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Abstract

In this paper, we study the exponential stabilization of a shock steady state for the inviscid
Burgers equation on a bounded interval. Our analysis relies on the construction of an explicit
strict control Lyapunov function. We prove that by appropriately choosing the feedback boundary
conditions, we can stabilize the state as well as the shock location to the desired steady state in
H2-norm, with an arbitrary decay rate.

1 Introduction

The problem of asymptotic stabilization for hyperbolic systems using boundary feedback control has
been studied for a long time. We refer to the pioneer work due to Rauch and Taylor [38] and Russell [39]
for linear coupled hyperbolic systems. The first important result of asymptotic stability concerning
quasilinear hyperbolic equations was obtained by Slemrod [41] and Greenberg and Li [19]. These
two works dealt with local dissipative boundary conditions. The result was established by using the
method of characteristics, which allows to estimate the related bounds along the characteristic curves
in the framework of C1 solutions. Another approach to analyze the dissipative boundary conditions
is based on the use of Lyapunov functions. Especially, Coron, Bastin and Andrea-Novel [13] used this
method to study the asymptotic behavior of the nonlinear hyperbolic equations in the framework of
H2 solutions. In particular, the Lyapunov function they constructed is an extension of the entropy and
can be made strictly negative definite by properly choosing the boundary conditions. This method has
been later on widely used for hyperbolic conservation laws in the framework of C1 solutions [11, 20, 21]
or H2 solutions [2, 4, 5, 10, 12, 17, 22] (see [3] for an overview of this method).

But all of these results concerning the asymptotic stability of nonlinear hyperbolic equations focus
on the convergence to regular solutions, i.e., on the stabilization of regular solutions to a desired regular
steady state. It is well known, however, that for quasilinear hyperbolic partial differential equations,
solutions may break down in finite time when their first derivatives break up even if the initial
condition is smooth [29]. They give rise to the phenomena of shock waves with numerous important
applications in physics and fluid mechanics. Compared to classical case, very few results exist on the
stabilization of less regular solutions, which requires new techniques. This is also true for related fields,
as the optimal control problem [9, 37]. For the problem of control and asymptotic stabilization of less
regular solutions, we refer to [7] for the controllability of a general hyperbolic system of conservation
laws, [6, 35] for the stabilization in the scalar case and [7, 14] for the stabilization of a hyperbolic
system of conservation laws. In [6, 14, 35], by using suitable feedback laws on both side of the
interval, one can steer asymptotically any initial data with sufficiently small total variations to any
close constant steady states. All those results concern the boundary stabilization of constant steady
states. In particular, as the target state is regular there is no need to stabilize any shock location. In
this work, we will study the boundary stabilization of steady states with jump discontinuities for a
scalar equation. We believe that our method can be applied to nonlinear hyperbolic systems as well.
While preparing the revised version, our attention was drawn to a very recent work [36] studying a
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similar problem in the BV norm. The method and the results are quite different and complementary
to this work.

Hyperbolic systems have a wide application in fluid dynamics, and hydraulic jump is one of the
best known examples of shock waves as it is frequently observed in open channel flow such as rivers
and spillways. Other physical examples of shock waves can be found in road traffic or in gas trans-
portation, with the water hammer phenomenon. In the literature, Burgers equation often appears
as a simplification of the dynamical model of flows, as well as the most studied scalar model for
transportation. Burgers turbulence has been investigated both analytically and numerically by many
authors either as a preliminary approach to turbulence prior to an occurrence of the Navier-Stokes
turbulence or for its own sake since the Burgers equation describes the formation and decay of weak
shock waves in a compressible fluid [26, 32, 44]. From a mathematical point of view, it turns out that
the study of Burgers equation leads to many of the ideas that arise in the field of nonlinear hyperbolic
equations. It is therefore a natural first step to develop methods for the control of this equation. For
the boundary stabilization problem of viscous Burgers equation, we refer to works by Krstic et al.
[28, 42] for the stabilization of regular shock-like profile steady states and [8, 27] for the stabilization of
null-steady-state. In [42], the authors proved that the shock-like profile steady states of the linearized
unit viscous Burgers equation is exponentially stable when using high-gain “radiation” boundary feed-
back (i.e. static boundary feedback only depending on output measurements). However, they showed
that there is a limitation in the decay rate achievable by radiation feedback, i.e., the decay rate goes
to zero exponentially as the shock becomes sharper. Thus, they have to use another strategy (namely
backstepping method) to achieve arbitrarily fast local convergence to arbitrarily sharp shock profiles.
However, this strategy requires a kind of full-state feedback control, rather than measuring only the
boundary data.

In this paper, we study the exponential asymptotic stability of a shock steady state of the Burgers
equation in H2-norm, which has been commonly used as a proper norm for studying the stability
of hyperbolic systems (see e.g. [16, 24, 43]), as it enables to deal with Lyapunov functions that are
integrals on the domain of quadratic quantities, which is relatively easy to handle. To that end, we
construct an explicit Lyapunov function with a strict negative definite time derivative by properly
choosing the boundary conditions. Though it has been shown in [15] that exponential stability in
H2-norm is not equivalent to C1-norm, our result could probably be generalized to the C1-norm for
conservation laws by transforming the Lyapunov functions as in [11, 20].

The first problem is to deal with the well-posedness of the corresponding initial boundary value
problem (IBVP) on a bounded domain. The existence of the weak solution to the initial value problem
(IVP) of Burgers equation was first studied by Hopf by using vanishing viscosity [23]. The uniqueness
of the entropy solution was then studied by Oleinik [34]. One can refer to [29] for a comprehensive
study of the well-posedness of hyperbolic conservation laws in piecewise continuous entropy solution
case and also to [18] in the class of entropy BV functions. Although there are many results for the
well-posedness of the (IVP) for hyperbolic conservation laws, the problem of (IBVP) is less studied
due to the difficulty of handling the boundary condition. In [1], the authors studied (IBVP) but in
the quarter plane, i.e., x > 0, t > 0. By requiring that the boundary condition at x = 0 is satisfied in
a weak sense, they can apply the method introduced by LeFloch [30] and obtain the explicit formula
of the solution. However, our case is more complicated since we consider the Burgers equation defined
on a bounded interval.

The organization of the paper is the following. In Section 2, we formulate the problem and state
our main results. In Section 3, we prove the well-posedness of the Burgers equation in the framework
of piecewise continuously differentiable entropy solutions, which is one of the main results in this
paper. Based on this well-posedness result, we then prove in Section 4 by a Lyapunov approach that
for appropriately chosen boundary conditions, we can achieve the exponential stability in H2-norm of
a shock steady state with any given arbitrary decay rate and with an exact exponential stabilization
of the desired shock location. This result also holds for the Hk-norm for any k > 2. In Section 5, we
extend the result to a more general convex flux by requiring some additional conditions on the flux.
Conclusion and some open problems are provided in Section 6. Finally, some technical proof are given
in the Appendix.
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2 Problem statement and main result

We consider the following nonlinear inviscid Burgers equation on a bounded domain

yt(t, x) +

(
y2

2

)
x

(t, x) = 0 (1)

with initial condition
y(0, x) = y0(x), x ∈ (0, L), (2)

where L > 0 and boundary controls

y(t, 0+) = u0(t), y(t, L−) = uL(t). (3)

In this article, we will be exclusively concerned with the case where the controls u0(t) > 0, uL(t) < 0
have opposite signs and the state y(t, .) at each time t has a jump discontinuity as illustrated in
Figure 1. The discontinuity is a shock wave that occurs at position xs(t) ∈ (0, L). According to the

y(t, x)

+1

�1

u0(t)

uL(t)

xs(t) x0 L0
x

Figure 1: Entropy solution to the Burgers equation with a shock wave.

Rankine-Hugoniot condition, the shock wave moves with the speed

ẋs(t) =
y(t, xs(t)

+) + y(t, xs(t)
−)

2
(4)

which satisfies the Lax entropy condition [29]

y(t, xs(t)
+) < ẋs(t) < y(t, xs(t)

−), (5)

together with the initial condition
xs(0) = xs0. (6)

Under a constant control u0(t) = −uL(t) = 1 for all t, for any x0 ∈ (0, L), the system (1), (3), (4) has
a steady state (y∗, x∗s) defined as follows:

y∗(x) =

{
1, x ∈ [0, x0),

−1, x ∈ (x0, L],

x∗s = x0.

(7)

These equilibria are clearly not isolated and, consequently, not asymptotically stable. Indeed, one can
see that for any given equilibrium y∗ satisfying (7), we can find initial data arbitrarily close to y∗ which
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is also an equilibrium of the form (7). As the solution cannot be approaching the given equilibrium
when t tends to infinity as long as the initial data is another equilibrium, this feature prevents any
stability no matter how close the initial data is around y∗. With such open-loop constant control
another problem could appear: any small mistake on the boundary control could result in a non-
stationary shock moving far away from x0. It is therefore relevant to study the boundary feedback
stabilization of the control system (1), (3), (4).

In this paper, our main contribution is precisely to show how we can exponentially stabilize any
of the steady states defined by (7) with boundary feedback controls of the following form:

u0(t) = k1y(t, xs(t)
−) + (1− k1) + b1(x0 − xs(t)),

uL(t) = k2y(t, xs(t)
+)− (1− k2) + b2(x0 − xs(t)).

(8)

Here, it is important to emphasize that, with these controls, we are able not only to guarantee the
exponential convergence of the solution y(t, x) to the steady state y∗ but also to exponentially stabilize
the location of the shock discontinuity at the exact desired position x0. In practice, if the system was
used for instance to model gas transportation, the measures of the state around the shock could be
obtained using sensors in the pipe. Note that if the control is applied properly, sensors would be only
needed on a small region as the shock would remain located in a small region.

Before addressing the exponential stability issue, we first show that there exists a unique piecewise
continuously differentiable entropy solution with xs(t) as its single shock for system (1)–(4), (6), (8)
provided that y0 and xs0 are in a small neighborhood of y∗ and x0 respectively.

For any given initial condition (2) and (6), we define the following zero order compatibility condi-
tions

y0(0+) = k1y0(x−s0) + (1− k1) + b1(x0 − xs0),

y0(L−) = k2y0(x+
s0)− (1− k2) + b2(x0 − xs0).

(9)

Differentiating (9) with respect to time t and using (4), we get the following first order compatibility
conditions

y0(0+)y0x(0+) =k1y0(x−s0)y0x(x−s0)− k1y0x(x−s0)
y0(x−s0) + y0(x+

s0)

2
+ b1

y0(x−s0) + y0(x+
s0)

2
,

y0(L−)y0x(L−) =k2y0(x+
s0)y0x(x+

s0)− k2y0x(x−s0)
y0(x−s0) + y0(x+

s0)

2
+ b2

y0(x−s0) + y0(x+
s0)

2
.

(10)

The first result of this paper deals with the well-posedness of system (1)–(4), (6), (8) and is stated in
the following theorem.

Theorem 2.1. For all T > 0, there exists δ(T ) > 0 such that, for every xs0 ∈ (0, L) and y0 ∈
H2((0, xs0);R) ∩H2((xs0, L);R) satisfying the compatibility conditions (9)–(10) and

|y0 − 1|H2((0,xs0);R) + |y0 + 1|H2((xs0,L);R) 6 δ(T ),

|xs0 − x0| 6 δ(T ),
(11)

the system (1)–(4), (6), (8) has a unique piecewise continuously differentiable entropy solution y ∈
C0([0, T ];H2((0, xs(t));R)) ∩H2((xs(t), L);R)) with xs ∈ C1([0, T ]; (0, L)) as its single shock. More-
over, there exists C(T ) such that the following estimate holds for all t ∈ [0, T ]

|y(t, ·)− 1|H2((0,xs(t));R) + |y(t, ·) + 1|H2((xs(t),L);R) + |xs(t)− x0|
6 C(T )

(
|y0 − 1|H2((0,xs0);R) + |y0 + 1|H2((xs0,L);R) + |xs0 − x0|

)
. (12)

The proof of this result is given in Section 3.

Our next result deals with the exponential stability of the steady state (7) for the H2-norm according
to the following definition.

4



Definition 2.1. The steady state (y∗, x0) ∈ (H2((0, x0);R) ∩H2((x0, L);R)) × (0, L) of the system
(1), (3), (4), (8) is exponentially stable for the H2-norm with decay rate γ, if there exists δ∗ > 0 and
C > 0 such that for any y0 ∈ H2((0, xs0);R) ∩H2((xs0, L);R) and xs0 ∈ (0, L) satisfying

|y0 − y∗1(0, ·)|H2((0,xs0);R) + |y0 − y∗2(0, ·)|H2((xs0,L);R) 6 δ∗,

|xs0 − x0| 6 δ∗
(13)

and the compatibility conditions (9)–(10), and for any T > 0 the system (1)–(4), (6), (8) has a unique
solution (y, xs) ∈ C0([0, T ];H2((0, xs(t));R) ∩H2((xs(t), L);R))× C1([0, T ];R) and

|y(t, ·)− y∗1(t, ·)|H2((0,xs(t));R) + |y(t, ·)− y∗2(t, ·)|H2((xs(t),L);R) + |xs(t)− x0|
6 Ce−γt

(
|y0 − y∗1(0, ·)|H2((0,xs0);R) + |y0 − y∗2(0, ·)|H2((xs0,L);R) + |xs0 − x0|

)
, ∀t ∈ [0, T ). (14)

In (13) and (14),

y∗1(t, x) = y∗
(
x
x0

xs(t)

)
,

y∗2(t, x) = y∗
(

(x− L)x0

xs(t)− L

)
.

(15)

Remark 1. At first glance it could seem peculiar to define y∗1 and y∗2 and to compare y(t, ·) with these
functions. However the steady state y∗ is piecewise H2 with discontinuity at x0, while the solution
y(t, x) is piecewise H2 with discontinuity at the shock xs(t), which may be moving around x0. Thus,
to compare the solution y with the steady state y∗ on the same space interval, it is necessary to define
such functions y∗1 and y∗2 .

Remark 2. We emphasize here that the “exponential stability for the H2-norm” is not the usual
convergence of the H2-norm of y − y∗ taken on (0, L) as y and y∗ do not belong to H2(0, L). This
definition enables to define an exponential stability in H2-norm for a function that has a discontinuity
at some point and is regular elsewhere. Note that, the convergence to 0 of the H2-norm in the usual
sense does not ensure the convergence of the shock location xs to x0. Thus, to guarantee that the state
converges to the shock steady state, we have to take account of the shock location, which is explained
in Definition 2.1.

Remark 3. Note that this definition of exponential stability only deals a priori with t ∈ [0, T ) for any
T > 0. However this, together with Theorem 2.1 implies the global existence in time of the solution
(y, xs) and the exponential stability on [0,+∞). This is shown at the end of the proof of Theorem 4.1.

We can now state the main result of this paper

Theorem 2.2. Let γ > 0. If the following conditions hold:

b1 ∈
(
γe−γx0 ,

γe−γx0

1− e−γx0

)
, b2 ∈

(
γe−γ(L−x0),

γe−γ(L−x0)

1− e−γ(L−x0)

)
, (16a)

k2
1 < e−γx0

(
1− b1

γ

(
b1

1− e−γx0

γe−γx0
+ b2

1− e−γ(L−x0)

γe−γ(L−x0)

))
, (16b)

k2
2 < e−γ(L−x0)

(
1− b2

γ

(
b1

1− e−γx0

γe−γx0
+ b2

1− e−γ(L−x0)

γe−γ(L−x0)

))
, (16c)

then the steady state (y∗, x0) of the system (1), (3), (4), (8) is exponentially stable for the H2-norm
with decay rate γ/4.

The proof of this theorem is given in Section 4.
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Remark 4. One can actually check that for any γ > 0 there exist parameters b1, b2 and k1, k2

satisfying (16) as, for b1 = γe−γx0 and b2 = γe−γ(L−x0), one has

1− b1
γ

(
b1

1− e−γx0

γe−γx0
+ b2

1− e−γ(L−x0)

γe−γ(L−x0)

)
= 1− e−γx0(2− e−γx0 − e−γ(L−x0))

= e−2γx0(eγx0 − 1)2 + e−γL > 0.

(17)

Similarly, we get

1− b2
γ

(
b1

1− e−γx0

γe−γx0
+ b2

1− e−γ(L−x0)

γe−γ(L−x0)

)
= e−2γ(L−x0)(eγ(L−x0) − 1)2 + e−γL > 0.

(18)

Therefore, by continuity, there exist b1 and b2, satisfying condition (16a) such that there exist k1

and k2 satisfying (16b) and (16c). This implies that γ can be made arbitrarily large. And, from
(16a)–(16c), we can note that for large γ the conditions on the ki tend to

k2
1 < e−γx0 , k2

2 < e−γ(L−x0).

Remark 5. The result can also be generalized to Hk-norm for any integer k > 2 in the sense of
Definition 2.1 by replacing H2 with Hk. This can be easily done by just adapting the Lyapunov
function defined below by (31)-(37) as was done in [3, Sections 4.5 and 6.2].

Remark 6. If we set k1 = k2 = b1 = b2 = 0, then from (8), u0(t) ≡ 1 and uL(t) ≡ −1. Thus it seems
logical that the larger γ is, the smaller k1 and k2 are. However, it could seem counter-intuitive that b1
and b2 have to tend to 0 when γ tends to +∞, as if one sets b1 = 0 and b2 = 0, one cannot stabilize
the location of the system just like in the constant open-loop control case. In other words for any
γ > 0 the prescribed feedback works while the limit feedback we obtain by letting γ → +∞ cannot even
ensure the asymptotic stability of the system. The explanation behind this apparent paradox is that
when γ tends to infinity, the Lyapunov function candidate used to prove Theorem 4.1 is not equivalent
to the norm of the solution and cannot guarantee anymore the exponential decay of the solution in the
H2-norm. More precisely, one can see, looking at (97) and (99), that the hypothesis (44) of Lemma
4.1 does not hold anymore.

3 An equivalent system with shock-free solutions

Our strategy to analyze the existence and the exponential stability of the shock wave solutions to
the scalar Burgers equation (1) is to use an equivalent 2 × 2 quasilinear hyperbolic system having
shock-free solutions. In order to set up this equivalent system, we define the two following functions

y1(t, x) = y(t, x
xs(t)

x0
), y2(t, x) = y(t, L+ x

xs(t)− L
x0

) (19)

and the new state variables as follows:

z(t, x) =

(
z1(t, x)
z2(t, x)

)
=

(
y1(t, x)− 1
y2(t, x) + 1

)
, x ∈ (0, x0). (20)

The idea behind the definition of y1, y2 is to describe the behavior of the solution y(t, x) before and
after the moving shock, while studying functions on a time invariant interval. Observe indeed that the
functions y1 and y2 in (19) correspond to the solution y(t, x) on the time varying intervals (0, xs(t))
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and (xs(t), L) respectively, albeit with a time varying scaling of the space coordinate x which is driven
by xs(t) and allows to define the new state variables (z1, z2) on the fixed time invariant interval
(0, x0). The reason to rescale y2 on (0, x0) instead of (x0, L) is to simplify the analysis by defining
state variables on the same space interval with the same direction of propagation.

Besides, from (20), the former steady state (y∗, x0) corresponds now to the steady state (z =
0, xs = x0) in the new variables. With these new variables, the dynamics of (y, xs) can now be
expressed as follows:

z1t +

(
1 + z1 − x

ẋs
x0

)
z1x

x0

xs
= 0,

z2t +

(
1− z2 + x

ẋs
x0

)
z2x

x0

L− xs
= 0,

ẋs(t) =
z1(t, x0) + z2(t, x0)

2
,

(21)

with the boundary conditions:

z1(t, 0) = k1z1(t, x0) + b1(x0 − xs(t)),

z2(t, 0) = k2z2(t, x0) + b2(x0 − xs(t)),
(22)

and initial condition
z(0, x) = z0(x), xs(0) = xs0, (23)

where z0 = (z0
1 , z

0
2)T and

z0
1(x) = y0

(
x
xs0
x0

)
− 1,

z0
2(x) = y0

(
L+ x

xs0 − L
x0

)
+ 1.

(24)

Furthermore, in the new variables, the compatibility conditions (9)–(10) are expressed as follows:

z0
1(0) = k1z

0
1(x0) + b1(x0 − xs0),

z0
2(0) = k2z

0
2(x0) + b2(x0 − xs0),

(25)

and

(1 + z0
1(0))z0

1x(0)
x0

xs0
= k1

(
1 + z0

1(x0)− z0
1(x0) + z0

2(x0)

2

)
z0

1x(x0)
x0

xs0
+ b1

z0
1(x0) + z0

2(x0)

2
,

(1− z0
2(0))z0

2x(0)
x0

L− xs0
= k2

(
1− z0

2(x0) +
z0

1(x0) + z0
2(x0)

2

)
z0

2x(x0)
x0

L− xs0
+ b2

z0
1(x0) + z0

2(x0)

2
.

(26)

Concerning the existence and uniqueness of the solution to the system (21)–(23), we have the following
lemma.

Lemma 3.1. For all T > 0, there exists δ(T ) > 0 such that, for every xs0 ∈ (0, L) and z0 ∈
H2((0, x0);R2) satisfying the compatibility conditions (25)–(26) and

|z0|H2((0,x0);R2) 6 δ(T ), |xs0 − x0| 6 δ(T ), (27)

the system (21)–(23) has a unique classical solution (z, xs) ∈ C0([0, T ];H2((0, x0);R2))×C1([0, T ]; (0, L)).
Moreover, there exists C(T ) such that the following estimate holds for all t ∈ [0, T ]

|z(t, ·)|H2((0,x0);R2) + |xs(t)− x0| 6 C(T )
(
|z0|H2((0,x0);R2) + |xs0 − x0|

)
. (28)
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Proof. The proof of Lemma 3.1 is given in Appendix A.

From this lemma, it is then clear that the proof of Theorem 2.1 follows immediately.

Proof of Theorem 2.1. The change of variables (19), (20) induces an equivalence between the classical
solutions (z, xs) of the system (21)–(23) and the entropy solutions with a single shock (y, xs) of
the system (1)–(4), (6), (8). Consequently, from (20) and provided |z0|H2((0,x0);R2) and |xs0 − x0|
are sufficiently small, the existence and uniqueness of a solution with a single shock (y, xs) to the
system (1)–(4), (6), (8) satisfying the entropy condition (5) when (y0, xs0) is in a sufficiently small
neighborhood of (y∗, x0), follows directly from the existence and uniqueness of the classical solution
(z, xs) to the system (21)–(23) which is guaranteed by Lemma 3.1.

Remark 7. Under the assumption in Lemma 3.1, if we assume furthermore that z0 ∈ Hk((0, x0);R2)
with k > 2 satisfying the k-th order compatibility conditions (see the definition in [3, p.143]), then
(z, xs) ∈ C0([0, T ];Hk((0, x0);R2)) × Ck([0, T ];R) and (28) still holds. This is a straightforward
extension of the proof in Appendix A, thus we will not give the details of this proof here.

4 Exponential stability for the H2-norm

This section is devoted to the proof of Theorem 2.2 concerning the exponential stability of the steady
state of system (1), (3), (4), (8). Actually, on the basis of the change of variables introduced in the
previous section, we know that we only have to prove the exponential stability of the steady state of
the auxiliary system (21)–(22) according to the following theorem which is equivalent to Theorem 2.2.

Theorem 4.1. For any γ > 0, if condition (16) on the parameters of the feedback holds, then there
exist δ∗ > 0 and C > 0 such that for any z0 ∈ H2((0, x0);R2) and xs0 ∈ (0, L) satisfying

|z0|H2((0,x0);R2) 6 δ∗, |xs0 − x0| 6 δ∗ (29)

and the compatibility conditions (25)–(26), and for any T > 0 the system (21)–(23) has a unique
classical solution (z, xs) ∈ C0([0, T ];H2((0, x0);R2))× C1([0, T ];R) such that

|z(t, ·)|H2((0,x0);R2) + |xs(t)− x0| 6 Ce−γt/4
(
|z0|H2((0,x0);R2) + |xs0 − x0|

)
, ∀t ∈ [0, T ). (30)

When this theorem holds, we say that the steady state (z = 0, xs = x0) of the system (21)–(22) is
exponentially stable for the H2-norm with convergence rate γ/4. Recall that, from Remark 4, there
always exist parameters such that (16) holds.

Before proving Theorem 4.1, let us give an overview of our strategy. We first introduce a Lyapunov
function candidate V with parameters to be chosen. Then, in Lemma 4.1, we give a condition on
the parameters such that V is equivalent to the square of the H2-norm of z plus the absolute value
of xs − x0, which implies that proving the exponential decay of V with rate γ/2 is enough to show
the exponential stability of the system with decay rate γ/4 for the H2-norm. In Lemma 4.2, we
show that in order to obtain Theorem 4.1, it is enough to prove that V decays along any solutions
(z, xs) ∈ C3([0, T ] × [0, x0];R2) × C3([0, T ];R) with a density argument. Then in Lemma 4.3, we
compute the time derivative of V along any C3 solutions of the system and we give a sufficient
condition on the parameters such that V satisfies a useful estimate along these solutions. Finally, we
show that there exist parameters satisfying the sufficient condition of Lemma 4.3. This, together with
Lemma 4.2, ends the proof of Theorem 4.1.

We now introduce the following candidate Lyapunov function which is defined for all z = (z1, z2)T ∈
H2((0, x0);R2) and xs ∈ (0, L):

V (z, xs) = V1(z) + V2(z, xs) + V3(z, xs) + V4(z, xs) + V5(z, xs) + V6(z, xs) (31)

with

V1(z) =

∫ x0

0

p1e
−µx
η1 z2

1 + p2e
−µx
η2 z2

2dx, (32)

V2(z, xs) =

∫ x0

0

p1e
−µx
η1 z2

1t + p2e
−µx
η2 z2

2tdx, (33)
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V3(z, xs) =

∫ x0

0

p1e
−µx
η1 z2

1tt + p2e
−µx
η2 z2

2ttdx, (34)

V4(z, xs) =

∫ x0

0

p̄1e
−µx
η1 z1(xs − x0) dx+

∫ x0

0

p̄2e
−µx
η2 z2(xs − x0) dx+ κ(xs − x0)2, (35)

V5(z, xs) =

∫ x0

0

p̄1e
−µx
η1 z1tẋs dx+

∫ x0

0

p̄2e
−µx
η2 z2tẋs dx+ κ(ẋs)

2, (36)

V6(z, xs) =

∫ x0

0

p̄1e
−µx
η1 z1ttẍs dx+

∫ x0

0

p̄2e
−µx
η2 z2ttẍs dx+ κ(ẍs)

2. (37)

In (32)–(37), µ, p1, p2, p̄1, p̄2 are positive constants. Moreover

η1 = 1, η2 =
x0

L− x0
(38)

and
κ > 1. (39)

Actually, in this section, we will need to evaluate V (z, xs) only along the system solutions for which
the variables zt = (z1t, z2t), ztt = (z1tt, z2tt), ẋs and ẍs that appear in the definition of V can be well
defined as functions of (z, xs) ∈ H2((0, x0);R2) × (0, L) from the system (21)–(22) and their space
derivatives. For example, z1t and z2t are defined as functions of (z, xs) by

z1t :=−
(

1 + z1 − x
z1(x0) + z2(x0)

2x0

)
z1x

x0

xs
, (40)

z2t :=−
(

1− z2 + x
z1(x0) + z2(x0)

2x0

)
z2x

x0

L− xs
, (41)

and z1tt and z2tt as functions of (z, xs) by

z1tt := −
(

1 + z1 − x
z1(x0) + z2(x0)

2x0

)
(z1t)x

x0

xs

−
(
z1t − x

z1t(x0) + z2t(x0)

2x0

)
z1x

x0

xs
− z1t

z1(x0) + z2(x0)

2xs
, (42)

z2tt := −
(

1− z2 + x
z1(x0) + z2(x0)

2x0

)
(z2t)x

x0

L− xs

+

(
z2t − x

z1t(x0) + z2t(x0)

2x0

)
z2x

x0

L− xs
+ z2t

z1(x0) + z2(x0)

2(L− xs)
. (43)

The functions z1t and z2t which appear in (42) and (43) are supposed to be defined by (40) and (41)
respectively.

Remark 8. When looking for a Lyapunov function to stabilize the state (z1, z2) in H2-norm, the
component (V1 + V2 + V3) can be seen as the most natural and easiest choice, as it is equivalent to a
weighted H2-norm by properly choosing the parameters. This kind of Lyapunov function, sometimes
called basic quadratic Lyapunov function, is used for instance in [2] or [3, Section 4.4]. However,
in the present case one needs to stabilize both the state z and the shock location xs, which requires to
add additional terms to the Lyapunov function in order to deal with xs. Besides, as we have no direct
control on xs (observe that none of the terms of the right-hand side of (4), or equivalently of the third
equation of (21), is a control), we need to add some coupling terms between the state z on which we
have a control and the shock location xs in the Lyapunov function. Thus, V4 is designed to provide
such coupling with the product of the component of z and xs, while V5 and V6 are its analogous for
the time derivatives terms (as V2 and V3 are the analogous of V1 respectively for the first and second
time derivative of z).

We now state the following lemma, providing a condition on µ, p1, p2, p̄1 and p̄2 such that V (z, xs)
is equivalent to (|z|2H2((0,x0);R2) + |xs − x0|2).
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Lemma 4.1. If
max (Θ1,Θ2) < 2, (44)

where

Θ1 :=
p̄2

1

p1

η1

µ

(
1− e

−µx0
η1

)
, Θ2 :=

p̄2
2

p2

η2

µ

(
1− e−

µx0
η2

)
, (45)

there exists β > 0 such that

β
(
|z|2H2((0,x0);R2) + |xs − x0|2

)
6 V 6

1

β

(
|z|2H2((0,x0);R2) + |xs − x0|2

)
(46)

for any (z, xs) ∈ H2((0, x0);R2)× (0, L) satisfying

|z|2H2((0,x0);R2) + |xs − x0|2 < β2. (47)

Proof of Lemma 4.1. Let us start with

V4 =

∫ x0

0

p̄1e
−µx
η1 z1(xs − x0) dx+

∫ x0

0

p̄2e
−µx
η2 z2(xs − x0) dx+ κ(xs − x0)2. (48)

Using Young’s inequality we get

− 1

2

(∫ x0

0

p̄1e
−µx
η1 z1 dx

)2

− (xs − x0)2

2
− 1

2

(∫ x0

0

p̄2e
−µx
η2 z2 dx

)2

− (xs − x0)2

2

+ κ(xs − x0)2 6 V4 6
1

2

(∫ x0

0

p̄1e
−µx
η1 z1 dx

)2

+
(xs − x0)2

2
+

1

2

(∫ x0

0

p̄2e
−µx
η2 z2 dx

)2

+
(xs − x0)2

2
+ κ(xs − x0)2.

(49)

Hence, using the Cauchy-Schwarz inequality and the expression of V1 given in (32),

p1(1− 1

2
Θ1)

∫ x0

0

e
−µx
η1 z2

1dx+ p2(1− 1

2
Θ2)

∫ x0

0

e
−µx
η2 z2

2 dx

+(xs − x0)2(κ− 1) 6 V1 + V4 6 p1(1 +
1

2
Θ1)

∫ x0

0

e
−µx
η1 z2

1dx

+ p2(1 +
1

2
Θ2)

∫ x0

0

e
−µx
η2 z2

2 dx+ (xs − x0)2(κ+ 1),

(50)

and similarly

p1(1− 1

2
Θ1)

∫ x0

0

e
−µx
η1 z2

1tdx+ p2(1− 1

2
Θ2)

∫ x0

0

e
−µx
η2 z2

2t dx

+(ẋs)
2(κ− 1) 6 V2 + V5 6 p1(1 +

1

2
Θ1)

∫ x0

0

e
−µx
η1 z2

1tdx

+ p2(1 +
1

2
Θ2)

∫ x0

0

e
−µx
η2 z2

2t dx+ (ẋs)
2(κ+ 1),

(51)

and also

p1(1− 1

2
Θ1)

∫ x0

0

e
−µx
η1 z2

1ttdx+ p2(1− 1

2
Θ2)

∫ x0

0

e
−µx
η2 z2

2tt dx

+ (ẍs)
2(κ− 1) 6 V3 + V6 6 p1(1 +

1

2
Θ1)

∫ x0

0

e
−µx
η1 z2

1ttdx

+ p2(1 +
1

2
Θ2)

∫ x0

0

e
−µx
η2 z2

2tt dx+ (ẍs)
2(κ+ 1).

(52)
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Hence, from (39), κ > 1 and (44) is satisfied, there exists σ > 0 such that

σ
(
|z|2H2

t ((0,x0);R2) + |xs − x0|2
)
6 V 6

1

σ

(
|z|2H2

t ((0,x0);R2) + |xs − x0|2
)
, (53)

where, for a function z ∈ H2((0, x0);R2), |z|H2
t ((0,x0);R2) is defined by

|z|H2
t ((0,x0);R2) =

(
|z|2L2((0,x0);R2) + |zt|2L2((0,x0);R2) + |ztt|2L2((0,x0);R2)

)1/2

, (54)

with zt and ztt defined as (40)–(43). Let us point out that from (40)–(43), there exists C > 0 such
that

1

C
|z|H2((0,x0);R2) 6 |z|H2

t ((0,x0);R2) 6 C|z|H2((0,x0);R2), (55)

if (|z|2H2((0,x0);R2) + |xs−x0|2) < 1/C. It follows from (53) and (55) that β > 0 can be taken sufficiently

small such that inequality (46) holds provided (47) is satisfied. This concludes the proof of Lemma
4.1.

Before proving Theorem 4.1, we introduce the following density argument, which shows that it is
enough to prove the exponential decay of V along any C3 solutions of the system.

Lemma 4.2. Let V be a C1 and nonnegative functional on C0([0, T ];H2((0, x0);R2))×C1([0, T ];R).
If there exist δ > 0 and γ > 0 such that for any (z, xs) ∈ C3([0, T ] × [0, x0];R2)) × C3([0, T ];R)
solution of (21)–(22), with associated initial condition (z0, xs0) satisfying

∣∣z0
∣∣
H2((0,x0);R2)

6 δ and

|xs0 − x0| 6 δ, one has
dV (z(t, ·), xs(t))

dt
6 −γ

2
V (z(t, ·), xs(t)), (56)

then (56) also holds in a distribution sense for any (z, xs) ∈ C0([0, T ];H2((0, x0);R2))×C1([0, T ];R)
solution of (21)–(22) such that the associated initial condition (z0, xs0) satisfies

∣∣z0
∣∣
H2((0,x0);R2)

< δ

and |xs0 − x0| < δ.

Proof of Lemma 4.2. Let V be a C1 and nonnegative functional on C0([0, T ];H2((0, x0);R2))×C1([0, T ];R)
and let (z, xs) ∈ C0([0, T ];H2((0, x0);R2))×C1([0, T ];R) be solution of (21)–(22) with associated ini-
tial condition

∣∣z0
∣∣
H2((0,x0);R2)

6 δ and |xs0 − x0| 6 δ. Let (z0n, xns0) ∈ H4((0, x0);R2)× (0, L), n ∈ N
be a sequence of functions that satisfy the fourth order compatibility conditions and

|z0n|H2((0,x0);R2) 6 δ, |xns0 − x0| 6 δ, (57)

such that z0n converges to z0 in H2((0, x0);R2) and xns0 converges to xs0. From Remark 7, there exists
a unique solution (zn, xns ) ∈ C0([0, T ];H4((0, x0);R2)) × C4([0, T ];R) to (21)–(22) corresponding to
the initial condition (z0n, xns0) and for any t ∈ [0, T ], we have

|zn(t, ·)|H2((0,x0);R2) + |xns (t)− x0| 6 C(T )
(
|z0n|H2((0,x0);R2) + |xns0 − x0|

)
. (58)

Hence, from (57) and the third equation of (21), the sequence (zn, xns ) is bounded in C0([0, T ];H2((0, x0);R2))×
C1([0, T ];R). By [40, Corollary 4], we can extract a subsequence, which we still denote by (zn, xns ) that
converges to (u, ys) in (C0([0, T ];C1([0, x0];R2))∩C1([0, T ];C0([0, x0];R2)))×C1([0, T ];R), which is
a classical solution of (21)–(23). If we define

J(u) =

{
+∞, if u /∈ L∞((0, T );H2((0, x0);R2)),

|u|L∞((0,T );H2((0,x0);R2) , if u ∈ L∞((0, T );H2((0, x0);R2)),
(59)

then J is lower semi-continuous and we have

J(u) 6 lim
n→+∞

|zn|C0([0,T ];H2((0,x0);R2)) , (60)

thus from (58) and the convergence of (z0n, xns0) in H2((0, x0);R2) × R, we have J(u) ∈ R and
u ∈ L∞((0, T );H2((0, x0);R2)). Moreover, as (u, ys) is a solution to (21)–(23), we get the ex-
tra regularity u ∈ C0([0, T ];H2((0, x0);R2)). Hence, from the uniqueness of the solution given by
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Lemma 3.1, u = z and consequently ys = xs, which implies that (zn, xns ) converges to (z, xs)
in (C0([0, T ];C1([0, x0];R2)) ∩ C1([0, T ];C0([0, x0];R2))) × C1([0, T ];R). Now, we define V n(t) :=
V (zn(t, ·), xns (t)). Note that V (t) = V (z(t, ·), xs(t)) is continuous with time t and well-defined as,
from Lemma 3.1, z ∈ C0([0, T ];H2((0, x0);R2)). As (zn, xns ) belongs to C0([0, T ];H4((0, x0);R2)) ×
C4([0, T ];R) and is thus C3, and as it is a solution of (21)–(22) with initial condition satisfying (57),
we have from (56)

dV n

dt
6 −γ

2
V n, (61)

thus V n is decreasing on [0, T ]. Therefore

V n(t)− V n(0) 6 −γt
2
V n(t), ∀t ∈ [0, T ], (62)

which implies that (
1 +

γt

2

)
V n(t) 6 V n(0), ∀t ∈ [0, T ]. (63)

Using the lower semi-continuity of J , by the continuity of V and the convergence of (z0n, xns0) in
H2((0, x0);R2)× R, we have (

1 +
γt

2

)
V (t) 6 V (0), ∀t ∈ [0, T ]. (64)

Note that instead of approximating (z0, xs0), we could have approximated (z(s, ·), xs(s)) where s ∈
[0, T ) and follow the same procedure as above. Therefore we have in fact for any s ∈ [0, T )(

1 +
γ(t− s)

2

)
V (t) 6 V (s), ∀t ∈ [s, T ], (65)

thus for any 0 6 s < t 6 T
V (t)− V (s)

t− s 6 −γ
2
V (t), (66)

which implies that (56) holds in the distribution sense. This ends the proof of Lemma 4.2.

We now state our final lemma, which gives a sufficient condition so that V defined by (31)–(37)
satisfies a useful estimate along any C3 solutions.

Lemma 4.3. Let V be defined by (31)–(37). If the matrix A defined by (87)–(92) is positive definite,
then for any T > 0, there exists δ1(T ) > 0 such that for any (z, xs) ∈ C3([0, T ] × [0, x0];R2)) ×
C3([0, T ];R) solution of (21)–(23) satisfying

∣∣z0
∣∣
H2((0,x0);R2)

6 δ1(T ) and |xs0 − x0| 6 δ1(T ),

dV (z(t, ·), xs(t))
dt

6 −µ
2
V (z(t, ·), xs(t)) +O

(
(|z(t, ·)|H2((0,x0);R2) + |xs − x0|)3

)
, ∀ t ∈ [0, T ]. (67)

Here and hereafter, O(s) means that there exist ε > 0 and C1 > 0, both independent of z, xs, T
and t ∈ [0, T ], such that

(s 6 ε) =⇒ (|O(s)| 6 C1s).

To prove this lemma, we differentiate V with respect to time along any C3 solutions and per-
form several estimates on the different components of V . For the sake of simplicity, for any z ∈
C0([0, T ];H2((0, x0);R2)), we denote from now on |z(t, ·)|H2((0,x0);R2) by |z|H2 .

Proof of Lemma 4.3. Let V be given by (31)–(37) and T > 0. Let us assume that (z, xs) is a C3

solution to the system (21)–(23), with initial condition |z0|H2((0,x0);R2) 6 δ1(T ) and |xs0−x0| 6 δ1(T )
respectively with δ1(T ) > 0 to be chosen later on. Let us examine the different components of the
Lyapunov function. We start by studying V1, V2 and V3 which can be treated similarly as in [3, Section
4.4]. Differentiating V1 along the solution (z, xs) and integrating by parts, noticing (38), we have

dV1

dt
= −2

∫ x0

0

(
p1e

−µx
η1 z1(1 + z1 − x

ẋs
x0

)
x0

xs
z1x + p2e

−µx
η2 z2(1− z2 + x

ẋs
x0

)
x0

L− xs
z2x

)
dx

=− µV1 −
[
p1e

−µx
η1

x0

xs
z2

1 + p2e
−µx
η2

x0

L− xs
z2

2

]x0

0

+O
(
(|z|H2 + |xs − x0|)3

)
.

(68)
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From (21), we have

z1tt + (1 + z1 − x
ẋs
x0

)z1tx
x0

xs
+ (z1t − x

ẍs
x0

)z1x
x0

xs
+ z1t

ẋs
xs

= 0,

z2tt + (1− z2 + x
ẋs
x0

)z2tx
x0

L− xs
− (z2t − x

ẍs
x0

)z2x
x0

L− xs
− z2t

ẋs
L− xs

= 0.

(69)

Therefore, similarly to (68), we can obtain

dV2

dt
= −µV2 −

[
p1e

−µx
η1

x0

xs
z2

1t + p2e
−µx
η2

x0

L− xs
z2

2t

]x0

0

+O
(
(|z|H2 + |xs − x0|)3

)
. (70)

From (69) and using (21), we get

z1ttt + (1 + z1 − x
ẋs
x0

)z1ttx
x0

xs
+ 2(z1t − x

ẍs
x0

)z1tx
x0

xs
+
ẋs
xs

(z1tt + z1t
ẋs
xs

)

+ (z1tt − x
...
x s
x0

)z1x
x0

xs
+ z1tt

ẋs
xs

+ z1t
ẍsxs − (ẋs)

2

x2
c

= 0,

z2ttt + (1− z2 + x
ẋs
x0

)z2ttx
x0

L− xs
− 2(z2t − x

ẍs
x0

)z2tx
x0

L− xs
+

ẋs
L− xs

(−z2tt + z2t
ẋs

L− xs
)

− (z2tt − x
...
x s
x0

)z2x
x0

L− xs
− z2tt

ẋs
L− xs

− z2t
ẍs(L− xs) + (ẋs)

2

(L− xs)2
= 0.

(71)

Then differentiating V3 along the system solutions and using (71), we have

dV3

dt
6 −

[
p1e
−µxη1

x0

xs
(z2

1tt)(1 + z1 − x
ẋs
x0

)

]x0

0

−
[
p2e
−µxη2

x0

L− xs
z2

2tt(1− z2 + x
ẋs
x0

)

]x0

0

− µmin

(
x0

xs
,
L− x0

L− xs

)
V3 − µ

∫ x0

0

(
x0

xs
p1e
−µxη1 z2

1ttz1 −
L− x0

L− xs
p2e
−µxη2 z2

2ttz2

)
dx

+ µ

∫ x0

0

(
x0

xs
p1e
−µxη2 xz2

1tt

ẋs
x0
− L− x0

L− xs
p2e
−µxη1 xz2

2tt

ẋs
x0

)
dx

− 3

∫ x0

0

(
p1e
−µxη1 z2

1tt

ẋs
xs
− p2e

−µxη2 z2
2tt

ẋs
L− xs

)
dx

−
∫ x0

0

(
p1e
−µxη1 z2

1ttz1x
x0

xs
− p2e

−µxη2 z2
2ttz2x

x0

L− xs

)
dx (72)

− 4

∫ x0

0

(
p1e
−µxη1 z1tt(z1t − x

ẍs
x0

)z1tx
x0

xs
− p2e

−µxη2 z2tt(z2t − x
ẍs
x0

)z2tx
x0

L− xs

)
dx

− 2

∫ x0

0

(
p1e
−µxη1 z1tt(z1tt + z1t

ẋs
xs

)
ẋs
xs
− p2e

−µxη2 z2tt(z2tt − z2t
ẋs

L− xs
)

ẋs
L− xs

)
dx

− 2

∫ x0

0

(
p1e
−µxη1 z1ttz1t

ẍsxs − (ẋs)
2

x2
c

− p2e
−µxη2 z2ttz2t

ẍs(L− xs) + (ẋs)
2

(L− xs)2

)
dx

− 2

∫ x0

0

(
p1e
−µxη1 z1tt(z1tt − x

...
xs
x0

)z1x
x0

xs
− p2e

−µxη2 z2tt(z2tt − x
...
xs
x0

)z2x
x0

L− xs

)
dx.

Observe that, while previously all the cubic terms in z could be bounded by |z|3H2 , here in the last
line in (72) we have

...
xs which is proportional to ztt(t, x0) and cannot be roughly bounded by the |z|H2

norm. To overcome this difficulty, we transform these terms using Young’s inequality and we get

2

∫ x0

0

(
p1e
−µxη1 z1tt(x

...
x s
x0

)z1x
x0

xs
− p2e

−µxη2 z2tt(x

...
x s
x0

)z2x
x0

L− xs

)
dx

6 C |z(t, ·)|C1([0,x0];R2) (z1tt(t, x0) + z2tt(t, x0))2 +O
(
|z(t, ·)|C1([0,x0];R2) |z|

2
H2

)
,

(73)

where C denotes a constant, independent of z, xs, T and t ∈ [0, T ]. Note that the first term on the
right is now proportional to z2

tt(t, x0) with a proportionality coefficient C |z(t, ·)|C1([0,x0];R2) that, by

13



Sobolev inequality, can be made sufficiently small provided that |z|H2 is sufficiently small and thus
can be dominated by the boundary terms. More precisely, from (72) and (73) we have

dV3

dt
6− µV3 −

[
p1e

−µx
η1

x0

xs
(z2

1tt)

]x0

0

−
[
p2e

−µx
η2

x0

L− xs
z2

2tt

]x0

0

+O (|z|H2)
(
z2

1tt(t, x0) + z2
2tt(t, x0)

)
+O

(
(|z|H2 + |xs − x0|)3

)
.

(74)

Let us now deal with the term V4 that takes into account the position of the jump. In the following,
we use notations z(0) and z(x0) instead of z(t, 0) and z(t, x0) for simplicity. We have

dV4

dt
=−

∫ x0

0

p̄1e
−µx
η1 (1 + z1 − x

ẋs
x0

)z1x(xs − x0)
x0

xs
dx+

∫ x0

0

p̄1e
−µx
η1 z1ẋs dx

−
∫ x0

0

p̄2e
−µx
η2 (1− z2 + x

ẋs
x0

)z2x(xs − x0)
x0

L− xs
dx

+

∫ x0

0

p̄2e
−µx
η2 z2ẋs dx+ 2κẋs(xs − x0) (75)

=− (xs − x0)

[
p̄1e

−µx
η1

x0

xs
z1 + p̄2e

−µx
η2

x0

L− xs
z2

]x0

0

− µ(V4 − κ(xs − x0)2)

+
z1(x0) + z2(x0)

2

(∫ x0

0

p̄1e
−µxη1 z1 dx

)
+
z1(x0) + z2(x0)

2

(∫ x0

0

p̄2e
−µxη2 z2 dx

)
+ κ(z1(x0) + z2(x0))(xs − x0) +O

(
(|z|H2 + |xs − x0|)3

)
.

According to Young’s inequality, for any positive ε1 and ε2, we have

z1(x0) + z2(x0)

2

(∫ x0

0

p̄1e
−µxη1 z1 dx

)
6
ε1

4

(
z1(x0) + z2(x0)

2

)2

+
1

ε1

(∫ x0

0

p̄1e
−µxη1 z1 dx

)2

,

z1(x0) + z2(x0)

2

(∫ x0

0

p̄2e
−µxη2 z2 dx

)
6
ε2

4

(
z1(x0) + z2(x0)

2

)2

+
1

ε2

(∫ x0

0

p̄2e
−µxη2 z2 dx

)2

.

(76)

Then using the boundary condition (22) and Cauchy-Schwarz inequality, (75) becomes

dV4

dt
6− µV4 − p̄1(xs − x0)

x0

xs

(
(e−

µx0
η1 − k1)z1(x0) + b1(xs − x0)

)
− p̄2(xs − x0)

x0

L− xs

(
(e−

µx0
η2 − k2)z2(x0) + b2(xs − x0)

)
+ (ε1 + ε2)

z2
1(x0) + z2

2(x0)

8
+ max

{
Θ1

ε1
,

Θ2

ε2

}
V1

+ κ(xs − x0)(z1(x0) + z2(x0)) + µκ(xs − x0)2 +O
(
(|z|H2 + |xs − x0|)3

)
.

(77)

Let us now consider V5. From (36) and (69), one has similarly

dV5

dt
=−

∫ x0

0

p̄1e
−µx
η1 z1txẋs

x0

xs
dx+

∫ x0

0

p̄1e
−µx
η1 z1tẍs dx

−
∫ x0

0

p̄2e
−µx
η2 z2txẋs

x0

L− xs
dx+

∫ x0

0

p̄2e
−µx
η2 z2tẍs dx+ 2κẍsẋs +O

(
(|z|H2 + |xs − x0|)3

)
=− ẋs

[
p̄1e

−µx
η1

x0

xs
z1t + p̄2e

−µx
η2

x0

L− xs
z2t

]x0

0

− µ(V5 − κ(ẋs)
2)

+
z1t(x0) + z2t(x0)

2

(∫ x0

0

p̄1e
−µxη1 z1t dx

)
+
z1t(x0) + z2t(x0)

2

(∫ x0

0

p̄2e
−µxη2 z2t dx

)
+ κ(z1t(x0) + z2t(x0))ẋs +O

(
(|z|H2 + |xs − x0|)3

)
.

By differentiating (22) with respect to time, we have

z1t(0) = k1z1t(x0)− b1ẋs,
z2t(0) = k2z2t(x0)− b2ẋs,

(78)
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and therefore using Cauchy-Schwarz and Young’s inequalities, we get

dV5

dt
6− µV5 − p̄1ẋs

x0

xs

(
(e−

µx0
η1 − k1)z1t(x0) + b1ẋs

)
− p̄2ẋs

x0

L− xs

(
(e−

µx0
η2 − k2)z2t(x0) + b2ẋs

)
+ (ε1 + ε2)

z2
1t(x0) + z2

2t(x0)

8
+ max

{
Θ1

ε1
,

Θ2

ε2

}
V2

+ κẋs(z1t(x0) + z2t(x0)) + µκ(ẋs)
2 +O

(
(|z|H2 + |xs − x0|)3

)
.

(79)

Furthermore, by differentiating (78) with respect to time, we have

z1tt(0) = k1z1tt(x0)− b1ẍs,
z2tt(0) = k2z2tt(x0)− b2ẍs,

(80)

and therefore using also (71), one has

dV6

dt
=−

∫ x0

0

p̄1e
−µx
η1 z1ttxẍs

x0

xs
dx+

∫ x0

0

p̄1e
−µx
η1 z1tt

...
x s dx

−
∫ x0

0

p̄2e
−µx
η2 z2ttxẍs

x0

L− xs
dx+

∫ x0

0

p̄2e
−µx
η2 z2tt

...
x s dx+ 2κ

...
x sẍs +

∫ x0

0

p̄1e
−µx
η1 ẍs(x

...
x s
x0

)z1x
x0

xs
dx

−
∫ x0

0

p̄2e
−µx
η2 ẍs(x

...
x s
x0

)z2x
x0

L− xs
dx+O

(
(|z|H2 + |xs − x0|)3

)
=− ẍs

[
p̄1e

−µx
η1

x0

xs
z1tt + p̄2e

−µx
η2

x0

L− xs
z2tt

]x0

0

− µ(V6 − κ(ẍs)
2)

+
z1tt(x0) + z2tt(x0)

2

(∫ x0

0

p̄1e
−µxη1 z1tt dx

)
+
z1tt(x0) + z2tt(x0)

2

(∫ x0

0

p̄2e
−µxη2 z2tt dx

)
+ κ(z1tt(x0) + z2tt(x0))ẍs +

∫ x0

0

p̄1e
−µx
η1 ẍs(x

...
x s
x0

)z1x
x0

xs
dx

−
∫ x0

0

p̄2e
−µx
η2 ẍs(x

...
x s
x0

)z2x
x0

L− xs
dx+O

(
(|z|H2 + |xs − x0|)3

)
.

Note that, as above for V3, here appears again
...
xs which is proportional to ztt(t, x0) and cannot be

bounded by |z|H2 . We therefore use Cauchy-Schwarz and Young’s inequalities as previously and the
boundary condition (80), to get

dV6

dt
6− µV6 − p̄1ẍs

x0

xs

(
(e−

µx0
η1 − k1)z1tt(x0) + b1ẍs

)
− p̄2ẍs

x0

L− xs

(
(e−

µx0
η2 − k2)z2tt(x0) + b2ẍs

)
+ (ε1 + ε2)

z2
1tt(x0) + z2

2tt(x0)

8
+ max

{
Θ1

ε1
,

Θ2

ε2

}
V2

+ κẍs(z1tt(x0) + z2tt(x0)) + µκ(ẍs)
2 +O (|z|H2)

(
z2

1tt(x0) + z2
2tt(x0)

)
+O

(
(|z|H2 + |xs − x0|)3

)
.

(81)
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Hence, from (68), (77) and the boundary conditions (22), we have

dV1

dt
+
dV4

dt
6− µ(V1 + V4)

+ max

{
Θ1

ε1
,

Θ2

ε2

}
V1

+

[
x0

xs
p1(k2

1 − e−
µx0
η1 ) +

ε1 + ε2

8

]
z2

1(x0)

+

[
x0

L− xs
p2(k2

2 − e−
µx0
η2 ) +

ε1 + ε2

8

]
z2

2(x0)

+

[
−2

x0

xs
p1b1k1 −

x0

xs
p̄1(e−

µx0
η1 − k1) + κ

]
z1(x0)(xs − x0)

+

[
−2

x0

L− xs
p2b2k2 −

x0

L− xs
p̄2(e−

µx0
η2 − k2) + κ

]
z2(x0)(xs − x0)

+

[
x0

xs
p1b

2
1 +

x0

L− xs
p2b

2
2 −

x0

xs
p̄1b1 −

x0

L− xs
p̄2b2 + µκ

]
(xs − x0)2

+O
(
(|z|H2 + |xs − x0|)3

)
.

(82)

Let us now select ε1 and ε2 as follows:

ε1 = 2
Θ1

µ
, ε2 = 2

Θ2

µ
, (83)

where Θ1 and Θ2 are defined in (45). Then (82) can be rewritten in the following compact form:

dV1

dt
+
dV4

dt
6 −µ

2
V1 − µV4 − ZTA0 Z +O

(
(|z|H2 + |xs − x0|)3

)
. (84)

This expression involves the quadratic form ZTA0 Z with the vector Z defined as

Z = (z1(x0) z2(x0) (xs − x0))T . (85)

and the matrix A0 satisfies
A0 = A +O(|xs − x0|), (86)

where A is given by

A =

a11 0 a13

0 a22 a23

a31 a32 a33

 (87)

with

a11 = p1(e−
µx0
η1 − k2

1)− ε1 + ε2

8
, (88)

a13 = a31 = p1b1k1 +
p̄1

2
(e−

µx0
η1 − k1)− κ

2
, (89)

a22 =
x0

L− x0
p2(e−

µx0
η2 − k2

2)− ε1 + ε2

8
, (90)

a23 = a32 =
x0

L− x0
p2b2k2 +

x0

L− x0

p̄2

2
(e−

µx0
η2 − k2)− κ

2
, (91)

a33 = −p1b
2
1 −

x0

L− x0
p2b

2
2 + p̄1b1 +

x0

L− x0
p̄2b2 − µκ. (92)

Similarly, from (70) and (79), we get

dV2

dt
+
dV5

dt
6 −µ

2
V2 − µV5 − ZTtA0 Zt +O

(
(|z|H2 + |xs − x0|)3

)
, (93)
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while from (74) and (81), we have

dV3

dt
+
dV6

dt
6 −µ

2
V3 − µV6 − ZTttA1 Ztt +O

(
(|z|H2 + |xs − x0|)3

)
(94)

with

A1 = A0 +

O(|z|H2) 0 0
0 O(|z|H2) 0
0 0 0

 . (95)

If A is positive definite, from (86) and (95) and by continuity, A0 and A1 are also positive definite
provided that |z|H2 and |xs − x0| are sufficiently small. Hence, from (84), (93), (94) and Lemma 3.1,
there exists δ1(T ) > 0 such that, if |z0|H2((0,x0);R2) 6 δ1(T ) and |xs0 − x0| 6 δ1(T ), one has

dV

dt
6 −µ

2
V +O

(
(|z|H2 + |xs − x0|)3

)
, (96)

which ends the proof of Lemma 4.3.

Let us now prove Theorem 4.1.

Proof of Theorem 4.1. From Lemma 4.1 and Lemma 4.2, all it remains to do is to show that for any
γ > 0, under conditions (16) there exist µ, p1, p2, p̄1 and p̄2 satisfying (44) and such that V given by
(31)-(37) decreases exponentially with rate γ/2 along any C3 solution of the system (21)–(23). Using
Lemma 4.3 we first show that for any γ > 0 there exists µ > γ, and positive parameters p1, p2, p̄1 and
p̄2 satisfying (44) and such that the matrix A defined by (87)-(92) is positive definite, which implies
that (67) holds. Then, we show that this implies the exponential decay of V with decay rate γ/2
along any C3 solution of (21)–(23).

Let us start by selecting p1 and p2 as

p1 =
p̄1

2b1
, p2 =

p̄2

2b2
. (97)

Then the cross terms (89), (91) of the matrix A become

a13 = a31 =
p̄1

2
e−

µx0
η1 − κ

2
, a23 = a32 =

x0

L− x0

p̄2

2
e−

µx0
η2 − κ

2
. (98)

Let p̄1 and p̄2 be selected as

p̄1 = κe
µx0
η1 , p̄2 = κ

L− x0

x0
e
µx0
η2 . (99)

Then we have
a13 = a31 = 0, a23 = a32 = 0 (100)

such that A can now be rewritten as

A =

a11 0 0
0 a22 0
0 0 a33

 . (101)

Moreover from (97) and (99), we get

a33 =
p̄1

2
b1 +

x0

L− x0

p̄2

2
b2 − µκ =

κ

2
b1e

µx0
η1 +

κ

2
b2e

µx0
η2 − µκ. (102)

As conditions (16) are strict inequalities, by continuity it follows that we can select µ > γ such that
these conditions (16) are still satisfied with µ instead of γ such that

µe−
µx0
η1 < b1 <

µe−
µx0
η1

1− e−
µx0
η1

, µe−
µx0
η2 < b2 <

µe−
µx0
η2

1− e−
µx0
η2

, (103)

this together with (102) gives
a33 > 0. (104)
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From (45), (83), (88), (90), (97) and (99), we have

a11 =
κ

2b1
(1− k2

1e
µx0
η1 )− κ

2µ2

[
b1(e

µx0
η1 − 1) + b2(e

µx0
η2 − 1)

]
, (105)

a22 =
κ

2b2
(1− k2

2e
µx0
η2 )− κ

2µ2

[
b1(e

µx0
η1 − 1) + b2(e

µx0
η2 − 1)

]
. (106)

Then, under assumptions (16), it can be checked that

a11 > 0, a22 > 0. (107)

This implies that A is positive definite.
Thus from Lemma 4.3, for any T > 0, there exists δ1(T ) > 0 such that for any (z, xs) ∈ C3([0, T ]×

[0, x0];R2)) × C3([0, T ];R) solution of (21)–(23) satisfying
∣∣z0
∣∣
H2((0,L);R2)

6 δ1(T ) and |xs0 − x0| 6
δ1(T ), one has

dV

dt
6 −µ

2
V +O

(
(|z|H2 + |xs − x0|)3

)
. (108)

Now let us remark that from condition (103) we have

max

(
2
b1η1

µ
e
µx0
η1

(
1− e−

µx0
η1

)
, 2

L− x0

x0

b2η2

µ
e
µx0
η2

(
1− e−

µx0
η2

))
< 2. (109)

Therefore, there exists κ > 1 such that

max

(
2κ
b1η1

µ
e
µx0
η1

(
1− e−

µx0
η1

)
, 2κ

L− x0

x0

b2η2

µ
e
µx0
η2

(
1− e−

µx0
η2

))
< 2, (110)

which means from (97) and (99) that (44) is satisfied. Hence from (108) and Lemma 4.1, since µ > γ,
there exists δ0(T ) 6 δ1(T ) such that, if

∣∣z0
∣∣
H2((0,x0);R2)

6 δ0(T ) and |xs0 − x0| 6 δ0(T ), then

dV

dt
6 −γ

2
V (111)

along the C3 solutions of the system (21)–(23). Thus from Lemma 4.2, (111) holds along the
C0([0, T ];H2((0, x0);R2))× C1([0, T ];R) solutions of (21)–(23) in a distribution sense.

So far δ0(T ) may depend on T , while δ∗ in Theorem 4.1 does not depend on T . The only thing left
to check is that we can find δ∗ independent of T such that if

∣∣z0
∣∣
H2((0,x0);R2)

6 δ∗ and |xs0 − x0| 6 δ∗,

then (111) holds on (0, T ) for any T > 0. As the constant β involved in Lemma 4.1 does not depend
on T , there exists T1 > 0 such that

β−2e−
γ
2 T1 <

1

2
. (112)

As T1 ∈ (0,+∞), from Lemma 3.1, we can choose δ0(T1) > 0 satisfying C(T1)δ0(T1) < β/2, such that
for every xs0 ∈ (0, L) and z0 ∈ H2((0, x0);R2) satisfying the compatibility conditions (25)–(26) and

|z0|H2((0,x0);R2) 6 δ0(T1), |xs0 − x0| 6 δ0(T1),

there exists a unique solution (z, xs) ∈ C0([0, T1];H2((0, x0);R2))×C1([0, T1];R) to the system (21)–
(23) satisfying

|z(t, ·)|H2((0,x0);R2) + |xs(t)− x0| < β (113)

and such that (111) holds on (0, T1) in a distribution sense. From (113), Lemma 4.1 and (112),

|z(T1, ·)|H2((0,x0);R2) 6 δ0(T1), |xs(T1)− x0| 6 δ0(T1). (114)

Moreover, the compatibility conditions hold now at time t = T1 instead of t = 0. Thus, from Lemma
3.1 there exists a unique (z, xs) ∈ C0([T1, 2T1];H2((0, x0);R2)) × C1([T1, 2T1];R) solution of (21)–
(23) on [T1, 2T1] and (111) holds on (T1, 2T1) in a distribution sense. One can repeat this analysis
on [jT1, (j + 1)T1] where j ∈ N∗ \ {1}. Setting δ∗ = δ0(T1), we get that (111) holds on (0, T )
for any T > 0 in a distribution sense along the C0([0, T ];H2((0, x0);R2)) × C1([0, T ];R) solutions
of the system (21)–(23). In fact, it also implies the global existence and uniqueness of (z, xs) ∈
C0([0,+∞);H2((0, x0);R2))× C1([0,+∞);R) solution of (21)–(23) and the fact that (111) holds on
(0,+∞). This concludes the proof of Theorem 4.1.
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5 Extension to a general convex flux

We can in fact extend this method to a more general convex flux. Let f ∈ C3(R) be a convex function,
and consider the equation

∂ty + ∂x(f(y)) = 0. (115)

For this conservation law, the Rankine-Hugoniot condition becomes

ẋs =
f(y(t, xs(t)

+))− f(y(t, xs(t)
−))

y(t, xs(t)+)− y(t, xs(t)−)
, (116)

and, let (y∗, x0) be an entropic shock steady state of (115)–(116), without loss of generality we can
assume that y∗(x+

0 ) = −1 and y∗(x−0 ) = 1, thus f(1) = f(−1). Then, for any x0 ∈ (0, L), we have the
following result:

Theorem 5.1. Let f ∈ C3(R) be a convex function such that f(1) = f(−1) and assume in addition
that

f ′(1) > 1 and |f ′(−1)| > 1. (117)

Let γ > 0. If the following conditions hold

b1 ∈
(

2γe−γx0

f ′(1) + |f ′(−1)| ,
γe−γx0

1− e−γx0

)
, b2 ∈

(
2γe−γ(L−x0)

f ′(1) + |f ′(−1)| ,
γe−γ(L−x0)

1− e−γ(L−x0)

)
, (118a)

k2
1 < e−γx0

(
1− f ′(1)

b1
γ

(
b1

1− e−γx0

γe−γx0
+ b2

1− e−γ(L−x0)

γe−γ(L−x0)

))
, (118b)

k2
2 < e−γ(L−x0)

(
1− |f ′(−1)|b2

γ

(
b1

1− e−γx0

γe−γx0
+ b2

1− e−γ(L−x0)

γe−γ(L−x0)

))
, (118c)

then the steady state (y∗, x0) of the system (115), (116), (3), (8) is exponentially stable for the H2-
norm with decay rate γ/4.

One can use exactly the same method as previously. We give in Appendix B a way to adapt the
proof of Theorem 4.1.

Remark 9. One could wonder why we require condition (117). This condition ensures that there
always exist parameters bi and ki satisfying (118).
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6 Conclusion and Open problems

The stabilization of shock-free regular solutions of quasilinear hyperbolic systems has been the subject
of a large number of publications in the recent scientific literature. In contrast, there are no results
concerning the Lyapunov stability of solutions with jump discontinuities, although they occur naturally
in the form of shock waves or hydraulic jumps in many applications of fluid dynamics. For instance,
the inviscid Burgers equation provides a simple scalar example of a hyperbolic system having natural
solutions with jump discontinuities. The main contribution of this paper is precisely to address the
issue of the boundary exponential feedback stabilization of an unstable shock steady state for the
Burgers equation over a bounded interval. Our strategy to solve the problem relies on introducing a
change of variables which allows to transform the scalar Burgers equation with shock wave solutions
into an equivalent 2 × 2 quasilinear hyperbolic system having shock-free solutions over a bounded
interval. Then, by a Lyapunov approach, we show that, for appropriately chosen boundary conditions,
the exponential stability in H2-norm of the steady state can be achieved with an arbitrary decay rate
and with an exact exponential stabilization of the desired shock location. Compared with previous
results in the literature for classical solutions of quasilinear hyperbolic systems, the selection of an
appropriate Lyapunov function is challenging because the equivalent system is parameterized by the
time-varying position of the jump discontinuity. In particular, the standard quadratic Lyapunov
function used in the book [3] has to be augmented with suitable extra terms for the analysis of the
stabilization of the jump position. Based on the result, some open questions could be addressed.
Could these results be generalized to any convex flux, especially when (117) is not satisfied? As we
show the rapid stabilization result, is it possible to obtain finite time stabilization? Could we replace
the left/right state at the shock by measurements nearby or by averages close to the shock? If not,
could the error on both the state and shock location be bounded?
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Appendix

A Proof of Lemma 3.1

Proof. We adapt the fixed point method used in [3, Appendix B] (see also [25, 31]). We first deal with
the case where

T ∈ (0,min (x0, L− x0)) . (119)

For any ν > 0, xs0 ∈ R and z0 ∈ H2((0, x0);R2), let Cν(z0, xs0) be the set of

z ∈ L∞((0, T );H2((0, x0);R2)) ∩W 1,∞((0, T );H1((0, x0);R2)) ∩W 2,∞((0, T );L2((0, x0);R2))

such that

|z|L∞((0,T );H2((0,x0);R2)) 6 ν, (120)

|z|W 1,∞((0,T );H1((0,x0);R2)) 6 ν, (121)

|z|W 2,∞((0,T );L2((0,x0);R2)) 6 ν, (122)

z(·, x0) ∈ H2((0, T );R2)), |z(·, x0)|H2((0,T );R2)) 6 ν2, (123)

z(0, ·) = z0, (124)

zt(0, ·) = −A(z0, ·, xs(z(·, x0))(0))z0
x, (125)

where we write xs(z(·, x0))(t) in order to emphasize its dependence on z(·, x0) in the following proof
and

xs(z(·, x0))(t) =: xs0 +

∫ t

0

z1(s, x0) + z2(s, x0)

2
ds. (126)

20



In (125),

A(z, x, xs(z(·, x0))(t)) =

(
a1(z, x, xs(z(·, x0))(t)) 0

0 a2(z, x, xs(z(·, x0))(t))

)
(127)

with

a1(z, x, xs(z(·, x0))(t)) =

(
1 + z1(t, x)− xz1(t, x0) + z2(t, x0)

2x0

)
x0

xs(z(·, x0))(t)
, (128)

a2(z, x, xs(z(·, x0))(t)) =

(
1− z2(t, x) + x

z1(t, x0) + z2(t, x0)

2x0

)
x0

L− xs(z(·, x0))(t)
. (129)

The set Cν(z0, xs0) is not empty and is a closed subset of L∞((0, T );L2((0, L);R2)) provided that
|z0|H2((0,x0);R2) 6 δ and |xs0 − x0| 6 δ, with δ sufficiently small (see for instance [3, Appendix B]).

Let us define a mapping:

F : Cν(z0, xs0) −→ L∞((0, T );H2((0, x0);R2)) ∩W 1,∞((0, T );H1((0, x0);R2))

∩W 2,∞((0, T );L2((0, x0);R2))

v = (v1, v2)T 7−→ F(v) = z = (z1, z2)T (130)

where z is the solution of the linear hyperbolic equation

zt +A(v, x, xs(v(·, x0))(t))zx = 0, (131)

z(0, x) = z0(x), (132)

with boundary conditions

z1(t, 0) = k1z1(t, x0) + b1ψ(t), (133)

z2(t, 0) = k2z2(t, x0) + b2ψ(t), (134)

where
ψ(t) = x0 − xs(v(·, x0))(t). (135)

In the following, we will treat z1 in details. For the sake of simplicity, we denote

f1(t, x) := a1(v(t, x), x, xs(v(·, x0))(t)). (136)

It is easy to check from (128) that if ν is sufficiently small, then f1(t, x) is strictly positive for any
(t, x) ∈ [0, T ]× [0, x0]. Let us now define the characteristic curve ξ1(s; t, x) passing through (t, x) as

dξ1(s; t, x)

ds
= f1(s, ξ1(s; t, x)),

ξ1(t; t, x) = x.
(137)

One can see that for every (t, x) ∈ [0, T ]× [0, x0], ξ1(·; t, x) is uniquely defined on some closed interval
in [0, T ]. From (119), only two cases can occur (see Figure 2): If ξ1(t; 0, 0) < x 6 x0, there exists
β1 ∈ [0, x0] depending on (t, x) such that

β1 = ξ1(0; t, x). (138)

If 0 < x < ξ1(t; 0, 0), there exists α1 ∈ [0, t] depending on (t, x) such that

ξ1(α1; t, x) = 0, (139)

and in this case, there exists γ1 ∈ [0, x0] depending on α1 such that

γ1 = ξ1(0;α1, x0). (140)

Moreover, we have the following lemma which will be used in the estimations hereafter (the proof can
be found at the end of this appendix).
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Lemma A.1. There exist ν0 > 0 and C > 0 such that, for any T satisfying (119), for any ν ∈ (0, ν0]
and for a.e. t ∈ (0, T ), we have

|f1(t, ·)|0 6 C, |f1x(t, ·)|0 6 Cν, |f1t(t, ·)|0 6 Cν, (141)

|∂xξ1(s; t, ·)|0 6 C, |∂tξ1(s; t, ·)|0 6 C, s ∈ [0, t], (142)

|∂xβ1(t, ·)|0 6 C, | (∂xβ1(t, ·))−1 |0 6 C, (143)

|∂tβ1(t, ·)|0 6 C, | (∂tβ1(t, ·))−1 |0 6 C, (144)

|∂xα1(t, ·)|0 6 C,
∣∣∣(∂xα1(t, ·))−1

∣∣∣
0
6 C, (145)

|∂xγ1(t, ·)|0 6 C,
∣∣(∂xγ1(t, ·))−1

∣∣
0
6 C, (146)∫ T

0

|∂ttβ1(t, x0)|2 dt 6 Cν, (147)∫ x0

0

|∂xxα1(t, x)|2 dx 6 Cν, (148)∫ x0

0

|∂xxβ1(t, x)|2 dx 6 Cν, (149)∫ x0

0

|∂xxγ1(t, x)|2 dx 6 Cν. (150)

In these inequalities, and hereafter in this section, |f |0 denotes the C0-norm of a function f with
respect to its variable and C may depend on x0, xs0, ν0, k1, k2, b1 and b2, but is independent of ν,
T , v and z.

Our goal is now to use a fixed point argument to show the existence and uniqueness of the solution
to (21)–(23). Firstly, we show that for ν and δ sufficiently small, F maps Cν(z0, xs0) into itself, i.e.,

F(Cν(z0, xs0)) ⊂ Cν(z0, xs0).

Then, in a second step, we prove that F is a contraction mapping.

1) F maps Cν(z0, xs0) into itself.
For any v ∈ Cν(z0, xs0), let z = F(v), we prove that z ∈ Cν(z0, xs0). By the definition of F in (130),
using the method of characteristics, we can solve (131) to (134) for z1 and obtain that

z1(t, x) =

{
k1z

0
1(γ1) + b1ψ(α1), 0 < x < ξ1(t; 0, 0),

z0
1(β1), ξ1(t; 0, 0) < x < x0.

(151)

Obviously z verifies the properties (124)–(125). Next, we prove that z verifies the property (123).
Using the change of variables and from (144), we have∫ T

0

z1(t, x0)2dt =

∫ T

0

z0
1(β1(t, x0))2dt 6 C

∫ x0

0

(z0
1(x))2dx. (152)

In (152) and hereafter, C denotes various constants that may depend on x0, xs0, ν0, k1, k2, b1 and
b2, but are independent of ν, T , v and z. Similarly, by (144), we obtain∫ T

0

z1t(t, x0)2dt =

∫ T

0

(z0
1x(β1(t, x0))∂tβ1(t, x0))2dt 6 C

∫ T

0

(z0
1x(x))2dx. (153)

From (147) and using Sobolev inequality, one has∫ T

0

z1tt(t, x0)2dt =

∫ T

0

(z0
1xx(β1(t, x0))(∂tβ1(t, x0))2 + z0

1x(β1(t, x0))∂ttβ1(t, x0))2dt

6 C

∫ x0

0

(z0
1xx(x))2dx+ 2|z0

1x|20
∫ T

0

(∂ttβ1(t, x0))2 dt

6 C|z0
1 |2H2((0,x0);R).

(154)
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Combining (152)–(154), we get

|z1(·, x0)|H2((0,T );R) 6 C|z0
1 |H2((0,x0);R). (155)

Applying similar estimate to z2 gives

|z2(·, x0)|H2((0,T );R) 6 C|z0
2 |H2((0,x0);R). (156)

From (155) and (156), we can select δ sufficiently small such that

|z(·, x0)|H2((0,T );R2) 6 ν2, (157)

which shows both the regularity and the boundedness property (123). We can again use the method
of characteristics to prove properties (120)–(122). For a.e. t ∈ (0, T ),

z1x(t, x) =

{
k1z

0
1x(γ1)∂xγ1 + b1ψ̇(α1)∂xα1, 0 < x < ξ1(t; 0, 0),

z0
1x(β1)∂xβ1, ξ1(t; 0, 0) < x < x0.

(158)

z1xx(t, x) =


k1z

0
1x(γ1)∂xxγ1 + k1z

0
1xx(γ1)(∂xγ1)2

+ b1ψ̈(α1)(∂xα1)2 + b1ψ̇(α1)∂xxα1
, 0 < x < ξ1(t; 0, 0),

z0
1x(β1)∂xxβ1 + z0

1xx(β1)(∂xβ1)2, ξ1(t; 0, 0) < x < x0.

(159)

Note that the last equation is true in distribution sense but shows that z1 ∈ L∞((0, T );H2((0, x0);R)).
We first estimate |z|L∞((0,T );H2((0,x0);R2)). From (126) and (135), using Sobolev inequality, we get

|ψ|0 6|xs0 − x0|+ C|v(·, x0)|H2((0,T );R2), (160)

|ψ̇|0 6C|v(·, x0)|H2((0,T );R2), (161)

|ψ̈|0 6C|v(·, x0)|H2((0,T );R2). (162)

From (151), (158) and (159), we can compute directly using (143), (145)–(146) and (148)–(150) that∫ x0

0

z2
1dx 6

(∣∣(∂xβ1(t, ·))−1
∣∣
0

+ 2k2
1

∣∣(∂xγ1(t, ·))−1
∣∣
0

) ∫ x0

0

(z0
1(x))2dx+ 2b21x0|ψ|20,

6 C(|z0
1 |2H2((0,x0);R) + |xs0 − x0|2 + |v(·, x0)|2H2((0,T );R2)),

(163)

∫ x0

0

z2
1xdx 6

(
|∂xβ1(t, ·)|0 + 2k2

1 |∂xγ1(t, ·)|0
) ∫ x0

0

(z0
1x(x))2dx+ 2x0b

2
1|ψ̇|20|∂xα1(t, ·)|20

6C(|z0
1 |2H2((0,x0);R) + |v(·, x0)|2H2((0,T );R2)),

(164)

∫ x0

0

z2
1xxdx 6

(
2 |∂xβ1(t, ·)|30 + 4k2

1 |∂xγ1(t, ·)|30
)∫ x0

0

(z0
1xx)2dx

+ 2
∣∣z0

1x

∣∣2
0

∫ x0

0

|∂xxβ1(t, x)|2dx+ 4k2
1

∣∣z0
1x

∣∣2
0

∫ x0

0

|∂xxγ1(t, x)|2dx

+ 4b21|∂xα1(t, x)|40
∫ x0

0

|ψ̈(α1(t, x))|2dx+ 4b21|ψ̇|20
∫ x0

0

|∂xxα1(t, x)|2dx

6C(|z0
1 |2H2((0,x0);R) + |v(·, x0)|2H2((0,T );R2)).

(165)

Combining (163)–(165), we obtain

|z1(t, ·)|H2((0,x0);R) 6 C(|z0
1 |H2((0,x0);R) + |xs0 − x0|+ |v(·, x0)|H2((0,T );R2)), (166)

Similarly, one can get

|z2(t, ·)|H2((0,x0);R) 6 C(|z0
2 |H2((0,x0);R) + |xs0 − x0|+ |v(·, x0)|H2((0,T );R2)). (167)

Noticing from v ∈ Cν(z0, xs0) that

|v(·, x0)|H2((0,T );R2) 6 ν2,
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thus by selecting δ and ν ∈ (0, ν0] sufficiently small, in addition to the previous hypothesis on δ, we
have indeed

|z(t, ·)|H2((0,x0);R2) 6 ν, a.e. t ∈ (0, T ), (168)

which proves (120). The same method as to prove (168) enables us to show that z1 verifies also (121)
and (122). One only has to realize that

z1t(t, x) =

{
k1z

0
1x(γ1)∂tγ1 + b1ψ̇(α1)∂tα1, 0 < x < ξ1(t; 0, 0),

z0
1x(β1)∂tβ1, ξ1(t; 0, 0) < x < x0.

z1tt(t, x) =

{
k1z

0
1x(γ1)∂ttγ + k1z

0
1xx(γ1)(∂tγ1)2 + b1ψ̈(α1)(∂tα1)2 + b1ψ̇(α1)∂ttα1, 0 < x < ξ1(t; 0, 0),

z0
1x(β1)∂ttβ1 + z0

1xx(β1)(∂tβ1)2, ξ1(t; 0, 0) < x < x0.

z1tx(t, x) =


k1z

0
1x(γ1)∂x(∂tγ1) + k1z

0
1xx(γ1)(∂xγ1∂tγ1)

+ b1ψ̈(α1)(∂tα1∂xα1) + b1ψ̇(α1)∂x(∂tα1),
0 < x < ξ1(t; 0, 0),

z0
1x(β1)∂x(∂tβ1) + z0

1xx(β1)(∂xβ1∂tβ1), ξ1(t; 0, 0) < x < x0,

and to estimate
∫ ξ1(t;0,0)

0
|∂ttα1|2dx,

∫ x0

ξ1(t;0,0)
|∂ttβ1|2dx,

∫ ξ1(t;0,0)

0
|∂ttγ1|2dx,

∫ ξ1(t;0,0)

0
|∂x(∂tα1)|2dx,∫ x0

ξ1(t,0,0)
|∂x(∂tβ1)|2dx and

∫ ξ1(t;0,0)

0
|∂x(∂tγ1)|2dx similarly as in (148)–(150) using the fact that v

belongs to L∞((0, T );H2((0, x0);R2)) ∩W 1,∞((0, T );H1((0, x0);R2)) ∩W 2,∞((0, T );L2((0, x0);R2))
with bound ν in these norms.

We can clearly perform similar estimates for z2. Consequently there exist δ and ν1 ∈ (0, ν0]
sufficiently small depending only on C such that, for any ν ∈ (0, ν1], z = F(v) verifies properties
(120)–(125) and therefore F(Cν(z0, xs0)) ⊂ Cν(z0, xs0).

2) F is a contraction mapping.
Next, we prove that F is a contraction mapping satisfying the following inequality:

|F(v)−F(v̄)|L∞((0,T );L2((0,x0);R2)) +M |F(v)(·, x0)−F(v̄)(·, x0)|L2((0,T );R2)

6
1

2
|v − v̄|L∞((0,T );L2((0,x0);R2)) +

M

2
|v(·, x0)− v̄(·, x0)|L2((0,T );R2),

(169)

where M > 0 is a constant. We start with z1, and with the estimate of |z1 − z̄1|L∞((0,T );L2((0,x0);R)).
For any chosen v and v̄ from Cν(z0, xs0), without loss of generality, we may assume that ξ1(t; 0, 0) <
ξ̄1(t; 0, 0), where ξ̄1 is the characteristic defined in (137) associated to v̄. From (151), we have∫ x0

0

|z1(t, x)− z̄1(t, x)|2 dx

=

∫ ξ1(t;0,0)

0

|k1z
0
1(γ1)− k1z

0
1(γ̄1) + b1ψ(α1)− b1ψ̄(ᾱ1)|2 dx

+

∫ ξ̄1(t;0,0)

ξ1(t;0,0)

|z0
1(β1)− (k1z

0
1(γ̄1) + b1ψ̄(ᾱ1))|2 dx+

∫ x0

ξ̄1(t;0,0)

|z0
1(β1)− z0

1(β̄1)|2 dx. (170)

From the definition of ψ in (135) and (126), using Sobolev and Cauchy-Schwarz inequalities, we have∫ ξ1(t;0,0)

0

|b1ψ(α1)− b1ψ̄(ᾱ1)|2 dx

=

∫ ξ1(t;0,0)

0

b21

∣∣∣∣∫ α1

0

v1(s, x0) + v2(s, x0)

2
ds−

∫ ᾱ1

0

v̄1(s, x0) + v̄2(s, x0)

2
ds

∣∣∣∣2 dx
6C|v(·, x0)− v̄(·, x0)|2L2((0,T );R2) + C|v̄(·, x0)|2H2((0,T );R2)

∫ ξ1(t;0,0)

0

|α1 − ᾱ1|2 dx. (171)

By the definition of γ1 in (140) and the corresponding definition of γ̄1 and using (142), we obtain∫ ξ1(t;0,0)

0

|k1z
0
1(γ1)− k1z

0
1(γ̄1)|2 dx 6 C|z0

1 |2H2((0,x0);R)

∫ ξ1(t;0,0)

0

|α1 − ᾱ1|2 dx. (172)
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Combining (170)–(172), we get∫ x0

0

|z1(t, x)− z̄1(t, x)|2 dx

6C(|z0
1 |2H2((0,x0);R) + |v̄(·, x0)|2H2((0,T );R2))

∫ ξ1(t;0,0)

0

|α1 − ᾱ1|2 dx

+ |z0
1 |2H2((0,x0);R)

∫ x0

ξ̄1(t;0,0)

|β1 − β̄1|2 dx+

∫ ξ̄1(t;0,0)

ξ1(t;0,0)

|z0
1(β1)− (k1z

0
1(γ̄1) + b1ψ̄(ᾱ1))|2 dx

+ C|v(·, x0)− v̄(·, x0)|2L2((0,T );R2). (173)

We estimate each term in (173) separately. By the definition of β1 in (138) and the corresponding
definition of β̄1, we have∫ x0

ξ̄1(t;0,0)

|β1 − β̄1|2 dx =

∫ x0

ξ̄1(t;0,0)

|ξ1(0; t, x)− ξ̄1(0; t, x)|2 dx. (174)

Now, let us estimate |ξ1(0; t, x)− ξ̄1(0; t, x)|. From the definition of xs in (126) and the definitions of
ξ1 and ξ̄1, see (137), we get for any s ∈ [0, t] that

|ξ1(s; t, x)− ξ̄1(s; t, x)|

=
∣∣∣ ∫ t

s

f1(θ, ξ1(θ; t, x)) dθ −
∫ t

s

f̄1(θ, ξ̄1(θ; t, x)) dθ
∣∣∣

6
∫ t

s

( ∣∣∣∣(1 + v1(θ, ξ1)− ξ1
v1(θ, x0) + v2(θ, x0)

2x0

)
x0

xs(v(·, x0))(θ)xs(v̄(·, x0))(θ)

∣∣∣∣
·
∫ θ

0

∣∣∣∣v1(α, x0)− v̄1(α, x0) + v2(α, x0)− v̄2(α, x0)

2

∣∣∣∣ dα) dθ
+

∫ t

s

∣∣∣∣ x0

xs(v̄(·, x0))(θ)

∣∣∣∣ · ∣∣∣∣v1(θ, ξ1)− v̄1(θ, ξ̄1) + ξ̄1
v̄1(θ, x0) + v̄2(θ, x0)

2x0
− ξ1

v1(θ, x0) + v2(θ, x0)

2x0

∣∣∣∣ dθ
6C|v(·, x0)− v̄(·, x0)|L2((0,T );R2) + Cν

∫ t

s

|ξ1(θ; t, x)− ξ̄1(θ; t, x)| dθ

+ C

∫ t

s

|v1(θ, ξ̄1(θ; t, x))− v̄1(θ, ξ̄1(θ; t, x))|dθ. (175)

From (175), we get for ν ∈ (0, ν0] sufficiently small and for ξ̄1(t; 0, 0) < x 6 x0 that

|ξ1(·; t, x)− ξ̄1(·; t, x)|C0([0,t];R) 6C|v(·, x0)− v̄(·, x0)|L2((0,T );R2)

+ C

∫ t

0

|v1(θ, ξ̄1(θ; t, x))− v̄1(θ, ξ̄1(θ; t, x))| dθ. (176)

Thus, from (174) and (176) we have∫ x0

ξ̄1(t;0,0)

|β1 − β̄1|2 dx 6C|v(·, x0)− v̄(·, x0)|2L2((0,T );R2)

+ C

∫ x0

ξ̄1(t;0,0)

(∫ t

0

|v1(θ, ξ̄1(θ; t, x))− v̄1(θ, ξ̄1(θ; t, x))| dθ
)2

dx

6C|v(·, x0)− v̄(·, x0)|2L2((0,T );R2)

+ C

∫ t

0

∫ x0

ξ̄1(t;0,0)

|v1(θ, ξ̄1(θ; t, x))− v̄1(θ, ξ̄1(θ; t, x))|2 dx dθ

6C|v(·, x0)− v̄(·, x0)|2L2((0,T );R2)

+ C|v1 − v̄1|2L∞((0,T );L2((0,x0);R)). (177)

The last inequality is obtained using the change of variable y = ξ̄1(θ; t, x), well-defined for 0 6 θ 6 t 6
T and ξ̄1(t; 0, 0) < x 6 x0. Let us now estimate |α1 − ᾱ1|L2((0,ξ1(t;0,0));R). Without loss of generality,
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we may assume that α1 6 ᾱ1. By definition of α1 in (139) and the corresponding definition of ᾱ1, we
have ∫ t

α1

f1(s, ξ1(s; t, x))ds = x =

∫ t

ᾱ1

f̄1(s, ξ̄1(s; t, x))ds. (178)

Hence, similarly to (175), we get

|α1 − ᾱ1| 6
1

inf
(t,x)∈[0,T ]×[0,x0]

|f1(t, x)|

∫ t

ᾱ1

∣∣f1(s, ξ1(s; t, x))− f̄1(s, ξ̄1(s; t, x))
∣∣ ds

6C|v(·, x0)− v̄(·, x0)|L2((0,T );R2) + Cν

∫ t

ᾱ1

|ξ1(θ; t, x)− ξ̄1(θ; t, x)| dθ

+ C

∫ t

ᾱ1

|v1(θ, ξ̄1(θ; t, x))− v̄1(θ, ξ̄1(θ; t, x))|dθ. (179)

Similarly to the proof of (176), for ν ∈ (0, ν0] sufficiently small, we can obtain that (note that ξ1(s; t, x)
and ξ̄1(s; t, x) for any s ∈ [ᾱ1, t] are well defined as we assume that α1 6 ᾱ1)

|ξ1(·; t, x)− ξ̄1(·; t, x)|C0([ᾱ1,t];R) 6C|v(·, x0)− v̄(·, x0)|L2((0,T );R2)

+ C

∫ t

ᾱ

|v1(θ, ξ̄1(θ; t, x))− v̄1(θ, ξ̄1(θ; t, x))| dθ. (180)

Using this inequality in (179) and performing similarly as in (177), we can obtain∫ ξ1(t;0,0)

0

|α1 − ᾱ1|2 dx 6 C|v(·, x0)− v̄(·, x0)|2L2((0,T );R2) + C|v1 − v̄1|2L∞((0,T );L2((0,x0);R)). (181)

Let us now focus on the estimation of the term
∫ ξ̄1(t;0,0)

ξ1(t;0,0)
|z0

1(β1)− (k1z
0
1(γ̄1) + b1ψ̄(ᾱ1))|2 dx in (173).

Using the compatibility condition (25), we have∫ ξ̄1(t;0,0)

ξ1(t;0,0)

|z0
1(β1)− (k1z

0
1(γ̄1) + b1ψ̄(ᾱ1))|2 dx

=

∫ ξ̄1(t;0,0)

ξ1(t;0,0)

|z0
1(β1)− z0

1(0) + z0
1(0)− (k1z

0
1(γ̄1) + b1ψ̄(ᾱ1))|2 dx

=

∫ ξ̄1(t;0,0)

ξ1(t;0,0)

|z0
1(β1)− z0

1(0) + k1z
0
1(x0) + b1(x0 − xs0)− (k1z

0
1(γ̄1) + b1ψ̄(ᾱ1))|2 dx

6C|z0
1 |2H2((0,x0);R)

∫ ξ̄1(t;0,0)

ξ1(t;0,0)

|β1|2 dx+ C|z0
1 |2H2((0,x0);R)

∫ ξ̄1(t;0,0)

ξ1(t;0,0)

|x0 − γ̄1|2 dx

+ C

∫ ξ̄1(t;0,0)

ξ1(t;0,0)

∣∣∣∣∫ ᾱ1

0

v̄1(s, x0) + v̄2(s, x0)

2
ds

∣∣∣∣2 dx. (182)

We first estimate
∫ ξ̄1(t;0,0)

ξ1(t;0,0)
|β1|2 dx. As ξ1(s; t, x) is increasing with respect to s ∈ [0, t], we have

|β1| < |ξ1(ᾱ1; t, x)| = |ξ1(ᾱ1; t, x)− ξ̄1(ᾱ1; t, x)| 6 |ξ1(·; t, x)− ξ̄1(·; t, x)|C0([ᾱ1,t];R), (183)

then by (180) and performing the same proof as in (177), we get∫ ξ̄1(t;0,0)

ξ1(t;0,0)

|β1|2 dx 6 C|v(·, x0)− v̄(·, x0)|2L2((0,T );R2) + C|v1 − v̄1|2L∞((0,T );L2((0,x0);R)). (184)

Let us now look at the second term in (182), from (142) and the definition of γ̄1, we have∫ ξ̄1(t;0,0)

ξ1(t;0,0)

|x0 − γ̄1|2 dx =

∫ ξ̄1(t;0,0)

ξ1(t;0,0)

|ξ̄1(0; 0, x0)− ξ̄1(0; ᾱ1, x0)|2 dx
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6 |∂tξ̄1|20
∫ ξ̄1(t;0,0)

ξ1(t;0,0)

|ᾱ1|2 dx 6 C

∫ ξ̄1(t;0,0)

ξ1(t;0,0)

|ᾱ1|2 dx. (185)

It is easy to deal with the last term in (182), one has∫ ξ̄1(t;0,0)

ξ1(t;0,0)

∣∣∣∣∫ ᾱ1

0

v̄1(s, x0) + v̄2(s, x0)

2
ds

∣∣∣∣2 dx 6 C|v̄(·, x0)|2H2((0,T );R2)

∫ ξ̄1(t;0,0)

ξ1(t;0,0)

|ᾱ1|2 dx. (186)

Thus, we only have to estimate
∫ ξ̄1(t;0,0)

ξ1(t;0,0)
|ᾱ1|2 dx. Noticing that for any fixed (t, x), the characteristic

ξ̄1(s; t, x) is increasing with respect to s ∈ [ᾱ1, t] and that ξ−1
1 (·; t, x)(β1) = 0, we obtain

ᾱ1 < ξ̄−1
1 (·; t, x)(β1)− ξ−1

1 (·; t, x)(β1).

Moreover,

β1 = x+

∫ ξ−1
1 (·;t,x)(β1)

t

f1(s; ξ1(s; t, x)) dθ,

β1 = x+

∫ ξ̄−1
1 (·;t,x)(β1)

t

f̄1(s; ξ̄1(s; t, x)) dθ.

Then similarly as for (179), we can prove that∣∣ξ̄−1
1 (·; t, x)(β1)− ξ−1

1 (·; t, x)(β1)
∣∣ 6C|v(·, x0)− v̄(·, x0)|L2(0,T )

+ Cν

∫ t

ξ̄−1
1 (·;t,x)(β1)

|ξ1(θ; t, x)− ξ̄1(θ; t, x)| dθ

+ C

∫ t

ξ̄−1
1 (·;t,x)(β1)

|v1(θ, ξ̄1(θ; t, x))− v̄1(θ, ξ̄1(θ; t, x))|dθ.

Thus, similarly as in the proof for (181), we get∫ ξ̄1(t;0,0)

ξ1(t;0,0)

|ᾱ1|2 dx 6C|v(·, x0)− v̄(·, x0)|2L2((0,T );R2)

+ C|v1 − v̄1|2L∞((0,T );L2((0,x0);R)). (187)

Finally, using estimations (184) and (185)–(187), (182) becomes∫ ξ̄1(t;0,0)

ξ1(t;0,0)

|z0
1(β1)− (k1z

0
1(γ̄1) + b1ψ(ᾱ1))|2 dx

6C(|z0
1 |2H2((0,x0);R) + |v̄(·, x0)|2H2((0,T );R2))

(
|v(·, x0)− v̄(·, x0)|2L2((0,T );R2)

+ |v1 − v̄1|2L∞((0,T );L2((0,x0);R))

)
. (188)

Combining (173), (177), (181) and (188), we get

|z1 − z̄1|2L∞((0,T );L2((0,x0);R))

6 C(|z0
1 |2H2((0,x0);R)+|v̄(·, x0)|2H2((0,T );R2))

(
|v(·, x0)− v̄(·, x0)|2L2((0,T );R2) + |v1 − v̄1|2L∞((0,T );L2((0,x0);R))

)
+ C|v(·, x0)− v̄(·, x0)|2L2((0,T );R2). (189)

We are left with estimating |z(·, x0) − z̄(·, x0)|L2((0,T );R2) in order to obtain (169). Here we give the
estimation for z1. Using (176), we get∫ T

0

|z1(t, x0)− z̄1(t, x0)|2 dt
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=

∫ T

0

|z0
1(ξ1(0; t, x0))− z0

1(ξ̄1(0; t, x0))|2

6|z0
1x|20

∫ T

0

|ξ1(0; t, x0)− ξ̄1(0; t, x0)|2 dt

6C|z0
1 |2H2((0,x0);R)|v(·, x0)− v̄(·, x0)|2L2((0,T );R2)

+ C|z0
1 |2H2((0,x0);R)

∫ T

0

∫ t

0

|v1(θ, ξ̄1(θ; t, x0))− v̄1(θ, ξ̄1(θ; t, x0))|2 dθ dt

6C|z0
1 |2H2((0,x0);R)|v(·, x0)− v̄(·, x0)|2L2((0,T );R2)

+ C|z0
1 |2H2((0,x0);R)

∫ T

0

∫ T

θ

|v1(θ, ξ̄1(θ; t, x0))− v̄1(θ, ξ̄1(θ; t, x0))|2 dt dθ

6C|z0
1 |2H2((0,x0);R)

(
|v(·, x0)− v̄(·, x0)|2L2((0,T );R2) + |v1 − v̄1|2L∞((0,T );L2((0,x0);R))

)
. (190)

The last inequality is obtained by changing the variable y = ξ̄1(θ; t, x0). Similar estimates can be
done for z2. Hence, from (189) and (190), there exists M > 0 such that for δ sufficiently small and
ν ∈ (0, ν2], where ν2 ∈ (0, ν1] is sufficiently small and depends only on C, we have

|z− z̄|L∞((0,T );L2((0,x0);R2)) +M |z(·, x0)− z̄(·, x0)|L2((0,T );R2)

6
1

2
|v − v̄|L∞((0,T );L2((0,x0);R2)) +

M

2
|v(·, x0)− v̄(·, x0)|L2((0,T );R2).

(191)

Hence F is a contraction mapping and has a fixed point z ∈ Cν(z0, xs0), i.e., there exists a unique
solution z ∈ Cν(z0, xs0) to the system (21)–(23). Noticing (126), we get that xs ∈ C1([0, T ];R). To
get the extra regularity z ∈ C0([0, T ];H2((0, x0);R2)), we adapt the proof given by Majda [33, p.44-
46]. There, the author used energy estimates method for an initial value problem. Using this method
for our boundary value problem, we have to be careful with the boundary terms when integrating
by parts. Substituting v by z in ψ(t) and f1(t, x) in the expression of z1x, z1xx in (158) and (159),
noticing (120)–(122) and computing similar estimates as in (164) and (165), we can obtain the “hid-
den” regularity zx(·, x0) ∈ L2((0, T );R2) and zxx(·, x0) ∈ L2((0, T );R2) together with estimates on
|zx(·, x0)|L2((0,T );R2) and |zxx(·, x0)|L2((0,T );R2), which are sufficient to take care of the boundary terms
when integrating by parts. This concludes the proof of the existence and uniqueness of a classical
solution xs(t) ∈ C1([0, T ];R) and z ∈ C0([0, T ];H2((0, x0);R2)) in Cν(z0, xs0) to the system (21)–(23)
for T satisfying (119).

The estimate (28) for |z(t, ·)|H2((0,x0);R2) part can be obtained from estimates (166)–(167) by firstly
replacing v with z and then applying (155)–(156). Noticing the definition of xs in (126) and applying
(155)–(156) again, the estimate for the |xs(t)− x0| part follows.

Next, we show the uniqueness of the solution in C0([0, T ];H2((0, x0);R2)). Suppose that there is
another solution z̃ ∈ C0([0, T ];H2((0, x0);R2)), we prove that z̃ ∈ Cν(z0, xs0), for δ sufficiently small.
To that end, assume that z(t, ·) = z̃(t, ·) for any t ∈ [0, τ ] with τ ∈ [0, T ]. If τ 6= T , by (28), for δ
sufficiently small and as z̃ ∈ C0([0, T ];H2((0, x0);R2)), one can choose τ ′ ∈ (τ, T ) small enough such
that z̃ ∈ Cν(z(τ), xs(τ)) with T is replaced by τ ′ − τ and by considering τ as the new initial time.
Thus, z(t, ·) = z̃(t, ·) for any t ∈ [0, τ ′]. As |z̃(t, ·)|H2((0,x0);R2) is uniformly continuous on [0, T ], and
as, moreover C and ν do not depend on T , we can repeat this process and finally get z(t, ·) = z̃(t, ·)
on [0, T ].

For general T > 0, one just needs to take T1 satisfying (119) and, noticing that C and ν do not
depend on T1, one can apply the above procedure at most [T/T1] + 1 times. This concludes the proof
of Lemma 3.1.

Proof of Lemma A.1. From (137), we have
∂2ξ1(s; t, x)

∂s∂x
= f1x

∂ξ1(s; t, x)

∂x
,

∂ξ1(t; t, x)

∂x
= 1,

(192)
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Figure 2: Demonstration of the characteristics.

and 
∂2ξ1(s; t, x)

∂s∂t
= f1x

∂ξ1(s; t, x)

∂t
,

∂ξ1(s; s, x)

∂s
+
∂ξ1(s; s, x)

∂t
= 0.

(193)

Thus,

∂xξ1(s; t, x) = e−
∫ t
s
f1x(θ,ξ1(θ;t,x))dθ, (194)

∂tξ1(s; t, x) = −f1(t, x)e−
∫ t
s
f1x(θ,ξ1(θ;t,x))dθ. (195)

From (194)–(195) and noticing β1 = ξ1(0; t, x), we have

∂β1

∂t
=− f1(t, x)e−

∫ t
0
f1x(θ,ξ1(θ;t,x))dθ,

∂β1

∂x
= e−

∫ t
0
f1x(θ,ξ1(θ;t,x)) dθ. (196)

From (194), noticing ξ1(α1; t, x) = 0 and by chain rules, we have

∂α1

∂x
=− 1

f1(α1, 0)
e
−

∫ t
α1
f1x(s,ξ1(s;t,x)) ds

, (197)

and as γ1 = ξ1(0;α1, x0), we obtain from (195) that

∂γ1

∂x
=
dγ1

dα1

∂α1

∂x
=
f1(α1, x0)

f1(α1, 0)
e
−

∫ α1
0 f1x(s,ξ1(s;α1,x0)) ds−

∫ t
α1
f1x(s,ξ1(s;t,x)) ds

. (198)

Observe that for a.e. s ∈ (0, T ) and x ∈ [0, x0],

|v1(s, x)| 6
∣∣∣∣∫ x

θ

v1x(s, l)dl

∣∣∣∣+ |v1(s, θ)|, ∀ θ ∈ [0, x0] (199)

and as v1 is H1 in x and its L2-norm is bounded by ν, there exists θ such that |v1(s, θ)| 6 ν/
√
x0,

therefore
|v1(s, x)| 6 Cν, (200)

and similarly as v1 is H2 in x with the same bound and v1t is in L∞((0, T );H1((0, x0);R)) with bound
ν from (121)

x ∈ [0, x0], |v1x(s, x)| 6Cν, for a.e. s ∈ (0, T ),

x ∈ [0, x0], |v1t(s, x)| 6Cν, for a.e. s ∈ (0, T ).
(201)
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From the expression of f1 defined in (136) and using (194)–(198) and (200)–(201), after some
direct computations, estimates (141)–(146) can be obtained. We now demonstrate the estimate (147)
in details, while (148)–(150) can be treated in a similar way, thus we omit them. From (196), we have

∂ttβ1 =
(
−f1t(t, x)+f1(t, x)

(
f1x(t, x)+

∫ t

0

f1xx(θ, ξ1(θ; t, x))∂tξ1(θ; t, x) dθ
))
e−

∫ t
0
f1x(θ,ξ1(θ;t,x)) dθ.

Looking at (136), as v is only in L∞((0, T );H2((0, x0);R2)) ∩W 1,∞((0, T );H1((0, x0);R2))
∩W 2,∞((0, T );L2((0, x0);R2)), this equation is expressed a priori formally in the distribution sense.
Thus, we have to be careful when we estimate (147). By (136) and using estimates (141), (142), we
get by Cauchy-Schwarz inequality together with the change of variable y = ξ1(θ; t, x0) that∫ T

0

|∂ttβ1(t, x0)|2 dt 6 Cν + C

∫ T

0

∣∣∣∣∫ t

0

f1xx(θ, ξ1(θ; t, x0))∂tξ1(θ; t, x0) dθ

∣∣∣∣2 dt
6 Cν + C

∫ T

0

∫ t

0

v2
1xx(θ, ξ1(θ; t, x0))∂2

t ξ1(θ; t, x0) dθdt

= Cν + C

∫ T

0

∫ T

θ

v2
1xx(θ, ξ1(θ; t, x0))∂2

t ξ1(θ; t, x0) dtdθ

6 Cν + C

∫ T

0

∫ x0

0

v2
1xx(θ, y) dydθ

6 Cν. (202)

B Proof of Theorem 5.1

First observe that, after the change of variables (19), (20), the new equations are

z1t +

(
f ′(1) + (f ′(z1 + 1)− f ′(1))− x ẋs

x0

)
z1x

x0

xs
= 0,

z2t +

(
−f ′(−1) + (f ′(−1)− f ′(z2 − 1)) + x

ẋs
x0

)
z2x

x0

L− xs
= 0,

ẋs(t) =
f ′(1)z1(t, x0)− f ′(−1)z2(t, x0)

2 + (z1(t, x0)− z2(t, x0))

+
(f(z1(t, x0) + 1)− f ′(1)z1(t, x0)− f(1))− (f(z2(t, x0)− 1)− f ′(−1)z2(t, x0)− f(−1))

2 + (z1(t, x0)− z2(t, x0))

(203)

and the boundary conditions remain given by (22). Note that in (203) the expression of ẋs can actually
be written as

ẋs(t) =
f ′(1)z1(t, x0)− f ′(−1)z2(t, x0)

2
+O

(
|z(t, x0)|2

)
. (204)

Thus, to prove Theorem 5.1, if suffices to show Theorem 4.1 with (203) instead of (21). We still
define the Lyapunov function candidate as previously by (31)–(37). Then Lemma 4.1 and Lemma
4.2 remain unchanged. To adapt Lemma 4.3, one can check that, when differentiating V1, V2 and
V3 along the C3 solutions of (203), (22) with associated initial conditions and noticing that under
assumption f(−1) = f(1), one has f ′(−1) 6 0, f ′(1) > 0 from the property of convex function, we
obtain as previously (68), (70) and (74) but with f ′(1)p1 instead of p1 and |f ′(−1)|p2 instead of p2 in
the boundary terms and µVi being replaced by µmin(f ′(1), |f ′(−1)|)Vi. Then, from (117) and dealing
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with V4, we finally get:

dV1

dt
+
dV4

dt
6− µ(V1 + V4)

+ max

{
Θ1

ε1
,

Θ2

ε2

}
V1

+

[
x0

xs
p1(k2

1 − e−
µx0
η1 )f ′(1) +

ε1 + ε2

8
f ′(1)2

]
z2

1(x0)

+

[
x0

L− xs
p2(k2

2 − e−
µx0
η2 )|f ′(−1)|+ ε1 + ε2

8
|f ′(−1)|2

]
z2

2(x0)

+ f ′(1)

[
−2

x0

xs
p1b1k1 −

x0

xs
p̄1(e−

µx0
η1 − k1) + κ

]
z1(x0)(xs − x0)

+ |f ′(−1)|
[
−2

x0

L− xs
p2b2k2 −

x0

L− xs
p̄2(e−

µx0
η2 − k2) + κ

]
z2(x0)(xs − x0)

+

[
x0

xs
p1b

2
1f
′(1) +

x0

L− xs
p2b

2
2|f ′(−1)| − x0

xs
p̄1b1f

′(1)− x0

L− xs
p̄2b2|f ′(−1)|+ µκ

]
(xs − x0)2

+O
(
(|z|H2 + |xs − x0|)3

)
,

(205)

and a similar expression for V2 + V5 and V3 + V6 as previously. Thus Lemma 4.3 still holds but with
A now defined by

a11 = p1(e−
µx0
η1 − k2

1)f ′(1)− ε1 + ε2

8
f ′(1)2, (206)

a13 = a31 = f ′(1)p1b1k1 + f ′(1)
p̄1

2
(e−

µx0
η1 − k1)− f ′(1)

κ

2
, (207)

a22 =
x0

L− x0
p2(e−

µx0
η2 − k2

2)|f ′(−1)| − ε1 + ε2

8
|f ′(−1)|2, (208)

a23 = a32 = |f ′(−1)| x0

L− x0
p2b2k2 + |f ′(−1)| x0

L− x0

p̄2

2
(e−

µx0
η2 − k2)− |f ′(−1)|κ

2
, (209)

a33 = −p1b
2
1f
′(1)− x0

L− x0
p2b

2
2|f ′(−1)|+ p̄1b1f

′(1) +
x0

L− x0
p̄2b2|f ′(−1)| − µκ. (210)

instead of (88)–(92). We can then choose p1, p2, p̄1, p̄2 as previously by (97)–(99) and A becomes
again diagonal with the expression of its elements given by

a33 =
κ

2
f ′(1)b1e

µx0
η1 +

κ

2
|f ′(−1)|b2e

µx0
η2 − µκ (211)

a11 =
κf ′(1)

2b1
(1− k2

1e
µx0
η1 )− κf ′(1)2

2µ2

[
b1(e

µx0
η1 − 1) + b2(e

µx0
η2 − 1)

]
, (212)

a22 =
κ|f ′(−1)|

2b2
(1− k2

2e
µx0
η2 )− κ|f ′(−1)|2

2µ2

[
b1(e

µx0
η1 − 1) + b2(e

µx0
η2 − 1)

]
, (213)

instead of (102), (105) and (106) respectively. Then to prove Theorem 4.1 with (203) instead of (21),
we only need to show now that under assumption (118) there exists µ > γ and κ > 1 such that
aii > 0, i = 1, 2, 3 and such that (44) holds where Θi, i = 1, 2 are still defined by (45). But this can
be checked exactly as in the proof of Theorem 4.1. With condition (117), one can now check as in
Remark 4 that there always exist parameters bi and ki such that conditions (118) are satisfied.

References

[1] Fabio Ancona and Andrea Marson. On the attainable set for scalar nonlinear conservation laws
with boundary control. SIAM J. Control Optim., 36(1):290–312, 1998.

[2] Georges Bastin and Jean-Michel Coron. On boundary feedback stabilization of non-uniform linear
2× 2 hyperbolic systems over a bounded interval. Systems Control Lett., 60(11):900–906, 2011.

31



[3] Georges Bastin and Jean-Michel Coron. Stability and Boundary Stabilisation of 1-D Hyperbolic
Systems. Number 88 in Progress in Nonlinear Differential Equations and Their Applications.
Springer International, 2016.

[4] Georges Bastin and Jean-Michel Coron. A quadratic Lyapunov function for hyperbolic density-
velocity systems with nonuniform steady states. Systems & Control Letters, 104:66–71, 2017.

[5] Georges Bastin, Jean-Michel Coron, and Brigitte d’Andréa Novel. On Lyapunov stability of
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