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HOMOGENIZATION FOR A MULTI-SCALE MODEL OF
MAGNETORHEOLOGICAL SUSPENSION

GRIGOR NIKA AND BOGDAN VERNESCU

Abstract. Using the homogenization method we obtain a model describing the behavior
of the suspension of solid magnetizable particles in a viscous non-conducting fluid in the
presence of an externally applied magnetic field. We use the quasi-static Maxwell equations
coupled with the Stokes equations to capture the magnetorheological (MR) effect. The model
generalizes the one introduced by Neuringer and Rosensweig [14], for quasistatic phenomena.
The macroscopic constitutive properties are given explicitly in terms of the solutions of the
local problems. We determine the homogenized constitutive parameters for an aqueous MR
fluid with magnetite particles using the finite element method. The Poiseuille flow, for the
solution of our homogenized coupled system, approaches the Bingham flow profile for large
values of the magnetic field. The stress–strain curves obtained for the Couette flow exhibit
a yield stress close to the one determined experimentally.

Introduction

Magneto-rhelogical (MR) fluids are a suspension of non-colloidal, ferromagnetic particles
in a non-magnetizable carrier fluid. The particles are often of micron size ranging anywhere
from 0.05 − 10µm with particle volume fraction from 10 − 40 %. They were discovered by
J. Rabinow in 1948 [16]. Around the same time W. Winslow discovered electrorheological
(ER) fluids, a closely related counterpart.

MR fluids respond to an external magnetic field by a rapid, reversible change in their
properties. They can transform from a liquid to a semi solid state in a matter of milliseconds.
Upon the application of a magnetic field, the dipole interaction of adjacent particles aligns
the particles in the direction of the magnetic field lines. Namely particles attract one another
along the magnetic field lines and repel one another in the direction perpendicular to them.
This leads to the formation of aggregate structures. Once these aggregate structures are
formed, the MR fluid exhibits a yield stress that is dependent and controlled by the applied
external magnetic field [11], [5].

The formation of these aggregates means that the behavior of the fluid is non-Newtonian.
In many works, the Bingham constitutive law is used an an approximation to model the
response of the MR and ER fluids, particularly in shear experiments [15], [4], [6]. Although
the Bingham model has proven itself useful in characterizing the behavior of MR fluids, it is
not always sufficient. Recent experimental data show that true MR fluids exhibit departures
from the Bingham model [22], [6].

Another member of the magnetic suspensions family are ferrofluids. Ferrofluids are stable
colloidal suspensions of nanoparticles in a non-magnetizable carrier fluid. The initiation into
the hydrodynamics of ferrofluids began with Neuringer and Rosensweig in 1964 [14] and by
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a series of works by Rosensweig and co-workers summarized in [17]. The model introduced
in [14] assumes that the magnetization is collinear with the magnetic field and has been very
useful in describing quasi-stationary phenomena. This work was extended by Shliomis [20]
by avoiding the collinearity assumption of the magnetization and the magnetic field and by
considering the rotation of the nanoparticles with respect to the fluid they are suspended in.

The models mentioned above have all been derived phenomenologically. The first attempt
to use homogenization mechanics to describe the behavior of MR \ ER fluids was carried
out in [8], [9] and [15]. In the works [8], [9] the influence of the external magnetic field is
introduced as a volumic density force acting on each particle and as a surface density force
acting on the boundary of each particle. The authors in [15] extend the work in [9], for
ER fluids, by presenting a more complete model that couples the conservation of mass and
momentum equations with Maxwell’s equations through the Maxwell stress tensor. As an
application they consider a uniform shearing of the ER fluid submitted to a uniform electric
field boundary conditions in a two dimensional slab and they recover that the stress tensor
at the macroscopic scale has exactly the form of the Bingham constitutive equation.

The authors in [15], [18], [17] use models that decouple the conservation of mass and mo-
mentum equations from the Maxwell equations. Thus in principle one can solve the Maxwell
equations and use the resulting magnetic or electric field as a force in the conservation of
mass and momentum equations.

The present work focuses on a suspension of rigid magnetizable particles in a Newtonian
viscous fluid with an applied external magnetic field. We assume the fluid to be electrically
non-conducting. Thus, we use the quasi-static Maxwell equations coupled with the Stokes
equations through Ohm’s law to capture the magnetorheological effect. In doing so we extend
the model of [15]. Thus the Maxwell and the balance of mass and momentum equations must
be simultaneously solved.

In Section 1. we introduce the problem in the periodic homogenization framework. The
particles are periodically distributed and the size of the period is of the same order as the
characteristic length of the particles. We assume the fluid velocity is continuous across the
particle interface and that the particles are in equilibrium in the presence of the magnetic
field.

The two scale expansion is carried out in Section 2. where we obtain a decoupled set of
problems at order O(ε−1).

In Section 3. and in Section 4. we study the local problems that arise from the contribution
of the bulk magnetic field as well as the bulk velocity and provide new constitutive laws for
Maxwell’s equations.

In Section 5. we provide the governing effective equations of the MR fluid which include, in
addition to the viscous stresses, a “Maxwell type” stress. Furthermore, we provide formulas
for the effective viscosity and effective magnetic permeabilities for the Maxwell type stress
that generalize those in [9].

Section 6. is devoted to comparing the results of the proposed model against experimental
data. We compute the constitutive coefficients for an aqueous MR fluid with magnetite
particles using the finite element method, we obtain the velocity profiles of both Poiseuille
and Couette flows for this MR fluid and plot the stress vs shear rate curve for different values
of the applied magnetic field, that exhibit a yield stress comparable to the one obtained in
experiments (e.g. [22])
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Notation. Throughout the paper we are going to be using the following notation: I in-
dicates the n × n identity matrix, e(uuu) will indicate the strain rate tensor defined by,

e(uuu) =
1

2

(
∇uuu+∇uuu>

)
, where often times we will use subscript to indicate the variable of dif-

ferentiation. The inner product between matrices is denoted by A:B = tr(A>B) =
∑

ij aij bji
and throughout the paper we employ the Einstein summation notation for repeated indices.

1. Problem statement

For the homogenization setting of the suspension problem we define Ω ⊂ Rn, n = 2, 3, to

be a bounded open set with sufficiently smooth boundary ∂Ω, Y =

(
−1

2
,
1

2

)n
be the unit

cube in Rn, and Zn is the set of all n–dimensional vectors with integer components. For
every positive ε, let N ε be the set of all points ` ∈ Zn such that ε(`+ Y ) is strictly included
in Ω and denote by |N ε| their total number. Let T be the closure of an open connected set
with sufficiently smooth boundary, compactly included in Y . For every ε > 0 and ` ∈ N ε

we consider the set T ε` ⊂⊂ ε(` + Y ), where T ε` = ε(` + T ). The set T ε` represents one of the
rigid particles suspended in the fluid, and Sε` = ∂T ε` denotes its surface (see FIG. 1). We
now define the following subsets of Ω:

Ω1ε =
⋃
`∈Nε

T ε` , Ω2ε = Ω\Ω1ε.

In what follows T ε` will represent the magnetizable rigid particles, Ω1ε is the domain occupied
by the rigid particles and Ω2ε the domain occupied by the surrounding fluid of viscosity ν.
By nnn we indicate the unit normal on the particle surface pointing outwards and by J·K we
indicate the jump discontinuity between the fluid and the rigid part.

Ω

Ω1ε

Ω2ε x`c

T ε`

Y ε
`

ε

ε

Figure 1. Schematic of the periodic suspension of rigid magnetizable parti-
cles in non-magnetizable fluid

The description of the problem is,

ρ
∂ vvvε

∂ t
+ ρ (vvvε · ∇)vvvε − div σε = ρfff, where σε = 2 ν e(vvvε)− pεI in Ω2ε, (1.1a)

div vvvε = 0, div BBBε = 0, curl HHHε = 000 in Ω2ε, (1.1b)

e(vvvε) = 0, div BBBε = 0, curl HHHε = η vvvε × BBBε in Ω1ε, (1.1c)
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where BBBε = µεHHHε with boundary conditions on the surface of each particle T ε` ,

JvvvεK = 000, JBBBε · nnnK = 0, Jnnn×HHHεK = 000 on Sε` , (1.2)

and outer boundary conditions

vvvε = 000, HHHε = bbb on ∂Ω, (1.3)

where ρ is the density of the fluid, vvvε represents the velocity field, pε the pressure, e(vvvε)
the strain rate, fff the body forces, nnn the exterior normal to the particles, HHHε the magnetic
field, µε is the magnetic permeability of the material, µε(xxx) = µ1 if xxx ∈ Ω1ε and µε(xxx) = µ2

if xxx ∈ Ω2ε, η the electric conductivity of the rigid particles, and bbb is an applied constant
magnetic field on the exterior boundary of the domain Ω. When the MR fluid is submitted
to a magnetic field, the rigid particles are subjected to a force that makes them behave like
a dipole aligned in the direction of the magnetic field. This force can be written in the form,

FFF ε = −1

2
|HHHε|2∇µε,

where | · | represents the standard Euclidean norm. The force can be written in terms of
the Maxwell stress τ εij = µεHε

i H
ε
j − 1

2
µεHε

kH
ε
k δij as FFF ε = div τ ε +BBBε × curl HHHε. Since the

magnetic permeability is considered constant in each phase, it follows that the force is zero
in each phase. Therefore, we deduce that

div τ ε =

{
0 if xxx ∈ Ω2ε

−BBBε × curl HHHε if xxx ∈ Ω1ε.
(1.4)

Lastly, we remark that unlike the viscous stress σε, the Maxwell stress is present in the entire
domain Ω. Hence, we can write the balance of forces and torques in each particle as,∫

T ε`

ρ
duuuε

dt
dxxx =

∫
Sε`

(σεnnn+ Jτ εnnnK) ds+

∫
T ε`

BBBε × curl HHHε dxxx+

∫
T ε`

ρfff dxxx,∫
T ε`

ρ(xxx− xxx`c)×
duuuε

dt
dxxx =

∫
Sε`

(σεnnn+ Jτ εnnnK)× (xxx− xxx`c) ds

+

∫
T ε`

(BBBε × curl HHHε)× (xxx− xxx`c) dxxx+

∫
T ε`

ρfff × (xxx− xxx`c) dxxx,

(1.5)

where xxx`c is the center of mass of the rigid particle T ε` .

1.1. Dimensional Analysis. Before we proceed further we non-dimensionalize the prob-
lem. Denote by t∗ = t/L

V
, x∗ = x/L, vvv∗ = vvv/V , p∗ = p/ν V

L
, HHH∗ = HHH/H, fff ∗ = fff/V

2

L
, and

µε∗ = µε/µ2. Here L is a characteristic length, V is a characteristic velocity, p is a character-
istic pressure, fff is a characteristic force and H is a characteristic unit of the magnetic field.
Substituting the above expressions into (1.1) as well as in the balance of forces and torques,
and using the fact that the flow is assumed to be at low Reynolds numbers, we obtain

Re

(
∂ vvvε∗

∂ t
+ (vvvε∗ · ∇)vvvε∗

)
− div ∗σε∗ = Refff ∗, where σε∗ = 2 e(vvvε∗)− pε∗I in Ω2ε,

div ∗vvvε∗ = 0, div ∗BBBε∗ = 0, curl ∗HHHε∗ = 000 in Ω2ε,

e∗(vvvε∗) = 0, div ∗BBBε∗ = 0, curl HHHε∗ = Rm vvv
ε∗ × BBBε∗ in Ω1ε,
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where BBBε∗ = µε∗HHHε∗ and with boundary conditions on the surface of each particle T ε` ,

Jvvvε∗K = 000, JBBBε∗ · nnnK = 0, Jnnn×HHHε∗K = 000 on Sε` ,

vvvε∗ = 000, HHHε∗ = bbb∗ on ∂Ω.

together with the balance of forces and torques,

Re

∫
T ε`

duuuε∗

dt∗
dxxx∗ =

∫
Sε`

σε∗nnn ds∗ + α

∫
Sε`

Jτ ε∗nnnK ds∗ + α

∫
T ε`

BBBε∗ × curl HHHε∗ dxxx∗ +Re

∫
T ε`

fff ∗ dxxx∗,

Re

∫
T ε`

(xxx∗ − xxx`∗c )× duuuε∗

dt∗
dxxx∗ =

∫
Sε`

σε∗nnn× (xxx∗ − xxx`c
∗
) ds∗ + α

∫
Sε`

Jτ ε∗nnnK× (xxx∗ − xxx`c
∗
) ds∗

+ α

∫
T ε`

(BBBε∗ × curl HHHε∗)× (xxx∗ − xxx`c
∗
) dxxx∗ +Re

∫
T ε`

fff ∗ × (xxx∗ − xxx`c
∗
) dxxx∗,

where Re =
ρ V L

ν
is the Reynolds number, α =

µ2H
2 L

ν V
is the Alfven number, and Rm =

η µ1 LV is the magnetic Reynolds number.
In what follows we drop the star for simplicity. Moreover, for low Reynolds numbers the

preceding equations become,

−div σε = 000, where σε = 2 e(vvvε)− pεI in Ω2ε, (1.6a)

div vvvε = 0, div HHHε = 0, curl HHHε = 000 in Ω2ε, (1.6b)

e(vvvε) = 0, div HHHε = 0, curl HHHε = Rm vvv
ε × BBBε in Ω1ε, (1.6c)

with boundary conditions

JvvvεK = 000, JBBBε · nnnK = 0, Jnnn×HHHεK = 000 on Sε` ,

vvvε = 000, HHHε = bbb on ∂Ω,
(1.7)

together with the balance of forces and torques,

0 =

∫
Sε`

σεnnn ds+ α

∫
Sε`

Jτ εnnnK ds+ α

∫
T ε`

BBBε × curl HHHε dxxx,

0 =

∫
Sε`

σεnnn× (xxx− xxx`c) ds+ α

∫
Sε`

Jτ εnnnK× (xxx− xxx`c) ds

+ α

∫
T ε`

(BBBε × curl HHHε)× (xxx− xxx`c) dxxx.

(1.8)

In the next section we will use a two scale expansion on the velocity, pressure and the
magnetic field.

2. Two scale expansions

We assume the particles are periodically distributed in Ω and thus consider the two scale
expansion on vvvε, HHHε and pε,

vvvε(xxx) =
+∞∑
i=0

εi vvvi(xxx,yyy), HHHε(xxx) =
+∞∑
i=0

εiHHH i(xxx,yyy), pε(xxx) =
+∞∑
i=0

εi pi(xxx,yyy) with yyy =
xxx

ε
.
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where xxx ∈ Ω and yyy ∈ Rn. One can show that vvv0 is independent of yyy and can thus obtain the
following problem at order ε−1,

−
∂σ0

ij

∂yj
= 0 in Yf , (2.1a)

σ0
ij = −p0 δij + 2 ν (eijx(vvv

0) + eijy(vvv
1)) (2.1b)

∂v0j
∂xj

+
∂v1j
∂yj

= 0 in Yf , (2.1c)

eijx(vvv
0) + eijy(vvv

1) = 0 in T, (2.1d)

∂B0
j

∂yj
= 0, εijk

∂H0
k

∂yj
= 0 where B0

i = µH0
i in Y, (2.1e)

with boundary conditions
q
vvv1

y
= 000,

q
BBB0 · nnn

y
= 0,

q
nnn×HHH0

y
= 000 on S ,

vvv1, HHH0 are Y − periodic.
(2.2)

Here Yf and T denote the fluid, respectively the particle part of Y ; and S denotes the surface
of T . At order of ε2 and ε3 we obtain from (1.8) the balance of forces and torques for the
particle T respectively,

0 =

∫
S

σ0nnn ds+ α

∫
S

q
τ 0nnn

y
) ds− α

∫
T

BBB0 × curlyHHH
0 dyyy,

0 =

∫
S

yyy × σ0nnn ds+ α

∫
S

yyy ×
q
τ 0nnn

y
ds− α

∫
T

yyy ×
(
BBB0 × curly(HHH0)

)
dyyy,

(2.3)

where by τ 0ij:

τ 0ij = µH0
i H

0
j −

1

2
µH0

k H
0
k δij, (2.4)

we denote the Maxwell stress. We remark that since from (2.1e) curly(HHH0) = 000 in Y , the
balance of forces and torques simplify to the following,

0 =

∫
S

σ0nnn+ α

∫
S

q
τ 0nnn

y
ds and 0 =

∫
S

yyy × σ0nnn ds+ α

∫
S

yyy ×
q
τ 0nnn

y
ds. (2.5)

Remark 1. At first order, in the problem (2.1)-(2.5) the Stokes and Maxwell equations are
decoupled. Hence, in principle one could solve the Maxwell equations (2.1e) and once a
solution is obtained then solve the Stokes problem (2.1a)-(2.1c), albeit with an extra known
force added to the balance of forces and torques (2.5).

3. Constitutive relations for Maxwell’s equations

3.1. Study of the local problem. Using the results from the two scale expansions, (2.1e),
we can see that curly(HHH0) = 000 in Y and thus there exists a function ψ = ψ(xxx,yyy) with average

ψ̃ = 0 such that

H0
i = −∂ψ(xxx,yyy)

∂yi
+ H̃0

i (xxx), (3.1)
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where ·̃ =
1

|Y |

∫
Y

· dyyy. Using the fact divyBBB
0 = 0 in Y , B0

i = µH0
i and the boundary

conditions (1.7) we have,

− ∂

∂yi

(
µ

(
−∂ψ
∂yi

+ H̃0
i

))
= 0 in Y ,

s
µ

(
−∂ψ
∂yi

+ H̃0
i

)
ni

{
= 0 on S ,

ψ is Y − periodic, ψ̃ = 0.

(3.2)

Introducing the space of periodic functions, with zero average

Wper(Y ) =
{
w ∈ H1

per(Y ) | w̃ = 0
}
,

then the variational formulation of (3.2) is

Find ψ ∈ Wper(Y ) such that∫
Y

µ
∂ψ

∂yi

∂v

∂yi
dyyy = H̃0

i

∫
Y

µ
∂v

∂yi
dyyy for any v ∈ Wper(Y ).

(3.3)

Since we have imposed that ψ has zero average over the unit cell Y , the solution to (3.3)
can be determined uniquely by a simple application of the Lax-Milgram lemma.

Let φk be the unique solution of

Find φk ∈ Wper(Y ) such that∫
Y

µ
∂φk

∂yi

∂v

∂yi
dyyy =

∫
Y

µ
∂v

∂yk
dyyy for any v ∈ Wper(Y ).

(3.4)

Plot of φ1 Plot of φ2

Figure 2. Plot of the solution φk in (3.4) for magnetite nanoparticles of
volume fraction φ = 0.14 with magnetic permeability µ = 8.41946×10−6N/A2

using FreeFem++.

By virtue of linearity of (3.3) we can write

ψ(xxx,yyy) = φk(yyy) H̃0
k(xxx) + C(xxx).
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In principle, once H̃0
k is known, we can determine ψ up to an additive function of xxx.

Hence, combining (3.1) and the above relationship between ψ and φk we obtain the following
constitutive law between the magnetic induction and the magnetic field,

B̃0
i = µik H̃

0
k , where µik =

∫
Y

µ

(
−∂φ

k

∂yi
+ δik

)
dyyy. (3.5)

One can show (see [19]) that the homogenized magnetic permeability tensor is symmetric,

µik = µki. Moreover, if we denote by Ai`(yyy) =
(
−∂φ`(yyy)

∂yi
+ δi`

)
one can see from (3.1) that

H0
i = Ai`H̃

0
` and thus the Maxwell stress (2.4) takes the following form,

τ 0ij = µAi`Ajm H̃
0
` H̃

0
m −

1

2
µAmk A`k δij H̃

0
m H̃

0
` = µAm`ij H̃

0
m H̃

0
` .

Here Am`ij = 1
2

(Ai`Ajm + Aj`Aim − Amk A`k δij) and has the following symmetry, Am`ij =

Am`ji = A`mij . Recall that the div τ ε = 0 in Ω2 ε and div τ ε = −BBBε × curl HHHε in Ω1ε. From the

two scale expansion, at order ε−1 from equation (1.4) we obtain,

div yτ
0 = 0 in Y. (3.6)

4. Fluid velocity and pressure

4.1. Study of the local problems. Problem (2.1)-(2.2), (2.5) is an elliptic problem in the

variable yyy ∈ Y with forcing terms vvv0(xxx) and H̃HH
0
(xxx) at the macroscale. We can decouple the

contributions of vvv0(xxx) and H̃0(xxx) and split vvv1 and p0 in two parts: a part that is driven by
the bulk velocity, and a part that comes from the bulk magnetic field.

v1k(xxx,yyy) = χm`k (yyy) em`(vvv
0) + ξm`k (yyy) H̃0

m H̃
0
` + Ak(xxx), (4.1)

p0(xxx,yyy) = pm`(yyy) em`(vvv
0) + πm`(yyy) H̃0

m H̃
0
` + p̄0(xxx), (4.2)

where

∫
Yf

pm`(yyy) dyyy = 0 and

∫
Yf

πm`(yyy) dyyy = 0.

Here, χχχml satisfies

− ∂

∂yj
εm`ij = 0 in Yf ,

εm`ij = −pm`δij + 2 (Cijm` + eijy(χχχ
m`))

−∂χ
m`
i

∂yi
= 0 in Yf ,

q
χχχm`

y
= 0 on S ,

Cijm` + eijy(χχχ
m`) = 0 in T ,

χχχm` is Y − periodic, χ̃χχm` = 000 in Y,

(4.3)

together with the balance of forces and torques,∫
S

εm`ij nj ds = 0 and

∫
S

εijk yj ε
m`
kp np ds = 0, (4.4)

where Cijm` =
1

2
(δimδj` + δi`δjm)− 1

n
δij δm`.
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The variational formulation problem of (4.3)-(4.4) is

Find χχχm` ∈ U such that∫
Yf

2 eijy(χχχ
m`) eijy(φφφ−χχχm`) dyyy = 0, for all φφφ ∈ Uad,

(4.5)

where U is the closed, convex, non-empty subset of H1
per(Y )n defined by

U =
{
uuu ∈ H1

per(Y )n | div uuu = 0 in Yf , eijy(uuu) = −Cijm` in T, JuuuK = 000 on S, ũuu = 000 in Y
}

We remark that if we define Bij
k = 1

2
(yi δjk+yj δik)− 1

n
yk δij, then eij(BBB

m`) = Cijm`. Existence
and uniqueness of a solution follows from classical theory of variational inequalities [7].

In similar fashion we can derive the local problem for ξξξml,

− ∂

∂yj
Σm`
ij = 0 in Yf ,

Σm`
ij = −πm`δij + 2 eijy(ξξξ

m`)

−∂ξ
m`
i

∂yi
= 0 in Yf ,

r
ξξξm`

z
= 0 on S ,

eijy(ξξξ
m`) = 0 in T ,

ξξξm` is Y−periodic, ξ̃ξξ
m`

= 0.

(4.6)

Using (3.6) the balance of forces reduces to∫
S

Σm`
ij nj ds = 0, (4.7)

together with the balance of torques∫
S

εijk yj
(
Σm`
kp + α

q
µAm`kp

y)
np ds = 0. (4.8)

We can formulate (4.6)–(4.8) variationally as

Find ξξξm` ∈ Vper(Y ) such that∫
Yf

2 eijy(ξξξ
m`) eijy(φφφ) dyyy +

∫
Y

Am`ij eijy(φφφ) dyyy = 0, for all φφφ ∈ Vper(Y ),
(4.9)

where

Vper(Y ) =
{
vvv ∈ H1

per(Y )n | div vvv = 0 in Yf , eijy(uuu) = 0 in T, JvvvK = 000 on S, ṽvv = 000 in Y
}
,

is a closed subspace of H1
per(Y )n. Existence and uniqueness follows from an application of

the Lax-Milgram lemma. Below we plot the streamlines of the solutions χχχm` of (4.5) and
ξξξm` of (4.9).
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Streamline for χχχ11 Streamline for χχχ12 Streamline for χχχ22

Streamline of ξξξ11 Streamline for ξξξ12 Streamline of ξξξ22

Figure 3. On the top are the streamlines of the solution χχχm` in (4.5) and on
the bottom are the corresponding streamlines of the solution ξξξm` in (4.9) for
spherical magnetite nanoparticles of volume fraction φ = 0.14 generated using
FreeFem++.

Remark 2. From the second line of the plots above, we can observe that the only driving
force that makes the solution ξξξm` non zero in (4.9) are the rotations induced by the magnetic
field through the fourth order tensor Am`ij .

5. Homogenized equations of the magneto-rheological fluid

At the ε0 order we obtain the following problems,

−div xσ
0 − div yσ

1 = 000 in Yf , (5.1a)

div xvvv
1 + div yvvv

2 = 0 in Yf , (5.1b)

div xBBB
0 + div yBBB

1 = 0 in Y , (5.1c)

curl xHHH
0 + curl yHHH

1 = 0 in Yf , (5.1d)

curl xHHH
0 + curl yHHH

1 = Rm vvv
0 ×BBB0 in T , (5.1e)

with boundary conditions
q
vvv2

y
= 000,

q
BBB1 · nnn

y
= 0

q
nnn×HHH1

y
= 000 on S ,

vvv2, HHH1 are Y − periodic.
(5.2)
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In each period, we consider a Taylor expansion, around the center of mass of the rigid
particle, both of the viscous stress and the Maxwell stress of the form (see [10]),

σε(xxx) = σ0(xxx`c, yyy) +
∂σ0(xxx`c, yyy)

∂xα
(xα − x`c,α) + ε σ1(xxx`c, yyy) + ε

∂σ1(xxx`c, yyy)

∂xα
(xα − x`c,α) + · · ·

τ ε(xxx) = τ 0(xxx`c, yyy) +
∂τ 0(xxx`c, yyy)

∂xα
(xα − x`c,α) + ε τ 1(xxx`c, yyy) + ε

∂τ 1(xxx`c, yyy)

∂xα
(xα − x`c,α) + · · ·

where the expansion of the Maxwell stress occurs both inside the rigid particle and the fluid.
Using this method we can expand the balance of forces, (1.8), and obtain at order ε3,

0 =

∫
S

(
∂σ0

ij

∂xk
yk + σ1

ij

)
nj ds+ α

∫
S

s(
∂τ 0ij
∂xk

yk + τ 1ij

)
nj

{
ds

− α
∫
T

(BBB0 × (curl xHHH
0 + curl yHHH

1))i dyyy.

(5.3)

Integrate (5.1a) over Yf and add to (5.3) obtain the following,

0 =

∫
Yf

∂σ0
ij

∂xj
dyyy +

∫
S

∂σ0
ij

∂xk
yknj ds+ α

∫
S

J(
∂τ 0ij
∂xk

yk + τ 1ij )njK ds

− α
∫
T

(BBB0 × (curl xHHH
0 + curl yHHH

1))i dyyy.

(5.4)

At order ε0 we obtain, div xτ
0+div yτ

1 = 0 in Yf and div xτ
0+div yτ

1 = −BBB0×(curl xHHH
0+

curl yHHH
1) in T . Combining the aforementioned results and the divergence theorem we can

rewrite (5.4) the following way,

0 =

∫
Yf

∂σ0
ij

∂xj
dyyy +

∫
S

∂σ0
ik

∂xj
yjnk ds+ α

∫
S

s
∂τ 0ik
∂xj

yj nk

{
ds+ α

∫
Y

∂τ 0ij
∂xj

dyyy. (5.5)

Using the decomposition of vvv1 and p0 in (4.1) and (4.2) we can re-write σ0
ij and τ 0ij,

σ0
ij = −p̄0 δij + εm`ij emlx(vvv

0) + Σm`
ij H̃

0
m H̃

0
` , τ 0ij = µAm`ij H̃

0
m H̃

0
` .

Moreover, equations (2.1b), (2.4), (4.3) and (4.6) allow us to retain the only symmetric part
of (5.5).

Hence the homogenized fluid equations (5.5) become,

0 =
∂

∂xj

(
−p̄0 δij +

{∫
Yf

2 eijy(BBB
m` +χχχm`) dyyy +

∫
S

εm`pk B
ij
p nk ds

}
em`x(vvv

0) (5.6)

+

{∫
Yf

2 eijy(ξξξ
m`) dyyy +

∫
S

Σm`
pk B

ij
p nk ds+ α

∫
Y

µAm`ij dyyy + α

∫
S

q
µAm`pk

y
Bij
p nk

}
H̃0
m H̃

0
`

)
.

Furthermore, using (2.1c)–(2.1d) and the divergence theorem we can obtain the incom-
pressibility condition, div xvvv

0 = 0.
Denote by

νijm` =

{∫
Yf

2 eijy(BBB
m` +χχχm`) dyyy +

∫
S

εm`pk B
ij
p nk ds

}
,
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and

βijm` =

{∫
Yf

2 eijy(ξξξ
m`) dyyy +

∫
S

Σm`
pk B

ij
p nk ds+ α

∫
Y

µAm`ij dyyy + α

∫
S

q
µAm`pk

y
Bij
p nk

}
.

then the homogenized equation (5.6) becomes

0 =
∂

∂xj

(
−p̄0 δij + νijm` em`x(vvv

0) + βijm` H̃
0
m H̃

0
`

)
.

Using local problem (4.3) we can re-write the νijm` the following way,

νijm` =

∫
Yf

2 epq(BBB
ml +χχχml) epq(BBB

ij +χχχij) dyyy. (5.7)

In a similar fashion, using local problem (4.6) and the kinematic condition in (4.3) we can
re-write βijm` as follows

βijm` =

∫
Yf

2 epq(ξξξ
ml)epq(BBB

ij +χχχij) dyyy+α

∫
Yf

µAm`pq epq(BBB
ij +χχχij) dyyy+α

∫
Y

µAm`ij dyyy. (5.8)

It is now clear that νijm` possesses the following symmetry, νijm` = νjim` = νm`ij. While
for βijm`, we have βijm` = βjim` = βij`m.

To obtain the homogenized Maxwell equations, average (5.1c), (5.1d), and (5.1e) over Y ,
Yf , and T respectively and use equation (3.5) to obtain,

∂ (µik H̃
0
k)

∂xj
= 0, εijk

∂H̃0
k

∂xj
= Rm εijk v

0
j µ

S
kp H̃

0
p in Ω,

where

µSik =

∫
T

µ

(
−∂φ

k

∂yi
+ δik

)
dyyy (5.9)

with boundary conditions,

H̃0
i = bi, v0i = 0 on ∂Ω.

The effective coefficients are computed as the angular averaging of the tensors νijm` and
βijm`. This is done by introducing the projection on hydrostatic fields, Pb, and the projection
on shear fields Ps (see [12]). The components of the projections in three dimensional space
are given by:

(Pb)ijk` =
1

n
δij δk`, (Ps)ijk` =

1

2
(δik δj` + δi` δjk)−

1

n
δij δk`

Let us make the following notations:

νb = tr(Pb ν) =
1

n
νppqq, νs = tr(Ps ν) =

(
νpqpq −

1

n
νppqq

)
,

βb = tr(Pb β) =
1

n
βppqq, βs = tr(Ps β) =

(
βpqpq −

1

n
βppqq

)
.

Then we can re-write the homogenized coefficients νijm` and βijm` as follows:

νijm` =
1

n
(νb − νs)δijδm` +

1

2
νs (δikδj` + δi`δjk),

12



βijm` =
1

n
(βb − νs)δijδm` +

1

2
βs (δikδj` + δi`δjk).

Gathering all the equations we have that the homogenized equations governing the MR
fluid form the following coupled system between the Stokes equations and the quasistatic
Maxwell equations,

∂

∂xj

(
σHij + τHij

)
= 0,

∂v0i
∂xi

= 0 in Ω,

σHij + τHij = −p̄0 δij+νs eij(vvv0) +
1

n
(βb − βs) δij

∣∣∣H̃HH0
∣∣∣2 + βs H̃

0
i H̃

0
j

∂(µjk H̃
0
k)

∂xj
= 0, εijk

∂H̃0
k

∂xj
= Rm εijk v

0
j µ

S
kp H̃

0
p in Ω,

v0i = 0, H̃0
i = bi in Ω.

(5.10)

Remark 3. We should remark here that the effective constitutive properties consist of the
homogenized viscosity, νijm`, and three homogenized magnetic permeabilities, µij, µ

s
ij, and

βijm`, which all depend on the geometry of the suspension, the volume fraction, and the
magnetic permeability µ. In addition the new coefficient βijm` depends also on the Alfven
number α.

6. Velocity profile of the magneto-rheological fluid

In this section we compute the cross sectional velocity profiles of Poiseouille and Couette
flow for spherical suspensions of rigid particles. We denote by vvv = (v1, v2) the two dimensional
velocity and by HHH = (H1, H2) the two dimensional magnetic field. We remark that in two
dimensions the tensors Cijmm = 0 and BBBmm = 000. Then due to the linearity of local problem
(4.3) we have χχχmm = 000. Thus, νmmii = 0 which implies that νb = 0. Using a similar
argument, we further note that βmmii = 0 which implies that βb = 0. Hence, the two
dimensional stresses of (5.10) reduce to

σHij + τHij = −p̄0 δij + νs eij(vvv
0)− 1

2
βs δij

∣∣∣H̃HH0
∣∣∣2 + βs H̃

0
i H̃

0
j

Thus, the two dimensional MR equations in (5.10) reduce to the following:

νs
2

(
∂2v1
∂x21

+
∂2v1
∂x22

)
− ∂ π0

∂x1
+

∂

∂x1

(
1

2
βs (H2

1 −H2
2 )

)
+

∂

∂x2
(βsH1H2) = 0, (6.1a)

νs
2

(
∂2v2
∂x21

+
∂2v2
∂x22

)
− ∂ π0

∂x2
+

∂

∂x1
(βsH1H2) +

∂

∂x2

(
1

2
βs (H2

2 −H2
1 )

)
= 0, (6.1b)

∂

∂x1
(µH1) +

∂

∂x2
(µH2) = 0, (6.1c)

∂H2

∂x1
− ∂H1

∂x2
= η µS (v1H2 − v2H1), (6.1d)

∂v1
∂x1

+
∂v2
∂x2

= 0. (6.1e)
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6.1. Poiseuille flow. We consider the problem of a steady flow due to a pressure gra-
dient between two infinite, parallel, stationary plates that are non-conducting and non-
magnetizable with one plate aligned along the x1–axis while the second plate is of distance
one unit apart. We apply a stationary magnetic field HHH on the bottom plate. Since we are
dealing with infinite plates, the velocity vvv depends only on x2. Using (6.1e) we immediately
obtain that v2 is constant and since the plates are stationary v2 = 0. Since the flow is uni-
directional, we expect that the the magnetic field will depend only on the height x2. Hence,
using (6.1c) we obtain H2(x2) = K, while the component parallel to the flow depends on the
fluid velocity. Therefore the equations in (6.1) reduce to the following,

νs
2

∂2v1
∂x21

+ βsK
∂H1

∂x2
=
∂ π0

∂x1
, (6.2a)

−∂ π
0

∂x2
− 1

2
βs
∂H2

1

∂x2
= 0, (6.2b)

−∂H1

∂x2
= η µSK v1. (6.2c)

Making use of (6.2b) we obtain that π0(x1, x2) + 1
2
βsH1(x2)

2 is a function of only x1 and

therefore by differentiating the expression with respect to x1 we get that ∂ π0

∂x1
is a function

only x1. Therefore, on (6.2a) the left hand side is a function of x2 and the right hand side
is a function of x1. Thus they have to be constant. Substituting (6.2c) in (6.2a) we obtain
the following differential equations,

d2 v1
d x22

− λ2 v1 = Cp, (6.3a)

∂ π0

∂x1
= Cp, (6.3b)

with λ =

√
2 η µs βs
νs

K.

The general solution of (6.3a) is

v1(x2) = c1 e
λx2 + c2 e

−λx2 +
Cp
ν λ2

.

Given that v1(0) = v1(1) = 0 we have,

v1(x2) =
Cp
ν λ2

(
sinh(λx2)− sinh(λ (x2 − 1))

sinh(λ)
− 1

)
. (6.4)

Once the velocity v1(x2) is known, we can use (6.2c) to compute H1(x2) with boundary
condition H1(0) = K1 and obtain,

H1(x2) = η µsK
Cp

ν λ3 sinh(λ)
(− cosh(λx2) + cosh(λ (x2 − 1))− cosh(λ) + 1) +K1.

Remark 4. As K tends to zero, λ also tends to zero and we have

lim
K→0

v1(x2) =
Cp
2 ν

x2 (x2 − 1),

which is precisely the profile of Poiseuille flow with stationary plates at x2 = 0 and x2 = 1.
14



6.2. Couette flow. The setting and calculations for the unidirectional Couette flow are
the same as Poiseuille flow. In a similar way, we can carry out computations for the plane
Couette flow. For simplicity we assumed the bottom plate is the x1 axis and the top plate
is at x2 = 1 and the pressure gradient is zero. A shear stress γ̇ is applied to the top plate
while the bottom plate remains fixed. Thus, we solve (6.3a) with initial conditions v1(0) = 0
and v′1(1) = γ̇ and obtain

v1(x2) =
γ̇ ν λ sinh(λx2) + Cp cosh(λ (x2 − 1))

νλ2 cosh(λ)
− Cp
ν λ2

(6.5)

Remark 5. Again, as before, we note that as K approaches zero, λ also approaches zero
and

lim
λ→0

Cp x2
2 + 2 γ̇ x2νs − 2Cp x2

2 νs

To compute H1 we use (6.2c) to obtain

H1(x2) =
γ̇

λ2 cosh(λ)
(cosh(λx2)−1)+

Cp
ν λ3 cosh(λ)

(sinh(λ (x2−1))−sinh(λ))−Cp x2
ν λ2

+K1.

6.3. Magnetite nanoparticles. In this section we consider a suspension of spherical mag-
netite nanoparticles in de-ionized water of viscosity 0.001 Pa with volume fraction φ = 0.07.
The electrical conductivity of the nanoparticles is assumed to be 20, 000 S/m, while the mag-
netic permeability is 8.41946× 10−6N/A2 for the nanoparticles and 1.25662× 10−6N/A2 for
the water. Carrying out explicit computations of the effective coefficients in (5.7), (5.8) and
(5.9) we obtain νs = 0.006Pa, βs = 2.59× 10−6N/A2, µs = 3.28× 10−7N/A2. In the case of
Poiseuille flow we can plot the profile (6.4) of the MR flow, for a constant pressure gradient
and different values of the magnetic field and compare them with the Poiseuille flow profile
in the absence of a magnetic field (FIG. 4). We can see that the damping force increases
with B2; the profile is close to flat in the middle region for high B2, but is not parabolic
close to the walls as in the case of Bingham flows.

Velocity profile for MR Poisseuille flow Velocity profile for regular Poisseuille flow

Figure 4. The plots on the left represent the velocity profile for B2=0.05,
0.02, 0.01, 0.0075, 0.005 T (left to right). The plot on the right is the velocity
profile for B2=0 T.
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Likewise, in Couette flow regime we can plot and compare the velocity profile (6.5) of MR
Couette flow against the Couette flow in the absence of a magnetic field, for zero pressure
gradient. The plots in FIG. 5 show that as b2 increases the flow region is smaller close to
the upper plate. Thus an “apparent” yield stress is present. However, the velocity profile is
not linear like in the case of Bingham fluids.

Velocity profile for MR Couette flow Velocity profile for plane Couette flow

Figure 5. The plots on the left represent the velocity profile for B2=0.05,
0.02, 0.01, 0.0075, 0.005 T (left to right). The plot on the right is the velocity
profile for B2=0 T.

Remark 6. For shear experiments, the response of magneto-rheological fluids is often mod-
eled using a Bingham constitutive law [4], [5], [15]. Although the Bingham constitutive law
measures the response of the magneto-rheological fluid quite reasonably, actual magneto-
rheological fluid behavior exhibits departures from the Bingham model [6], [22]. In Fig. 4
and FIG 5 we see that for low values of the magnetic field, the Bingham constitutive law is
not adequate, however, it appears that for higher values of the magnetic field the flow gets
closer to resembling a Bingham fluid.

The plot in FIG. 6 depicts the stress vs shear rate curve relationship measured at x2 = 1.
When K1 = 0 there is no yield stress present. However, for very small non-zero values of
K1 we obtain the results of [22] for the linear portion of the stress vs shear rate curve at
high shear rates. Additionally, we are able to match their extrapolated Bingham yield stress
values.
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Figure 6. The stress versus the shear rate curve for four different magnetic
fields, B2 = 0.288, 0.230, 0.173, 0.058.

7. Conclusions

We consider a suspension of rigid magnetizable particles in an non-magnetizable, non-
conducting aqueous viscous fluid. In (3.4), (4.5), (4.9) we derive the local problems that
arise from the Maxwell equations, the bulk velocity and the bulk magnetic field and obtain
new constitutive laws. The effective equations governing the behavior of the MR fluid are
presented in (5.10). The proposed model generalizes the one in [14] by coupling the velocity
field with the magnetic field intensity. Moreover, we obtain formulae for the effective coeffi-
cients that can be numerically computed and identify three different magnetic permeabilities
governing the effective behavior. Unidirectional velocity profiles of Poiseuille and Couette
flows are computed for magnetite nanoparticles of volume fraction φ = 0.14 to validate
against experimental data for the stress-strain relationship of MR flows.
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