
(type I) $\quad \Sigma_{n, \ell}^{\mathrm{I}}:=\left\{\theta_{n-1} a \mid a \preccurlyeq \Delta_{n-1}\right.$ and $\left.|a|=\ell-1\right\}$ for $n \geqslant 2, \ell \geqslant 1$,
(type $\left.\mathrm{II}_{1}\right) \quad \Sigma_{n, \ell}^{\mathrm{II}_{1}}:=\left\{\theta_{n-2} \theta_{n-1} a \mid a \preccurlyeq \Delta_{n-1.5}\right.$ and $\left.|a|=\ell-2\right\}$ for $n \geqslant 3, \ell \geqslant 2$,
(type $\left.\mathrm{II}_{2}\right) \quad \Sigma_{n, \ell}^{\mathrm{II}_{2}}:=\left\{\theta_{n-1} \theta_{n-2} \theta_{n-1} a \mid \theta_{n-2} a \preccurlyeq \Delta_{n-1}\right.$ and $\left.|a|=\ell-3\right\}$ for $n, \ell \geqslant 3$,
completed with $\Sigma_{n, \ell}^{0}=\Sigma_{n, \ell}^{\mathrm{I}}=\Sigma_{n, \ell}^{\mathrm{II}_{1}}=\Sigma_{n, \ell}^{\mathrm{II}_{2}}:=\emptyset$ for other values of n and ℓ.
The first step is to check that the above sets consist of left divisors of Δ_{n}.

Lemma 4.9. For all n, ℓ, the sets $\Sigma_{n, \ell}^{0}, \Sigma_{n, \ell}^{\mathrm{I}}, \Sigma_{n, \ell}^{\mathrm{II}_{1}}$ et $\Sigma_{n, \ell}^{\mathrm{II}_{2}}$ are included in $\Sigma_{n, \ell}$.
Proof. By definition, all elements of $\Sigma_{n, \ell}^{0}, \Sigma_{n, \ell}^{\mathrm{I}}, \Sigma_{n, \ell}^{\mathrm{II}_{1}}$, and $\Sigma_{n, \ell}^{\mathrm{II}_{2}}$ have length ℓ, so the point is to check that they left divide Δ_{n}. As Δ_{n-1} left divides Δ_{n}, the result is obvious for $\Sigma_{n, \ell}^{0}$. Next, $a \preccurlyeq \Delta_{n-1}$ implies $\theta_{n-1} a \preccurlyeq \theta_{n-1} \Delta_{n-1}$, whence $\theta_{n-1} a \preccurlyeq \theta_{n-1} \Delta_{n-1} \theta_{3 n-7}=\Delta_{n}$. So $\Sigma_{n, \ell}^{\mathrm{I}}$ is included in Σ_{n}. Then, by (4.4), we have $\Delta_{n}=\theta_{n-2} \theta_{n-1} \Delta_{n-1.5} \theta_{3 n-5}$, so $a \preccurlyeq \Delta_{n-1.5}$ implies $\theta_{n-2} \theta_{n-1} a \preccurlyeq \theta_{n-2} \theta_{n-1} \Delta_{n-1.5}$, whence $\theta_{n-2} \theta_{n-1} a \preccurlyeq \Delta_{n}$. So $\Sigma_{n, \ell}^{\mathrm{II}_{1}}$ is included in Σ_{n}. Finally, for $b=\theta_{n-1} \theta_{n-2} \theta_{n-1} a$ with $\theta_{n-2} a \preccurlyeq \Delta_{n-1}$, we have $\Delta_{n-1}=\theta_{n-2} \Delta_{n-1.5}$ by (4.5), whence $a \preccurlyeq \Delta_{n-1.5}$ by left cancelling θ_{n-2}. A direct computation gives $\Delta_{n}=\theta_{n-1} \theta_{n-2} \theta_{n-1} \Delta_{n-1.5}$, so $a \preccurlyeq \Delta_{n-1.5}$ implies $b \preccurlyeq \theta_{n-1} \theta_{n-2} \theta_{n-1} \Delta_{n-1.5}=\Delta_{n}$. So $\Sigma_{n, \ell}^{\mathrm{II}_{2}}$ is included in Σ_{n}.

The second step consists in showing that the various sets $\Sigma_{n, \ell}^{0}, \ldots, \Sigma_{n, \ell}^{\mathrm{II}_{2}}$ are pairwise disjoint. This is more delicate, in that it involves proving that certain words are not equivalent. According to Lemma 2.5(i), this can be seen using \mathcal{P}_{H}-grids.
Lemma 4.10. For all n, ℓ, the sets $\Sigma_{n, \ell}^{0}, \Sigma_{n, \ell}^{\mathrm{I}}, \Sigma_{n, \ell}^{\mathrm{II}_{1}}$, and $\Sigma_{n, \ell}^{\mathrm{II}_{2}}$ are pairwise disjoint.
Proof. To prove that $\Sigma_{n, \ell}^{0}$ is disjoint from $\Sigma_{n, \ell}^{\mathrm{I}}, \Sigma_{n, \ell}^{\mathrm{II}_{1}}$, and $\Sigma_{n, \ell}^{\mathrm{II}_{2}}$, it suffices to prove that no element of the latter three sets left divides Δ_{n-1}. Now, by definition, θ_{n-1} left divides every element of $\Sigma_{n, \ell}^{\mathrm{I}}$ and $\Sigma_{n, \ell}^{\mathrm{II}_{2}}$, whereas, by Lemma 4.2, θ_{n-1} does not left divide Δ_{n-1}. So $\Sigma_{n, \ell}^{\mathrm{I}}$ and $\Sigma_{n, \ell}^{\mathrm{II}_{2}}$ are disjoint from $\Sigma_{n, \ell}^{0}$.

Next, a direct computation gives $\left(\theta_{n-2} \theta_{n-1}, \underline{\Delta}_{n-1}\right) \curvearrowright\left(\theta_{3 n-7}, \underline{\Delta}_{n-1.5}\right)$, which, by Lemma $2.5(\mathrm{i})$, proves $\theta_{n-2} \theta_{n-1} \npreceq \Delta_{n-1}$. As $\theta_{n-2} \theta_{n-1}$ left divides every element of $\Sigma_{n, \ell}^{\mathrm{II}_{1}}$, it follows that $\Sigma_{n, \ell}^{\mathrm{II}_{1}}$ is disjoint from $\Sigma_{n, \ell}^{0}$.

Assume now $a \in \Sigma_{n, \ell}^{\mathrm{I}} \cap \Sigma_{n, \ell}^{\mathrm{II}_{1}}$. Then, by definition, we have both $\theta_{n-1} \preccurlyeq a$ and $a \preccurlyeq \theta_{n-2} \theta_{n-1} \Delta_{n-1.5}$, whence $\theta_{n-1} \preccurlyeq \theta_{n-2} \theta_{n-1} \Delta_{n-1.5}$. This is impossible: a direct computation gives $\left(\theta_{n-1}, \theta_{n-2} \theta_{n-1} \underline{\underline{\Delta}}_{n-1.5}\right) \curvearrowright\left(\theta_{3 n-10}, \theta_{n-1} \theta_{n-2} \underline{\underline{\Delta}}_{n-1.5}\right)$, which, by Lemma 2.5(ii), proves $\theta_{n-1} \not \not \theta_{n-2} \theta_{n-1} \Delta_{n-1.5}$. Hence $\Sigma_{n, \ell}^{\mathrm{I}}$ and $\Sigma_{n, \ell}^{\mathrm{II}_{1}}$ are disjoint.

Assume next $a \in \Sigma_{n, \ell}^{\mathrm{I}} \cap \Sigma_{n, \ell}^{\mathrm{II}_{2}}$. We have both $a=\theta_{n-1} b$ with $b \in \Sigma_{n-1, \ell-1}$, and $a=\theta_{n-1} \theta_{n-2} \theta_{n-1} c$ with $\theta_{n-2} c \preccurlyeq \Delta_{n-1}$. By left cancelling θ_{n-1}, we deduce $b=\theta_{n-2} \theta_{n-1} c$, whence $\theta_{n-2} \theta_{n-1} c \preccurlyeq \Delta_{n-1}$ and, a fortiori, $\theta_{n-2} \theta_{n-1} \preccurlyeq \Delta_{n-1}$, what we saw above is false. Hence $\Sigma_{n, \ell}^{\mathrm{I}}$ and $\Sigma_{n, \ell}^{\mathrm{I}_{2}}$ are disjoint.

Finally, assume $a \in \Sigma_{n, \ell}^{\mathrm{II}_{1}} \cap \Sigma_{n, \ell}^{\mathrm{II}_{2}}$. By definition, we have $a=\theta_{n-2} \theta_{n-1} b=$ $\theta_{n-1} \theta_{n-2} \theta_{n-1} c$ with $b \preccurlyeq \Delta_{n-1.5}$ and $\theta_{n-2} c \preccurlyeq \Delta_{n-1}$. As $\theta_{n-1} \theta_{n-2} \theta_{n-1}$ is also $\theta_{n-2} \theta_{n-1} \theta_{n+1}$, we deduce $\theta_{n-2} \theta_{n-1} b=\theta_{n-2} \theta_{n-1} \theta_{n+1} c$, whence $b=\theta_{n+1} c$ by left cancelling $\theta_{n-2} \theta_{n-1}$, and, from there, $\theta_{n+1} \preccurlyeq b \preccurlyeq \Delta_{n-1.5}$. Now, by Lemma 4.2, θ_{n+1} does not left divide $\Delta_{n-1.5}$. Hence $\Sigma_{n, \ell}^{\mathrm{II}_{1}}$ and $\Sigma_{n, \ell}^{\mathrm{II}_{2}}$ are disjoint.

We are now ready to establish the expected partition result:
Proposition 4.11. For all n, ℓ, the sets $\Sigma_{n, \ell}^{0}, \Sigma_{n, \ell}^{\mathrm{I}}, \Sigma_{n, \ell}^{\mathrm{II}_{1}}$, and $\Sigma_{n, \ell}^{\mathrm{II}_{2}}$ form a partition of $\Sigma_{n, \ell}$.
Proof. Owing to Lemmas 4.9 and 4.10, the only point remaining to be proved is that every element of $\Sigma_{n, \ell}$ belongs to one of the sets $\Sigma_{n, \ell}^{0}, \Sigma_{n, \ell}^{\mathrm{I}}, \Sigma_{n, \ell}^{\mathrm{II}_{1}}, \Sigma_{n, \ell}^{\mathrm{II}_{2}}$. So let a belong to $\Sigma_{n, \ell}$. By Lemma 4.7(i), we have either $a \preccurlyeq \Delta_{n-0.5}$, or $a=b \theta_{k} c$ with $b c \preccurlyeq \Delta_{n-0.5}$ and $b \theta_{k}=\theta_{n-1} b$. Assume first $a \preccurlyeq \Delta_{n-0.5}$. By Lemma 4.7(iii), we have either $a \preccurlyeq \Delta_{n-1}$, whence $a \in \Sigma_{n, \ell}^{0}$, or $a=\theta_{n-2} \theta_{n-1} d$ with $d \preccurlyeq \Delta_{n-1.5}$, whence $a \in \Sigma_{n, \ell}^{\mathrm{II}_{1}}$.

Assume now $a=b \theta_{k} c$ with $b c \preccurlyeq \Delta_{n-0.5}$ and $b \theta_{k}=\theta_{n-1} b$, whence $a=\theta_{n-1} b c$. By Lemma 4.7(iii), we have either $b c \preccurlyeq \Delta_{n-1}$, whence $a \in \Sigma_{n, \ell}^{\mathrm{I}}$, or $b c=\theta_{n-2} \theta_{n-1} d$ with $d \preccurlyeq \Delta_{n-1.5}$. In the latter case, we find $a=\theta_{n-1} \theta_{n-2} \theta_{n-1} d$. Moreover, $d \preccurlyeq \Delta_{n-1.5}$ implies $\theta_{n-2} d \preccurlyeq \theta_{n-2} \Delta_{n-1.5}=\Delta_{n-1}$, whence $a \in \Sigma_{n, \ell}^{\mathrm{II}_{2}}$.

With the partition of Proposition 4.11 , we can now count the left divisors of Δ_{n}.
Lemma 4.12. For $n \geqslant 3$, let $F_{n, \ell}^{0}$ be the identity map on $\Sigma_{n-1, \ell}$, let $F_{n, \ell}^{\mathrm{I}}$ be the map $a \mapsto \theta_{n-1} a$ on $\Sigma_{n-1, \ell-1}$, and let $F_{n, \ell}^{\mathrm{II}}$ be the map on $\Sigma_{n-1, \ell-2}$ defined by $F(a):=\theta_{n-2} \theta_{n-1} a$ if $a \preccurlyeq \Delta_{n-1.5}$ holds, and $F(a):=\theta_{n-1} \theta_{n-2} \theta_{n-1} b$ with $a=\theta_{n-2} b$ otherwise. Then $F_{n, \ell}^{0}, F_{n, \ell}^{\mathrm{I}}$, and $F_{n, \ell}^{\mathrm{II}}$ respectively establish bijections

$$
\Sigma_{n-1, \ell} \leftrightarrow \Sigma_{n, \ell}^{0}, \quad \Sigma_{n-1, \ell-1} \leftrightarrow \Sigma_{n, \ell}^{\mathrm{I}}, \quad \text { and } \quad \Sigma_{n-1, \ell-2} \leftrightarrow \Sigma_{n, \ell}^{\mathrm{II}_{1}} \cup \Sigma_{n, \ell}^{\mathrm{II}_{2}} .
$$

Proof. The result for $F_{n, \ell}^{0}$ directly follows from the definition of $\Sigma_{n, \ell}^{0}$. For $F_{n, \ell}^{\mathrm{I}}$, it follows from the definition of $\Sigma_{n, \ell}^{\mathrm{I}}$ and the left cancellativity of H^{+}, which ensures that $F_{n, \ell}^{\mathrm{I}}$ is injective. Finally, for $F_{n, \ell}^{\mathrm{II}}$, put

$$
X_{1}:=\left\{a \in \Sigma_{n-1, \ell-2} \mid a \preccurlyeq \Delta_{n-1.5}\right\} \quad \text { and } \quad X_{2}:=\left\{a \in \Sigma_{n-1, \ell-2} \mid a \nless \Delta_{n-1.5}\right\} .
$$

It follows from the definition of $\Sigma_{n, \ell}^{\mathrm{II}_{1}}$ and the left cancellativity of H^{+}that $F_{n, \ell}^{\mathrm{II}}$ establishes a bijection from X_{1} to $\Sigma_{n, \ell}^{\mathrm{II}_{1}}$. On the other hand, for a in X_{1}, Lemma 4.7(ii) implies $\theta_{n-2} \preccurlyeq a$, say $a=\theta_{n-2} b$, and then the left cancellativity of H^{+}implies that $F_{n, \ell}^{\mathrm{II}}$ establishes a bijection from X_{2} to $\Sigma_{n, \ell}^{\mathrm{II}_{2}}$. As $\Sigma_{n, \ell}^{\mathrm{II}_{1}}$ and $\Sigma_{n, \ell}^{\mathrm{II}_{2}}$ are disjoint, this completes the proof.

Lemma 4.12 immediately implies that, if we denote by $N_{n, \ell}$ the cardinal of $\Sigma_{n, \ell}$, then the numbers $N_{n, \ell}$ are determined by the inductive rule

$$
\begin{equation*}
N_{n, \ell}=N_{n-1, \ell}+N_{n-1, \ell-1}+N_{n-1, \ell-2} \tag{4.7}
\end{equation*}
$$

starting from the initial values $N_{2,0}=N_{2,1}=1$. It follows that the numbers $N_{n, \ell}$ appear in the generalized Pascal triangle in which each entry is the sum of the three entries above it, starting from the row $(1,1)$, see Figure 1. An obvious induction from (4.7) shows that $N_{n, \ell}$ is the coefficient of $x^{\ell-1}$ in $(1+x)\left(1+x+x^{2}\right)^{n-2}$, that $N_{n, \ell}=N_{n, 2 n-3-\ell}$ holds for $n-1 \leqslant \ell \leqslant 2 n-3$, and that, for $0 \leqslant \ell \leqslant n-2$, the number $N_{n, \ell}$ is the number of (compact-rooted) directed animals of size $n-1$ with $n-1-\ell$ source points, see [19, Table 1] and [24, sequence 005773]. In particular, the highest value occurring in the $n-1$ st row of Figure 1 (the one that corresponds to the divisors of Δ_{n}), namely $N_{n, n-2}$ and $N_{n, n-1}$, - that is, the sequence $1,2,5$, $13,35, \ldots$-is the number of directed animals of size $n-1$ with one source point. Finding an explicit direct bijection between the divisors of Δ_{n} in H^{+}and size $n-1$ directed animals [19, 29]—or, equivalently, "arbres guingois" or bicolored Motzkin paths [2]-is a natural open question.

From (4.7) again, it is clear that the total number of left divisors of Δ_{n} triples when one goes from a row of the triangle to the next one, and, as Δ_{2} admits two left divisors, we obtain
Proposition 4.13. For $n \geqslant 2$, the number of left divisors of Δ_{n} in H^{+}is $2 \cdot 3^{n-2}$.
The number of simple elements of index n is $\sum_{\ell} N_{n, \ell}-\sum_{\ell} N_{n-1, \ell}$, hence it is $4 \cdot 3^{n-3}$: so $2 / 3$ of the left divisors of Δ_{n} have index n, whereas $1 / 3$ has index $<n$.

Figure 1. Generalized Pascal triangle generating the numbers $N_{n, \ell}$: each entry is the sum of the three entries above it: for instance, we find $N_{5,2}=9=1+3+5=N_{4,0}+N_{4,1}+N_{4,2}$; missing values are 0.

5. Normal form of simple elements

We complete the investigation of simple elements in H^{+}by determining their normal form. In Section 2.4, we saw that normal elements of F^{+}are those, whose normal form is a word in which the indices of the generators decrease, which amounts to saying that a word is the normal form of a simple element if, and only if, it has no factor $\theta_{i} \theta_{j}$ with $j \geqslant i$. We shall establish below a similar result characterizing the normal form of simple elements in terms of forbidden factors of length 2 and 3 .
5.1. The key lemma. A direct inspection shows that the normal forms of the six simple elements of index $\leqslant 3$, i.e., of the six left divisors of Δ_{3}, are $\varepsilon, \theta_{1}, \theta_{2}, \theta_{1} \theta_{2}$, $\theta_{2} \theta_{1}$, and $\theta_{2} \theta_{1} \theta_{2}$. The following result will then enable one to inductively determine the normal form of a simple element according to its position in the partition of Proposition 4.11.
Lemma 5.1. For every simple element a of index $n \geqslant 4$ in H^{+}, there exists b of index $<n$ such that exactly one of the following holds:

$$
\begin{array}{llll}
(\text { type } \mathrm{I}) & b \preccurlyeq \Delta_{n-1} & \text { and } & \mathrm{NF}(a)=\theta_{n-1} \mathrm{NF}(b), \\
\left(\text { type } \mathrm{II}_{1}\right) & b \preccurlyeq \Delta_{n-1.5} & \text { and } & \mathrm{NF}(a)=\theta_{n-2} \theta_{n-1} \mathrm{NF}(b), \tag{5.2}\\
\left(\text { type } \mathrm{II}_{2}\right) & \theta_{n-2} b \preccurlyeq \Delta_{n-1} & \text { and } & \mathrm{NF}(a)=\theta_{n-1} \theta_{n-2} \theta_{n-1} \mathrm{NF}(b) .
\end{array}
$$

Proof. Let $\ell:=|a|$. By assumption, a belongs to $\Sigma_{n, \ell} \backslash \Sigma_{n-1, \ell}$. Then, by Proposition $4.11, a$ belongs to exactly one of $\Sigma_{n, \ell}^{\mathrm{I}}, \Sigma_{n, \ell}^{\mathrm{II}_{1}}$, or $\Sigma_{n, \ell}^{\mathrm{II}_{2}}$. So there exists b such that exactly one of the following holds:

$$
\begin{array}{llll}
\text { (type I) } & b \preccurlyeq \Delta_{n-1} & \text { and } \quad a=\theta_{n-1} b, \\
\text { (type } \mathrm{II}_{1} \text {) } & b \preccurlyeq \Delta_{n-1.5} & \text { and } \quad a=\theta_{n-2} \theta_{n-1} b, \\
\text { (type } \mathrm{II}_{2} \text {) } & \theta_{n-2} b \preccurlyeq \Delta_{n-1} & \text { and } \quad a=\theta_{n-1} \theta_{n-2} \theta_{n-1} b .
\end{array}
$$

In the case of (5.4), we have $b \preccurlyeq \Delta_{n-1}$, so b is simple with ind $(b) \leqslant n-1$. In the case of (5.5), we have $b \preccurlyeq \Delta_{n-1.5} \preccurlyeq \Delta_{n-1.5} \theta_{3 n-8}=\Delta_{n-1}$, so, again, b is simple with ind $(b) \leqslant n-1$. Finally, in the case of (5.6), $\theta_{n-2} b \preccurlyeq \Delta_{n-1}$ implies $b \preccurlyeq \Delta_{n-1.5}$ by (4.5), whence $b \preccurlyeq \Delta_{n-1}$, so b is simple with $\operatorname{ind}(b) \leqslant n-1$. So, in every case, b is simple with $\operatorname{ind}(b)<n=\operatorname{ind}(a)$. Then, by definition of NF and by Proposition 4.2,

$$
\begin{equation*}
\mathrm{NF}(b) \text { is an } \mathcal{E}_{H} \text {-reduced word and its first letter is among } \theta_{1}, \ldots, \theta_{n-2} \text {. } \tag{5.7}
\end{equation*}
$$

In the case of (5.4), (5.7) implies that $\theta_{n-1} \mathrm{NF}(b)$ is \mathcal{E}_{H}-reduced, hence it must the normal form of $\theta_{n-1} b$, i.e., of a, and (5.1) is true. In the case of (5.5),
(5.7) implies that $\theta_{n-2} \theta_{n-1} \mathrm{NF}(b)$ is \mathcal{E}_{H}-reduced, hence it must the normal form of $\theta_{n-2} \theta_{n-1} b$, i.e., of a, and (5.1) is true. Finally, in the case of (5.6), (5.7) implies that $\theta_{n-1} \theta_{n-2} \theta_{n-1} \mathrm{NF}(b)$ is \mathcal{E}_{H}-reduced, hence it must the normal form of $\theta_{n-1} \theta_{n-2} \theta_{n-1} b$, i.e., of a, and (5.1) is true.

An easy application of Lemma 5.1 is that, in addition to the obstructions of \mathcal{O}, certain factors cannot appear in the normal form of a simple element.

Lemma 5.2. Put

$$
\begin{equation*}
\mathcal{O}_{\Sigma}:=\left\{\theta_{i}^{2} \mid i \geqslant 1\right\} \cup\left\{\theta_{i} \theta_{i+2} \mid i \geqslant 1\right\} \cup\left\{\theta_{i} \theta_{i+1} \theta_{i} \mid i \geqslant 1\right\} \cup\left\{\theta_{i} \theta_{i+1} \theta_{i+2} \mid i \geqslant 1\right\} . \tag{5.8}
\end{equation*}
$$

Then the normal form of a simple element of H^{+}contains no factor in \mathcal{O}_{Σ}.
Proof. We prove the result for a simple element a using induction on the index n of a. For $n \leqslant 3$, a direct inspection of the six possible words gives the result. Assume $n \geqslant 4$. By Lemma 5.1, there exists b simple of index $<n$ such that exactly one of (5.1), (5.2), or (5.3) holds. By induction hypothesis, the word NF (b) contains no factor of \mathcal{O}_{Σ}, and we only have to check that the letters added to transform $\mathrm{NF}(b)$ into $\operatorname{NF}(a)$ create no factor in \mathcal{O}_{Σ}. As the index of b is $<n$, Lemma 4.2 guarantees that the first letter of $\mathrm{NF}(b)$ must be among $\theta_{1}, \ldots, \theta_{n-2}$.

In the case of (5.1), $\operatorname{NF}(a)$ begins with $\theta_{n-1} \theta_{j}$ with $1 \leqslant j \leqslant n-2$: this length 2 word is not in \mathcal{O}_{Σ}, and it is not the prefix of a word of \mathcal{O}_{Σ} either. Similarly, in the case of (5.2), NF (a) begins with $\theta_{n-2} \theta_{n-1} \theta_{j}$ with $1 \leqslant j \leqslant n-3$, and this length 3 word includes no factor in \mathcal{O}_{Σ}, nor can it contribute to a factor in \mathcal{O}_{Σ}. Finally, in the case of $(5.3), \mathrm{NF}(a)$ begins with $\theta_{n-1} \theta_{n-2} \theta_{n-1} \theta_{j}$ with $1 \leqslant j \leqslant n-3$, and, again, this length 4 word includes no factor in \mathcal{O}_{Σ}, nor can it either contribute to a factor in \mathcal{O}_{Σ}. So, in every case, the word $\operatorname{NF}(a)$ has no factor in \mathcal{O}_{Σ}.

We use Lemma 5.1 once more to establish a constraint about the first letter of a normal word.

Lemma 5.3. If $a \preccurlyeq \Delta_{n}$ and $\theta_{n-1} \preccurlyeq a$ hold, the first letter of $\operatorname{NF}(a)$ is θ_{n-1}.
Proof. Assume $a \preccurlyeq \Delta_{n}$ and $\theta_{n-1} \preccurlyeq a$. So a is simple with ind $(a) \leqslant n$. If we had $\operatorname{ind}(a) \leqslant n-1$, hence $a \preccurlyeq \Delta_{n-1}$, then $\theta_{n-1} \preccurlyeq a$ would be impossible. So we must have $\operatorname{ind}(a)=n$. For $n \leqslant 3$, a direct inspection of the six possible normal words shows that the result is true. Otherwise, we apply Lemma 5.1. In the cases (5.1) and (5.3), $\mathrm{NF}(a)$ explicitly begins with θ_{n-1}. There remains the case of (5.2). Assume $a=\theta_{n-2} \theta_{n-1} b$ with $b \preccurlyeq \Delta_{n-1.5}$, let w represent b. By constructing a $\mathcal{P}_{H^{-}}$grid from $\left(\theta_{n-1}, \theta_{n-2} \theta_{n-1} w\right)$, we see that $\theta_{n-1} \preccurlyeq a$ is equivalent to $\theta_{n+1} \preccurlyeq b$, hence it implies $\theta_{n+1} \preccurlyeq b \preccurlyeq \Delta_{n-1.5} \preccurlyeq \Delta_{n-1.5} \theta_{3 n-8}=\Delta_{n-1}$, which contradicts Lemma 4.2. So $\theta_{n-1} \preccurlyeq a$ excludes (5.2).
5.2. The normal form of simple elements. Our goal is now to establish that the necessary condition of Lemma 5.2 is also sufficient, thus obtaining a combinatorial characterization of the normal form of simple elements. We begin with a preliminary observation about the indices of the generators θ_{i} that may appear in words with no factor in \mathcal{O}_{Σ}.
Definition 5.4. We put $h t(\varepsilon):=0$, and, for w nonempty in Θ^{*}, we write $h t(w)$ for the largest i such that θ_{i} occurs in w.

Lemma 5.5. If $\theta_{i} v$ is \mathcal{E}_{H}-reduced with no factor in \mathcal{O}_{Σ}, then $\operatorname{ht}(v) \leqslant i+1$ holds.

Proof. We use induction on $|v|$. For $|v|=0$, the result is vacuously true. Assume $|v| \geqslant 1$, and write $v=\theta_{j} w$. As $\theta_{i} v$, i.e., $\theta_{i} \theta_{j} w$, is \mathcal{E}_{H}-reduced, it contains no factor in \mathcal{O}, hence $j \geqslant i+3$ is excluded. On the other hand, as $\theta_{i} v$ has no factor in \mathcal{O}_{Σ}, the values $j=i$ and $j=i+2$ are impossible. So the only possible values for j are $1, \ldots, i-1$, and $i+1$.

Assume first $j \leqslant i-1$. As a factor of $\theta_{i} v$, the word $\theta_{j} w$ is reduced with no factor in \mathcal{O}_{Σ}. Then the induction hypothesis implies ht $(w) \leqslant j+1$, whence $\operatorname{ht}(v)=$ $\max (j, \operatorname{ht}(w)) \leqslant j+1 \leqslant i+1$, as expected.

Assume now $j=i+1$. The result is true for $|v|=1$: the word $\theta_{i} \theta_{i+1}$ has no factor in \mathcal{O}_{Σ} and its height is $i+1$. Assume now $|v| \geqslant 2$, and write $v=\theta_{i+1} \theta_{k} w$. As v has no factor in \mathcal{O}, the values $k \geqslant j+3=i+4$ are forbidden, and, as $\theta_{i} v$ has no factor in \mathcal{O}_{Σ}, the values $k=i, k=i+1$, and $k=i+2$ are also excluded. So we must have $k \leqslant i-1$. As $\theta_{k} w$ is reduced with no factor in \mathcal{O}_{Σ}, the induction hypothesis implies $\operatorname{ht}(w) \leqslant k+1$, whence $\operatorname{ht}(v)=\max (i+1, k, h t(w)) \leqslant \max (i+1, k+1)=i+1$, as expected.

Completing the characterization of the normal forms of simple elements then relies on a long inductive argument.

Lemma 5.6. If u is a reduced word of Θ^{*} with no factor in \mathcal{O}_{Σ}, then u is the normal form of a simple element with index at most ht $(u)+1$.

Proof. We will show using induction on $m \geqslant 0$ that, if u is an \mathcal{E}_{H}-reduced word with no factor in \mathcal{O}_{Σ} and satisfying $\operatorname{ht}(u)=m$, then $[u] \preccurlyeq \Delta_{m+1}$ holds. This will imply that $[u]$ is simple with index $\leqslant h t(u)+1$, giving the expected result when m varies. So, herafter, we assume that u is \mathcal{E}_{H}-reduced, has no factor in \mathcal{O}_{Σ}, and satisfies $\operatorname{ht}(u)=m$; our aim is to establish $[u] \preccurlyeq \Delta_{m+1}$. As can be expected, the various types of Proposition 4.11 will appear when we consider the possible cases.

For $m=0$, the word u must be empty. We then find $[u]=1 \preccurlyeq \Delta_{1}=\Delta_{m+1}$, as expected. For $m=1$, the only letter occurring in u is θ_{1}, so u is θ_{1}^{ℓ} for some $\ell \geqslant 1$. The assumption that u has no factor in \mathcal{O}_{Σ} requires $\ell=1$, whence $u=\theta_{1}$. We then find $[u]=\theta_{1} \preccurlyeq \theta_{1}=\Delta_{2}=\Delta_{m+1}$, as expected.

From now on, we assume $m \geqslant 2$. The word u cannot be empty, so it has a first letter, say θ_{i}. By assumption, we have $m=\operatorname{ht}(u)$, hence $i \leqslant m$. On the other hand, Lemma 5.5 implies ht $(u) \leqslant i+1$, hence $m \leqslant i+1$. Therefore, u must begin either by θ_{m}, or by θ_{m-1}.
Case 1. The first letter of u is θ_{m-1}, say $u=\theta_{m-1} v$. The word v cannot be empty, for otherwise we would have $u=\theta_{m-1}$ and $\operatorname{ht}(u)=m-1$, contradicting the assumption. Let θ_{j} be the first letter of v. By definition, we have $j \leqslant h t(u)=m$. Moreover, u has no factor in \mathcal{O}_{Σ}, so $j=m-1$ is impossible. On the other hand, v, as a factor of u, is \mathcal{E}_{H}-reduced and has no factor in \mathcal{O}_{Σ}, so Lemma 5.5 implies $\mathrm{ht}(v) \leqslant j+1$, and $j \leqslant m-2$ would imply $\mathrm{ht}(u) \leqslant \max (m-1, \mathrm{ht}(v)) \leqslant m-1$, contradicting the assumption $m=\mathrm{ht}(u)$. So the only possibility is $j=m$, i.e., u begins with $\theta_{m-1} \theta_{m}$, say $u=\theta_{m-1} \theta_{m} w$.

If w is the empty word, we have $u=\theta_{m-1} \theta_{m}$. Applying (4.5) twice gives $\Delta_{m+1}=\theta_{m-1} \theta_{m} \Delta_{m-0.5} \theta_{3 m-2}$, which implies $[u] \preccurlyeq \Delta_{m+1}$, as expected.

Assume now that w is nonempty, and let θ_{k} be its first letter. As w is a factor of u, we must have $k \leqslant m$. As u, and its factor v, have no factor in \mathcal{O}_{Σ}, the values $k=m-1$ and $k=m$ are impossible as they would respectively create some factor $\theta_{m-1} \theta_{m} \theta_{m-1}$ and θ_{m}^{2}. So, we necessarily have $k<m-1$. Since w, as a factor of u,
is \mathcal{E}_{H}-reduced and has no factor in \mathcal{O}_{Σ}, Lemma 5.5 implies $\mathrm{ht}(w) \leqslant k+1$, whence ht $(w) \leqslant m-1$. The word w is \mathcal{E}_{H}-reduced with no factor in \mathcal{O}_{Σ}, so the induction hypothesis implies $[w] \preccurlyeq \Delta_{\mathrm{ht}(w)+1}$, hence a fortiori $[w] \preccurlyeq \Delta_{m}$. Moreover, we know that the first letter of w is not θ_{m-1}. By Lemma 5.3, we deduce $\theta_{m-1} \nprec[w]$, and then, by Lemma 4.7(ii), $[w] \preccurlyeq \Delta_{m-0.5}$. By definition, this means that $[u]$ belongs to $\Sigma_{m+1,|u|}^{\mathrm{II}_{1}}$ and, therefore, implies $[u] \preccurlyeq \Delta_{m+1}$, as expected.

Case 2. The first letter of u is θ_{m}, say $u=\theta_{m} v$. If v is empty, we have $u=\theta_{m}$, which has height m, and $[u]=\theta_{m} \preccurlyeq \Delta_{m+1}$, as expected.

We now suppose v nonempty. Let θ_{j} be its first letter. The assumption $h t(u)=m$ implies $j \leqslant m$. As u has no factor in \mathcal{O}_{Σ}, the value $j=m$ is impossible, since it would create an initial factor θ_{m}^{2}. So we have $j \leqslant m-1$.

Subcase 2.1. We have $j \leqslant m-2$. Then Lemma 5.5 implies ht $(v) \leqslant m-1$. Moreover, as a factor of u, the word v is \mathcal{E}_{H}-reduced and has no factor in \mathcal{O}_{Σ}. The induction hypothesis then implies $[v] \preccurlyeq \Delta_{h t(v)+1}$, hence a fortiori $[v] \preccurlyeq \Delta_{m}$. Therefore, we have $[u]=\theta_{m}[v]$ with $[v] \preccurlyeq \Delta_{m}$. This means that $[u]$ lies in $\Sigma_{m+1,|u|}^{I}$, implying $[u] \preccurlyeq \Delta_{m+1}$, as expected.

Subcase 2.2. We have $j=m-1$. Write $v=\theta_{m-1} w$, yielding $u=\theta_{m} \theta_{m-1} w$.
If w is empty, we have $u=\theta_{m} \theta_{m-1}$. Applying (4.5) twice gives the equality $\Delta_{m+1}=\theta_{m} \theta_{m-1} \Delta_{m-1} \theta_{3 n-7} \theta_{3 m-4}$, whence $[u] \preccurlyeq \Delta_{m+1}$, as expected.

We assume now that w is nonempty, with first letter θ_{k}. The assumption $\operatorname{ht}(u)=m$ implies $k \leqslant m$. Moreover, as u has no factor in \mathcal{O}_{Σ}, the value $k=m-1$ is impossible, since it would create in position 2 a factor θ_{m-1}^{2}.

Subsubcase 2.2.1. We have $k \leqslant m-2$. As a factor of u, the word w is $\mathcal{E}_{H^{-}}$ reduced and has no factor in \mathcal{O}_{Σ}, so Lemma 5.5 implies ht $(w) \leqslant m-1$, whence $\operatorname{ht}(v)=m-1$. As a factor of u, the word v is \mathcal{E}_{H}-reduced and has no factor in \mathcal{O}_{Σ}, so the induction hypothesis implies $[v] \preccurlyeq \Delta_{\text {ht }(v)+1}$, hence a fortiori $[v] \preccurlyeq \Delta_{m}$. This means that $[u]$ lies in $\Sigma_{m+1,|u|}^{\mathrm{I}}$ and implies $[u] \preccurlyeq \Delta_{m+1}$, as expected.

Subsubcase 2.2.2. We have $k=m$. Write $w=\theta_{m} u^{\prime}$, yielding $u=\theta_{m} \theta_{m-1} \theta_{m} u^{\prime}$. If u^{\prime} is empty, we have $u=\theta_{m} \theta_{m-1} \theta_{m}$. A direct computation from (4.5) gives $\Delta_{m+1}=\theta_{m} \theta_{m-1} \theta_{m} \Delta_{m-1} \theta_{3 n-7}$, whence $[u] \preccurlyeq \Delta_{m+1}$, as expected.

We assume now that u^{\prime} is nonempty, with first letter θ_{ℓ}. The assumption $h t(u)=m$ implies $\ell \leqslant m$. The assumption that u has no factor in \mathcal{O}_{Σ} excludes $\ell=m-1$ and $\ell=m$, as these values would create factors $\theta_{m-1} \theta_{m} \theta_{m-1}$ or θ_{m}^{2} in u. Next, Lemma 5.5 implies ht $\left(u^{\prime}\right) \leqslant m-1$. Moreover, as a factor of u, the word u^{\prime} is \mathcal{E}_{H}-reduced and has no factor in \mathcal{O}_{Σ}, so the induction hypothesis implies $\left[u^{\prime}\right] \preccurlyeq \Delta_{m}$. By Lemma 5.3, if we had $\theta_{m-1} \preccurlyeq\left[u^{\prime}\right]$, the first letter of u^{\prime} should be θ_{m-1}, contradicting $\ell \leqslant m-2$. Hence we have $\theta_{m-1} \npreceq\left[u^{\prime}\right]$, whence $\left[u^{\prime}\right] \preccurlyeq \Delta_{m-0.5}$ by Lemma 4.7. We then find $\theta_{m-1}\left[u^{\prime}\right] \preccurlyeq \theta_{m-1} \Delta_{m-0.5}=\Delta_{m}$. Therefore, $[u]$ has the form $\theta_{m} \theta_{m-1} \theta_{m}\left[u^{\prime}\right]$ with $\theta_{m-1}\left[u^{\prime}\right] \preccurlyeq \Delta_{m}$. This means that $[u]$ lies in $\Sigma_{m+1,|u|}^{\mathrm{II}_{2}}$ and implies $[u] \preccurlyeq \Delta_{m+1}$, as expected.

Thus, $[u] \preccurlyeq \Delta_{m+1}$ holds in every possible case, and this completes the proof.
Merging Lemmas 5.2 and 5.6, we finally obtain:
Proposition 5.7. A word of Θ^{*} is the normal form of a simple element of H^{+}if, and only if, it contains no factor in \mathcal{O} or \mathcal{O}_{Σ}.

Thus, the monoid H^{+}gives rise to a Garside combinatorics that is quite similar to that of the Thompson monoid F^{+}. In both cases, we have a family of simple elements that is filtered by the sequence $\left(\Delta_{n}\right)_{n \geqslant 1}$, with finitely many elements below Δ_{n}, namely 2^{n-1} in the case of F^{+}and $2 \cdot 3^{n-2}$ in the case of H^{+}, and the normal forms of simple elements are characterized in terms of finitely many types of forbidden factors of length 2 or 3 , namely the factors $\tau_{i} \tau_{j}$ with $j \geqslant i$ in the case of F^{+}, and the factors $\theta_{i} \theta_{j}$ with $j \geqslant i+2$ or $j=i$ and the factors $\theta_{i} \theta_{i+1} \theta_{j}$ with $j=i$ or $j=i+2$ in the case of H^{+}.

However, the parallel is not complete, as, in the case of H^{+}, simple elements do not form a Garside family. Indeed, the element $\theta_{2} \theta_{4}$ is not simple, although it right divides the simple element $\theta_{1} \theta_{2} \theta_{4}$, i.e., Δ_{3}. It is easy to check that every element of H^{+}admits a greatest simple left divisor, namely its greatest common left divisor with Δ_{n} for n sufficiently large, and, from there, to show for every element the existence of a greedy decomposition in terms of simple pieces, but the decompositions so obtained fail to obey the good properties that make Garside families interesting. In particular, the "domino rule" of [15, Prop. III.1.45], implying that the elements of H^{+}have no well defined degree in terms of simple elements.

The enveloping group of the monoid H^{+}is the group H defined by the presentation \mathcal{P}_{H}. At this point, the most puzzling open problem about H^{+}is

Question 5.8. Does the monoid H^{+}embed in the group H ?
The monoid H^{+}is cancellative, but some pairs of elements of H^{+}fail to admit a common left multiple, or a common right multiple, and, therefore, contrary to F^{+} and F, the group H is not a group of (left or right) fractions for H^{+}. As checking the Malcev conditions [9] for H^{+}seems problematic, a more realistic way for proving that H^{+}embeds in H could be to construct a faithful representation of H^{+}in a group of matrices. No such representation is known so far, but mapping θ_{i} to the surjection F_{i} from $\mathbb{Z}_{>0}$ to itself defined by

$$
F_{i}(k):=k \text { for } k \leqslant i+1, F_{i}(i+2):=i, \text { and } F_{i}(k):=k-1 \text { for } k \geqslant i+3
$$

provides a representation ρ of H^{+}that does not factor through F^{+}. The images of $\theta_{1}^{2} \theta_{2}$ and $\theta_{1} \theta_{2} \theta_{3}$ under ρ coincide, so ρ is not faithful, but experiments reported in [27] suggest that the polynomial deformation $\widetilde{\rho}$ of ρ that maps θ_{i} to the linear transformation \widetilde{F}_{i} defined by $\widetilde{F}_{i}(\vec{x})_{k}:=x_{k}$ for $k \leqslant i, \widetilde{F}_{i}(\vec{x})_{k}:=x_{k-1}$ for $k \geqslant i+3$, plus

$$
\widetilde{F}_{i}(\vec{x})_{i+1}:=t x_{i}+(1-t) x_{i+1} \quad \text { and } \quad \widetilde{F}_{i}(\vec{x})_{i+2}:=(1+t) x_{i}-t x_{i+1}
$$

could be faithful. The involved matrices are not invertible, so proving that $\widetilde{\rho}$ is faithful would not solve Question 5.8 directly, but it could be a promising first step.

References

[1] S.I. Adyan, Fragments of the word Delta in a braid group, Mat. Zam. Acad. Sci. SSSR 36-1 (1984) 25-34; translated Math. Notes of the Acad. Sci. USSR; 36-1 (1984) 505-510.
[2] J. Bétréma \& J.G. Penaud, Animaux et arbres guingois, Theor. Comp. Sci. 117 (1993) 67-89.
[3] J. Birman, K.H. Ko \& S.J. Lee, A new approach to the word problem in the braid groups, Adv. Math. 139-2 (1998) 322-353.
[4] E. Brieskorn \& K. Saito, Artin-Gruppen und Coxeter-Gruppen, Invent. Math. 17 (1972) 245271.
[5] M. Brin, The algebra of strand splitting. I. A braided version of Thompson's group V, J. Group Th.; 10; 2007; 757-788.
[6] M. Brin, The algebra of strand splitting. II. A presentation for the braid group on one strand, Intern. J. of Algebra and Computation 16 (2006) 203-219.
[7] M. Brin, On the Zappa-Szép product, Comm. in Algebra 33 (2005) 393-424.
[8] J.W. Cannon, W.J. Floyd, \& W.R. Parry, Introductory notes on Richard Thompson's groups, Ens. Math. 42 (1996) 215-257.
[9] A.H. Clifford \& G.B. Preston, The Algebraic Theory of Semigroups, volume 1, Math. surveys vol.7, Amer. Math. Soc., (1967).
[10] P. Dehornoy, Groups with a complemented presentation, J. Pure Appl. Algebra 116 (1997) 115-137.
[11] P. Dehornoy, The group of parenthesized braids, Advances in Math. 205 (2006) 354-409.
[12] P. Dehornoy, The subword reversing method, Internat. J. Algebra Comput. 21 (2011) 71-118.
[13] P. Dehornoy, Tamari Lattices and the symmetric Thompson monoid, in: Associahedra, Tamari lattices, and Related Structures, F.Mueller-Hoissen, J.Pallo, J.Stasheff, H.O.Walther eds, Progress in Math. vol. 299, Birkhauser (2012), pp. 211-250.
[14] P. Dehornoy, A cancellativity criterion for presented monoids, arXiv:1802.04607.
[15] P. Dehornoy, with F. Digne, E. Godelle, D. Krammer, J. Michel, Foundations of Garside Theory, EMS Tracts in Mathematics, vol. 22 (2015).
[16] P. Deligne, Les immeubles des groupes de tresses généralisés, Invent. Math. 17 (1972) 273302.
[17] D. Epstein, with J. Cannon, D. Holt, S. Levy, M. Paterson \& W. Thurston, Word Processing in Groups, Jones \& Bartlett Publ. (1992).
[18] F.A. Garside, The braid group and other groups, Quart. J. Math. Oxford 20-78 (1969) 235254.
[19] D. Gouyou-Beauchamps \& G. Viennot, Equivalence of the two-dimensional directed animal problem to a one-dimensional path problem, Adv. Appl. Math. 9 (1988) 334-357.
[20] D.F. Holt \& S. Rees, Groups, languages and automata, London Math. Soc. Student Texts 88, Cambridge Univ. Press (2017)
[21] R. McKenzie \& R.J. Thompson, An elementary construction of unsolvable word problems in group theory, in: Word Problems, W.W. Boone and al. eds, Studies in Logic and Foundations of Mathematics, vol. 71, North Holland (1973), pp 457-478.
[22] M.H.A. Newman, On theories with a combinatorial definition of "equivalence", Ann. Math. 43 (1942) 223-243.
[23] Ø. Ore, Linear equations in non-commutative fields, Ann. Math. 34 (1933) 480-508.
[24] N. Sloane, foundator, A005773, The online encyclopedia of integer sequences; https://oeis.org/.
[25] J. Szép, On factorisable, not simple groups, Acta Univ. Szeged. Sect. Sci. Math. 13 (1950) 239-241.
[26] Terese, Term Rewriting Systems, Vol. 55 of Cambridge Tracts in Theoretical Computer Science, Cambridge University Press (2003).
[27] E. Tesson, Un hybride du groupe de Thompson F et du groupe de tresses B_{∞}, Thèse université de Caen (2018).
[28] R.J. Thompson, Tranformation structure of algebraic logic, PhD Thesis Univ. of Berkeley; ProQuest LLC, Ann Arbor, MI (1979), 345 pages, MR2628711.
[29] G.Viennot, Problèmes combinatoires posés par la physique statistique, Séminaire Bourbaki n 626, Astérisque 121-122 (1985) 225-246.
[30] G. Zappa, Sulla costruzione dei gruppi prodotto di due dati sottogruppi permutabili tra loro, Atti Secondo Congresso Un. Mat. Ital., Bologna, Edizioni Cremonense, Rome (1942) pp. 119125.

Laboratoire de Mathématiques Nicolas Oresme UMR 6139, Université de Caen, 14032 Caen, France

E-mail address: patrick.dehornoy@unicaen.fr
URL: dehornoy.users.lmno.cnrs.fr
Laboratoire de Mathématiques Nicolas Oresme UMR 6139, Université de Caen, 14032 Caen, France

[^0]: 1991 Mathematics Subject Classification. 05E15, 20M05, 20E22, 68Q42.
 Key words and phrases. presented monoid; divisibility relation; simple elements; Thompson's group; braid group; normal form; Garside element; directed animal.

