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Abstract

Taking-and-breaking games are combinatorial games played on heaps of tokens, where both play-
ers are allowed to remove tokens from a heap and/or split a heap into smaller heaps. Subtraction
games, octal and hexadecimal games are well-known families of such games. We here consider the set
of pure breaking games, that correspond to the family of taking-and-breaking games where splitting
heaps only is allowed. The rules of such games are simply given by a list L of positive integers
corresponding to the number of sub-heaps that a heap must be split into. Following the case of octal
and hexadecimal games, we provide a computational testing condition to prove that the Grundy se-
quence of a given pure breaking game is arithmetic periodic. In addition, the behavior of the Grundy
sequence is explicitly given for several particular values of L (e.g. when 1 /∈ L or when L contains
only odd values). However, despite the simplicity of its ruleset, the behavior of the Grundy function
of the game having L = {1, 2} is open.

1 Introduction and context

Integer partition theory, related to Ferrer diagrams and Young tableaus, is a classical subject in number
theory and combinatorics, dating back to giants such as Lagrange, Goldbach and Euler; it concerns the
number of ways you can write a given positive integer as a sum of specified parts. In most generality, to
each positive integer n, there belongs a number p(n), which counts the unrestricted number of ways this
can be done. For example 4 = 3 + 1 = 2 + 2 = 2 + 1 + 1 = 1 + 1 + 1 + 1, so p(4) = 5. We may index
this partition number by saying exactly how many parts is required, and write pk(n) for the number
of partitions of n in exactly k parts. Thus, in our example, p2(4) = 2 and p3(4) = 1. We could also
define pk,` = pk + p` and so on. The number of partitions can be beautifully expressed via generating
functions, where recurrence formulas, congruence relations, and several asymptotic estimates are known,
proved more recently by famous number theorists such as Ramanujan, Hardy, Rademacher and Erdös in
the early 1900s. About the same time, a theory of combinatorial games was emerging, via contributions
by Bouton, Sprague and Grundy and others, seemingly unrelated to the full blossom of number theory.

An integer partition game can be defined by 2 players alternating turns and by specifying the legal
partitions, say into exactly 2 or 3 parts, until the current player cannot find a legal partition of parts,
and loses. Thus, from position 4, then 3 + 1, 2 + 2, 2 + 1 + 1 are the legal move options—if you play
to 2 + 2 you win, and otherwise not. It turns out that the idea for how to win such games is coded
in a ‘game function’, discovered independently by the mathematicians Sprague and Grundy, which, buy
the way, has no apparent relation to the partitioning function. For example, the partition functions are
nondecreasing, but if a Sprague-Grundy function is nondecreasing the game is usually rather trivial, such
as the game of Nim on one heap. Let us begin by giving the relevant game theory background to our
results, that most of the partition games, a.k.a. pure breaking games, are either periodic or arithmetic
periodic.

1.1 Taking-and-breaking games: definitions and notations

Taking-and-breaking games [3] are 2-player impartial combinatorial games with alternating play. A game
position is represented by a set of heaps of tokens. A move consists in choosing a single heap, removing
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some tokens from it, and possibly splitting the remaining heap into several heaps. If splitting is not
allowed, we have (pure) subtraction games. In this case, the rules are given by a set S of positive integers
which specifies the number of tokens that can be removed from the heap. When the heap may be split,
the rulesets are often given by a code that specifies how many tokens can be removed and the number
of heaps that one heap can be split into. For example, the family of games for which a heap can be
split into at most two heaps is called octal games. This name is due to an explicit way to express any
ruleset with an octal code d0.d1 . . .dk with di an integer, 0 ≤ di ≤ 7 for 1 ≤ i ≤ k. More precisely, each
value di with i > 0 can be encoded in binary with three digits ai,2ai,1ai,0. The ruleset allows to remove
i tokens from a heap and split it into j non-empty heaps if and only if ai,j = 1. The value d0 equals
0 or 4 according to whether it is allowed (value 4) or not (value 0) to split a heap without removing
any token. The family of hexadecimal games is a natural extension of octal games, in which a heap can
be split into at most three heaps. Variants of octal games where the ruleset also allows to split a heap
without removing any token have also been considered in the literature, starting from Grundy’s Game
in 1939 [7].

The purpose of the current work is to extend such rulesets to allow a heap to be split into a selected
number of heaps.

We first recall standard definitions in combinatorial game theory and use the notations introduced in
[10] for taking-and-breaking games. In particular, a heap of size n will be denoted Hn. When the ruleset
is clear, we associate the game played on the heap of size n with the positive integer n. A game with k
heaps of respective sizes a1, . . . , ak is considered as a disjunctive sum of heaps and will be denoted by a
k-tuple (a1, . . . , ak). An option of a game is a game that can be reached in one move.

The Grundy value of a game n, denoted by G(n), is a nonnegative integer given by

G(n) = mex{G(Oi) | Oi is an option of n}

where mex(U) is the smallest nonnegative integer that does not belong to the set U . In the rest of the
paper, an option of n over ` + 1 non-empty heaps will be denoted On = (i0, . . . , i`). The Grundy value
of a game allows to determine the winner. Indeed, a game satisfies G(n) = 0 if and only if it is a second
player win.

From the Sprague-Grundy theory, one can compute the Grundy value of a k-heap game from the
Grundy value of each 1-heap game. More precisely, we have

G((a1, . . . , ak)) = G(a1)⊕ . . .⊕ G(ak)

where ⊕ is called the Nim-sum operator and corresponds to the XOR applied to integers written in
binary. The Nim-sum of the same k terms i will be denoted k ⊗ i. By definition of the XOR operator,
it equals i or 0 according to the parity of k.

1.2 Regularities in taking-and-breaking games

Given a taking-and-breaking game, its G-sequence is the sequence G(1),G(2),G(3), . . .. Finding regular-
ities in G-sequences is a natural objective as it may lead to polynomial-time algorithms that compute
the G-values of the game. In particular, periodic behaviors are often observed. A game is said to be
ultimately periodic with period p and preperiod n0 if there exist n0 and p such that G(n + p) = G(n) for
all n ≥ n0. Periodic games are those for which there is no preperiod.

For example, it is well known (see [10], Theorem 2.4) that all finite subtraction games are periodic.
For octal games, the behavior of the G-sequences is not fully understood. It has been conjectured by Guy
that every octal game is ultimately periodic. Many games were proved to satisfy this conjecture, such as
0.106, 0.165 or 0.454. In some cases, the values of the period and the preperiod are huge (e.g. 0.454
has a period of 60620715 and a preperiod of 160949019). On his webpage [5], Flammenkamp maintains
a list of octal games with known and unknown periodicities.

As explained in [9], some hexadecimal games also satisfy these properties of normal periodicity (e.g.
0.B3, 0.33F). In addition, another types of behavior have been exhibited for hexadecimal games,
namely arithmetic periodicity. A taking-and-breaking game is said to be arithmetic periodic with period
p, saltus s, and preperiod n0 if there exist three integers n0, p and s such that its G-sequence satisfies
G(n + p) = G(n) + s for all n ≥ n0. This kind of behavior never occurs in octal games [2] but makes
sense in the context of hexadecimal games where the Grundy values may not be bounded. For example,
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the games 0.13FF or 0.9B are proved to be arithmetic periodic with period 7 and saltus 4 in [9]. Note
that normal and arithmetic periodicities are not the only kinds of regularities that have been detected
in hexadecimal games. In [1], the game 0.205200C is said to be sapp-regular, which means that the
G-sequence is an interlacing of two periodic subsequences with an arithmetic periodic one. This behavior
also occurs in variants of octal games where pass moves are allowed [8]. In [9], the game 0.123456789
satisfies G(2m − 1) = G(2m) = m − 1, except G(2k + 6) = 2k − 1. In [6], Grossman and Nowakowski
introduce the notion of ruler regularity that arises in the games 0.20 . . .48 with an odd number of 0s in
the hexadecimal code. Roughly speaking, it corresponds to a kind of arithmetic periodic sequence where
new terms are regularly introduced that double the length of the apparent period.

For a better understanding of taking-and-breaking games, the question of how to detect a possible
regularity using just a small number of computations is paramount. For example, the Subtraction
Periodicity Theorem, found in the Chapter 4 of [10], ensures that for a given subtraction game on the set
S, it suffices to find a repetition of max(S) consecutive Grundy values, to establish ultimate periodicity.
Concerning octal games, there is a similar result that has been extensively used to prove the ultimate
periodicity of some G-sequences.

Theorem 1. [Octal periodicity test] Let G be an octal game d0.d1 . . .dk of finite length k. If there exist
n0 ≥ 1 and p ≥ 1 such that

G(n + p) = G(n) ∀n0 ≤ n < 2n0 + p + k,

then G is ultimately periodic with period p and preperiod n0.

Such kind of testing properties have also been considered for hexadecimal games. In [2], Austin
yields a first set of conditions to guarantee the arithmetic periodicity of hexadecimal games with a
saltus equal to a power of 2. A complementary result was later given by Howse and Nowakowski [9] for
hexadecimal games having an arbitrary saltus. In both cases, several types of computations must be
done. In particular, the arithmetic periodicity must be checked on a range of values much larger than in
Theorem 1 (at least seven times the expected period).

1.3 Pure breaking Games

In view of the above results, there is a large gap between the understanding of octal and hexadecimal
games. It turns out that allowing a heap to be split into three parts may significantly change the
possible behaviors of the G-sequences. In the current paper, we explore how the G-sequences behave
when increasing the number of possible splits of a heap. As one expects that the complexity of this
generalization also increases accordingly, we have chosen to focus on breaking games only, i.e., games
where it is not allowed to remove tokens from a heap. Grundy’s game [7, 5] and Couples-are-Forever [4]
are two well-known examples of such games. In the first one, a move consists in choosing a heap and
splitting it into two heaps of different sizes. The latter one allows to split any heap of size at least three
into two heaps. For both games, no regularity in the G-sequence has been observed yet. In the current
study, we will consider pure breaking games, i.e., games for which there is no additional constraint to
the number of splits. The rulesets of such games will thus be given by a set of integers corresponding to
the number of heaps that one heap can be split into.

Definition 2. Let L = {`1, . . . , `k} be a set of positive integers, called the cut numbers. We define the
pure breaking game PB(L) as the heap game such that n has the following options

{(i0, . . . , i`) | ` ∈ L, ij > 0 ∀j and i0 + . . . + i` = n }

In other words, in PB(L), a move consists in choosing a heap and splitting it into k + 1 non-empty
heaps with k ∈ L. Such a move will be called a k-cut. For example, for the game PB(L) with L = {1, 3},
the heap H5 has the following set of options:

{(1, 4), (2, 3), (1, 1, 1, 2)}

Without loss of generality, we will assume that each set L is ordered such that `1 < . . . < `k. In this
paper, we will consider instances of PB(L) for different sets L and examine their G-sequence. A first
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result ensures that an equivalent of the octal game conjecture is not available for pure breaking games.
Indeed, the following lemma establishes that if an even cut number belongs to L, the Grundy values are
not bounded.

Lemma 3. Let PB(L) be a pure breaking game, where L contains at least one even integer. Let m be
the smallest even integer in L.

For every pair (x1, x2), x1 6= x2 such that G(x1) = G(x2), we have x1 6≡ x2 mod m.

Proof. We reason by contradiction. Let x1 and x2 be two different integers such that G(x1) = G(x2) and
x1 ≡ x2 mod m. We have x1 = a1m + b and x2 = a2m + b for some 0 ≤ b ≤ m− 1. We assume without
loss of generality that x1 > x2.

From a heap of x1 counters, one can play to the option Ox1
= (x2, a1−a2, . . . , a1−a2) obtained by an

m-cut. Since m is even, G(Ox1
) = G(x2), and thus G(x1) 6= G(x2), which contradicts our hypothesis.

This result means that pure breaking games are somehow closer to hexadecimal games than octal
games. One can then wonder whether the complexity of the G-sequence increases with max(L). It does
not seem to be the case, as we will show that in almost all cases, the G-sequence is either periodic or
arithmetic periodic. In Section 2, we consider several families of pure breaking games (e.g. those where
1 /∈ L, or those with only odd values in L) and prove their periodicity or arithmetic periodicity. For
the remaining families, many games seem to have an arithmetic periodic behavior. To deal with them,
we provide in Section 3 a set of testing conditions that are sufficient to show that a game is arithmetic
periodic, and apply them to particular instances. Finally, in Section 4 we list the remaining sets L for
which the regularity of the G-sequence of PB(L) remains open.

2 Solving particular families of pure breaking games

In this section, we study specific families of pure breaking games. All the following results will be proved
by contradiction. In each case, we will suppose that there exists an integer n for which the Grundy
value is different from what was expected. By decomposing n into specific options, we will exhibit a
contradiction. All the families will be proved to have arithmetic periodic sequences. We are going to use
the following notation: (m1, . . . ,mp) (+s), which describes the arithmetic periodic sequence of period
p and saltus s for which the first p values are m1, . . . ,mp. If a subsequence (mi, . . . ,mj) is repeated q
times, we will write (mi, . . . ,mj)

q. Thus, for example, the notation (0, 1, 2)2 (+3) denotes the arithmetic
periodic sequence of period 6, saltus 3, and with first six values 0,1,2,0,1,2. We also use the notation
Ja, bK (with a ≤ b) to describe the set of all the integers from a to b.

First, we study the games in which 1 is not an allowed cut number. In this case, optimal play is
reduced to using only `1, and the Grundy sequence is arithmetic periodic with period `1 and saltus 1.

Proposition 4. Let L = {`1, . . . , `k} be a set of cut numbers such that `1 ≥ 2. Then, PB(L) has a
Grundy sequence of (0)`1 (+1).

Proof. We prove this result by contradiction. If n is a positive integer, then there exists a unique couple
of nonnegative integers (a, b) such that : 0 ≤ b ≤ `1 − 1 and n = a`1 + b + 1. We want to prove that for
every positive integer n, G(n) = a.
Assume that n is the smallest positive integer such that G(n) 6= a.

Let m ∈ L. Suppose G(n) > a. Then there exists On = (a0`1 + b0 + 1, . . . , am`1 + bm + 1) an m-cut
of n such that G(On) = a. By minimality of n, G(On) = a0 ⊕ . . . ⊕ am = a. Moreover, since On is an
option of n, we have:

m∑
i=0

(ai`1 + bi + 1) = a`1 + b + 1.

In particular, as b < `1 we have

m∑
i=0

ai ≤ a. However, since a =

m⊕
i=0

ai ≤
m∑
i=0

ai we have

m∑
i=0

ai = a.

This implies that 1 + b =

m∑
i=0

(1 + bi) = m + 1 +

m∑
i=0

bi.

This is a contradiction since m ≥ `1 which implies b ≥ `1.
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Thus, there is no option of n with Grundy value a, hence G(n) < a.
Now we prove that the heap of size n has options of Grundy values i for i ∈ J0, a− 1K. There are two

cases:

1. If `1 is even, then for i ∈ J0, a − 1K, let On = (i`1 + b + 1, a − i, . . . , a − i) be an `1-cut. This
always exists since `1 ≥ 2. Moreover it is an option of n: i`1 + b + 1 + (a− i)`1 = a`1 + b + 1 = n.
Furthermore, we have G(On) = G(i`1+b+1)⊕(`1⊗G(a−i)). Since G(i`1+b+1) = i by minimality
of n, and `1 is even which implies (`1 ⊗ G(a− i)) = 0, we have G(On) = i.

2. Otherwise, for all i ∈ J0, a − 1K, we define an option On of n, obtained by an `1-cut, such that
G(On) = i. We have two subcases:

2.1 If a− i is odd, let
h0 = i`1 + b + 1

hj =
1

2
(a− i− 1)`1 + 1 for j = 1, 2

hj = 1 for 3 ≤ j ≤ `1

This always exists since `1 ≥ 3 (if `1 = 3 then there are only the first four heaps) and (a−i−1)
is even. Moreover, it is an option of n:

i`1 +b+1+2

(
1

2
(a− i− 1)`1 + 1

)
+(`1−2) = i`1 +b+1+(a− i−1)`1 +`1 = a`1 +b+1 = n

Furthermore, we have

G(On) = G(i`1 + b + 1)⊕
(

2⊗ G
(

1

2
(a− i− 1)`1 + 1

))
⊕ ((`1 − 2)⊗ G(1)) = i

since G(i`1 + b + 1) = i by minimality of n and G(1) = 0.

2.2 If a− i is even, let

h0 = i`1 + b + 1

hj =
1

2
((a− i− 1)`1 + 1) for j = 1, 2

hj = 2 for j = 3

hj = 1 for 4 ≤ j ≤ `1

This always exists since `1 ≥ 3 (if `1 = 3 then there are only the first four heaps) and (a−i−1)
and `1 are odd so (a− i− 1)`1 + 1 is even. Moreover, it is an option of n:

i`1+b+1+2 · 1
2

((a− i−1)`1+1)+2+(`1−3) = i`1+b+1+(a− i−1)`1+`1 = a`1+b+1 = n

Furthermore, we have

G(On) = G(i`1 + b + 1)⊕
(

2⊗ G
(

1

2
((a− i− 1)`1 + 1)

))
⊕ G(2)⊕ ((`1 − 3)⊗ G(1)) = i

since G(i`1 + b + 1) = i by minimality of n and G(1) = G(2) = 0.

This proves that we have at least an option with Grundy value i for all 0 ≤ i < a, and thus that
G(n) ≥ a, a contradiction.

Consequently, there is no counterexample to the sequence (0)`1 (+1).
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Now, we consider the pure breaking games in which the players are allowed to split a heap into two
heaps. We first show that if L contains only odd cut numbers, then the Grundy sequence of PB(L) is
periodic with period 2.

Proposition 5. Let L = {1, `2, . . . , `k} be a sequence of odd cut numbers. The game PB(L) has a
Grundy sequence of (0, 1) (+0).

Proof. We prove this result by contradiction. Let n be the smallest positive integer for which the Grundy
value of a heap of size n does not match with the sequence (0, 1)1 (+0).

First assume that n is even. We will prove that all the options of n have Grundy value 0. Let On

be an option of n. Note that On exists since n ≥ 2 and 1 ∈ L. Since all the values of L are odd, On

contains an even number of non empty heaps whose sum is even. Hence On contains an even number
of odd-sized heaps. Since all the heaps in On are strictly smaller than n, their Grundy values satisfy
the sequence (0, 1)1 (+0), which implies that On contains an even number of heaps of Grundy value 1.
Therefore, we have G(On) = 0 and thus G(n) = 1. Hence our counterexample n is necessarily odd.

We will show that n has no option of Grundy value 0. It is straightforward if n has no option.
Otherwise, let On be an option of n. Since all the values of L are odd, On contains an even number of
non empty heaps whose sum is odd. Hence On contains an odd number of odd-sized heaps and an odd
number of even-sized heaps. Since all the heaps in On are strictly smaller than n, their Grundy values
satisfy the sequence (0, 1)1 (+0), which implies that On contains an odd number of heaps of Grundy
value 1. Hence G(On) = 1 and thus G(n) = 0.

Consequently, there is no counterexample to the sequence (0, 1)1 (+0).

Next, we study the pure breaking games in which the players can split a heap into two, three or four
heaps. In this case, even if the players are allowed to split a heap into more than four heaps, then the
Grundy sequence is arithmetic periodic with period 1 and saltus 1.

Proposition 6. Let k ≥ 3 and L = {1, 2, 3, `4, . . . , `k} be a sequence of cut numbers. The game PB(L)
has a Grundy sequence of (0) (+1).

Proof. We prove this result by contradiction. Let n be the smallest positive integer such that G(n) 6= n−1.
Note that n ≥ 3 since we have G(1) = 0 and G(2) = 1.

Suppose first that G(n) > n− 1. Then n has an option On = (h0, . . . , h`) such that:

∑̀
i=0

hi = n and
⊕̀
i=0

G(hi) =
⊕̀
i=0

(hi − 1) = n− 1.

However,
∑̀
i=0

(hi − 1) = n− `− 1, and since ` ≥ 1 we have

G(On) = n− 1 >
∑̀
i=0

(hi − 1) ≥
⊕̀
i=0

(hi − 1) = G(On),

a contradiction.
Thus, there is no option of n with Grundy value n− 1, which implies G(n) < n− 1.
We now prove that, from a heap of n counters, we can play to an option of Grundy value m for all

m < n− 1, which will lead to a contradiction.
If m = n − 2, then let On = (1, n − 1) which is clearly an option of n with Grundy value n − 2 by

minimality of n. Otherwise, let m < n− 2. There are two cases:

1. If n is even, then there are two subcases:

1.1 If m is odd, m ∈ J1, n− 3K, let

On = (m + 1,
n− 1−m

2
,
n− 1−m

2
)

obtained by a 2-cut. It is an option of n and by minimality of n, G(On) = G(m + 1) = m.
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1.2 If m is even, m ∈ J0, n− 4K, let:

On = (m + 1, 1,
n−m− 2

2
,
n−m− 2

2
)

obtained by a 3-cut. It is an option of n and by minimality of n, G(On) = G(m + 1) = m.

2. If n is odd, then there are two subcases:

2.1 If m is odd, m ∈ J1, n− 4K, let:

On = (m + 1, 1,
n−m− 2

2
,
n−m− 2

2
)

obtained by a 3-cut. It is an option of n and by minimality of n, G(On) = G(m + 1) = m.

2.2 If m is even, m ∈ J0, n− 3K, let:

On = (m + 1,
n− 1−m

2
,
n− 1−m

2
)

obtained by a 2-cut. It is an option of n and by minimality of n, G(On) = G(m + 1) = m.

Thus, for both cases, G(n) ≥ mex({0, ..., n− 2}) = n− 1, a contradiction.
Consequently, there is no counterexample to the sequence (0)1 (+1).

Finally, we study the pure breaking games where the players can split a heap into 2, 4 or 2k + 1
heaps. In this case, the Grundy sequence is arithmetic periodic with period 2k and saltus 2. Note that
this result includes the Grundy sequence of PB(1, 2, 3).

Proposition 7. Let k ≥ 1 and L = {1, 3, 2k} be a sequence of positive integers. Then, PB(L) has a
Grundy sequence of (0, 1)k (+2).

Proof. We want to prove that for all n = 2ka + b + 1 ≥ 1, G(n) = 2a + (b mod 2). We are going to
proceed by contradiction. Let n = 2ka + b + 1, 0 ≤ b < 2k, be the smallest positive integer such that
G(n) 6= 2a + (b mod 2). Note that n ≥ 3 since we have G(1) = 0 and G(2) = 1.

Assume first that G(n) > 2a+(b mod 2). Then n has an option On = (2ka0+b0+1, . . . , 2kam+bm+1)
with m ∈ L such that G(On) = 2a + (b mod 2).

As On is an option of n with Grundy value 2a + (b mod 2) and n is minimal, we have, on one hand :

G(On) =

m⊕
i=0

(2ai + (bi mod 2)) = 2

m⊕
i=0

ai +

m⊕
i=0

(bi mod 2) = 2a + (b mod 2).

The second equality holds since 2 is a power of two and for all i, (bi mod 2) < 2.
On the other hand we have:

n =

m∑
i=0

(2kai + bi + 1) = 2k

m∑
i=0

ai +

m∑
i=0

bi + m + 1 = 2ka + b + 1.

Since a is the quotient of n − 1 by 2k, we have that a0 + . . . + am ≤ a, and since a0 + . . . + am ≥
a0 ⊕ . . .⊕ am, we have a = a0 ⊕ . . .⊕ am = a0 + · · ·+ am.

In particular

m∑
i=0

bi + m + 1 = b + 1. Here we have two cases:

1. If m = 2k, then we have b ≥ m = 2k, a contradiction.

2. If m ∈ {1, 3}, then we have:

b mod 2 =

m⊕
i=0

(bi mod 2) =

(
m⊕
i=0

bi

)
mod 2 =

(
m∑
i=0

bi

)
mod 2 =

(
m∑
i=0

bi + m + 1

)
mod 2 = (b+1) mod 2

(the third equality holds by Lemma 10, the fourth one since m is odd), a contradiction.
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Thus, there are no options of n with Grundy value 2a+(b mod 2), which implies G(n) < 2a+(b mod 2).
We now prove that, from a heap of n counters, we can play to an option of Grundy value g for any

g in J0, 2a + (b mod 2)− 1K, which will lead to a contradiction. There are two cases:

1. If b is even, then 2a + (b mod 2) = 2a and from a heap of size n we can play to:

1.1 for all x ∈ J0, a− 1K, the options:

On = (2kx + b + 1, a− x, . . . , a− x)

obtained by a 2k-cut. By minimality of n, G(On) = 2x. By doing this, we obtain the even
Grundy values in J0, 2a− 2K.

1.2 if b = 0, for all x ∈ J1, a− 1K, the options:

On = (2kx + b, 1, (a− x)k, (a− x)k)

obtained by a 3-cut. By minimality of n, G(On) = 2(x − 1) + (2k − 1 mod 2) = 2x − 1 since
x ≥ 1. By doing this, we obtain the odd Grundy values in J1, 2a− 3K and the value 2a− 1 is
obtained by the option On = (2ka, 1).

1.3 if b > 0, for all x ∈ J0, a− 1K, the options:

On = (2kx + b, 1, (a− x)k, (a− x)k)

obtained by a 3-cut. By minimality of n, G(On) = 2x+ (b− 1 mod 2) = 2x+ 1 since b is even.
By doing this, we obtain the odd Grundy values in J1, 2a− 1K.

Putting the three previous cases altogether, this implies G(n) ≥ 2a, being a contradiction.

2. If b is odd, then 2a + (b mod 2) = 2a + 1, and from a heap of size n we can play to:

2.1 for all x ∈ J0, a− 1K, the options:

On = (2kx + b + 1, a− x, . . . , a− x)

obtained by a 2k-cut. By minimality of n, G(On) = 2x + 1. By doing this, we obtain the odd
Grundy values in J1, 2a− 1K.

2.2 for all x ∈ J0, a− 1K, the options:

On = (2kx + b, 1, (a− x)k, (a− x)k)

obtained by a 3-cut. By minimality of n, G(On) = 2x. By doing this, we obtain the even
Grundy values in J0, 2a− 2K and the value 2a is obtained by the option On = (2ka + b, 1).

Altogether, this implies G(n) ≥ 2a + 1, a contradiction.

Consequently, there is no counterexample to the sequence (0, 1)k (+2).

Note that when k = 1, the previous result gives the same result than Proposition 6 when k = 3 (and
as such, L = {1, 2, 3}).

If the above results cover a large range of pure breaking games, there remain several families of games
for which we were not able to have direct proofs. Yet, many of them seem to have an arithmetic periodic
behavior. The next section is devoted to build a set of tests that would allow to prove (with a restricted
number of computations) that a given game is arithmetic periodic. We then use this test to prove that
some games have an arithmetic periodic sequence.
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3 An arithmetic periodicity test for pure breaking games

The purpose of this section is to provide, for pure breaking games, a result similar to the octal and
hexadecimal periodicity tests (see Theorem 1 for the first one, and see [9] for the latter one). We give
an explicit way to prove that a pure breaking game is arithmetic periodic by computing as few values
as we can. Recall that for octal games, the number of computations to prove the periodicity is in the
range of twice the period, whilst it takes at least 7 times the period to prove the arithmetic periodicity of
hexadecimal games (together with a couple of additional tests). In section 3.1, we prove that computing
at most the first 4p values of the G-sequence (where p is the expected period, which should be determined
by a blind computation) is enough to prove arithmetic periodicity. We will also show that in some cases
(depending on L), the first 3p values are even sufficient (section 3.2).

3.1 The AP -test

In this section, we describe the so-called AP -test that will be used to prove the arithmetic periodicity of
a pure breaking game. First recall that if f is a function defined over an interval I, then f restricted to
J ⊆ I is noted f |J ; and the set of the images of f is Im(f) = {f(x) | x ∈ I}. We now define the AP -test
as follows:

Definition 8 (Arithmetic-Periodic Test (AP -test)). Let PB(L) be a pure breaking game and denote by
G its Grundy function. We say that PB(L) satisfies the AP -test if there exist a positive integer p and
a power of two s such that:

AP1. for n ≤ 3p, G(n + p) = G(n) + s,

AP2. Im(G|J1,pK) = J0, s− 1K, and

AP3. for all n in J3p+ 1, 4pK and for all g in J0, s−1K, Hn admits an option On over (m+ 1) non-empty
heaps such that m ≥ 2,m ∈ L and G(On) = g.

The first two conditions are rather standard to prove the periodicity of taking-and-breaking games:
similar conditions are required in the Subtraction Periodicity Theorem and in the Octal Games Periodicity
Theorem. However, contrary to those, we need the saltus to be a power of two in order to prove the
arithmeric periodicity. The third condition seems more unusual. We will see in the next subsection that
for some values of L, the third condition AP3 can be directly deduced from AP1 and AP2 and does not
need to be checked. We now state the main result of this section:

Theorem 9. Let L = {`1, . . . , `k} be a set of positive integers, with `k ≥ 2 and such that PB(L) verifies
the test AP . Then for all n ≥ 1, G(n + p) = G(n) + s.

In other words, if a pure breaking game verifies the AP -test, then it is arithmetic periodic. Note that
in the AP -test, the saltus of the sequence is always a power of 2.

In order to prove this result, we need some technical lemmas. The first one is a well-known result
that claims that the Nim-sum and the sum of the same set of positive integers have the same parity and
that the Nim-sum cannot be greater than the sum.

Lemma 10. Let a0, . . . , am be m + 1 positive integers. We have

a0 ⊕ a1 ⊕ · · · ⊕ am ≡ (a0 + . . . + am) mod 2

and
a0 + · · ·+ am ≥ a0 ⊕ · · · ⊕ am.

Proof. Let a0, . . . , am be m+1 positive integers. Without loss of generality, we can assume that for some
i, a0, a1, . . . , ai are all odd and ai+1, ai+2, . . . , am are all even.
If i is odd, then there is an even number of odd integers, and their Nim-sum and their sum are even. If
i is even, then there is an odd number of odd integers, their Nim-sum and their sum are then odd.

Now, let N = a0 ⊕ · · · ⊕ am, S = a0 + · · · + am and p = dlog2(S)e. There are, for 0 ≤ i ≤ p, non-
negative integers bi,n and bi,j such that N = b0,n20 + · · ·+ bp,n2p and for all j, aj = b0,j2

0 + · · ·+ bp,j2
p.

If bi,n = 1 then there is at least one j such that bi,j = 1, hence in the sum there is a term on 2i. This
being true for all bi,n, the sum is such that S ≥ b0,n20 + · · ·+ bp,n2p = N .
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In what follows, we will frequently make use of the fact that for every pair of positive integers p and
n, there exists a unique couple (a, b) such that n = 1 + b+ap and b < p. The next result gives the closed
formula corresponding to an arithmetic periodic behavior of the G-sequence.

Lemma 11. Let L = {`1, . . . , `k} be a set of positive integers. In the game PB(L), if there exist two
positive integers p and s, and n0 ≥ p such that for all n ≤ n0, G(n + p) = G(n) + s then for all
1 ≤ n = ap + 1 + b ≤ n0 + p with 0 ≤ b < p, we have

G(n) = as + G(1 + b)

Proof. It is clear that for all 1 ≤ n ≤ p, we have n = ap + 1 + b with a = 0 and 0 ≤ b < p, and hence
G(n) = as + G(1 + b).
Let n = ap + b + 1 ≤ n0 + p be the smallest integer such that G(n) 6= as + G(1 + b). From the previous
remark, we know that n > p. The Grundy value of n is:

G(n) = G(n− p) + s = G((a− 1)p + 1 + b) + s,

remark this equality holds since n ≤ n0 + p.
Since n is minimal and (a− 1)p+ 1 + b < n, we have G((a− 1)p+ 1 + b) = (a− 1)s+ G(1 + b), and thus

G(n) = as + G(1 + b),

which contradicts our initial hypothesis.

As a direct consequence, if Lemma 11 is satisfied with the two additional constraints:

• s is a power of 2

• G(n) < s for all 1 ≤ n ≤ p,

then any disjunctive sum G = (a0p+ 1 + b0, . . . , amp+ 1 + bm) with ajp+ 1 + bj ≤ n0 + p and 0 ≤ bj < p
for all 0 ≤ j ≤ m satisfies

G(G) = (a0 ⊕ · · · ⊕ am)s + (G(1 + b0)⊕ · · · ⊕ G(1 + bm)) (1)

Theorem 9 will be proved by induction, with a rather technical base case. We consider a part of
this base case in the following lemma to make the general proof more readable. Moreover, this lemma
exposes why the condition `k ≥ 2 is necessary.

Lemma 12. Let L = {`1, . . . , `k} be a set of positive integers with `k ≥ 2 such that PB(L) verifies the
test AP .
Then for i = 2, 3, for all n in Jip + 1, (i + 1)pK and for all g in J0, (i − 1)s − 1K, there is an option
On = (h0, . . . , hm),m ∈ L of n such that m ≥ 2 and G(On) = g.

Proof. Let L = {`1, . . . , `k} be such a set.

• We first consider the case i = 3. Let n = 3p + 1 + b ∈ J3p + 1, 4pK and g ∈ J0, 2s− 1K.
If g ∈ J0, s− 1K then condition AP3 ensures such an option exists.
Now, for g ∈ Js, 2s−1K, by the conditions AP1 and AP2, Lemma 11 can be applied, implying that
G(n) = 3s + G(1 + b) and hence that there is an option On of n such that G(On) = g. If 1 /∈ L,
there is nothing to prove. Consequently, it suffices to prove that if 1 ∈ L, and On = (h0, h1) is an
option of n obtained by a 1-cut, then G(On) /∈ Js, 2s− 1K. This result would indeed guarantee that
all the options of n with Grundy value in Js, 2s− 1K are obtained by m-cuts with m ≥ 2.
Assume 1 ∈ L and let On = (h0, h1) be an option of n obtained by a 1-cut. There exist four unique
nonnegative integers a0, b0, a1, b1 such that 0 ≤ b0, b1 < p and On = (a0p + 1 + b0, a1p + 1 + b1).
As On is an option of n we have:

(a0 + a1)p + 1 + 1 + b0 + b1 = n = 3p + 1 + b

which gives
1 + b0 + b1 − b = (3− a0 − a1)p.

As 0 ≤ a0 + a1 ≤ 3 and b0 + b1 + 1 < 2p, we have in one hand 0 ≤ 1 + b0 + b1 − b < 2p and in the
other hand that 1 + b0 + b1 − b ≡ 0 (mod p). Hence 1 + b0 + b1 − b ∈ {0, p}. If it equals 0 then
a0 + a1 = 3, otherwise a0 + a1 = 2. Without loss of generality the possible values for a0, a1 and
a0 ⊕ a1 are summarized in the following table:
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a0 a1 a0 ⊕ a1

0
2 2
3 3

1
1 0
2 3

In particular, we remark that a0 ⊕ a1 6= 1. And, by Property (1) we have : G(On) = (a0 ⊕ a1)s +
G(1 + b0)⊕ G(1 + b1) /∈ Js, 2s− 1K since s is a power of two and G(1 + b0),G(1 + b1) < s.

• We now consider the case i = 2. Let n ∈ J2p + 1, 3pK and g ∈ J0, s− 1K.
Let n′ = n + p ∈ J3p + 1, 4pK and g′ = g + s ∈ Js, 2s− 1K.
By the first part of the proof, we know that there is an option On′ = (a0,n′p+1+b0,n′ , . . . , am,n′p+
1+bm,n′) of n′ such that m ≥ 2 and G(On′) = g′. Let N = (a0,n′⊕· · ·⊕am,n′), S = a0,n′ +· · ·+am,n′

and R = G(1 + b0,n′)⊕ · · · ⊕ G(1 + bm,n′). Remark that N = 1 and G(On′) = Ns + R since we can
apply Property (1) to On′ and g′ ∈ Js, 2s− 1K. We define the following m-cut option On of n by:

h0 = 1 + b0,n′

hj =
1

2
(S − 1)p + 1 + bj,n′ for j = 1, 2

hj = 1 + bj,n′ for 3 ≤ j ≤ m

Remark that S − 1 = S −N which is even and non-negative by Lemma 10.
Note that On is indeed an option of n since we have that h0 + · · ·+ hm = (S − 1)p + (1 + b0,n′ +
· · · + 1 + bm,n′) = n′ − p = n. By Property (1), we have G(On) = R = g′ − s = g. Hence, On is
indeed an option of n with m ≥ 2 and G(On) = g.

We can now prove Theorem 9, meaning that if a pure breaking game verifies the AP -test, then its
Grundy sequence is arithmetic periodic.

Proof of Theorem 9. Let us begin with some notations.
For all 1 ≤ n ≤ p we denote rn = G(n); thus for 0 ≤ a < 4 and n = ap + b + 1 ∈ Jap + 1, (a + 1)pK,
and by Lemma 11 we have G(n) = G(ap + b + 1) = as + rb+1. We recall that by Lemma 10, for a
family of non-negative integers a0, . . . , am, if S = a0 + · · ·+ am and N = a0 ⊕ · · · ⊕ am then S ≥ N and
S ≡ N mod 2. In particular, S −N is an even non-negative integer.

We will now prove by induction that for n = ap + 1 + b ≥ 1, the following two properties hold:

(A) G(n) = as + r1+b and

(B) for all g ∈ J0, (a − 1)s − 1K, there is an option On = (h0, . . . , hm) of n such that m ≥ 2 and
G(On) = g.

Let n = ap + 1 + b be the smallest positive integer such that either (A) or (B) is not verified. By
Lemma 11, we know that (A) holds for all n ≤ 4p. Moreover, by Lemma 12, we know that (B) holds for
a = 2, 3, and it is trivially true for a ≤ 1. Thus n > 4p.
Let n = ap + 1 + b > 4p. We consider two cases:

1. Assume (A) is not verified. Thus either G(n) < as + r1+b or G(n) > as + r1+b.

1.1 if G(n) < as + r1+b: by minimality of n, the heap of size n′ = n − 2p = a′p + 1 + b′ verifies
conditions (A) and (B). Let On′ = (a0,n′p + 1 + b0,n′ , . . . , am,n′p + 1 + bm,n′) be an option
of n′ with Grundy value g, for some g < (a′ − 1)s and m ≥ 2. Let N = a0,n′ ⊕ · · · ⊕ am,n′ ,
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S = a0,n′ + · · · + am,n′ and R = G(1 + b0,n′) ⊕ · · · ⊕ G(1 + bm,n′). Let On be the following
option:

h0 = Np + 1 + b0,n′

hj =
1

2
(S −N + 2)p + 1 + bj,n′ for j = 1, 2

hj = 1 + bm,n′ for j > 2

This is an option of n since h0 + · · · + hm = (2 + S)p + 1 + b0,n′ + · · · + 1 + bm,n′ and its
Grundy value is G(On) = Ns + R = g by Property (1).
Hence, the heap of size n has options to all Grundy values in J0, (a′ − 1)s − 1K, i.e. G(n) ≥
(a′ − 1)s.
We now change On into O′

n as follows:

h′
0 = (N + 2)p + 1 + b0,n′

h′
j =

1

2
(S −N)p + 1 + bj,n′ for j = 1, 2

h′
j = 1 + bj,n′ for j > 2

This option is an option of n since h′
0 + · · ·+ h′

m = (2 + S)p + 1 + b0,n′ + · · ·+ 1 + bm,n′ and
its Grundy value is G(O′

n) = (N + 2)s + R = g + 2s.
Hence, the heap of size n has options of Grundy values in J2s, (a−1)s−1K. If a > 4 then with
the previous remark, the heap of size n has options to all Grundy values in J0, (a− 1)s− 1K.
Otherwise, if a = 4, then we take an option On′ = (a0,n′p+ 1 + b0,n′ , . . . , am,n′p+ 1 + bm,n′) of
n′ = 3p+1+b = n−p with Grundy value g in J0, s−1K and m ≥ 2, which exists by Lemma 12.
We note S = a0,n′ +· · ·+am,n′ , N = a0,n′⊕· · ·⊕am,n′ and R = G(1+b0,n′)⊕· · ·⊕G(1+bm,n′).
We transform it into an option On = (h0, . . . , hm) by:

h0 = (N + 1)p + 1 + b0,n′

hj =
1

2
(S −N)p + 1 + bj,n′ for j = 1, 2

hj = 1 + bj,n′ for 3 ≤ j ≤ m

it is an option of n since h0 + · · ·+ hm = (S + 1)p + 1 + b0,n′ + · · ·+ 1 + bm,n′ = n′ + p = n
and its Grundy value is G(On) = G(On′) + s = g + s.
Hence, even for a = 4, the heap of size n has options obtained by m-cuts, m ≥ 2, to all
Grundy values in J0, (a− 1)sK, hence the heap of size n verifies (B).

Now, let n′′ = n− (a− 1)p = p + 1 + b and g ∈ J0, s + r1+b − 1K.
Let On′′ = (a0,n′′p+1+b0,n′′ , . . . , am,n′′p+1+bm,n′′) be an option of n′′ such that G(On′′) = g.
It exists since the heap of size n′′ verifies (B) by minimality of n. Please remark that as
n′′ ≤ 2p, if there is a j such that aj,n′′ 6= 0, then it is unique, without loss of generality, assume
that a0,n′′ ∈ {0, 1} and for j > 0, aj,n′′ = 0. Hence if R = G(1 + b0,n′′) ⊕ · · · ⊕ G(1 + bm,n′′)
then G(On′′) = a0,n′′s + R by Property (1).
Let On be the following option:

h0 = (a0,n′′ + a− 1)p + 1 + b0,n′′

hj = 1 + bj,n′′ for j > 0

This is an option of n since h0+· · ·+hm = (a0,n′′+a−1)p+1+b0,n′′+1+b1,n′′+· · ·+1+bm,n′′ =
n′′ +(a−1)p = n. Its Grundy value is G(On) = (a0,n′′ +a−1)s+R = g+(a−1)s. Hence, the
heap of size n has options to all Grundy values in J(a− 1)s, as+ r1+b− 1K. With the previous
remarks, the heap of size n has options to all Grundy values in J0, as + r1+b − 1K.
Altogether, this means G(n) ≥ as + r1+b, a contradiction.
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1.2 Now, if G(n) > as + r1+b:
Let On = (a0p + 1 + b0, . . . , amp + 1 + bm) be an option of n with Grundy value as + r1+b.
Let N = a0 ⊕ · · · ⊕ am, S = a0 + · · ·+ am and R = G(1 + b0)⊕ · · · ⊕ G(1 + bm). Remark that
by Property (1) a0 ⊕ · · · ⊕ am = a and as S ≥ N , S = a. Let On′ be the following option of
n′ = n− 2p:

h′
0 = (a− 2)p + 1 + b0

h′
j = 1 + bj for j > 1

This is an option of n′ since h′
0 + · · ·+ h′

m = (a− 2)p + 1 + b = n− 2p and its Grundy value
is G(On′) = (a− 2)s + R = as + r1+b − 2s = G(n′), a contradiction.

Hence, the heap of size n verifies (A).

2. Assume (B) is not verified:
By minimality of n, the heap of size n′ = n− 2p = a′p+ 1 + b′ verifies conditions (A) and (B). Let
On′ = (h0,n′ , . . . , hm,n′) = (a0,n′p+1+b0,n′ , . . . , am,n′p+1+bm,n′) be an option of n′ with Grundy
value g, for some g < (a′− 1)s and with m ≥ 2. Let N = a0,n′ ⊕· · ·⊕am,n′ , S = a0,n′ + · · ·+am,n′

and R = G(1 + b0,n′)⊕ · · · ⊕ G(1 + bm,n′). Let On be the following option:

h0 = Np + 1 + b0,n′

hj =
1

2
(S −N + 2) + 1 + bj,n′ for j = 1, 2

hj = 1 + bm,n′ for j > 2

This is an option of n since h0 + · · · + hm = 2p + h0,n′ + · · · + hm,n′ and its Grundy value is
G(On) = Ns + R = g.
Hence, the heap of size n has options obtained by m-cuts with m ≥ 2 to all Grundy values in
J0, (a′ − 1)s− 1K.
We now change On into O′

n as follows:

h′
0 = (N + 2)p + 1 + b0,n′

h′
j =

1

2
(S −N) + 1 + bj,n′ for j = 1, 2

h′
j = 1 + bj,n′ for j > 2

This option is an option of n since h′
0 + · · ·+ h′

m = 2p + h0,n′ + · · ·+ hm,n′ and its Grundy value
is G(O′

n) = (N + 2)s + R = g + 2s.
Hence, the heap of size n has options obtained by m-cuts, m ≥ 2 to all Grundy values in J2s, (a−
1)s − 1K. With the previous remark, this is true for all Grundy values in J0, (a − 1)s − 1K. Hence
the heap of size n verifies (B), a contradiction.

3.2 Relaxed conditions on the AP -test

We now prove that for some families of games, the conditions AP1 and AP2 of the AP -test imply the
condition AP3. We first prove that this is the case if the players are allowed to split a heap in at least
one even and one odd number of heaps.

Proposition 13. Let L = {`1, . . . , `k} be a sequence of positive integers, k > 1. If PB(L) verifies
the conditions AP1 and AP2 of the AP -test and there are m1,m2 ∈ L of different parities such that
2 ≤ m1,m2 ≤ 2p + 1; then PB(L) verifies the AP -test.
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Proof. It suffices to prove that L verifies the condition AP3 of the AP -test. Without loss of generality,
we can consider that m1 is even and m2 is odd. We prove that for all n ∈ J3p + 1, 4pK and g ∈ J0, s− 1K
there is an option On = (h0, . . . , hm) of n such that m ≥ 2 and G(On) = g.
Let n = 3p + 1 + b with 0 ≤ b < p and g ∈ J0, s− 1K.
By AP2, there is c ∈ J0, p− 1K such that G(1 + c) = g. Let n′ = n− 1− c = 3p+ b− c. We consider two
cases:

• if n′ is even: let (q1, r1) be the unique couple such that 0 ≤ r1 < m1 and n′ = m1q1 + r1. In
particular, r1 is even, since m1 and n′ are also even. Moreover q1 > 0 since m1 ≤ 2p + 1 ≤ n′. We
define an option On of n by:

h0 = 1 + c

hj = q1 +
1

2
r1 for j = 1, 2

hj = q1 for 3 ≤ j ≤ m1

It is indeed an option of n since h0 + · · · + hm1
= 1 + c + m1q1 + r1 = 1 + c + n′ = n and in the

expression G(h0)⊕· · ·⊕G(hm), the terms G(h1) and G(h3) appear an even number of times, which
gives directly G(On) = G(1 + c) = g.

• if n′ is odd: let (q2, r2) be the unique couple such that 0 ≤ r2 < m2, n′ = m2q2 +r2. Please remark
that q2 > 0 since m2 ≤ 2p + 1 ≤ n′. As n′ and m2 are odd, either q2 is even and r2 is odd or vice
versa.

– if q2 is even and r2 is odd, we define the option On by:

h0 = 1 + c

hj =
3

2
q2 +

1

2
(r2 − 1) for j = 1, 2

hj = 1 for j = 3

hj = q2 for 4 ≤ j ≤ m2

If m2 = 3 then we only take the four first heaps. The option On is an option of n since
h0 + · · ·+hm2

= 1 + c+ 3q2 + r2− 1 + 1 + (m2− 1− 2)q2 = 1 + c+m2q2 + r2 = 1 + c+n′ = n.
In the expression G(h0)⊕ · · · ⊕ G(hm2

) the terms G(h1) and G(h4) appear an even number of
times and G(h3) = 0, hence G(On) = 1 + c = g.

– if q2 is odd and r2 is even, we define the option On by:

h0 = 1 + c

hj =
1

2
(3q2 − 1) +

1

2
r2 for j = 1, 2

hj = 1 for j = 3

hj = q2 for 4 ≤ j ≤ m2

it is an option of n since h0+· · ·+hm2
= 1+c+3q2−1+r2+1+(m2−3)q2 = 1+c+m2q2+r2 = n.

In the expression G(h0)⊕ · · · ⊕ G(hm2
) the terms G(h1) and G(h4) appear an even number of

times and G(h3) = 0, hence G(On) = g.

In every case, there is an option On of n obtained by an m-cut, m ≥ 2, such that G(On) = g, i.e., PB(L)
verifies the condition AP3, which means PB(L) verifies the test AP .

Now, we prove that if the players are allowed to split a heap in two or an odd number of heaps, and
under some conditions, then the conditions AP1 and AP2 of the AP -test imply the condition AP3.
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Proposition 14. Let L = {1, `} with ` > 2 even. If PB(L) verifies the conditions AP1 and AP2 of
the AP -test for some p with ` ≤ p and there are x1, x2 ≤ p/2 such that G(x1) = G(x2) = 1 and x1 is odd
and x2 is even; then PB(L) verifies the AP -test.

Proof. We are going to prove that the game PB(L) verifies the condition AP3, i.e., that for n ∈
J3p + 1, 4pK and for g ∈ J0, s − 1K, there exists an option On of n such that G(On) = g. Since the
condition AP2 is verified, this can be done by proving that for all n ∈ J3p + 1, 4pK and for all k ∈ J1, pK,
there exists an option On of n such that G(On) = G(k).
Let n ∈ J3p+ 1, 4pK and k ∈ J1, pK. The proof is divided in four cases depending on the parities of k and
n:

1. if n = 2i is even:

1. if k = 2j is even, then let On = (h0, . . . , h`) be the following option, obtained by an `-cut:

h0 = 2j

hj = i− j + 1− 1

2
` for j = 1, 2

hj = 1 for 3 ≤ j ≤ `

This option exists since i ≥ (3p + 1)/2, j ≤ p/2 and ` ≤ p, hence i − j + 1 − `/2 > p/2 > 0.
Moreover it is an option of n since 2j + 2i− 2j + 2− `+ 1× (`− 2) = n and its Grundy value
is G(On) = G(k) since except 2j, all the other values in On appear an even number of times.

2. if k = 2j + 1 is odd, then let On be the following option, obtained by an `-cut:

h0 = 2j + 1

hj = xj for j = 1, 2

hj =
1

2
(2i− 2j − `− x1 − x2 + 3) for j = 3, 4

hj = 1 for 5 ≤ j ≤ `

This option exists since i ≥ (3p+1)/2; j, x1, x2 ≤ p/2 and ` ≤ p, hence 2i−2j−`−x1−x2+3 ≥
4; and 2i − 2j − ` − x1 − x2 + 3 is even since x1 + x2 is odd. Moreover, it is an option of n
since 2j + 1 + x1 + x2 + ` − 4 + (2i − 2j − ` − x1 − x2 + 3) = 2i = n and its Grundy value
is G(On) = G(k)⊕ G(x1)⊕ G(x2) = G(k)⊕ 1⊕ 1 since the other values in On each appear an
even number of times.

2. if n = 2i + 1 is odd:

1. if k = 2j is even, then let On be the following option, obtained by an `-cut:

h0 = 2j

hj = xj for j = 1, 2

hj =
1

2
(2i− 2j − `− x1 − x2 + 5) for j = 3, 4

hj = 1 for 5 ≤ j ≤ `

This option exists since i ≥ (3p+1)/2; j, x1, x2 ≤ p/2 and ` ≤ p, hence 2i−2j−`−x1−x2+5 ≥
6; and 2i − 2j − ` − x1 − x2 + 5 is even since x1 + x2 is odd. Moreover, it is an option of n
since 2j + x1 + x2 + ` − 4 + (2i − 2j − ` − x1 − x2 + 5) = 2i + 1 = n and its Grundy value
is G(On) = G(k) ⊕ G(x1) ⊕ G(x2) = G(k) since the other values in On each appear an even
number of times.
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2. if k = 2j + 1 is odd, then let On be the following option, obtained by an `-cut

h0 = 2j + 1

hj = i− j + 1− 1

2
` for j = 1, 2

hj = 1 for 3 ≤ j ≤ `

This option exists since i ≥ (3p + 1)/2 and 2j + 1, ` ≤ p, hence i − j + 1 − `/2 > p/2 > 0.
Moreover it is an option of n since 2j + 1 + 1 × (` − 2) + 2(i − j + 1) − ` = 2i + 1 and its
Grundy value is G(On) = G(2j + 1) = G(k) since all the other values in On appear an even
number of times.

Hence, for all k ∈ J1, pK, there exists an option of n with the same Grundy value. This implies that the
condition AP3 is verified, and thus that the AP -test is verified for PB(L).

We now prove that the conditions of the previous proposition are always verified for those games as
long as 4` + 3 ≤ p.

Corollary 15. Let L = {1, `} with ` > 2 even. If PB(L) verifies the conditions AP1 and AP2 of the
AP -test for some p ≥ 4` + 3, then PB(L) verifies the condition AP3 of the AP -test.

Proof. By Proposition 14, we only need to prove that there exists x1, x2 < p/2 such that G(x1) = G(x2) =
1 and x1 is odd and x2 is even.
Remark that G(2) = 1 since the only option is (1, 1) which has Grundy value 0. Hence we can assume
x2 = 2.
We claim that we can choose x1 = 2`+1. In order to do that, we prove that the beginning of the Grundy
sequence of the game PB(L) is (0, 1)`/2 and the following ` values are different from 1 and 0, and the
2` + 1-th value is 1. Note that we trivially have G(1) = 0 and G(2) = 1.
Let k ≤ ` be the smallest integer such that G(k) 6= ((k mod 2) + 1 mod 2). The only possible options
for k are obtained by 1-cuts. If k is odd, then all the options are of the form (i0, i1) with i0 and i1
of different parities, which have Grundy value 1 by minimality of k, a contradiction. If k is even, then
all the options are of the form (i0, i1) with i0 and i1 of same parities, which have Grundy value 0 by
minimality, a contradiction.
Now, let k ∈ J` + 1, 2`K. If k is odd, then k admits the 1-cut option (k − `, `) of Grundy value 1 since `
is even, and the `-cut option (k − `, 1, . . . , 1) of Grundy value 0. If k is even, it admits the `-cut option
(k − `, 1, . . . , 1) of Grundy value 1, and the 1-cut option (k/2, k/2) of Grundy value 0. It thus implies
that G(k) > 1.

Finally, we prove G(2` + 1) = 1. We now set k = 2` + 1.
From k, one can reach the value 0 by the option (1, 2, . . . , 2) obtained by an `-cut. All the 1-cuts (i0, i1)
are such that without loss of generality i0 > ` and i1 ≤ `, so G((i0, i1)) 6= 1 since G(i1) < 2 and G(i2) ≥ 2.
Assume there is an `-cut Ok = (i0, . . . , i`) such that G(Ok) = 1. If there is some j such that ij > `, then
it is unique and G(Ok) ≥ 2, hence, there is none: for all j, ij ≤ `. We necessarily have an odd number of
ij ’s, say i0, . . . , ie with e even, such that G(ij) = 1 for j ∈ J0, eK. And for j > e, G(ij) = 0. Hence there
is an even number of odd ij ’s and an odd number of even ones, this gives directly that 2` + 1 is even,
which is a contradiction. Therefore, G(2` + 1) = 1. Moreover, 2` + 1 < p/2 since 4` + 3 ≤ p, hence it
suffices to take x1 = 2` + 1 and x2 = 2 to meet the conditions of Proposition 14 and thus the condition
AP3 of the AP -test.

3.3 Applications of the AP -test

Table 1 summarizes the AP -test computations that have been made for some pure breaking games.
Naturally, the games already solved in Section 2 are not in the table. All the games in this list satisfy the
test and hence are proved to be arithmetic periodic. More specifically, Corollary 15 has been applied to
the games {1, 4}, {1, 6}, {1, 8}, and {1, 10}. We note that for games of the form {1, `}, there seem rather
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long periods depending on `, with always the same saltus. One can wonder whether this regularity holds
for higher values of `:

Conjecture 1. Given ` ≥ 2, the game PB(L) with L = {1, 2`} is arithmetic periodic of length 12` and
saltus 8.

Surprisingly, when one adjoins new values to the games {1, 2`} (with ` ≥ 2), the period simplifies
significantly. These computations for small values lead to the following conjecture:

Conjecture 2. Let K be a finite set of positive integers such that 2 /∈ K, |K| ≥ 2 and K contains at
least one even value. The game PB(L) with L = {1} ∪K is arithmetic periodic with period (0, 1)` and
saltus 2, where 2` is the smallest even number in K.

The case where 1, 2 ∈ L and 3 /∈ L remains the hardest to understand. If Table 1 suggests an
arithmetic periodic behavior when |L| ≥ 3, we did not detect any regularity in the period. For example,
when |L| = 3, the games {1, 2, 4} and {1, 2, 6} have identical Grundy sequences, whereas {1, 2, 5} and
{1, 2, 7} are more singular. Even worse, the game {1, 2, 8} is arithmetic periodic with a preperiod of
positive length (which is not the case of the other sequences we computed). Note that for ultimately
arithmetic periodic sequences, we use the notation (i1, . . . , ie) (m1, . . . ,mp) (+s) where i1, . . . , ie are the
e values of the preperiod, and the rest is as before the p first values of the arithmetic periodic sequence
and s the saltus.

Sequence of integers Sequence

{1, 4} ((0, 1)2(2, 3)2, 1, 4, 5, 4, (3, 2)2(4, 5)2(6, 7)2) (+8)

{1, 6} ((0, 1)3(2, 3)3, 1, 4, (5, 4)2(3, 2)3(4, 5)3(6, 7)3) (+8)

{1, 8} ((0, 1)4(2, 3)4, 1, 4, (5, 4)3(3, 2)4(4, 5)4(6, 7)4) (+8)

{1, 10} ((0, 1)5(2, 3)5, 1, 4, (5, 4)4(3, 2)5(4, 5)5(6, 7)5) (+8)
{1, 4} ∪K

(0, 1)2 (+2)
with K ⊆ {3, 5, 6, 7, 8},K 6= ∅

{1, 6} ∪K
(0, 1)3 (+2)

with K ⊆ {3, 5, 7, 8},K 6= ∅
{1, 8} ∪K

(0, 1)4 (+2)
with K ⊆ {3, 5, 7},K 6= ∅
{1, 2, 4} ∪K, {1, 2, 6} ∪K ′

(0, 1, 2, 3, 1, 4, 3, 2, 4, 5, 6, 7) (+8)
with K ⊆ {6, 7, 8},K ′ ⊆ {7, 8}

{1, 2, 5} ∪K
(0, 1, 2, 3, 1, 4, 3, 6, 4, 5, 6, 7) (+8)

with K ⊆ {4, 6, 7, 8}
{1, 2, 7} (0, 1, 2, 3, 1, 4, 3, 2, 4, 5, 6, 7, 8, 9, 7, 6, 9, 8, 11, 10, 12, 13, 10, 11, 13, 12, 15, 14) (+16)

{1, 2, 8}, {1, 2, 7, 8} (0, 1, 2, 3, 1, 4) (3, 2, 4, 5, 6, 7, 8, 9, 7, 11, 9, 8) (+8)

Table 1: Some pure breaking games for which the ultimate arithmetic periodicity is proved with the AP -
test. All are purely arithmetic periodic, save for {1, 2, 8} and {1, 2, 7, 8} which are ultimately arithmetic
periodic.

4 Conclusion and perspectives

We summarize in Table 2 the results obtained in Sections 2 and 3. The games are partitioned into three
families: those for which the periodicity or arithmetic periodicity is proved, and those for which two or
three conditions of the AP -test are required to prove that they are arithmetic periodic (if that is the
case).

Among the families that are not solved, all of our computations on particular examples have shown
ultimate arithmetic periodic behaviors, except for one: PB({1, 2}). This game has a Grundy sequence
with a lot of regularity but some irregular values, as shown on Figure 1.

In view of our computations, we thus naturally propose the following conjecture.

Conjecture 3. Every game PB(L) with L 6= {1, 2} has a Grundy sequence either ultimately periodic or
ultimately arithmetic periodic.
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Sequence of integers Sequence (if known) Theorem

Solved

{`1, . . . , `k} (`1 > 1) (0)`1 (+1) Proposition 4
{1, `2, . . . , `k} (`i odd) (0, 1) (+0) Proposition 5
{1, 2, 3, `4, . . . , `k} (0)1 (+1) Proposition 6

{1, 3, 2k} (k ≥ 1) (0, 1)` (+2) Proposition 7

Requires AP1 and AP2
{1, 2`, 2`′ + 1, `1, . . . , `k} Proposition 13

{1, 2`} (` ≥ 2) Corollary 15
Requires AP1, AP2 and AP3 {1, `1, . . . , `k} (`i even, k ≥ 1) Theorem 9

Table 2: The pure breaking games.
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Figure 1: The Grundy sequence of PB({1, 2}) for n ≤ 100 and n ≤ 4000.

For some games, the above conjecture is proved to be true but the expression of the period according
to L is non trivial (e.g. L = {1, 2, 7}). This makes a general proof hard to obtain and motivates the
testing conditions. If the AP -test is a rather short computation to prove the arithmetic-periodicity of a
game, we are wondering whether the condition AP3 could be entirely removed from the test.

Open Problem 1. Do the conditions AP1 and AP2 of the AP -test imply the conditions AP3 for any
pure breaking game?

In addition, the case of PB({1, 2}) leaves a couple of open questions:

Open Problem 2. What is the behavior of the Grundy sequence of PB({1, 2})?

Possibly other behaviors than periodicity and arithmetic periodicity could be expected for this game,
as it is the case for hexadecimal games. Determining the number of occurrences of each Grundy value
could be useful to help us understand this sequence. We already know from Lemma 3 that every Grundy
value appears at most twice in the sequence of PB({1, 2}) (apply Lemma 3 with m = 2).

Open Problem 3. Does each Grundy value appear at least once in the sequence of PB({1, 2})? More
precisely, does each Grundy value appear exactly twice in the sequence of PB({1, 2})?
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