Antoine Dailly

Eric Duchene

Urban Larsson

Gabrielle Paris

Éric Duchêne

Partition games

à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Introduction

This work concerns 2-player combinatorial games related to the classical game of nim, but instead of removing objects, say beans, from heaps, players are requested to partition the existing heaps into smaller heaps, while the total number of beans remain constant. We prove several regularity results on the solutions of such games.

Integer partition theory, related to Ferrer diagrams and Young tableaus, is a classical subject in number theory and combinatorics, dating back to giants such as Lagrange, Goldbach and Euler; it concerns the number of ways you can write a given positive integer as a sum of specified parts. In most generality, to each positive integer n ∈ N = {1, 2, . . .}, there belongs a number p(n), which counts the unrestricted number of ways this can be done. For example 4 = 3+1 = 2+2 = 2+1+1 = 1+1+1+1, so p(4) = 5. We may index this partition number by saying exactly how many parts is required, and write p k (n) for the number of partitions of n in exactly k parts. Thus, in our example, p 2 (4) = 2 and p 3 (4) = 1. We could also define p k,c = p k + p c and so on. The number of partitions can be beautifully expressed via generating functions, where recurrence formulas, congruence relations, and several asymptotic estimates are known, proved more recently by famous number theorists such as Ramanujan, Hardy, Rademacher and Erdős in the early 1900s. About the same time, a theory of combinatorial games was emerging, via contributions by Bouton, Sprague and Grundy and others, seemingly unrelated to the full blossom of number theory.

An integer partition game can be defined by 2 players alternating turns and by specifying the legal partitions, say into exactly 2 or 3 parts, until the current player cannot find a legal partition of parts, and loses. Thus, from position 4, then 3 + 1, 2 + 2, 2 + 1 + 1 are the legal move options-if you play to 2 + 2 you win, and otherwise not. It turns out that the idea for how to win such games is coded in a 'game function', discovered independently by the mathematicians Sprague and Grundy, which, by the way, does not appear to have any direct relation to the partition function. For example, the partition functions are nondecreasing, but if a Sprague-Grundy function is nondecreasing the game is usually rather trivial, such as the game of nim on one heap.

Let us begin by giving the relevant game theory background to our results, that several partition games have either a periodic or an arithmetic-periodic Sprague-Grundy sequence. 1 We call the class of partition games cut.

An impartial combinatorial game G = G(R, X, x) is given by a ruleset R, a set of positions X, and a starting position x ∈ X; the ruleset R specifies how to move from any (starting) position. Two players alternate in moving, with one of the players assigned as a starting player, and in normal play a player who cannot move loses. An option of G is a game G = G (R, X, y) that can be reached in one move, and all games have finitely many options, and finite rank.

The Sprague-Grundy value [START_REF] Sprague | Über mathematische Kampfspiele[END_REF][START_REF] Grundy | Mathematics and games[END_REF] (or G-value for short) of an impartial normal play game G is the nonnegative integer

G(G) = mex{G(G) | G is an option of G},
where mex(U) = min N 0 \ U is the smallest nonnegative integer that does not belong to the strict subset

U ⊂ N 0 = N ∪ {0}.
The Sprague-Grundy value can be used to determine the winner in perfect play. Indeed, a game G satisfies G(G) = 0 if and only if playing first in G loses; i.e. the previous player wins.

Heap games are typically played on several heaps of the form H n , where n ∈ N 0 denotes the number of beans in a heap, and there is a given ruleset that specifies the legal options on the heaps. An important concept is that of a disjunctive sum of heaps. A disjunctive sum of k heaps of sizes i 0 , . . . , i k is denoted

H = H i0 + • • • + H i k ,
where by moving, a player chooses one of the heaps, say H ij and makes a move in this heap according to a given ruleset. The other heaps remain the same. That is, a typical move option of the game H is of the form H with

H = H i0 + • • • + H ij-1 + H ij + H ij+1 + • • • + H i k , (1)
where H ij is a move option on the heap H ij . 2By the main result of Sprague-Grundy Theory,

G(H) = G(H i0)⊕• • •⊕G(H i k)
, where ⊕ is the standard nim-sum operator. 3 Therefore, the previous player wins if and only if the nim-sum is 0.

The following result about the nim-sum operator will be used several times in this paper.

Lemma 1. Consider any a 0 , . . . , a m ∈ N 0 . Then

a 0 ⊕ a 1 ⊕ • • • ⊕ a m ≡ (a 0 + • • • + a m) mod 2 and a 0 + • • • + a m ≥ a 0 ⊕ • • • ⊕ a m .
Proof. Both the nim-sum and the standard sum is odd if and only if the number of odd a i s is odd. This proves the first part. For each index j ∈ [0, m], set i e i (j)2 i = a j . Then, by definition, for each i, j e j ≥ e j , which proves the second part.

As evidenced by [START_REF] Albert | Lessons in Play: An Introduction to Combinatorial Game Theory[END_REF], to study a heap game played on a disjunctive sum of heaps, it suffices to describe the rules on a single heap.

Definition 1 (cut). The cut ruleset C ⊆ N specifies the allowed number of cuts (or splits) of a given heap H n = H n (C) into a disjunctive sum of heaps, as

H n = {H n0 + • • • + H nc | c ∈ C, ∀i : n i > 0, n 0 + • • • + n c = n} An instance of H n is called a c-cut or an option of n, and is denoted O n ∈ H n .
That is, by combining Definition 1 with (1), a move consists in splitting one of the heaps in the disjunctive sum H into c + 1 non-empty heaps with c ∈ C, while the other heaps remain the same. 4Let us illustrate Definition 1 with an example. Assume that C = {3, 4}, that is, we can split a heap into either 4 or 5 non-empty heaps. Assume that the initial position is the heap H 13 . The first player decides to split it into four heaps, leaving H 1 + H 3 + H 3 + H 6 . The second player has to choose one of those four heaps and split it, which they can only do with H 6 , after which the game ends since no heap can be split anymore. Note that the first player could have chosen to split the heap into four equal heaps of size 3 and one of size 1, which would have ended the game immediately.

In this paper, we find the G-sequences for several instances of cut. In Section 2, we solve the classes:

• C ⊆ 'odd numbers';

• min C ≥ 2;

• {1, 2, 3} ⊂ C; • C = {1, 3, 2k}, k even.
Later, in Section 3, we solve several more instances of cut by adapting a computational testing condition, that we will call the AP-test, summarized in Table 1 (see also Table 2).

A typical representative of cut is G(C, N, H), but we usually omit N since it is understood, and also H, because we will gain knowledge of the Sprague-Grundy values of individual heaps (which then implies knowledge about a disjunctive sums of heaps). In this spirit, we continue to write just G(C), and we will return to this notation.

To simplify notation, for the Sprague-Grundy value of a heap H n of size n ≥ 1, we will write G(H n) = G(n), and for a disjunctive sum of heaps, we write

H n0 + • • • + H n k = (n 0 , . . . , n k) and G(H n0 + • • • + H n k) = G(n 0 , . . . , n k).
There are several similarities with nim-type games, where only removal is possible. For example, if C = N, then H n+1 is equivalent with a nim heap of size n. This follows, because both are normal play impartial games and H n (nim) ⊂ H n+1 (C), and argue by induction on the Sprague-Grundy values. See also Proposition 17 in Section 4 for a more general observation relating to the classical take-and-break games.

This work was much inspired by in particular two classical combinatorial games, namely grundy's game [START_REF] Grundy | Mathematics and games[END_REF] and couples-are-forever [START_REF] Caines | Periods in taking and partitioning games[END_REF]; see also [START_REF] Flammenkamp | Sprague-Grundy values of some octal games[END_REF]. In the first one, a move consists in choosing a heap and splitting it into two heaps of different size. The latter one allows to split any heap of size at least three into two heaps. For both games, some extra constraints have been adjoined to the type of possible splits, and no regularities in the G-sequences have yet been observed. Here, we study partition games with no extra constraint than prescribed splitting-or cut-numbers.

nim-type games on finite rulesets are known as subtraction [START_REF] Berlekamp | Winning ways for your mathematical plays[END_REF], and it is a folklore result that all such games are periodic (i.e. their Sprague-Grundy sequences (G(H n)) n∈N are periodic). This follows by a simple combinatorial counting argument. For the game cut, the situation is more varied, and we will encounter both periodic, and arithmetic-periodic games. Some rulesets are not yet fully understood, and in particular the ruleset C = {1, 2} remains a mystery (it does not seem to be arithmetic-periodic); see Section 5.

We use the notion of a 'game' in at least two different ways, both depending on the notion of a 'ruleset'. A cut game that can be enjoyed as a recreational game is a ruleset C together with a heap H n of a given size n (or a disjunctive sum of heaps H). On the other hand, a minimal requirement for a strategic understanding of a ruleset is to acquire its G-sequence (i.e. G(H 1), G(H 2), . . .). One consequence of the G-sequence is that you might be indifferent between two rulesets (independently of the size of a heap). From this perspective it is more natural to think of a game, as its sequence of G-values. The context will decide, and we believe that the word "game" should remain a word without a precise definition, available for use in various contexts; on the other hand, a "ruleset" should always have a well defined meaning.

In this spirit, and to emphasize the motivation of this paper, we will identify G(C) with its sequence of Sprague-Grundy values G(H 1), G(H 2), For example, we write G({1}) = 0, 1, 0, 1, . . . (See Proposition 3.)

We will index the elements in a given set C such that, for all i, c i < c i+1 . A well-studied periodicity problem, by Richard Guy, on so-called octal games, 5 does not transfer to the full class of partition games. Indeed, the following lemma establishes that if C contains an even cut-number, the Sprague-Grundy values are unbounded.

Theorem 2. If a ruleset C contains an even cut-number, then G(C) (i.e. its Sprague-Grundy-sequence) is unbounded. In particular, if the smallest even cut-number is c ∈ C, then any arithmetic progression of the form x, x + c, x + 2c, . . ., contains no repetition of G-values, and hence it contains infinitely many G-values.

Proof. It suffices to show that, for every pair of heaps H x1 , H x2 , with

x 1 = x 2 such that G(x 1) = G(x 2), then x 1 ≡ x 2 mod c.
Suppose that x 1 ≡ x 2 mod c. Then x 1 = q 1 c + r and x 2 = q 2 c + r for some 0 < r ≤ c, q 1 , q 2 ∈ N 0 . Assume without loss of generality that x 1 > x 2 . Thus q 1 -q 2 ≥ 1, and therefore one can c-cut H x1 to the option O x1 = (x 2 , q 1 -q 2 , . . . , q 1 -q 2). Since c is even, by the definition of nim-sum, G(O x1) = G(x 2), and thus, by definition of the mex-function, G(x 1) = G(x 2).

In Section 2, we consider several families of partition games (e.g. those where 1 / ∈ C, or those with only odd values in C) and prove their pure periodicity or pure arithmetic-periodicity. For the remaining families, many games seem to have a purely arithmetic-periodic behavior. To deal with them, we provide, in Section 3, a set of testing conditions whether a game is purely arithmetic-periodic, and apply them to particular instances. In Section 4, we give some background on classical games of take-and-break, such as octal and hexadecimal games. Finally, in Section 5, we mention some remaining rulesets C for which a possible regularity of the G-sequence remains open, as well as other open questions.

Particular partition games

In this section, we study some specific families of partition games with arithmetic-periodic Sprague-Grundy sequences. The notation (m 1 , . . . , m p) (+s) describes the arithmetic-periodic sequence of period p and saltus s for which the first p values are m 1 , . . . , m p . We write (m i , . . . , m j) k , if a subsequence (m i , . . . , m j) is repeated k times. Thus, for example, (0, 1, 2) 2 (+3) denotes the arithmetic-periodic sequence of period 6 and saltus 3, i.e. 0, 1, 2, 0, 1, 2, 3, 4, 5, 3, 4, 5, . . . As in Theorem 2, we will often encounter a unique decomposition of an integer via the division algorithm. For a given divisor (or period) p ∈ N, for any n ∈ N, there exists a unique ordered pair of nonnegative integers (q n , r n) = (q, r) such that 0 < r ≤ p and n = pq + r. 6 For consistency we will always use the letters q and r with this meaning, sometimes, but not necessarily, indexed to indicate their origin.

We first show that if C contains only odd numbers, including the possibility to split a heap into exactly two heaps, then the G-sequence of G(C) is purely periodic with period 2. Proposition 3. Let C be a (possibly infinite) ruleset consisting exclusively of odd cut-numbers, with min

C = 1. Then G(C) = 0, 1, 0, 1, . . ., i.e. G(n) = 0 if n is odd and G(n) = 1 if n is even. Proof. Note that G(1) = 0 and G(2) = 1, since min C = 1.
Suppose that n is odd, and study a generic option of H n . The number of heaps in O n of odd size must be odd. Therefore the number of heaps of even size is also odd. By induction, this shows that

G(O n) = 1.
Suppose next that n is even. The number of heaps of odd size in O n must be even, and so the number of heaps of even size must also be even. By induction, this gives the claim for even heap sizes.

In this section, and later, we get repeated use of a very simple lemma. Lemma 4. Consider a ruleset C and a disjunctive sum h = (k, h 1 , . . . , h c). If all non-zero G-values can be paired, except for G(k), then G(h) = G(k). Moreover, if h is a c-cut of H n , with c ∈ C, then H n has an option with G-value G(k).

Proof. Obvious.

This result is useful to prove lower bounds on G-values from given positions. (Especially since the proofs will tend to divide into several cases with similar arguments.) The upper bounds can be proved directly (using Lemma 1), or one can show that the anticipated value cannot have appeared before for smaller heap sizes. In either way, we rely heavily on induction.

In fact, for the upper bounds, an extension of Lemma 1 will prove useful. It reveals a general property of a combination of the division algorithm and the nim-sum.

Lemma 5. Let h = (h 0 , . . . , h c) be a c-cut of n = qp + r, 7 and where, for all i,

h i = pq i + r i . If c ≥ p, then m i=0 q i = q.
Proof. By way of contradiction, suppose that q = q 0 ⊕ • • • ⊕ q m . Since

h i = n, we have c i=0 (q i c + r i) = qc + r. Note that r ≡ c i=0 r i (mod c) forces r ≤ c i=0
r i , and hence c i=0 q i ≤ q.

By combining this with the assumption and Lemma 1, we get q = c i=0 q i ≤ c i=0 q i ≤ q, and hence

c i=0 q i = c i=0 q i . (2)
But then c ≥ p gives a contradiction. Namely, by [START_REF] Austin | Impartial and Partizan Games[END_REF] and for all i, r i > 0, we get r = c i=0

r i > c ≥ p,
which contradicts the definition of r ≤ p.

First, we study partition games, where a heap splits into at least three heaps. In this case, optimal play is reduced to using only 2 ≤ c 1 = min C, and the Sprague-Grundy sequence is purely arithmeticperiodic with period c 1 and saltus 1. Here, a cut-set may be infinite. For example, if c 1 = 2, we prove that G(C) = 0, 0, 1, 1, . . . Let r be the smallest positive integer congruent with n (mod c 1). We show that for all heaps

H n , G(n) = n -r c 1 = n -1 c 1 . Proposition 6. Consider a (possibly infinite) ruleset C with c 1 = min C ≥ 2. Then, G(C) = (0) c1 (+1).
Proof. We want to prove that for every positive integer n, G(n) = q, where n = c 1 q + r. Clearly G(1) = G(2) = 0. Assume the statement holds for all n < n. By c 1 = min C, Lemma 5 gives that there is no option

O n with G(O n) = q.
It remains to prove that H n has an option of G-value g for all g ≤ q -1. There are two cases:

1. If c 1 is even, then, for each integer g ≤ q -1, let O n = (gc 1 + r, q -g, . . . , q -g) be a c 1 -cut (with c 1 copies of H q-g). Here Lemma 4 applies, but we give the details since it is the first occurrence of the lemma. This is an option of H n , since

gc 1 + r + (q -g)c 1 = qc 1 + r = n. Furthermore, G(O n) = G(gc 1 + r) ⊕ (c 1 ⊗ G(q -g)) = g ⊕ 0 = g, since by induction G(gc 1 + r) = g and by c 1 even. 2.1 If q -g -1 is even, let h 0 = gc 1 + r h j = 1 2 (q -g -1)c 1 + 1 for j = 1, 2 h j = 1 for 3 ≤ j ≤ c 1
Then O n = (h 0 , . . . , h c1) is an option of H n since h 1 = h 2 are non-negative integers, since q -g is odd. Apply Lemma 4, using G(gc 1 + r) = g by induction and G(1) = 0.

2.2 If q -g -1 is odd, let

h 0 = gc 1 + r h j = 1 2 ((q -g -1)c 1 + 1) for j = 1, 2 h j = 2 for j = 3 h j = 1 for 4 ≤ j ≤ c 1
Apply Lemma 4 on O n = (h 0 , . . . , h c1), using G(1) = G(2) = 0, and that, by induction

G(gc 1 + r) = g. (If c 1 = 3, then omit the last item.)
This proves that there is an option with G-value g for all 0 ≤ g < q, and thus G(n) ≥ q. Together with (2), we obtain, for all n, G(n) = q.

Next, we study partition games for which the players can split a heap into two, three or four heaps. In this case, even if the players are allowed to split a heap into more than four heaps, then the G-sequence is purely arithmetic-periodic with period 1 and saltus 1. Proof. For base cases, G(1) = 0 and G(2) = 1.

Apply Lemma 5 with p = 1, r = 1, n -1 = q. Hence there is no option of n of G-value n -1.

To prove that G(n) ≥ n -1, we must find an option

O n with G(O n) = g, for all g < n -1. The 1-cut O n = (1, n -1), satisfies G(O n) = n -2 by induction. Otherwise, let g < n -2,

and apply Lemma 4.

There are four cases depending on the parities of n and g ≤ n -3. If n and g have the same parity, we use a 3-cut, and otherwise a 2-cut. In all cases, we may use that, by induction,

G(O n) = G(g + 1) = g. O n n odd n even g odd g + 1, 1, n -g -2 2 , n -g -2 2 g + 1, n -g -1 2 , n -g -1 2 g even g + 1, n -g -1 2 , n -g -1 2 g + 1, 1, n -g -2 2 , n -g -2 2
Altogether,

G(n) = mex({0, . . . , n -2}) = n -1.
Finally, we study finite partition games, namely the cut class where a player can split a heap into 2, 4 or 2k + 1 heaps, where k ≥ 1 is a given game parameter (note that this includes the game G(1, 2, 3)). In this case, the Sprague-Grundy sequence is purely arithmetic-periodic with period 2k and saltus 2. For example, if k = 2, then G(1, 3, 4) = 0, 1, 0, 1, 2, 3, 2, 3, . . . In general, we prove that

G(n) = 2 n 2k + 1 -(n mod 2). Proposition 8. For any given k ∈ N, let C = {1, 3, 2k}. Then, G(C) = (0, 1) k (+2).
Proof. Given k ∈ N, we must show that the period is p = 2k. Hence, for any heap H n , define integers q, r by n = 2kq + r, 0 < r ≤ 2k. More precisely, we prove that, for all heaps H n , G(n) = 2q + 1 -(r mod 2). Note that (for any k), G(1) = 0 (q = 0 and r = 1) and

G(2) = 1 (q = 0, r = 2). Consider n ≥ 3. We show first that G(n) ≤ 2q + 1 -(r mod 2). If G(n) > 2q + 1 -r (mod 2), then H n must have an option O n with c ∈ C such that G(O n) = 2q + 1 -(r mod 2).
In case c = 2k, assume that there is a c-cut O n = (n q0 , . . . , n qc), with

2kq + r = n = c i=0 (2kq i + r i) = 2k c i=0 q i + c i=0 r i .
Then Lemma 5 applies with p = 2k, so

q = q 0 ⊕ • • • ⊕ q c . Now, 2q + (1 -r mod 2) = G(O n) (3) = c i=0 G(n qi) (4) = c i=0 (2q i + (1 -r i mod 2)) (5) = 2 c i=0 q i + c i=0 (1 -r i mod 2), (6)
The equality (4) holds by induction and (6) holds since 2 is a power of 2, and since, for all i,

(r i mod 2) < 2. By combining q = q 0 ⊕ • • • ⊕ q c with r mod 2 = c i=0 r i mod 2, this gives a contradiction.
Therefore assume c ∈ {1, 3}. Then, by (6)

1 -r mod 2 = c i=0 (1 -r i mod 2) (7) = c i=0 r i mod 2 (8) = r mod 2 (9)
Equality (8) holds since c is odd, and (9) holds by

c i=0 r i = r , a contradiction.
Thus, there is no option of H n with G-value 2q + (1 -r mod 2). We now prove that, from a heap H n of n = 2kq + r counters, there is an option of any G-value smaller than 2q + (1 -r mod 2). Lemma 4 applies, but we give full details since the desired options vary a bit depending on various parities. There are two cases, depending on the parity of r.

1. If r is odd, then 2q + (1 -r mod 2) = 2q, and

1.1 for each integer x ∈ [0, q -1], O n = (2kx + r, q -x, . . . , q -x) is an option of H n , obtained by a 2k-cut. By induction, G(O n) = 2x, which gives the even G-values in [0, 2q -2]. 1.2 if r = 1, for each integer x ∈ [1, q -1], O n = (2kx, 1, (q -x)k, (q -x)k)
is an option of H n , obtained by a 3-cut. By induction, G(O n) = 2x -1, which gives the odd G-values in [1, 2q -3], and the value 2q -1 is obtained by the option O n = (2kq, 1).

1.3 if r ≥ 3, for each integer x ∈ [0, q -1], O n = (2kx + r -1, 1, (q -x)k, (q -x)k) is an option of H n , obtained by a 3-cut. By induction, G(O n) = 2x + (r mod 2) = 2x + 1 since r is odd, which gives the odd G-values in [1, 2q -1]. Altogether, this implies G(n) ≥ 2q, if r is odd.
2. If r is even, then 2q + (1 -r mod 2) = 2q + 1, and 2.1 for each integer x ∈ [0, q -1],

O n = (2kx + r + 1, q -x, . . . , q -x) is an option of H n , obtained by a 2k-cut. By induction, G(O n) = 2x + 1, which gives the odd G-values in [1, 2q -1]. 2.2 for each integer x ∈ [0, q -1], O n = (2kx + r, 1, (q -x)k, (q -x)k)
is an option of H n obtained by a 3-cut. By induction, G(O n) = 2x, which gives the even G-values in [0, 2q -2], and the value 2q is obtained by the option O n = (2kq + r, 1).

Thus G(n) ≥ 2q + 1, for even r.

Hence, for all heaps

H n , G(n) = 2q + 1 -(r mod 2).
Note that when k = 1, Proposition 8 gives the same result as Proposition 7 when k = 3 (and as such,

C = {1, 2, 3}).
The above results cover a large range of partition games, but in remaining cases we were not able to have direct proofs. Yet, many of them seem to be well-behaved. The next section is devoted to building a test that allows us to prove (using a small number of computations) that a given game is purely arithmetic-periodic. We then use this test to prove that some games have a purely arithmetic-periodic Sprague-Grundy sequence.

An arithmetic-periodicity test for partition games

The purpose of this section is to provide an explicit tool to verify if a partitioning game is purely arithmetic-periodic by computing a small number of initial G-values. Similar results are known as the subtraction, octal and hexadecimal periodicity tests (see Section 4.2, Theorem 16 and [START_REF] Howse | Periodicity and arithmetic-periodicity in hexadecimal games[END_REF]), in the latter case concerning pure arithmetic-periodicity. Recall that for octal, the number of computations to prove the periodicity is in the range of twice the period, whilst it takes at least 7 times the period to prove the arithmetic-periodicity of hexadecimal (together with a couple of additional tests). For (finite) subtraction, the range of computations is given by the sum of the period and the highest number in the subtraction set. We review this development in Section 4.

In Section 3.1, we prove that computing at most the first 4p values of the G-sequence (where p is the expected period, which should be determined by a blind computation) is enough to prove pure arithmetic-periodicity. We will also show that in some cases (depending on C), the first 3p values are even sufficient (Section 3.2).

The AP-test

In this section, we describe a test that will be used to verify if a given partition game, on a finite ruleset, is purely arithmetic-periodic.

Definition 2 (Arithmetic-Periodic Test). Consider a partition game on a finite ruleset C, and a single heap H n , with n ∈ N. Suppose there exists a smallest positive integer p and a power of two s = 2 t , t ∈ N 0 , with 1 ≤ s ≤ p, such that

AP1: if n ≤ 3p then G(n + p) = G(n) + s, AP2: {G(n) | n ≤ p} = {0, 1, . . . , s -1}, and AP3: if n ∈ [3p + 1, 4p] then ∀g ∈ [0, s -1] ∃ c-cut O n with 2 ≤ c ∈ C such that G(O n) = g.
Then the Arithmetic-Periodicity Test is (p, t)-verified for ruleset C, and we write AP(C) = (p, t).

The first two conditions are rather standard to prove the periodicity of take-and-break games; similar conditions are required in the subtraction periodicity, octal periodicity and hexadecimal arithmetic-periodicity tests (see Section 4 for more discussion on this). However, contrary to those (when applicable), we require the saltus to be a power of two in order to prove arithmetic-periodicity. The third condition seems more unusual, and is used for the base case of the proof. We will see in the next subsection that, for some rulesets, the third condition AP3 can be directly deduced from AP1 and AP2, which suggests that there could be a periodicity test closer to the existing tests for subtraction, octal and hexadecimal games. We now state the main result of this section.

Theorem 9. Suppose that AP(C) = (p, t), where max C ≤ 4p. Then G(C) is arithmetic-periodic with period p and saltus 2 t , i.e. for all heaps H n , G(n

+ p) = G(n) + 2 t .
In other words, if a partitioning game verifies the AP-test, then it is purely arithmetic-periodic. Note that both in the definition of the AP-test as well as in the main theorem, the saltus of the G-sequence is a power of 2. The bound max C ≤ 4p ensures that AP3 applies as a base case for induction.

In order to prove this result, we use a couple of lemmas. As before, we will frequently make use of the fact that for every heap H n , and a given period p, there exists a unique pair (q, r) = (q n , r n) such that n = pq + r with q ∈ N 0 and 0 < r ≤ p. The next result gives the closed formula corresponding to a purely arithmetic-periodic G-sequence. (It applies to cut, but also any other ruleset.) Lemma 10. Consider any heap game. Suppose there exists a period p, a saltus s, with, for all n > p,

G(n) = G(n -p) + s. Then, for all n > 0, G(n) = sq n + G(r n).
Proof. For all 1 ≤ n ≤ p, n = r with q = 0, and hence, as a base case, G(n) = G(r).

Let

n = pq + r > p. The G-value of H n is G(n) = G(n -p) + s = G(p(q -1) + r) + s = s(q -1) + G(r) + s (10)
= sq + G(r),

where [START_REF] Grundy | Mathematics and games[END_REF] is by induction.

One nice consequence of Lemma 10 is that the G-values decompose, provided that the saltus is a power of 2, and this simple result outlines our approach.

Lemma 11. Consider a ruleset C and a disjunctive sum of heaps H = (h 0 , . . . , h c). Suppose that Lemma 10 is satisfied, with h i ≤ n, for all 0 ≤ i ≤ c, and with the two additional constraints

• s = 2 t , t ∈ N 0 , • G(n) < s for all 1 ≤ n ≤ p. Then G(H) = (q 0 ⊕ • • • ⊕ q c)s + G(r 0) ⊕ • • • ⊕ G(r c), (11
)
where for all i, (q i , r i) = (q hi , r hi).

Proof.

G(H) = G(q 0 p + r 0 , . . . , q c p + r c)

= G(q

0 p + r 0) ⊕ • • • ⊕ G(q c p + r c) (13) = (q 0 s + G(r 0)) ⊕ • • • ⊕ (q c s + G(r 0)) (14) = (q 0 ⊕ • • • ⊕ q c)s + G(r 0) ⊕ • • • ⊕ G(r c), (15)
where (13) is by Sprague-Grundy theory, (14) is by Lemma 10,[START_REF] Siegel | Combinatorial Game Theory[END_REF] is by the two constraints.

Lemma 11 becomes useful in proving that the AP-test implies arithmetic-periodicity by providing invariance of G-values along arithmetic progressions of heap sizes. Namely the remainder part of the heap sizes in specified options can remain the same, whereas selected parts of the dividend part can be cancelled out, in a similar sense as in Lemma 4. This observation will appear a couple of times in the proof of Theorem 9. This theorem will be proved by induction, with a rather technical base case, which will make use of the condition c k ≥ 2 in AP3. We consider a part of this base case in the following lemma.

Lemma 12. Let C = {c 1 , . . . , c k } be a ruleset with c k ≥ 2 such that AP(C) = (p, t), with s = 2 t , t ∈ N 0 . Then for each H n with 1. n ∈ [3p + 1, 4p] and for each G-value g ∈ [0, 2s -1], there is an option

O n = (h 0 , . . . , h c), with c ≥ 2 such that G(O n) = g, 2. n ∈ [2p + 1, 3p
] and for all G-values g ∈ [0, s -1], there is an option

O n = (h 0 , . . . , h c), with c ≥ 2 such that G(O n) = g. Proof. Case 1: Let H n be such that n = 3p + r n ∈ [3p + 1, 4p] and let g ∈ [0, 2s -1]. AP3 implies that for each g ∈ [0, s -1], there is an option O n such that G(O n) = g.
By the conditions AP1 and AP2, Lemma 10 gives that G(n) = 3s + G(r n) and hence, by the mex rule, for each g ∈ [s, 2s -1], there is an option

O n such that G(O n) = g. Therefore, if 1 /
∈ C, there is nothing to prove. Consequently, it suffices to prove that if 1 ∈ C, and

O n = (h 0 , h 1) is an option of n obtained by a 1-cut, then G(O n) / ∈ [s, 2s -1]
. Assume 1 ∈ C and consider the 1-cut O n = (h 0 , h 1). There exist four unique nonnegative integers q 0 , r 0 , q 1 , r 1 such that 0 < r 0 , r 1 ≤ p and O n = (q 0 p + r 0 , q 1 p + r 1). As O n is an option of n we have

(q 0 + q 1)p + r 0 + r 1 = n = 3p + r which gives r 0 + r 1 -r = (3 -q 0 -q 1)p.
As 0 ≤ q 0 + q 1 ≤ 3 and r 0 + r 1 ≤ 2p, we have on one hand 0 ≤ r 0 + r 1 -r < 2p and on the other hand r 0 + r 1 -b ≡ 0 (mod p). Hence r 0 + r 1 -b ∈ {0, p}. If it equals 0 then q 0 + q 1 = 3, and otherwise q 0 + q 1 = 2. Without loss of generality the possible values for q 0 , q 1 and q 0 ⊕ q 1 are summarized in the following table:

q 0 q 1 q 0 ⊕ q 1 0 2 2 3 3 1 1 0 2 3
In particular, q 0 ⊕ q 1 = 1. And, by Lemma 11, property [START_REF] Guy | The G-values of various games[END_REF] we have that

G(O n) = (q 0 ⊕ q 1)s + G(r 0) ⊕ G(r 1) / ∈ [s, 2s -1],
since s is a power of two and G(r 0), G(r 1) < s.

Case 2: Let n ∈ [2p + 1, 3p] and g ∈ [0, s -1], and let n = n + p ∈ [3p + 1, 4p] and g = g + s ∈ [s, 2s -1].
By the first part of the proof, we know that there is an option of H n ,

O n = (q 0,n p + r 0,n , . . . , q m,n p + r m,n) such that m ≥ 2 and G(O n) = g . Let N = q 0,n ⊕ • • • ⊕ q m,n , R = G(r 0,n) ⊕ • • • ⊕ G(r m,n) and S = q 0,n + • • • + q m,n . We apply Lemma 11 to O n and get G(O n) = N s + R. Moreover N = 1, by g ∈ [s, 2s -1].
Define a disjunctive sum of heaps h = (h 0 , . . . , h c) by

h 0 = r 0,n h j = 1 2 (S -1)p + r j,n for j = 1, 2 h j = r j,n for 3 ≤ j ≤ c
This is an option of H n with a c-cut since ĥ0 +

• • • + ĥm = n + 2p. Its G-value is G(Ôn) = (N + 2)s + R = g + 2s.
Hence H n has options of G-values in [2s, (q -1)s -1].

If q > 4 then, by putting together the two cases, H n has options to all G-values in [0, (q-1)s-1], with c ≥ 2 and (B) holds. Otherwise, if q = 4, then we take an option O n = (q 0,n p + r 0,n , . . . , q c,n p + r m,n) of n = 3p + r = n -p with G-value g ∈ [0, s -1] and c ≥ 2, which exists by Lemma 12. We denote by S = q 0,n +

• • • + q c,n , N = q 0,n ⊕ • • • ⊕ q c,n and R = G(r 0,n) ⊕ • • • ⊕ G(r c,n
), and transform O n into an option O n = (h 0 , . . . , h c) by setting

h 0 = (N + 1)p + r 0,n h j = 1 2 (S -N)p + r j,n for j = 1, 2 h j = r j,n for 3 ≤ j ≤ c
This is an option of

H n since h 0 + • • • + h c = (S + 1)p + r 0,n + • • • + r c,n = n + p = n and its G-value is G(O n) = G(O n) + s = g + s.
This gives that for q = 4, H n has options obtained by c-cuts, c ≥ 2, to all G-values in [0, (q -1)s] = [0, 3s]. Hence H n verifies (B) in every case.

For the remaining part of the proof of (A), let n = n -(q -1)p = p + r and g ∈ [0, s + G(r) -1].

Let O n = (q 0,n p + r 0,n , . . . , q c,n p + r c,n) be an option of H n such that G(O n) = g. It exists, since H n verifies (B) by induction. Note that as n ≤ 2p, if there is a j such that q j,n = 0, then it is unique. Hence, without loss of generality, assume that q 0,n ∈ {0, 1} and for j > 0, q j,n = 0. Therefore

, if R = G(r 0,n) ⊕ • • • ⊕ G(r m,n), then G(O n) = q 0,n s + R by Lemma 11.
Define O n = (h 0 , . . . , h c) by h 0 = (q 0,n + q -1)p + r 0,n h j = r j,n for j > 0 This is an option of H n , since h 0 +• • •+h c = (q 0,n +q-1)p+r 0,n +r 1,n +• • •+r c,n = n +(q-1)p = n. Its G-value is G(O n) = (q 0,n + q -1)s + R = g + (q -1)s. Hence H n has options to all G-values in [(q -1)s, qs + G(r) -1]. Altogether, H n has options to all G-values in [0, qs + G(r) -1].

Case G(n) ≤ qs + G(r):

Assume, as a contradiction, that O n = (q 0 p + r 0 , . . . , q c p + r c) is an option of H n with G-value G(O n) = qs+G(r), and where as usual n = qp+r.

Let N = q 0 ⊕• • •⊕q c and R = G(r 0)⊕• • •⊕G(r c).
With this notation, G(O n) = N s + R, by Lemma 11. Hence q = N and

G(r) = R, (16)
since s = 2 t and G(r i), G(r) < s, by AP2.

Define O n = (h 0 , . . . , h c) by

h 0 = (q -2)p + r 0 h j = r j , for j > 1.
This is an option of n = n -2p, and its G-value is

G(O n) = (q -2)s + R (17) = qs + G(r) -2s (18) = G(n), (19)
where (17) and (19) are by Lemma 11,and (18) is by (16), a contradiction.

Putting together steps (1) and (2), the heap H n verifies (A).

Relaxed conditions on the AP-test

We now prove that for some families of games, the conditions AP1 and AP2 of the AP-test imply the condition AP3. We first prove that this is the case if the players are allowed to split a heap into at least one even number and one odd number of heaps. Again, Lemma 4 applies in the proof, but the situation gets a little technical, so we write out all details.

k ∈ [1, p] such that G(k) = g. Let n = n -k = 3p + r -k.
The desired cuts will depend on the parity of n .

Case n even: let c ≥ 2 be even, and let (q , r) be the unique ordered pair such that 0 < r ≤ c and n = cq + r . In particular, r is even, since c and n are also even. Moreover q > 0 since c ≤ 2p < n . We define h = (h 0 , . . . , h c) by

h 0 = k h j = q + 1 2 r for j = 1, 2 h j = q for 3 ≤ j ≤ c
(If c = 2, then the third part does not apply.) Then h = O n is an option of H n since all h j ∈ N, and since

h 0 + • • • + h c = k + cq + r = k + n = n. Moreover, in the expression G(h 0) ⊕ • • • ⊕ G(h c
), the values G(h 1) and G(h 3) appear an even number of times, which gives directly

G(O n) = G(k) = g.
Case n odd: let c ≥ 3 be odd and let (q, r) be such that 0 ≤ r < c, n = cq + r . Note that q > 0 since c ≤ 2p < n . As n and c are odd, either q is even and r is odd or vice versa.

• if q is even and r is odd, define the option O n = (h 0 , . . . , h c) by:

h 0 = 1 + k h j = 3 2 q + 1 2 (r -1) for j = 1, 2 h j = 1 for j = 3 h j = q for 4 ≤ j ≤ c
If c = 3 then we only take the four first heaps. The option O n is an option of n since

h 0 + • • • + h c = 1 + c + 3q + r -1 + 1 + (c -1 -2)q = 1 + k + q 2 + r 2 = 1 + c + n = n. In the expression G(h 0) ⊕ • • • ⊕ G(h c
) the terms G(h 1) and G(h 4) appear an even number of times and G(h 3) = 0, and hence

G(O n) = 1 + k = g.
• if q is odd and r is even, we define the option O n by:

h 0 = 1 + k h j = 1 2 (3q -1) + 1 2 r for j = 1, 2 h j = 1 for j = 3 h j = q for 4 ≤ j ≤ c it is an option of n since h 0 + • • • + h c = 1 + k + 3q -1 + r + 1 + (c -3)q = 1 + k + cq + r = n. In the expression G(h 0) ⊕ • • • ⊕ G(h c
) the terms G(h 1) and G(h 4) appear an even number of times and

G(h 3) = 0. Hence G(O n) = g.
In each case, there is an option

O n of H n obtained by a c-cut, c ≥ 2, such that G(O n) = g, i.e. G(C) (p, t)-verifies AP3, which means that AP(C) = (p, t).
If |C| = 2 and one possibility is to split a heap into exactly two heaps, and the other is to split into a a given odd number of heaps, then sometimes AP1 and AP2 imply AP3. Proposition 14. Let C = {1, c} with c ≥ 4 even, and suppose that G(C) (p, t)-verifies AP 1 and AP 2, with c ≤ p. If there exist heap sizes

1 ≤ x 1 , x 2 ≤ p/2 of different parity, such that G(x 1) = G(x 2), then AP(C) = (p, t).
Proof. We prove that the game G(C) (p, t)-verifies AP3, i.e., for any heap H n with n ∈ [3p + 1, 4p] and for any G-value g ∈ [0, 2 t -1], there exists an option O n , such that G(O n) = g. Since AP2 is (p, t)verified, this can be done by proving that, for all heap sizes k ∈ [1, p], there exists an option

O n such that G(O n) = G(k).
The proof is divided into four cases depending on the parities of k and n, and we summarize the relevant c-cuts in a table:

O n n odd n even k odd (k, f (n, k), f (n, k), 1, . . . , 1) (k, x 1 , x 2 , f (n, k), f (n, k), 1, . . . , 1) k even (k, x 1 , x 2 , f (n, k), f (n, k), 1, . . . , 1) (k, f (n, k), f (n, k), 1, . . . , 1)
Here

f (n, k) = n -k -c 2 + 1
if n and k have the same parity, and

f (n, k) = n -k -c -x 1 -x 2 + 5 2
if n and k have different parities and c ≥ 6. If c = 4, then by say 0 < x 1 < x 2 different parities, we consider instead the option

O n = (k, x 1 , x 2 -1, f (n, k), f (n, k)).
It is straightforward to justify in each case that O n is an option, and then apply Lemma 4.

Hence, for all heap sizes k ∈ [1, p], there exists an option of n with the same G-value. This implies that the condition AP3 is (p, t)-verified, and thus that the AP-test is (p, t)-verified for G(C).

We now prove that the conditions of Proposition 14 are verified for all those games as long as the period is lower bounded by 4c + 3 ≤ p. Proof. By Proposition 14, it suffices to prove that there exists x 1 , x 2 < p/2 of different parities, such that G(x 1) = G(x 2).

Note that G(2) = 1, since the only option is (1, 1) which has G-value 0. Hence we can assume x 2 = 2.

We claim that we can choose x 1 = 2c + 1 to get G(x 1) = G(2) = 1. In order to do that, we prove that the beginning of the G-sequence of the game G(C) is (0, 1) c/2 and the following c values are different from 1 and 0, and the 2c + 1-th value is 1. Finally, we prove G(2c + 1) = 1. We now set k = 2c + 1.

If k ≤ c, then G(k) = (k -1) (mod 2),
From k, one can reach the value 0 by the option (1, 2, . . . , 2) obtained by a c-cut. All the 1-cuts (i 0 , i 1) are such that without loss of generality i 0 > c and i 1 ≤ c, so G(i 0 , i 1) = 1 since G(i 1) < 2 and

G(i 2) ≥ 2.
It suffices to prove that there is no

c-cut O k = (i 0 , . . . , i c) with G(O k) = 1.
If there is some j such that i j > c, then it is unique, and as before G(i j) ≥ 2 implies G(O k) ≥ 2. Hence, assume, for all j, i j ≤ c. If the G-value of the c-cut were 1, then we must have an odd number of even heap sizes, and hence an even number of odd heap sizes, since c is even. But 2c + 1 is odd, so the c-cut cannot sum up correctly. Therefore, G(2c + 1) = 1. Moreover, 2c + 1 < p/2 since 4c + 3 ≤ p.

Applications of the AP-test

Table 1 summarizes applications of the AP-test for some partitioning games (the games already solved in Section 2 are not in the table). All the games in this list satisfy the test and hence are proved to be purely arithmetic-periodic. More specifically, Corollary 15 has been applied to the games {1, 4}, {1, 6}, {1, 8}, and {1, 10}. We note that for games of the form {1, c}, there seem to be rather long periods depending on c, with always the same saltus. We wonder whether this regularity holds for higher values of c.

Open Problem 1. Given c ≥ 2, the game G(C) with C = {1, 2c} is arithmetic-periodic of length 12c and saltus 8. Surprisingly, when one adjoins new values to the games {1, 2c} (with c ≥ 2), the period and saltus may change significantly. This is for example the case for the game {1, 4}, which has period 24 and saltus 8, but {1, 3, 4} has period 4 and saltus 2, while {1, 4, 9} has period 40 and saltus 16.

The cases where 1, 2 ∈ C but 3 / ∈ C remain the hardest to understand. If Table 1 suggests a purely arithmetic-periodic behavior when |C| ≥ 3, we did not detect any general pattern, depending on C. For example, when |C| = 3, the games {1, 2, 4} and {1, 2, 6} have identical Sprague-Grundy sequences, whereas {1, 2, 5} and {1, 2, 7} are more singular. Even worse, the games {1, 2, 8} and {1, 2, 7, 8} seem to be ultimately arithmetic-periodic with saltus 8 and a preperiod of positive length equal to 6 (which is not the case of the other sequences we computed). 8 A proof of this result remains to be done, as the AP-test does not cover ultimate behavior (and does not seem to be easily adapted for them).

A review of take-and-break in relation with cut

We review some history of theory intertwining subtraction with cut, and such games are gathered under the umbrella take-and-break. (Then in Section 5, we return to conclude our findings in this broader perspective.)

4.1 take-and-break take-and-break [START_REF] Berlekamp | Winning ways for your mathematical plays[END_REF] is a large class of 2-player impartial combinatorial games with alternating play. A game position is represented by a finite multiset of heaps. A move consists in choosing a single heap, removing some beans, and possibly splitting the remaining heap into several heaps. If splitting is not allowed, we have (pure) subtraction. In this case, the rules are given by a set S of positive integers cut-set

Sprague-Grundy sequence {1, 4} ∪ K ((0, 1) 2 (2, 3) 2 , 1, 4, 5, 4, (3, 2) 2 (4, 5) 2 (6, 7) 2) (+8) with K ⊆ {6, 8, 10} {1, 6} ∪ K ((0, 1) 3 (2, 3) 3 , 1, 4, (5, 4) 2 (3, 2) 3 (4, 5) 3 (6, 7) 3) (+8) with K ⊆ {8, 10}
{1, 8} ((0, 1) 4 (2, 3) 4 , 1, 4, (5, 4) 3 (3, 2) 4 (4, 5) 4 (6, 7) 4) (+8) {1, 10} ((0, 1) 5 (2, 3) 5 , 1, 4, (5, 4) 4 (3, 2) 5 (4, 5) 5 (6, 7) 5) (+8) {1, 4} ∪ K (0, 1) 2 (+2) with K ⊆ {3, 5, 6, 7, 8} and 3, 5 or 7 ∈ K {1, 6} ∪ K (0, 1) 3 (+2) with K ⊆ {3, 5, 7, 8} and 3, 5 or 7

∈ K {1, 8} ∪ K (0, 1) 4 (+2) with K ⊆ {3, 5, 7}, K = ∅ {1, 2, 4} ∪ K, {1, 2, 6} ∪ K (0, 1 , 2, 3, 1, 4, 3, 2, 4, 5, 6, 7)
(+8) with K ⊆ {6, 7, 8}, K ⊆ {7, 8} {1, 2, 5} ∪ K (0, 1 , 2, 3, 1, 4, 3, 6, 4, 5, 6, 7)
(+8) with K ⊆ {4, 6, 7, 8} {1, 2, 7} (0, 1, 2, 3, 1, 4, 3, 2, 4, 5, 6, 7, 8, 9, 7, 6, 9, 8, 11, 10, 12, 13, 10, 11, 13, 12, 15, 14) (+16)
{1, 4, 9} (0, 1, 0, 1, 2, 3, 2, 3, 1, 4, 5, 4, 3, 6, 7, 6, 4, 5, 8, 9, 6, 7, 10, 11, 9, 8, 9, 12, 11, 10, 11, 14, 12, 13, 12, 13, 14, 15, 14, 15) (+16)
Table 1: Some partition games for which the purely arithmetic-periodicity is proved with the AP-test.

which specifies the number of tokens that can be removed from the heap. When the heap may be split, the rulesets are often given by a code that specifies how many tokens can be removed and the number of heaps that the remainder of the heap can be split into.

Let us review some of the history of take-and-break. The origin to the line of research was the invention of a fairy game of chess in the 1930s, called dawson's chess [START_REF] Dawson | Caissa's Wild Roses[END_REF], named by its inventor, played by using only the pawns of chess and with mandatory captures. It was soon remarked that the game is equivalent to a game on heaps of counters, where a player may remove (i) a single counter if by removing it no heap remains, (ii) two counters if no heap or a single heap remain (iii) three counters if no heap, one heap or two heaps remain. In the normal play convention it was discovered that the solution has a regular behavior (ultimately periodic) [START_REF] Guy | The G-values of various games[END_REF]. The elegance of the solution of dawson's chess, together with the similar game of kayles [START_REF] Guy | The G-values of various games[END_REF] (remove one or two counters anywhere), gave rise to classifications of games on heaps of counters [START_REF] Guy | The G-values of various games[END_REF].

For example, the family of games for which a heap can be split into at most two heaps is nowadays called octal games. This name is due to an explicit way to express any ruleset with an octal code

d 0 .d 1 • • • d k with d i an integer, 0 ≤ d i ≤ 7 for 1 ≤ i ≤ k. More precisely, each value d i with i > 0 is encoded in binary as d i = 2 0 e 0 + 2 1 e 1 + 2 2 e 2 ,
where each e j ∈ {0, 1}. The ruleset allows to remove i tokens from a heap and split the remainder into j non-empty heaps if and only if e j = 1. So, for example dawson's chess is the octal game 0.137, and kayles is the game 0.77. Observe that, for octal, the value d 0 equals 0 or 4 according to whether it is allowed (value 4) or not (value 0) to split a heap without removing any token. Variants of octal, where the ruleset allows to split a heap without removing any token, have been considered in the literature, starting from grundy's game in 1939 [START_REF] Grundy | Mathematics and games[END_REF]. An extra condition has been imposed to grundy's game, to avoid trivialities, namely the outcome of a split must result in heaps of non-equal sizes. Hence, grundy's game is not in octal.

The notation for octal has been extended to define an arbitrary instance of (pure) take-andbreak, by giving any integer value to each d i . According to the binary decomposition of d i = 2 0 e 0 + 2 1 e 1 + 2 2 e 2 + 2 3 e 3 . . ., each value e j ∈ {0, 1} indicates whether it is allowed to remove i tokens and split the remainder into j non-empty heaps. As an example, in the family of hexadecimal games, each d i is in {0, . . . , 2 4 -1} (generally encoded by an hexadecimal notation), indicating that a heap can be split into at most three heaps.

We relate the current work to take-and-break by considering particular rulesets, without 'take'/removal. To our knowledge, the full class of 'break-without-take' has not yet been studied, at least not anywhere near the extent of the folklore results and conjectures on pure subtraction games, and other octal games, which were researched extensively through the last couple of decades, e.g. [START_REF] Flammenkamp | Sprague-Grundy values of some octal games[END_REF][START_REF] Berlekamp | Winning ways for your mathematical plays[END_REF].

Regularities in take-and-break games

Given a take-and-break game, its G-sequence is the sequence G(1), G(2), G(3), Finding regularities in G-sequences is a natural objective as it may lead to polynomial-time algorithms that compute the Gvalues of the game. In particular, periodic behaviors are often observed. A game is said to be ultimately periodic with period p and preperiod n 0 if there exist n 0 and p such that G(n + p) = G(n) for all n ≥ n 0 . Pure periodic games are those for which there is no preperiod; i.e. n 0 = 0.

For example, it is well known (see [START_REF] Siegel | Combinatorial Game Theory[END_REF], Chapter 4, Theorem 2.4 and 2.5) that all finite subtraction games are ultimately periodic, and a periodicity test has been shown in [START_REF] Albert | Lessons in Play: An Introduction to Combinatorial Game Theory[END_REF] (see Chapter 7, Corollary 7.34). For octal, the behavior of the G-sequences is far from fully understood, even for very short (finite) rule descriptions. Guy famously asked whether every finite octal game is ultimately periodic. Nowadays, one might lean towards that this is not the case, but it seems to be a very hard problem to understand fully. For example, there are 79 non-trivial octal games with at most 3 octal-digits among which only 14 have been solved [START_REF] Flammenkamp | Sprague-Grundy values of some octal games[END_REF]. So, in this sense, octal seems perhaps more complicated than cut 9 .

Out of the games that were proved to satisfy this conjecture, one can mention 0.106, 0.165 and 0.454. In some cases, the values of the period and the preperiod are huge (e.g. 0.454 has a period of 60620715 and a preperiod of 160949019). On his webpage [START_REF] Flammenkamp | Sprague-Grundy values of some octal games[END_REF], Flammenkamp maintains a list of octal games with known and unknown periodicities; the game 0.106 has period length 328226140474 and a preperiod of length 465384263797.

J. P. Grossman [START_REF] Grossman | Searching for Periodicity in Officers[END_REF] recently contributed to some "parallelization strategies" and other optimizations that accelerate the computation of Sprague-Grundy values of the game 0.6, also called officers, by nearly 60 times of the previous records. His implementation computed over 5 million values per second, a total of more than 140 trillion values over a course of 18 months, without finding any period. And note that officers is a single digit octal game (!). As was shown in Winning Ways [START_REF] Berlekamp | Winning ways for your mathematical plays[END_REF], to prove periodicity it suffices to establish that an octal game contains only finitely many G-values. But the problem is that extensive computations reveal the "sparse value phenomenon", and to our knowledge there is no theory yet to handle them. Grossman's approach exploits the fact that sparse values are extremely non-dense, and correctly used, this can dramatically speed up computation, searching for possible regularity (and his method can be used for other games as well). officers is the only single digit octal game for which Richard K. Guy's original question/conjecture remains unanswered. Somewhat surprisingly, the invariant ditto, the game 0.7 where, in addition, a heap with a single bean may be removed, reverts to "she-loves-me-she-loves-me-not".

As explained in [START_REF] Howse | Periodicity and arithmetic-periodicity in hexadecimal games[END_REF], some hexadecimal games also satisfy these properties of normal periodicity (e.g. 0.B3, 0.33F). In addition, other types of behavior have been exhibited for hexadecimal games, namely arithmetic-periodicity. A take-and-break game is ultimately arithmetic-periodic with period p, saltus s, and preperiod n 0 if there exist three integers n 0 , p and s such that its G-sequence satisfies G(n + p) = G(n) + s for all n ≥ n 0 ; if n 0 = 0, the sequence is purely arithmetic-periodic.

If (strict) arithmetic-periodicity never occurs in octal [START_REF] Austin | Impartial and Partizan Games[END_REF], it makes sense in the context of hexadecimal, where the Sprague-Grundy values may not be bounded. For example, the games 0.13FF or 0.9B are proved to be ultimately arithmetic-periodic with period 7 and saltus 4 in [START_REF] Howse | Periodicity and arithmetic-periodicity in hexadecimal games[END_REF]. Note that normal and arithmetic-periodicities are not the only kinds of regularities that have been detected in hexadecimal games. In [START_REF] Albert | Lessons in Play: An Introduction to Combinatorial Game Theory[END_REF], the game 0.205200C is said to be sapp-regular, which means that the Gsequence is an interlacing of two periodic subsequences with an arithmetic-periodic one; this behavior occurs also in variants of octal games with pass moves [START_REF] Horrocks | Regularity in the G-sequences of octal games with a pass[END_REF]. In [START_REF] Howse | Periodicity and arithmetic-periodicity in hexadecimal games[END_REF], the game 0.123456789 satisfies

G(2m -1) = G(2m) = m -1, except G(2 k + 6) = 2 k -1.
In [START_REF] Grossman | A ruler regularity in hexadecimal games[END_REF], Grossman and Nowakowski use the notion of ruler regularity that arises in the hexadecimal games 0.20 • • • 48 with an odd number of intermediate 0s; roughly speaking, it corresponds to a kind of arithmetic-periodic sequence where new terms are regularly introduced that double the length of the apparent period.

For a better understanding of take-and-break, the question of how to detect a possible regularity using just a small number of computations is paramount. For example, the folklore subtraction periodicity theorem (see for example Chapter 4 of [START_REF] Siegel | Combinatorial Game Theory[END_REF]) relies on that, for a given finite subtraction game S, it suffices to find a repetition of max(S) consecutive Sprague-Grundy values, to establish ultimate periodicity. Concerning octal, there is a similar result that has been extensively used to prove the ultimate periodicity of some G-sequences [START_REF] Siegel | Combinatorial Game Theory[END_REF]: Theorem 16 (octal Periodicity Test). Let G be an octal game d

0 .d 1 • • • d k of finite length k. If there exist n 0 ≥ 1 and p ≥ 1 such that G(n + p) = G(n) ∀n ∈ {n 0 , . . . , 2n 0 + p + k -1},
then G is ultimately periodic with period p and preperiod n 0 . Such kind of testing properties have also been considered for hexadecimal. In [START_REF] Austin | Impartial and Partizan Games[END_REF], Austin yields a first set of conditions to guarantee the ultimate arithmetic-periodicity of hexadecimal with a saltus equal to a power of 2. An extension was later given by Howse and Nowakowski [START_REF] Howse | Periodicity and arithmetic-periodicity in hexadecimal games[END_REF] for hexadecimal having an arbitrary saltus. In both cases, several types of computations must be done. In particular, the arithmetic-periodicity must be checked on a range of values much larger than in Theorem 16 (at least seven times the expected period).

The partition game cut as a pure-break game

The partition game cut is a pure-break game in two senses. The first meaning is that they have no special rule which restricts the type of breaking possible, in contrast with for example grundy's game (a split must result in unequal heap sizes), couples are forever (any split into two parts is possible, except if the heap is H 2). Secondly there is no "taking", i.e. no subtraction of tokens is possible at any stage of play.

As noted already in going from octal to hexadecimal, allowing a heap to be split into three parts may significantly change the behavior of the G-sequence. In the current paper, we have explored how the G-sequences behave when increasing the number of possible splits of a heap. As one might expect that the complexity of this generalization also increases accordingly, we have chosen to focus on the arguably most natural class of break games, namely break-without-take, i.e. games where it is never allowed to remove tokens from the disjunctive sum of heaps. The total number of beans in the heaps remain the same until the end of play. If the game starts with a large number n, then the game proceeds by finding finer and finer partitions of this number, until no more refinement is possible.

Theorem 2 means that partition games are somehow closer to hexadecimal than octal. This is not so surprising, by the possibility of an extra cut in hexadecimal. Moreover, we note that partition games form particular instances of take-and-break.

Proposition 17. The partition game G(C) played on a heap of size n is equivalent to take-and-break 0.d 1 d 2 • • • played on a heap of size n -1, where d c = 2 c+2 -1 if c ∈ C, and d c = 0 otherwise. That is, decompose d 0 in binary, so that d 0 = e i 2 i+1 . Then, for all n > 0, d 0 .00

• • • (H n) = 0.d 1 d 2 • • •(H n-1)
, Proposition 17 shows that G({1, 2}) is equivalent to hexadecimal 0.7F. Applied to the game couples-are-forever, the same analysis proves that it is equivalent to octal 0.6, i.e. officers; moreover a similar argument shows that dawson's chess has two equivalent representations 0.137 and 0.4 (with two additional tokens), and so on. This discussion concerned several examples of extremely short take-and-break rulesets with great complexity. By relating to the case of cut one might guess that in general, the complexity of the Gsequence does not increase with max(C). Indeed in all case of analysis in this paper, except one, namely C = {1, 2}, the G-sequence is either periodic or arithmetic-periodic. Let us conclude the paper, with related open questions.

where d i = 2 i+2 -1 if e i =

Conclusion and perspectives

The results from Sections 2 and 3 are summarized in Table 2. The games are partitioned into three families: those for which periodicity or arithmetic-periodicity is proved, and those for which we used two or three conditions of the AP-test, respectively. Table 2: Some partition games.

Among the families that are not solved, all of our computations on particular examples have shown ultimate arithmetic-periodic behaviors, except one, namely G({1, 2}). This game has a Sprague-Grundy sequence with a lot of visible regularity but some surprising 'drop-out' values, as shown in Figure 1 (in the second picture the drop-outs have been highlighted). In view of our computations, we propose the following problem.

Open Problem 2. Is it true that every game G(C) with C = {1, 2} has a Sprague-Grundy sequence that is either ultimately periodic or ultimately arithmetic-periodic?

A first step to understand this problem would be to justify (or disprove) the following conjecture.

Conjecture 1. Every instance C of cut for which {1, 2} ⊂ C is (ultimately) arithmetic-periodic.

For some games, the conjecture holds but where a non-computer justification becomes at the best tedious (e.g. C = {1, 2, 7}). A general proof is probably hard to obtain, and meanwhile this motivates the testing conditions. The AP-test is a rather short computation to justify arithmetic-periodicity of a game; for even more simplicity, we wonder whether the condition AP3 could be removed from the test.

Open Problem 3. Do AP1 and AP2 imply AP3? Note that removing AP3 from the AP-test would not have much impact on the computational complexity of the test, but this would make the AP-test closer to its counterparts for other take-and-break games.

Concerning the ultimate property of the sequence, we have seen that in almost all considered cases, there is no preperiod. However, the case C = {1, 2, 8} suggests that some games have one. Therefore, the question of finding an equivalent of the AP-test for these games makes sense.

Open Problem 4. Find a generalization of the AP-test to prove ultimate arithmetic-periodicity of partition games. Recall that from Proposition 17, this game is equivalent to hexadecimal 0.7F (that is also claimed unsolved), with rules: remove one token and leave no heap, remove one token and leave one heap, remove one token and leave two heaps, remove two tokens and leave no heap, remove two tokens and leave one heap, remove two tokens and leave two heaps, or remove two tokens and leave three heaps. The cut description is here more concise, (without removing any token) split your heap in two or three parts, and with equivalent behavior.

As indicated by

On the other hand a full generalization of hexadecimal games includes as a subclass cut, but we feel perhaps the general class is too large, and further classification of partition games appears a more approachable (sub-)goal. Another interesting direction would be to pursue Grundy's idea to disallow symmetric partitions (but with no removal), but we have not yet looked into that.

Proposition 7 .

 7 Let C be a (possibly infinite) ruleset with {1, 2, 3} ⊆ C. Then, for all heaps H n , G(n) = n -1.

Corollary 15 .

 15 Let C = {1, c} with c ≥ 4 even. If G(C) (p, t)-verifies AP1 and AP2 for some p ≥ 4c + 3, then AP(C) = (p, t).

 by Proposition 3. Now, let k ∈ [c + 1, 2c]. If k is odd, then k admits the 1-cut option (k -c, c) of Grundy value 1 since c is even, and the c-cut option (k -c, 1, . . . , 1) of Grundy value 0. If k is even, it admits the c-cut option (k -c, 1, . . . , 1) of Grundy value 1, and the 1-cut option (k/2, k/2) of Grundy value 0. It thus implies that G(k) > 1.

 2 , . . .} (c i odd) (0, 1) (+0) Proposition 3 {c 1 , . . .} (c 1 > 1) (0) c1 (+1) Proposition 6 {1, 2, 3, c 4 , . . .} (0) (+1) Proposition 7 {1, 3, 2k} (k ≥ 1) (0, 1) c (+2) Proposition 8 AP1 and AP2 {1, 2c, 2c + 1, c 1 , . . . , c k } Proposition 13 {1, 2c} (c ≥ 2)Corollary 15 AP1, AP2 and AP3 {1, c 1 , . . . , c k } (c i even, k ≥ 1) Theorem 9

Figure 1 :

 1 Figure 1: The Sprague-Grundy sequence of G({1, 2}) for n ≤ 100 and n ≤ 4000.

Figure 1 ,

 1 the game G({1, 2}) leaves a couple of questions open. What is the number of occurrences of each Sprague-Grundy value of G({1, 2})? We already know from Theorem 2 that every Sprague-Grundy value appears at most twice in the sequence of G({1, 2}) (apply Theorem 2 with c = 2). Open Problem 5. Does each Sprague-Grundy value appear at least once in the sequence of G({1, 2})? More precisely, does each G-value appear exactly twice in the sequence of G({1, 2})? Open Problem 6. What is the behavior of the Sprague-Grundy sequence of G({1, 2})?

 Proposition 13. Let C be a ruleset with |C| ≥ 2. If G(C) (p, t)-verifies AP1 and AP2, and there are cut numbers c, c ∈ C of different parities with 2 ≤ c, c ≤ 2p + 1, then AP(C) = (p, t). Proof. Let s = 2 t . It suffices to prove that G(C) (p, t)-verifies AP3. We prove that for all heap sizes n ∈ [3p + 1, 4p] and all G-values g ∈ [0, s -1], there is an option O n = (h 0 , . . . , h c) such that c ≥ 2 and G(O

n) = g. As usual, write n = 3p + r with 0 < r ≤ p. By AP2, for any g ∈ [0, s -1], there exists a

 1 and where d i = 0 if e i = 0.Proof. Interpret the game G(C) played on a heap of size n as a game on a path P n of size n as follows. A k-cut consists in removing k edges from the path, leaving k + 1 non-empty smaller paths. Now consider the line graph of P n (i.e. the graph where edges are replaced by vertices, and two vertices are adjacent if the corresponding edges where incident in the initial graph). Clearly, this line graph is a path of size n -1. A k-cut in P n thus consists in removing k vertices from the line graph. Hence G(C) is equivalent to a take-and-break game 0.d 1 d 2 . . . on the path of size n -1. As there is no constraint on the edges removed from P n , there is no constraint on the corresponding vertices in the line graph. Hence, if k ∈ C, the code of each d k is the maximal possible value, 2 0 + 2 1 + • • • + 2 k+1 = 2 k+2 -1, i.e. remove k vertices and leave any number of heaps ≤ k + 1.

An arithmetic-periodic sequence can be partitioned into a finite set of arithmetic progressions with the same common difference.

In general, an option may include several heaps, where each new heap is smaller than the previous heap, to allow recursive computation of the Sprague-Grundy values; in this paper, exactly one of the heaps in a sum of heaps will be cut (broken, partitioned, split) into at least 2 heaps. See also Section 4 for a surrounding context and a review of classes of heap games, such as octal games, hexadecimal games, and so on.

Consider nonnegative integers m = e i 2 i and n = f i 2 i . Then n ⊕ m = (e i XORf i)2 i .

Here C is an invariant ruleset in an analogous sense as defined in[START_REF] Duchêne | Invariant games[END_REF] for subtraction games. The term 'invariant' is with respect to the size of the heap, so that if c ∈ C then a c-cut is available for all Hn, with n > c. We often think of the sequence of all heap games for a given ruleset C, as the 'fingerprint' of a game. As it is common in CGT papers, we will deemphazise the actual strategies of how to win individual games, and instead evaluate a game in terms of the sequence of Sprague-Grundy values of all heaps.

Such games allow at must one cut, but it might be combined with various removals; see Section 4 on class of takeand-break

.[START_REF] Duchêne | Invariant games[END_REF] We use the convention 0 < r ≤ p, since H 1 is terminal in cut.

If c 1 is odd, for each G-value g ≤ q -1, we define a c 1 -cut O n , such that G(O n) = g. We have two subcases:[START_REF] Flammenkamp | Sprague-Grundy values of some octal games[END_REF] That is, h is a (c + 1)-partition of n.

These are the only examples we found with a non-0 preperiod.

Recall that cut is necessarily invariant, but octal games are typically non-invariant, by setting for example the 2 0 component to 0 for some digit.

Acknowledgement

We would like to thank R. J. Nowakowski for interesting discussions regarding the connection of cut with other instances of take-and-break.

* Supported by the ANR-14-CE25-0006 project of the French National Research Agency

If c = 2, ignore the third part. Note that S -1 ≥ 0 is even by Lemma 1. The disjunctive sum h is an option of H n since

We can now prove Theorem 9: if a partition game verifies the AP-test, then its G-sequence is purely arithmetic-periodic.

Proof of Theorem 9. Assume AP(C) = (p, t), with 2 t = s. Thus for 0 ≤ q < 4 where n = qp + r ∈ [qp + 1, (q + 1)p], by Lemma 10, we have

We will now prove by induction that for any heap H n , with n = qp + r ≥ 1, AP(C) = (p, t) implies the following two properties (where (A) implies the result, and where (B) is an auxiliary means for the induction).

We have a base case. By Lemma 10, (A) holds for all n ≤ 4p. Moreover, by Lemma 12, (B) holds for q = 2, 3, and it is trivially true for q ≤ 1. So (B) holds for n ≤ 4p.

For the induction step, let n = qp + r > 4p. We will prove the result in two steps: first we show that G(n) ≥ qs + G(r) together with (B), and then we show that G(n) ≤ qs + G(r).

1. Case G(n) ≥ qs + G(r): By induction, the heap of size n = n -2p = q p + r verifies conditions (A) and (B). Consider any G-value g < (q -1)s. Then, by (B), there is an option O n = (q 0,n p + r 0,n , . . . , q c,n p+r c,n), with c ≥ 2 and

If c = 2, then omit the third part. This is an option of H n with at least two cuts since Hence H n has options to all G-values in [0, (q -1)s -1], i.e. G(n) ≥ (q -3)s.

We now change O n into Ôn = (ĥ0 , . . . , ĥc) as follows: ĥ0 = q 0,n p + r 0,n + 2p ĥj = q j,n p + r j,n for 0 < j ≤ c