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We construct explicit time-varying feedback laws leading to the global (null) stabilization in small time of the viscous Burgers equation with three scalar controls. Our feedback laws use first the quadratic transport term to achieve the small-time global approximate stabilization and then the linear viscous term to get the small-time local stabilization.

Introduction

A very classical problem for controllable system is the asymptotic stabilization issue. Let us first recall some results concerning systems in finite dimension. It was first pointed out in [START_REF] Héctor | Subanalytic sets and feedback control[END_REF] that a system which is globally controllable may not be globally asymptotically stabilizable by means of continuous stationary feedback laws. In [START_REF] Brockett | Asymptotic stability and feedback stabilization[END_REF] a necessary condition for asymptotic stabilizability by means of continuous stationary feedback laws is established. See also [START_REF] Coron | A necessary condition for feedback stabilization[END_REF]. There are controllable systems which do not satisfy this necessary condition. In order to overcome this problem two main strategies have been introduced, namely the use of discontinuous stationary feedback laws and the use of continuous (with respect to the state) time-varying feedback laws. For the first strategy, let us mention in particular [START_REF] Héctor | Subanalytic sets and feedback control[END_REF] and [START_REF] Clarke | Asymptotic controllability implies feedback stabilization[END_REF]. Concerning the second strategy, which was introduced in [START_REF] Sontag | Remarks on continuous feedback[END_REF] and [START_REF] Samson | Velocity and torque feedback control of a nonholonomic cart[END_REF], it is proved in [START_REF] Coron | On the stabilization in finite time of locally controllable systems by means of continuous time-varying feedback law[END_REF] that many powerful sufficient conditions for small-time local controllability imply the existence of feedback laws which stabilize locally the system in small time.

Concerning control systems modelled by means of partial differential equations much less is known. The classical approach for local results is to first consider the linearized control system around the equilibrium of interest. If this linear system can be asymptotically stabilized by a linear feedback law one may expect that the same feedback law is going to stabilize asymptotically the initial nonlinear control system. This approach has been successfully applied to many control systems. Let us, for example, mention [START_REF] Badra | Feedback stabilization of the 2-D and 3-D Navier-Stokes equations based on an extended system[END_REF][START_REF] Badra | Stabilization of parabolic nonlinear systems with finite dimensional feedback or dynamical controllers: application to the Navier-Stokes system[END_REF][START_REF] Barbu | Stabilization of Navier-Stokes flows[END_REF][START_REF] Viorel Barbu | Abstract settings for tangential boundary stabilization of Navier-Stokes equations by high-and low-gain feedback controllers[END_REF][START_REF] Viorel Barbu | Tangential boundary stabilization of Navier-Stokes equations[END_REF][START_REF] Raymond | Feedback boundary stabilization of the two-dimensional Navier-Stokes equations[END_REF][START_REF] Raymond | Feedback boundary stabilization of the three-dimensional incompressible Navier-Stokes equations[END_REF], which are dealing with the stabilization of the Navier-Stokes equations of incompressible fluids, equations which are close to the one we study here, i.e. the viscous Burgers equation. However this strategy does not work in two important cases, namely the case where the linearized system is not asymptotically stabilizable and the case where one is looking for a global result. In both cases one expects that the construction of (globally or locally) asymptotically stabilizing feedback laws heavily depends on the methods allowing to use the nonlinearity in order to prove the associated controllability property (global or local controllability). For the local controllability one of this method is the "power series expansion" method. See in particular [START_REF] Cerpa | Exact controllability of a nonlinear Korteweg-de Vries equation on a critical spatial domain[END_REF][START_REF] Cerpa | Boundary controllability for the nonlinear Korteweg-de Vries equation on any critical domain[END_REF][START_REF] Coron | Exact boundary controllability of a nonlinear KdV equation with critical lengths[END_REF] where an expansion to the order 2 and 3 is used in order to prove the local controllability of Kortewegde Vries equations. This method can be indeed adapted to construct stabilizing feedback laws: see [START_REF] Coron | Quadratic approximation and time-varying feedback laws[END_REF] for control systems in finite dimension and [START_REF] Coron | Local exponential stabilization for a class of Korteweg-de Vries equations by means of time-varying feedback laws[END_REF] for a Korteweg-de Vries control system and [START_REF] Chowdhury | Open loop stabilization of incompressible navier-stokes equations in a 2d channel with a normal control using power series expansion[END_REF] for a Navier-Stokes equation.

Concerning the second case (global stabilization), even less is known. It is natural to expect that the construction of globally asymptotically stabilizable feedback laws depends strongly on the arguments allowing to prove this controllability. One of these arguments is the use of the return method together with scaling arguments (and, in some cases, a local controllability result) as introduced in [START_REF] Coron | On the controllability of the 2-D incompressible Navier-Stokes equations with the Navier slip boundary conditions[END_REF][START_REF] Coron | On the controllability of 2-D incompressible perfect fluids[END_REF]. These arguments have been used to get global controllability results for

• The Euler equations of incompressible fluids in [START_REF] Coron | On the controllability of 2-D incompressible perfect fluids[END_REF][START_REF] Glass | Exact boundary controllability of 3-D Euler equation[END_REF],

• The Navier-Stokes equations of incompressible fluids in [START_REF] Chapouly | On the global null controllability of a Navier-Stokes system with Navier slip boundary conditions[END_REF][START_REF] Coron | On the controllability of the 2-D incompressible Navier-Stokes equations with the Navier slip boundary conditions[END_REF][START_REF] Coron | Global exact controllability of the 2D Navier-Stokes equations on a manifold without boundary[END_REF][START_REF] Coron | Small time global exact controllability of the Navier-Stokes equation with Navier slip-with-friction boundary conditions[END_REF][START_REF] Fursikov | Exact controllability of the Navier-Stokes and Boussinesq equations[END_REF],

• Burgers equations in [START_REF] Chapouly | Global controllability of nonviscous and viscous Burgers-type equations[END_REF][START_REF] Marbach | Small time global null controllability for a viscous Burgers' equation despite the presence of a boundary layer[END_REF],

• The Vlasov-Poisson system in [START_REF] Glass | On the controllability of the Vlasov-Poisson system[END_REF][START_REF] Glass | On the controllability of the Vlasov-Poisson system in the presence of external force fields[END_REF].

In some of these cases the "phantom tracking" method gives a possibility to get global stabilization. This method was introduced in [START_REF] Coron | On the null asymptotic stabilization of the two-dimensional incompressible Euler equations in a simply connected domain[END_REF] for the asymptotic stabilization of the Euler systems, then it has been used in various models [START_REF] Beauchard | Implicit Lyapunov control of finite dimensional Schrödinger equations[END_REF][START_REF] Glass | Asymptotic stabilizability by stationary feedback of the two-dimensional Euler equation: the multiconnected case[END_REF]. One can find a tutorial introduction to this method in [START_REF] Coron | Phantom tracking method, homogeneity and rapid stabilization[END_REF]. However, it is not clear how to get finite-time stabilization with this method.

Concerning the stabilization in small time or even in finite time of partial differential equations very little is known. Let us mention • The use of Krstic's backstepping method [START_REF] Krstic | Boundary control of PDEs, volume 16 of Advances in Design and Control[END_REF] to get stabilization in finite time of linear hyperbolic systems; see in particular [START_REF] Auriol | Minimum time control of heterodirectional linear coupled hyperbolic PDEs[END_REF][START_REF] Coron | Finite-time boundary stabilization of general linear hyperbolic balance laws via Fredholm backstepping transformation[END_REF][START_REF] Coron | Local exponential H 2 stabilization of a 2 × 2 quasilinear hyperbolic system using backstepping[END_REF][START_REF] Di Meglio | Stabilization of a system of n + 1 coupled first-order hyperbolic linear PDEs with a single boundary input[END_REF][START_REF] Hu | Control of homodirectional and general heterodirectional linear coupled hyperbolic PDEs[END_REF]],

• The small-time stabilization of 1 -D parabolic equations [START_REF] Coron | Null controllability and finite time stabilization for the heat equations with variable coefficients in space in one dimension via backstepping approach[END_REF],

• The small-time local stabilization of Korteweg-de Vries equations [START_REF] Xiang | Small-time local stabilization for a Korteweg-de Vries equation[END_REF].

In this paper, we give the first small-time global stabilization result in a case where the global null controllability is achieved by using the return method together with scaling arguments and a local controllability result. We investigate the Burgers equation y t -y xx + yy x = a(t), y(t, 0) = u 1 (t), y(t, 1) = u 2 (t), (1.1) where, at time t, the state is y(t, •) and the controls are a(t) ∈ R, u 1 (t) ∈ R, and u 2 (t) ∈ R. The Burgers equation has been very much studied for its important similarities with the Navier-Stokes equation as the appearance of boundary layers and the balance between the linear viscous term and the quadratic transport term. Let us briefly recall some controllability results on the Burgers control system (1.1). When a = 0 and u 1 = 0, the small-time local null controllability is proved in [START_REF] Fursikov | On controllability of certain systems simulating a fluid flow[END_REF] . When a = 0, it is proved in [START_REF] Guerrero | Remarks on global controllability for the Burgers equation with two control forces[END_REF] that the small-time global null controllability does not hold. Before and after this, many related results were given in [START_REF] Ancona | On the attainable set for scalar nonlinear conservation laws with boundary control[END_REF][START_REF] Coron | Some open problems on the control of nonlinear partial differential equations[END_REF][START_REF] Jesús | Obstruction and some approximate controllability results for the Burgers equation and related problems[END_REF][START_REF] Fernández | Null controllability of the Burgers system with distributed controls[END_REF][START_REF] Glass | On the uniform controllability of the Burgers equation[END_REF][START_REF] Thierry Horsin | On the controllability of the Burgers equation[END_REF][START_REF] Perrollaz | Exact controllability of scalar conservation laws with an additional control in the context of entropy solutions[END_REF]. In [START_REF] Chapouly | Global controllability of nonviscous and viscous Burgers-type equations[END_REF] the return method and scaling arguments are used as in [START_REF] Coron | On the controllability of the 2-D incompressible Navier-Stokes equations with the Navier slip boundary conditions[END_REF][START_REF] Coron | Global exact controllability of the 2D Navier-Stokes equations on a manifold without boundary[END_REF] to prove that (1.1) is globally null controllable. The global null controllability in small time also holds if u 2 = 0 as proved in [START_REF] Marbach | Small time global null controllability for a viscous Burgers' equation despite the presence of a boundary layer[END_REF], even if in this case boundary layers appear when applying the return method. Moreover, it is proved in [START_REF] Marbach | An obstruction to small time local null controllability for a viscous Burgers' equation[END_REF] that the small-time local controllability fails when

u 1 = u 2 = 0.
This article is dealing with the small-time global stabilization of (1.1). To overcome some regularity issues we add an integration on the control variable a : now a t = α(t) and a(t) is part of the state. In other words, we consider a dynamical extension of (1.1) -see for example [22, p. 292]-with an extension with a variable of dimension only 1. Dynamical extensions are usually considered to handle output regulations. It can also be used to handle obstructions to full state stabilization for nonlinear systems even in finite dimension: see [START_REF] Coron | Adding an integrator for the stabilization problem[END_REF]Proposition 1]. In this paper, we therefore consider the following viscous Burgers controlled system:

           y t -y xx + yy x = α(t) for (t, x) ∈ (s, +∞) × (0, 1), y(t, 0) = u 1 (t) for t ∈ (s, +∞), y(t, 1) = u 2 (t) for t ∈ (s, +∞), a t = α(t) for t ∈ (s, +∞), (1.2) 
where, at time t, the state is (y(t, •), a(t)) ∈ L 2 (0, 1)×R , and the control is (α(t),

u 1 (t), u 2 (t)) ∈ R × R × R. (We could have considered a t = β(t)
where β(t) is a new control; however it turns out that one can just take β(t) = α(t).) Before stating our results on stabilization, let us introduce the notion of feedback law, closedloop system, proper feedback law, and flow associated to a proper feedback law. A feedback law is an application

F F : D(F ) ⊂ R × L 2 (0, 1) × R → R × R × R (t; y, a)
→ F (t; y, a) = (A(t; y, a), U 1 (t; y, a), U 2 (t; y, a)).

(1.

3)

The closed-loop system associated to such a feedback law F is the evolution equation

           y t -y xx + yy x = A(t; y, a) for (t, x) ∈ (s, +∞) × (0, 1), y(t, 0) = U 1 (t; y, a)
for t ∈ (s, +∞), y(t, 1) = U 2 (t; y, a)

for t ∈ (s, +∞), a t = A(t; y, a)

for t ∈ (s, +∞).

(1.4)

The feedback law F is called proper if the Cauchy problem associated to the closed-loop system (1.4) is well posed for every s ∈ R and for every initial data (y 0 , a 0 ) ∈ L 2 (0, 1) × R at time s; see Definition 16 for the precise definition of a solution to this Cauchy problem and see Definition 17 for the precise definition of proper. For a proper feedback law, one can define the flow Φ : ∆ × (L 2 (0, 1) × R) → (L 2 (0, 1) × R), with ∆ := {(t, s); t > s} associated to this feedback law: Φ(t, s; y 0 , a 0 ) is the value at t > s of the solution (y, a) to the closed-loop system (1.4) which is equal to (y 0 , a 0 ) at time s. Let

V := L 2 (0, 1) × R with (y, a) V := y L 2 +|a|. (1.5)
Our main result is the following small-time global stabilization result. Theorem 1. Let T > 0. There exists a proper 2T -periodic time-varying feedback law for system (1.2) such that

(i) Φ(4T + t, t; y 0 , a 0 ) = 0, ∀t ∈ R, ∀y 0 ∈ L 2 (0, 1), ∀a ∈ R.
(ii) (Uniform stability property.) For every δ > 0, there exists η > 0 such that

( (y 0 , a 0 ) V η) ⇒ Φ(t, t ; y 0 , a 0 ) V δ, ∀t ∈ R, ∀t ∈ (t , +∞) . (1.6)
Our strategy to prove Theorem 1 is to decompose the small-time global stabilization into two stages:

• Stage 1: Global "approximate stabilization", i.e., the feedback law steers the control system in a small neighborhood of the origin,

• Stage 2: Small-time local stabilization.

In the remaining part of this introduction, we heuristically describe these two stages (see Figure 1).

Global approximate stabilization

In this part we use the transport term yy x and the "phantom tracking" strategy to get global approximate stabilization in small time, i.e. to get, for a given ε > 0, y(t) L 2 +|a(t)| ε for t larger than a given time. For this issue, let us perform the following change of variable z := y -a.

(1.7)

Then (1.2) becomes            z t -z xx + zz x + a(t)z x = 0 for (t, x) ∈ (s, +∞) × (0, 1), z(t, 0) = u 1 (t) -a(t) for t ∈ (s, +∞), z(t, 1) = u 2 (t) -a(t)
for t ∈ (s, +∞),

a t = α(t)
for t ∈ (s, +∞).

(1.8)

In this stage, we will always set

U 1 (t; y, a) = U 2 (t; y, a) = a.
(1.9)

Then the energy (i.e. the square of the L 2 -norm) is dissipating:

d dt z 2 L 2 0. (1.10)
As we know, the "transport term" a(t)z x can lead to a small value for z(T ) L 2 . For example letting a(t) = C z L 2 , one can expect that z(T ) L 2 ε for T > 0 given, whatever the initial data is. However |a(t)| can become larger. Thanks to the control of a(t) (see (1.8)) and the dissipation of z (see (1.10)), a, as we will see, can be stabilized later on. In order to stabilize z only, we will try to find suitable feedback laws for system (1.8).

Using this strategy, we will get the following theorem, the proof of which is given in Section 3.

Theorem 2. Let T > 0, ε > 0. There exists

A : R × L 2 (0, 1) × R → R, (t; y, a) → A(t; y, a), (1.11) 
such that the associated feedback law F 1 (see (1.3) and (1.9)) is proper for system (1.2) and such that the following properties hold, where Φ 1 denotes the flow associated to F 1 , (Q 1 ) The feedback law A is T -periodic with respect to time:

A(t; y, a) = A(T + t; y, a), ∀(t, y, a) ∈ R × L 2 (0, 1) × R, (1.12) 
(Q 2 ) There exists a stationary feedback law A 0 : L 2 (0, 1) × R → R, (y, a) → A 0 (y, a), such that

A(t; y, a) = A 0 (y, a), ∀t ∈ [0, T /2), ∀(y, a) ∈ D(A 0 ), (1.13) 
(Q 3 ) There exists a stationary feedback law A 1 : R → R, a → A 1 (a), such that

A(t; y, a) = A 1 (a), ∀(t; y, a) ∈ [T /2, T ) × L 2 (0, 1) × R, (1.14) 
(Q 4 ) (Local uniform stability property.) For every δ > 0, there exists η > 0 such that

( (y 0 , a 0 ) V η) ⇒ Φ 1 (t, t ; y 0 , a 0 ) V δ, ∀0 t t T , (1.15) 
(Q 5 ) For every y 0 in L 2 (0, 1) and for every a 0 ∈ R, Φ 1 (T, 0; y 0 , a 0 ) = (y(T ), 0) with y(T ) L 2 (0,1) ε.

(1.16) Theorem 2 is not a stabilization result, since we only get that y(T ) is "close to 0". For this reason we name this stage "global approximate stabilization".

Small-time local stabilization

Thanks to the first stage we now only need to get the small-time local stabilization. Since we already have Φ 1 (T, 0; y 0 , a 0 ) = (y(T ), 0) with y(T ) L 2 ε, we can set α ≡ 0. Inspired by the piecewise backstepping approach introduced in [START_REF] Coron | Null controllability and finite time stabilization for the heat equations with variable coefficients in space in one dimension via backstepping approach[END_REF], we also set u 1 = 0. Hence the system becomes      y t -y xx + yy x = 0 for (t, x) ∈ (s, +∞) × (0, 1), y(t, 0) = 0 for t ∈ (s, +∞), y(t, 1) = u 2 (t) for t ∈ (s, +∞).

(1.17)

We do not care about a since it does not change. In [START_REF] Coron | Null controllability and finite time stabilization for the heat equations with variable coefficients in space in one dimension via backstepping approach[END_REF] the authors get small-time semi-global stabilization for the heat equation. Since we only need small-time local stabilization, the nonlinear term yy x could naturally be regarded as a small perturbation. However, by classical Lions-Magenes method, in order to have a C 0 ([0, T ]; L 2 (0, 1)) solution (to the system (1.17)), a H 1/4 (0, T ) regularity of the control term is needed. For the control problem with the openloop systems, the regularity condition on the control term is not a big obstacle. But when we consider the closed-loop system, it is hard to expect our feedback law will lead to a control in H 1/4 (0, T ), especially when the feedback laws are given by some unbounded operators. Actually this problem also appears for the KdV system [START_REF] Xiang | Small-time local stabilization for a Korteweg-de Vries equation[END_REF], where based on the special structure of KdV (leading to the Kato hidden regularity of y x (t, 0)), the "adding an integrator" method (i.e. the control is no longer u 2 but u2 in the framework of (1.17)) solved this problem. Nevertheless, this idea does not work for our case, since there is no such hidden regularity.

However, instead of the hidden regularity, we have now the maximum principle. With this principle we get that a control in C 0 ([0, T ]) leads to a solution in C 0 ([0, T ]; L 2 (0, 1)). Hence we get a solution in C 0 ([0, T ]; L 2 (0, 1)) for the closed-loop system. We look for U 2 : R×L 2 (0, 1) → R satisfying the following properties (P 1 ) The feedback law U 2 is T -periodic with respect to time:

U 2 (t; y) = U 2 (T + t; y), (1.18) 
(P 2 ) There exists an increasing sequence {t n } n∈N of real numbers such that

t 0 = 0, (1.19) lim n→+∞ t n = T, (1.20) U 2 is of class C 1 in [t n , t n+1 ) × L 2 (0, 1), (1.21) 
(P 3 ) The feedback law U vanishes on R × {0} and there exists a continuous function M : [0, T ) → [0, +∞) such that, for every (t, y 1 , y 2 ) ∈ [0, T ) × L 2 (0, 1) × L 2 (0, 1),

|U (t; y 1 ) -U (t; y 2 )| M (t)( y 1 -y 2 L 2 ), (1.22) 
(P 4 ) For every (t, y) ∈ R × L 2 (0, 1), we have

|U (t; y)| min{1, y L 2 }, (1.23) 
(P 5 ) If y L 2 (0,1) 1, then, for every t ∈ R, U (t; y) = 0, and leading to the small-time local stability for the y variable if the feedback law F = F 2 is defined by F 2 (t; y, a) = (0, 0, U 2 (t, y)).

(1.24)

More precisely, one has the following theorem.

Theorem 3. Let T > 0. There exists ε > 0 and U 2 : R × L 2 (0, 1) → R satisfying properties (P 1 )-(P 5 ), such that the feedback law F 2 defined by (1.24) is proper and, if the flow for the closed-loop system is denoted by Φ 2 , (i) For every y 0 ∈ L 2 (0, 1) and for every a 0 ∈ R,

Φ 2 (T, 0; y 0 , a 0 ) = (0, a 0 ) if y 0 L 2 ε, (1.25) 
(ii) (Local uniform stability property.) For every δ > 0, there exists η > 0 such that

( (y 0 , a 0 ) V η) ⇒ Φ 2 (t, t ; y 0 , a 0 ) V δ, ∀0 t t T . (1.26)
This paper is organized as follows. Section 2 is dealing with the well-posedness of various Cauchy problems and the definition of proper feedback laws. Section 3 and Section 4 are on the global approximate stabilization and the small-time local stabilization. Then we define our time-varying feedback laws in Section 5. These feedbacks law lead to Theorem 1, which will be proved in Section 6. In the appendices, we prove some well-posedness results (for both openloop systems and closed-loop systems), namely Proposition 7, Proposition 10, Theorem 24, Lemma 12, Lemma 27, and Lemma 29.

Well-posedness of the open-loop system (1.2) and proper feedback laws

In this section we briefly review results on the well-posedness of the open-loop system (1.2). Then we establish our new estimates which will be used for the well-posedness of the closed-loop systems. Finally we define proper feedback laws, i.e. feedback laws such that the closed-loop systems are well-posed in the context of our notion of solutions to (1.2).

Let us start with the linear Cauchy problem:

           y t (t, x) -y xx (t, x) = f (t, x) for (t, x) ∈ (t 1 , t 2 ) × (0, 1), y(t, 0) = β(t) for t ∈ (t 1 , t 2 ), y(t, 1) = γ(t) for t ∈ (t 1 , t 2 ), y(t 1 , •) = y 0 . (2.1)
We use the following definition of solutions to the Cauchy problem (2.1) (solution in a transposition sense; see [START_REF] Coron | Control and nonlinearity[END_REF][START_REF] Coron | Null controllability and finite time stabilization for the heat equations with variable coefficients in space in one dimension via backstepping approach[END_REF][START_REF] Lions | Non-homogeneous boundary value problems and applications[END_REF]). Definition 4. Let t 1 ∈ R and t 2 ∈ R be such that t 1 < t 2 . Let y 0 ∈ H -1 (0, 1), β and γ ∈ L 2 (t 1 , t 2 ), and f ∈ L 1 (t 1 , t 2 ; H -1 (0, 1)). A solution to the Cauchy problem (2.1) is a function

y in C 0 ([t 1 , t 2 ]; H -1 (0, 1)) such that -y 0 , u(t 1 , •) H -1 ,H 1 0 + y(s, •), u(s, •) H -1 ,H 1 0 + s t 1 γ(t)u x (t, 1)dt - s t 1 β(t)u x (t, 0)dt - s t 1 f (t, x), u(t, x) H -1 ,H 1 0 dt = 0, (2.2) for every s ∈ [t 1 , t 2 ], for every u ∈ L 2 (t 1 , t 2 ; H 2 (0, 1)) ∩ H 1 (t 1 , t 2 ; H 1 0 (0, 1)) such that u t (t, x) + u xx (t, x) = 0 in L 2 ((t 1 , t 2 ) × (0, 1)). (2.3)
This definition ensures the uniqueness (there exists at most one solution), but is not sufficient to get the existence of solutions. Concerning this existence of solutions, and therefore the wellposedness of the Cauchy problem (2.1), one has the following proposition.

Proposition 5. Let t 1 ∈ R and t 2 ∈ R be given such that t 1 < t 2 < t 1 + 1. (1) If f = 0, β = γ = 0, then, for every y 0 in H -1 (0, 1)), the Cauchy problem (2.1) has a unique solution y ∈ C 0 ([t 1 , t 2 ]; H -1 (0, 1)). Moreover, when y 0 ∈ L 2 (0, 1), this solution is in C 0 ([t 1 , t 2 ]; L 2 (0, 1)) ∩ L 2 (t 1 , t 2 ; H 1 0 (0, 1)), (2.4) 
and satisfies

y C 0 L 2 y 0 L 2 and y L 2 H 1 0 y 0 L 2 . (2.5) (2) If y 0 = 0, β = γ = 0, and f ∈ L 1 (t 1 , t 2 ; L 2 (0, 1)) ∪ L 2 (t 1 , t 2 ; H -1 (0, 1)
), the Cauchy problem (2.1) has a unique solution y. Moreover

y C 0 L 2 f L 1 L 2 and y L 2 H 1 0 f L 1 L 2 (2.6)
and there exists C 1 1 (which is independent of 0 < t 2 -t 1 < 1) such that

y C 0 L 2 ∩L 2 H 1 0 C 1 f L 2 H -1 .
(2.7)

(3) If y 0 = 0, f = 0, β, and γ ∈ L 2 (t 1 , t 2 ), the Cauchy problem (2.1) has a unique solution y. If in addition β and γ ∈ H 3/4 (t 1 , t 2 ), this solution is also in

C 0 H 1 ∩ L 2 H 2 .
In this proposition and in the following, in order to simplify the notations, when there is no possible misunderstanding on the the time interval, C 0 L 2 denotes the space C 0 ([t 1 , t 2 ]; L 2 (0, 1)), L 2 L ∞ denotes the space L 2 (t 1 , t 2 ; L 2 (0, 1)) etc.

Properties ( 1) and ( 3) follow from classical arguments; see, for example, [22, Sections 2.3.1 and 2.7.1], [START_REF] Guerrero | Remarks on global controllability for the Burgers equation with two control forces[END_REF][START_REF] Marbach | Small time global null controllability for a viscous Burgers' equation despite the presence of a boundary layer[END_REF]. Property (2) follows from direct calculations and one can find similar results in [START_REF] Glass | Some exact controllability results for the linear KdV equation and uniform controllability in the zero-dispersion limit[END_REF]. Since we want to investigate the well-posedness of closed-loop systems, (3) is difficult to use. For that reason, we investigate the well-posedness with lower regularities on β and γ. For the heat equation, we have the maximum principle:

Lemma 6 (Maximum principle: linear case). Let t 1 ∈ R and t 2 ∈ R be given such that t 1 < t 2 . Let y 0 ∈ H -1 , β ∈ L 2 (t 1 , t 2 ), γ ∈ L 2 (t 1 , t 2 ), and f ∈ L 2 (t 1 , t 2 ; H -1 ). Let y ∈ C 0 ([0, T ]; H -1 ) be the solution of the Cauchy problem            y t (t, x) -y xx (t, x) = f for (t, x) ∈ (t 1 , t 2 ) × (0, 1), y(t, 0) = β(t) for t ∈ (t 1 , t 2 ), y(t, 1) = γ(t) for t ∈ (t 1 , t 2 ), y(t 1 , •) = y 0 .
(2.8) If y 0 0, f 0, β 0, and γ 0, (2.9)

then y(t, •) 0, ∀t ∈ [t 1 , t 2 ]. (2.10)
Thanks to the maximum principle, we get a new version of the well-posedness of system (2.1), the proof of which is given in Appendix A.

Proposition 7. Let t 1 ∈ R and t 2 ∈ R be given such that t 1 < t 2 . If f = 0, y 0 = 0, β and γ ∈ L ∞ (t 1 , t 2 ), the unique solution y of the Cauchy problem (2.1) is in L ∞ (t 1 , t 2 ; L 2 (0, 1)) ∩ L 2 (t 1 , t 2 ; L ∞ (0, 1)) and this solution is also in C 0 ([t 1 , t 2 ]; L 2 (0, 1)) provided that β and γ are in C 0 ([t 1 , t 2 ]
). Moreover, for every T 0 > 0, and for every η > 0, there exists a constant C T 0 ,η > 0 such that, for every t 1 ∈ R and for every t 2 ∈ R such that t 1 < t 2 ≤ t 1 + T 0 , for every β and for every γ ∈ L ∞ (t 1 , t 2 ), and for every t

∈ (t 1 , t 2 ], y L ∞ (t 1 ,t;L 2 )∩L 2 (t 1 ,t;L ∞ ) (η + C T 0 ,η (t -t 1 ) 1/2 ) β L ∞ (t 1 ,t) + γ L ∞ (t 1 ,t) .
(2.11)

Let us now turn to the nonlinear Cauchy problem

           y t (t, x) -y xx (t, x) + yy x = f for (t, x) ∈ (t 1 , t 2 ) × (0, 1), y(t, 0) = β(t) for t ∈ (t 1 , t 2 ), y(t, 1) = γ(t) for t ∈ (t 1 , t 2 ), y(t 1 , •) = y 0 .
(2.12)

The idea is to regard, in (2.12), -yy x = -(y 2 ) x /2 as a force term. Hence we adopt the following definition.

Definition 8. Let y 0 ∈ H -1 (0, 1), β and γ ∈ L 2 (t 1 , t 2 ), and f ∈ L 1 (t 1 , t 2 ; H -1 (0, 1)). A solution to the Cauchy problem (2.12) is a function

y ∈ L ∞ (t 1 , t 2 ; L 2 (0, 1)) ∩ L 2 (t 1 , t 2 ; L ∞ (0, 1)) (2.13)
which, in the sense of Definition 4, is a solution of (2.1) with

f := -(y 2 ) x /2 + f ∈ L 1 (t 1 , t 2 ; H -1 (0, 1)). (2.14)
Remark 9. Let us point out that it would be better to write in (2.12) (y 2 ) x /2 instead of yy x . However, for the sake of better readability, we keep yy x instead of (y 2 ) x /2 here and in the following.).

For this nonlinear system, thanks to Proposition 7, the classical well-posedness results, stability results, and the maximum principle on the Cauchy problem (2.12) can be modified into the following ones, which are more suitable for the stabilization problem and which are also proved in Appendix A.

Proposition 10. Let t 1 ∈ R and t 2 ∈ R be given such that t 1 < t 2 . Let y 0 ∈ L 2 (0, 1), β and γ ∈ L ∞ (t 1 , t 2 ). If β and γ are piecewise continuous the Cauchy problem (2.12) with f = 0 has one and only one solution. This solution is in C 0 ([t 1 , t 2 ]; L 2 (0, 1)).

Moreover, for every R > 0, r > 0, and ε > 0, there exists T ε R,r > 0 such that, for every t 1 ∈ R and t 2 ∈ R such that t 1 < t 2 ≤ t 1 +T ε R,r and for every y 0 ∈ L 2 (0, 1), β and γ ∈ L ∞ (t 1 , t 2 ) (not necessary to be piecewise continuous) such that

y 0 L 2 R and β L ∞ + γ L ∞ r, (2.15) 
the Cauchy problem (2.12) with f = 0 has one and only one solution and this solution satisfies

y L ∞ (t 1 ,t 2 ;L 2 (0,1)) 2R, (2.16) 
y L 2 (t 1 ,t 2 ;L ∞ (0,1)) εR.

(2.17)

Remark 11. The conditions on β and γ are for the existence of solutions: one can get the uniqueness of the solution with less regularity on β and γ.

Lemma 12 (Maximum principle: nonlinear case). Let t 1 ∈ R and t 2 ∈ R be given such that

t 1 < t 2 . Let y ± 0 ∈ L 2 (0, 1), β ± ∈ L ∞ (t 1 , t 2 ) be piecewise continuous, and γ ± ∈ L ∞ (t 1 , t 2 ) be piecewise continuous. Let y ± ∈ C 0 ([t 1 , t 2 ]; H -1 (0, 1)) ∩ C 0 ([t 1 , t 2 ]; L 2 (0, 1)) ∩ L 2 (t 1 , t 2 ; L ∞ (0, 1)) be solutions to the Cauchy problem            y ± t (t, x) -y ± xx (t, x) + y ± y ± x = 0 for (t, x) ∈ (t 1 , t 2 ) × (0, 1), y ± (t, 0) = β ± (t) for t ∈ (t 1 , t 2 ), y ± (t, 1) = γ ± (t) for t ∈ (t 1 , t 2 ), y ± (t 1 , •) = y ± 0 .
(2.18)

If y - 0 y + 0 , β -β + , and γ -γ + , (2.19) then y -(t, •) y + (t, •), ∀t ∈ [t 1 , t 2 ].
(2.20)

Lemma 13. For every R > 0, r > 0, and τ > 0, there exists C(R, r, τ ) > 0 such that, for every t 1 ∈ R and t 2 ∈ R such that t 1 < t 2 ≤ t 1 + τ , and for every y ± 0 ∈ L 2 (0, 1), β ± ∈ L ∞ (t 1 , t 2 ) piecewise continuous, and γ ± ∈ L ∞ (t 1 , t 2 ) piecewise continuous such that

y ± 0 L 2 R and β ± L ∞ + γ ± L ∞ r, (2.21) 
the solution to the Cauchy problem (2.12) with f = 0 satisfies

y + -y - L ∞ (t 1 ,t 2 ;L 2 (0,1)) C(R, r, τ ) y + 0 -y - 0 L 2 (0,1) + β + -β - L ∞ + γ + -γ - L ∞ . (2.22)
Let us now come back to system (1.2). We start with the definition of a solution to the Cauchy problem associated to (1.2). ). However this proposition implies this existence if u 1 and u 2 are only piecewise continuous. We choose L ∞ condition for u 1 and u 2 precisely to cover this case, which will be useful in the framework of the well-posedness of the closed-loop systems that we are going to consider.

Definition 14. Let t 1 ∈ R and t 2 ∈ R be given such that t 1 < t 2 . Let y 0 ∈ L 2 (0, 1), a 0 ∈ R, α ∈ L 1 (t 1 , t 2 ), u 1 and u 2 ∈ L ∞ (t 1 , t 2 ). A solution (y, a) to (1.2) with initial data (y 0 , a 0 ) at time t 1 is a (y, a) satisfying y ∈ C 0 ([t 1 , t 2 ]; L 2 (0, 1)) ∩ L 2 (t 1 , t 2 ; L ∞ (0, 1)), (2.23) a ∈ C 0 ([t 1 , t 2 ]), a t =
Definition 14 allows to define the notion of solution to the Cauchy problem associated to the closed-loop system (1.4) as follows.

Definition 16. Let s 1 ∈ R and s 2 ∈ R be given such that s 1 < s 2 . Let F : [s 1 , s 2 ] × L 2 (0, 1) × R → R × R × R (t; y, a) → F (t; y, a) = (A(t; y, a), U 1 (t; y, a), U 2 (t; y, a)). Let t 1 ∈ [s 1 , s 2 ], t 2 ∈ (t 1 , s 2 ], a 0 ∈ R, and y 0 ∈ L 2 (0, 1). A solution on [t 1 , t 2 ]
to the Cauchy problem associated to the the closed-loop system (1.4) with initial data (y 0 , a 0 ) at time t 1 is a couple (y, a)

: [t 1 , t 2 ] → L ∞ (0, 1) × R such that t ∈ (t 1 , t 2 ) → a(t) := A(t; y(t, •), a(t)) ∈ L 1 (t 1 , t 2 ), (2.26) t ∈ (t 1 , t 2 ) → u 1 (t) := U 1 (t; y(t, •), a(t)) ∈ L ∞ (t 1 , t 2 ), (2.27) t ∈ (t 1 , t 2 ) → u 2 (t) := U 2 (t; y(t, •), a(t)) ∈ L ∞ (t 1 , t 2 ), (2.28) 
(y, a) is a solution (see Definition 14) of (1.2) with initial data (y 0 , a 0 ) at time t 1 . (2.29)

We can now define feedback laws such that the closed-loop system has a unique solution in the sense of Definition 14. These feedback laws are called proper and are defined as follows.

Definition 17. Let s 1 ∈ R and s 2 ∈ R be given such that s 1 < s 2 . A proper feedback law on [s 1 , s 2 ] is an application such that, for every t 1 ∈ [s 1 , s 2 ], for every t 2 ∈ (t 1 , s 2 ], for every a 0 ∈ R, and for every y 0 ∈ L 2 (0, 1), there exists a unique solution on [t 1 , t 2 ] to the Cauchy problem associated to the the closed-loop system (1.4) with initial data (y 0 , a 0 ) at time t 1 (see Definition 16).

F : [s 1 , s 2 ] × L 2 (0, 1) × R → R × R × R ( 
A proper feedback law is an application

F F : (-∞, ∞) × L 2 (0, 1) × R → R × R × R (t; y, a) → F (t; y, a) = (A(t; y, a), U 1 (t; y, a), U 2 (t; y, a))
such that, for every s 1 ∈ R and for every

s 2 ∈ R such that s 1 < s 2 , the feedback law restricted to [s 1 , s 2 ] × L 2 (0, 1) × R is a proper feedback law on [s 1 , s 2 ].

Global approximate stabilization

Let T > 0 be given. As explained in Section 1.1, throughout this section we work with (z, a) instead of (y, a), where z is defined by (1.7). The equation satisfied by (z, a) is

           z t -z xx + zz x + a(t)z x = 0 for (t, x) ∈ (0, T ) × (0, 1), z(t, 0) = 0 for t ∈ (0, T ), z(t, 1) = 0 for t ∈ (0, T ), a t = α(t)
for t ∈ (0, T ).

(3.1)

The idea is to use the "transport term" a(t)z x . Following the idea of backstepping (see e.g.[22, Section 12.5]), we first regard the term a(t) as a control term: we consider the system

     z t -z xx + zz x + a(t)z x = 0 for (t, x) ∈ (0, T ) × (0, 1), z(t, 0) = 0 for t ∈ (0, T ), z(t, 1) = 0 for t ∈ (0, T ), (3.2) 
where, at time t ∈ [0, T ], the state is z(t, •) ∈ L 2 (0, 1) and the control is a(t) ∈ R. Inequality (1.10) shows that the L 2 -norm of the state decays whatever is the control. However it does not provide any information on the decay rate of this L 2 -norm. In order to get information on this decay rate, we consider the weighted energy (see e.g. [8, Chapter 2], [START_REF] Coron | Dissipative boundary conditions for one-dimensional nonlinear hyperbolic systems[END_REF])

V 1 (z) := 1 0 z 2 e -x dx. (3.3) With a slight abuse of notations, let V 1 (t) := V 1 (z(t)). Then, at least if z ∈ C 1 ([0, T ]; H -1 (0, 1)) ∩ C 0 ([0, T ]; H 1 0 (0, 1)) and a ∈ C 0 ([0, T ]), (3.4) V 1 ∈ C 1 ([0, T ]) and 1 2 d dt V 1 = z t , ze -x H -1 ,H 1 0 = z xx -(z 2 /2) x -a(t)z x , ze -x H -1 ,H 1 0 = - 1 0 z 2 x e -x dx + 1 2 - a 2 V 1 (z) - 1 3 
1 0 z 3 e -x dx. (3.5) 
In fact, as one easily sees, (3.5) holds in the distribution sense in L 1 (0, T ) if

z ∈ H 1 (0, T ; H -1 (0, 1)) ∩ L 2 (0, T ; H 1 0 (0, 1)) and a ∈ L ∞ (0, T ). (3.6) 
From now on we assume that (3.6) holds. Since

z L ∞ 2 1 0 z 2 x e -x dx 1/2 , (3.7) 
(3.5) leads to d dt V 1 - 1 0 z 2 x e -x dx + V 2 1 + (1 -a)V 1 . (3.8) 
We choose a := (k + 1)V 1 , then

d dt V 1 V 1 -kV 2 1 .
(3.9)

The positive "equilibrium" point (of V 1 ) of the right hand side of (3.9) is 1/k. Hence if k large enough we have

V 1 (T ) 2/ √ k, (3.10) 
whatever is the initial data as shown by the following lemma.

Lemma 18. Let T > 0. There exists k T ∈ N such that, for every k k T and for every

V 1 ∈ C 0 ([0, T ]; [0, +∞)) satisfying (3.9) in the distribution sense in (0, T ), V 1 (T ) 2/ √ k. (3.11)
Proof of Lemma 18. It is easy to observe that, if for some time

t 0 ∈ [0, T ], V 1 (t 0 ) 2/ √ k, then V 1 (t) 2/ √ k, for every t ∈ [t 0 , T ].
So, arguing by contradiction, we may assume that

V 1 (t) > 2/ √ k, ∀t ∈ [0, T ]. (3.12) Then V1 (t) - k 2 V 2 1 (t), (3.13) 
which implies that

- 1 V 1 (T ) + 1 V 1 (0) ≤ - kT 2 . ( 3.14) 
From (3.12) and (3.14), we get

k 2 T 1 V 1 (t) √ k 2 , (3.15) 
which implies that √ kT 1.

(3.16)

Construction of feedback laws

Phantom tracking stage

Let us come back to the system (3.1). For any T given, we consider the following Lyapunov function generated from the phantom tracking idea:

V 2 (z, a) := V 1 (z) + (a -λV 1 (z)) 2 , (3.17) 
with λ to be chosen later. The idea is to penalize a = λV 1 (z); see [START_REF] Coron | Phantom tracking method, homogeneity and rapid stabilization[END_REF]. Again, with a slight abuse of notations, we define

V 2 (t) := V 2 (z(t), a(t)). Then, at least if z is in C 1 ([0, T ]; H -1 (0, 1)) ∩ C 0 ([0, T ]; H 1 0 (0, 1)) and a ∈ C 1 ([0, T ]), V 2 is of class C 1 and d dt V 2 = d dt V 1 + 2(a -λV 1 (z))(α -λ d dt V 1 ) - 1 0 z 2 x e -x dx + V 2 1 + V 1 -λV 2 1 + 2 (a -λV 1 (z)) α -λ d dt V 1 - V 1 2 .
We choose

α :=λ d dt V 1 + V 1 2 - 1 2 λ(a -λV 1 (z)) 3 =λ -2 1 0 z 2 x e -x dx + (1 -a) V 1 (z) - 2 3 1 0 z 3 e -x dx + V 1 2 - 1 2 λ(a -λV 1 (z)) 3 . (3.18) Then, at least if z is in C 1 ([0, T ]; H -1 (0, 1)) ∩ C 0 ([0, T ]; H 1 0 (0, 1)) and α ∈ C 0 ([0, T ]) d dt V 2 V 2 1 + V 1 -λV 2 1 -λ(a -λV 1 (z)) 4 V 1 - λ -1 2 V 2 2 V 2 - λ -1 2 V 2 2 . (3.19)
In fact, as one easily sees, (3.19) holds in the distribution sense in L 1 (0, T ) if

z ∈ H 1 (0, T ; H -1 (0, 1)) ∩ L 2 (0, T ; H 1 0 (0, 1)) and α ∈ L ∞ (0, T ). (3.20)
Let ε > 0. Using Lemma 18 and (3.19), one gets the existence of λ 0 > 1, independent of (z, a) satisfying (3.20), such that, for every λ ∈ [λ 0 , +∞),

|V 2 (T /2)| 3 √ λ -1 ε. (3.21)
Meanwhile, there exists a constant C ε such that |a(T /2)| C ε . We denote this stationary feedback law by A 0 , i.e., A 0 : L ∞ (0, 1)×R → R∪{-∞} is defined by A 0 (y, a) := α with α given in (3.18), where z is defined by (1.7),

with the natural convention that A 0 (y, a) = -∞ if y ∈ H 1 (0, 1). This convention is justified by the fact that, by (3.7), there exists C > 0

1 0 z 3 e -x dx z L ∞ z 2 L 2 3 2 1 0 z 2 x e -x dx + C z 4 L 2 , ∀z ∈ H 1 0 (0, 1). (3.23)
Remark 19. Let us point out that A 0 is an unbounded operator on the state space, which is L 2 (0, 1) × R. The set where it takes finite value is H 1 (0, 1) × R L 2 (0, 1) × R. However, as we will see in Subsection 3.2, the feedback law

F (t; y, a) := (A 0 (y, a), a, a), ∀(t, y, a) ∈ D(F ) := R × H 1 (0, 1) × R (3.24)
is proper.

From (3.21) we see that V 1 (T /2
) is small thanks to λ. However, at the same time, because of λ, a will approach to λV 1 (T /2). This is bounded by some constant, and unfortunately we can not expect more precise uniform bounds than the above one. To solve this problem, in the next phase we construct a (stationary) feedback law which makes a decay to 0, but keeps V 1 small. Remark 20. Similar a priori estimates could be obtained for L p -norm cases. Even more, one could further get L ∞ type estimates by using the technique introduced in [8, Chapter 4] and [START_REF] Coron | Dissipative boundary conditions for onedimensional quasi-linear hyperbolic systems: Lyapunov stability for the C 1 -norm[END_REF].

Small-time global stabilization of the variable a

In this section we construct the stationary feedback law A 1 (see (Q 3 )). Since L 2 -norm of z decays whatever is the control α, we only need to find a feedback law which stabilizes "a". In this section, we give a feedback law which stabilizes "a" in small time. For that it suffices to define A 1 by A 1 (a) := -µ(a 2 + |a|) • sgn(a).

(3.25) Indeed, with this A 1 , one can easily verify that there exists µ T > 0 such that, whatever is a(T /2), a(T ) = 0 if µ ≥ µ T and ȧ = A 1 (a).

Remark 21. The feedback law A 1 is continuous but not Lipschitz. However, for every t 1 ∈ R, for every t 2 ∈ [t 1 , +∞), and for every a 0 ∈ R, the ordinary differential equation a t = A 1 (a) has a unique solution on [t 1 , t 2 ] such that a(t 1 ) = a 0 .

Remark 22. For our Burgers equation, thanks to the energy dissipation (1.10), we do not need to care of z during the interval of time [T /2, T ]. For some other partial differential equations, such decay phenomenon may not hold. However, the same strategy would also work. Indeed, we can stabilize a in very small time so that the change of z keeps small.

Remark 23. Another idea to stabilize a in finite time is to design a time-varying feedback law of the form A 1 (a) = -µ n a for t ∈ [t n , t n+1 ). However, if for every solution of ȧ = A 1 (a) on [T /2, T ], one has a(T ) = 0 whatever is a(T /2), this feedback law has to be unbounded on [T /2, T ) × (-δ, δ) for every δ > 0, which is not the case of A 1 defined by (3.25).

In this section, our feedback law F = F 1 is defined by (Q 1 ), (1.9), (1.14), (3.22), and (3.25). Let us point out that it satisfies (Q 2 )-(Q 3 ).

Well-posedness and properties of the flow

This part is devoted to the properness of the feedback law F 1 . From the definition of F 1 (t; y, a) for t ∈ [T /2, T ] (see (1.9), (1.14), and (3.25)), it follows from Proposition 10 that F 1 is proper on the interval of time [T /2, T ].

By the T -periodicity of F 1 it just remains to prove the properness of F 1 on the interval of time [0, T /2]. This properness is a consequence of the following lemma, the proof of which is given in Appendix B Lemma 24. For every T ∈ (0, +∞), every z 0 ∈ L 2 (0, 1), and every a 0 ∈ R, there exists one and only one (z, a) satisfying

z ∈ L 2 (0, T ; H 1 0 (0, 1)), (3.26) 
such that (y, a) := (z+a, a) is a solution to (1.2) (see Definition 14) with initial data (z 0 +a 0 , a 0 ) at time 0 with α(t) := A 0 (y(t), a(t)), for almost every t ∈ (0, T ), (3.27)

β(t) = a(t), γ(t) = a(t), ∀t ∈ [0, T ]. (3.28)
At a first sight it seems that (3.26) is too strong compared to what is imposed by (2.26) for the properness of F 1 . Indeed, (2.26) just impose that z ∈ L 1 (0, T ; H 1 (0, 1)). However, it follows from (1) and (2) of Proposition 5 that, if (y, a) is as in Lemma 24 with y ∈ L 1 (0, T ; H 1 (0, 1)), then z := y -a ∈ L 2 (0, T ; H 1 (0, 1)).

It only remains to give the proof of Properties (Q 4 ) and (Q 5 ) of Theorem 2.

We first look at (Q 5 ). Let (y 0 , a 0 ) ∈ L 2 (0, 1) × R. Note that (3.20) holds, and therefore (3.21) also holds:

|V 2 (z(T /2), a(T /2))| 3 √ λ -1 ε. (3.29)
From (3.29) one gets the existence of λ > 0 independent of (y 0 , a 0 ) ∈ L 2 (0, 1) × R such that z(T /2) L 2 (0,1) +(a(T /2) -λV 1 (z(T /2))) if λ is larger than 1. Then, using (3.17),

V 1 (z(t) + (a(t) -λV 1 (z(t))) 2 = V 2 (t) e T /2 V 2 (t ) = e T /2 V 1 (z(t ) + (a(t ) -λV 1 (z(t ))) 2 , (3.33)
which concludes the proof of Property (Q 4 ).

Small-time local stabilization

The aim of this section is to get the small-time local stabilization (for the y variable). The small-time local (and even semi-global) stabilization of the heat equation is given in [START_REF] Coron | Null controllability and finite time stabilization for the heat equations with variable coefficients in space in one dimension via backstepping approach[END_REF]. Here we follow [START_REF] Coron | Null controllability and finite time stabilization for the heat equations with variable coefficients in space in one dimension via backstepping approach[END_REF] and regard yy x term as a small force term (as in [START_REF] Xiang | Small-time local stabilization for a Korteweg-de Vries equation[END_REF] for a KdV equation).

Throughout this section we define α := 0 and u 1 := 0 in (1.2), hence it is sufficient to consider

     y t -y xx + yy x = 0 for (t, x) ∈ (s, +∞) × (0, 1), y(t, 0) = 0 for t ∈ (s, +∞), y(t, 1) = u 2 (t)
for t ∈ (s, +∞). We construct a time-varying feedback law satisfying (P 1 )-(P 5 ) leading to the small-time local stabilization of system (4.1).

Local rapid stabilization

At first, let us briefly recall (see [START_REF] Liu | Boundary feedback stabilization of an unstable heat equation[END_REF], [START_REF] Krstic | Boundary control of PDEs, volume 16 of Advances in Design and Control[END_REF]Chapter 4] or [START_REF] Coron | Null controllability and finite time stabilization for the heat equations with variable coefficients in space in one dimension via backstepping approach[END_REF]) how the backstepping approach is used to get rapid stabilization for the following heat equation:

     y t -y xx = 0 for (t, x) ∈ (s, +∞) × (0, 1), y(t, 0) = 0 for t ∈ (s, +∞), y(t, 1) = u 2 (t)
for t ∈ (s, +∞).

(4.2)

Let λ > 1 given. Since Volterra type transformations will be considered, let us define

D := {(x, v) ∈ [0, 1] 2 ; v x}. (4.3)
We define the feedback law by

u 2 (t) := K λ y = 1 0 k λ (1, v)y(t, v)dv, (4.4) 
where the kernel function k λ is the unique solution of

     k xx -k vv -λk = 0 in D, k(x, 0) = 0 in [0, 1], k(x, x) = -λx 2 in [0, 1]. (4.5)
Let us perform the following transformation Π λ :

L 2 (0, 1) → L 2 (0, 1), y → z, z(x) = Π λ (y(x)) := y(x) - x 0 k λ (x, v)y(v)dv. (4.6)
The kernel function k λ is of class C2 in D and satisfies the following estimate (see [START_REF] Coron | Null controllability and finite time stabilization for the heat equations with variable coefficients in space in one dimension via backstepping approach[END_REF]Lemma 1]).

Lemma 25. There exists a constant C 1 which is independent of λ > 1, such that

k λ C 2 (T ) e C 1 √ λ . (4.7) 
Remark 26. In fact [31, Lemma 1] is dealing with the H 1 -norm (for more general equations). However, the proof can easily be adapted to get Lemma 25. Moreover in the case of (4.2), the kernel can be expressed in terms of the Bessel function:

K(x, v) = -v I 1 λ(x 2 -v 2 ) λ(x 2 -v 2 ) , (4.8) 
where I 1 is the first order modified Bessel function of the first kind; see [50, (4.33)]. This explicit formula allows also to prove Lemma 25. Inequality (4.7) is related to the estimate given in [52, Proposition 1] by Lebeau and Robbiano. See also [START_REF] Lebeau | Contrôle exacte de l'équation de la chaleur[END_REF]. With no difficulty, the C 2 -estimate can be generalized to C n -estimates, n 3, and one can prove the analyticity of the solution, which also follows from (4.8). For similar estimates for a Korteweg-de Vries equation, see [START_REF] Xiang | Small-time local stabilization for a Korteweg-de Vries equation[END_REF]Lemma 2] and [64, Lemma 3].

In particular the transformation Π λ : L 2 (0, 1) → L 2 (0, 1) is a bounded linear operator. This operator is also invertible. The inverse transformation, Π -1 λ : L 2 (0, 1) → L 2 (0, 1), is given by

y(x) = Π -1 λ (z(x)) := z(x) + x 0 l λ (x, v)z(v)dv, (4.9) 
with the kernel l λ satisfies

     l xx -l vv + λl = 0 in D, l(x, 0) = 0 in [0, 1], l(x, x) = -λx
The same estimate as (4.7) holds for l,

l λ C 2 (T ) e C 1 √ λ .
(4.11)

In fact one can even get better estimates than (4.11) (see [START_REF] Coron | Null controllability and finite time stabilization for the heat equations with variable coefficients in space in one dimension via backstepping approach[END_REF]Corollary 2]). Let us denote z := Π λ y by z to simplify the notations. From (4.6) and (4.9), we know that 

y L 2 e 3/2C 1 √ λ z L 2 and z L 2 e 3/2C
     z t -z xx + λz = 0 for (t, x) ∈ (s, +∞) × (0, 1), z(t, 0) = 0 for t ∈ (s, +∞), z(t, 1) = 0 for t ∈ (s, +∞), (4.14) 
from which we get exponential decay of the energy of z with an exponential decay rate at least equal to 2λ.

Let us now consider the local rapid stabilization of the Burgers equation (4.1). The idea is to construct a stationary continuous locally supported feedback law which is given by (4.4) near the equilibrium point.

Suppose that y is a solution of (4.1) with feedback law (4.4), i.e. y is a solution of the Cauchy problem

           y t -y xx + yy x = 0 for (t, x) ∈ (s, +∞) × (0, 1), y(t, 0) = 0 for t ∈ (s, +∞), y(t, 1) = K λ y = 1 0 k λ (1, v)y(t, v)dv for t ∈ (s, +∞), y(0, •) = y 0 , (4.15) 
with y 0 ∈ L 2 (0, 1). Then z := Π λ (y) satisfies

           z t -z xx + λz = I for (t, x) ∈ (s, +∞) × (0, 1), z(t, 0) = 0 for t ∈ (s, +∞), z(t, 1) = 0 for t ∈ (s, +∞), z(0, •) = z 0 , (4.16) 
with

z 0 := Π λ (y), (4.17) 
I := -Π -1 λ (z) Π -1 λ (z) x + x 0 k λ (x, v)(yy x )(v)dv. ( 4.18) 
For the Cauchy problem (4.15) and (4.16), we have the following lemma, whose proof is given in Appendix D. Lemma 27. Let λ > 1, R > 0, and s ∈ R. There exists 0 < T tr R < 1 such that, for every

y 0 ∈ L 2 (0, 1) such that y 0 L 2 R, (4.19) 
the Cauchy problem (4.15) has one and only one solution. This solution is also in C 0 ([s, s + T tr R ]; L 2 (0, 1)) ∩ L 2 (s, s + T tr R ; H 1 (0, 1)). Moreover, this solution satisfies

y C 0 L 2 ∩L 2 Ḣ1 3e 3C 1 √ λ R. (4.20) 
By Lemma 27, for any z 0 ∈ L 2 (0, 1), there exists T > 0 such that, the Cauchy problem (4.16) has a unique solution on t[s, s + T ] and this solution is also in

C 0 ([s, s + T ]; L 2 (0, 1)) ∩ L 2 (s, s + T ; H 1 0 (0, 1)). Since w 2 2 L 2 L 2 = w 4 L 1 L 1 w 2 L ∞ L 2 w 2 L 2 L ∞ C w 2 C 0 L 2 w 2 L 2 H 1 , (4.21) 
we know form direct calculations that I ∈ L 2 (s, s + T ; H -1 (0, 1)) and that

I = - 1 2 Π -1 λ (z) 2 x - 1 2 x 0 k λ,v (x, v)y 2 (v)dv - λx 4 y 2 (x). (4.22) 
Note that, since z ∈ C 0 ([s, s+ T ]; L 2 (0, 1))∩L 2 (s, s+ T ; H 1 0 (0, 1)) and I ∈ L 2 (s, s+ T ; H -1 (0, 1)), we have

z, Π -1 λ (z) 2 x H 1 0 ,H -1 = z x , Π -1 λ (z) 2 L 2 ,L 2 , (4.23) 
and

d dt z 2 L 2 = -2 1 0 z 2 x (x)dx -2λ z 2 L 2 +2 z, I L 2 ,L 2 in L 1 (s, s + T ). (4.24) 
Thanks to (4.7), (4.22) and (4.23), there exists

C 0 > 1, C 2 > 2C 1 and C 3 > C 2 , independent of λ > 1 and z, such that 2| z, I L 2 ,L 2 | z x L 2 Π -1 λ (z) 2 L 2 +C 0 e 2C 1 √ λ y 2 L 2 z L 2 +C 0 e 2C 1 √ λ y 2 L 2 z L ∞ e C 2 √ λ z x L 2 z 2 L 2 + z 2 L 4 z x 2 L 2 +e C 3 √ λ z 4 L 2 + z 6 L 2 . (4.25) 
Here, we used the estimate

z x L 2 z 2 L 4 z x L 2 z L 2 z L ∞ z x 3/2 L 2 z 3/2 L 2 z x 2 L 2 +C z 6 L 2 . (4.26) Therefore d dt z 2 L 2 -2λ z 2 L 2 +e C 3 √ λ z 4 L 2 + z 6 L 2 in L 1 (s, s + T ). (4.27) 
If the initial energy z 0 L 2 is smaller than e -C 3 √ λ (this is not a sharp bound), we then have an exponential decay of the energy

z(t) L 2 e -λ(t-s) 2 z 0 L 2 , ∀t ∈ [s, s + T ]. (4.28) 
Since the energy of z decays, we can continue to use Lemma 27 in order to get that the solution z of (4.16) is in C 0 ([s, s + 2 T ]; L 2 (0, 1)) ∩ L 2 (s, s + 2 T ; H 1 0 (0, 1)), and that

z(t) L 2 e -λ(t-s) 2 z 0 L 2 , ∀t ∈ [s, s + 2 T ]. (4.29) 
We continue such procedure as time goes to infinity to get that the unique solution z satisfies

z ∈ C 0 ([s, +∞); L 2 (0, 1)) ∩ L 2 loc ([s, +∞); H 1 0 (0, 1)), (4.30) 
z(t) L 2 e -λ(t-s) 2 z 0 L 2 , ∀t ∈ [s, +∞). (4.31)
This solves the local rapid stabilization problem. More precisely, we have the following theorem.

Theorem 28. Let λ > 1 and s ∈ R. For every y 0 ∈ L 2 (0, 1) such that

y 0 L 2 e -2C 3 √ λ , (4.32) 
the Cauchy problem (4.15) has one and only one solution. This solution is also in

C 0 ([s, +∞); L 2 (0, 1)) ∩ L 2 loc ([s, +∞); H 1 (0, 1)). Moreover, this solution satisfies y(t -s) L 2 e 3C 1 √ λ e -λ(t-s) 2 y 0 L 2 . (4.33) 
However, one also needs the feedback law to be proper. As it will be seen later on, it suffices to multiply the former feedback law by a suitable cut-off function (see, in particular, Lemma 29).

Construction of feedback laws: piecewise backstepping

Inspired by [START_REF] Coron | Null controllability and finite time stabilization for the heat equations with variable coefficients in space in one dimension via backstepping approach[END_REF], we construct a piecewise continuous feedback law on [0, T ) such that properties (P 2 )-(P 5 ) hold.

Let us choose

n 0 := 1 + [ 2 √ T ], (4.34) 
t n := 0, λ n := 0 for n ∈ {0, 1, . . . , n 0 -1}, (4.35)

t n := T -1/n 2 , λ n := 2n 8 for n ∈ {n 0 , n 0 + 1, . . .}. (4.36) 
It is tempting to define U 2 : (-∞, +∞) × L 2 (0, 1) by

U 2 (t; y) = K λn (t, y), n ∈ {n 0 -1, n 0 , . . .}, t ∈ [t n , t n+1 ), y ∈ L 2 (0, 1), (4.37) 
U 2 (t + T ; y) = U 2 (t; y), t ∈ R, y ∈ L 2 (0 , 1). (4.38) 
However with this definition U 2 is not locally bounded in a neighborhood of [0, T ) × {0}, which is a drawback for robustness issue with respect to measurement errors. In order to handle this problem, we introduce a Lipschitz cutoff function ϕ λ : R + → R + :

ϕ λ (x) := 1, if x ∈ [0, e -C 3 √ λ /5], 2 -5e C 3 √ λ x, if x ∈ (e -C 3 √ λ /5, 2e -C 3 √ λ /5), 0, if x ∈ [2e -C 3 √ λ /5, +∞), (4.39) 
and replace (4.37) by

U 2 (t, y) = K λn (t, y), n ∈ {n 0 -1, n 0 , . . .}, t ∈ [t n , t n+1 ), y ∈ L 2 (0, 1), (4.40) 
where, for λ ∈ (1, +∞), K λ : L 2 (0, 1) → L 2 (0, 1) is defined by In particular (P 4 ) holds.

K λ (y) := ϕ λ ( y L 2 )K λ y, y ∈ L 2 (0, 1

Proof of Theorem 3

Let us start this proof by stating a lemma, whose proof is given in Appendix C, giving a properness result on stationary feedback laws. Then, for every y 0 ∈ L 2 (0, 1) and for every T > 0, the Cauchy problem

           y t (t, x) -y xx (t, x) + yy x = 0 for (t, x) ∈ (0, T ) × (0, 1), y(t, 0) = 0 for t ∈ (0, T ), y(t, 1) = G(y(t, •))
for t ∈ (0, T ), y(0, •) = y 0 . Similar to Lemma 13, we also have the following stability result, whose proof is omitted since it is quite similar to the proof of Lemma 13. Lemma 30. Let R > 0, M > 0, and T > 0. There exists C S (R, M, T ) such that, for every G : L 2 (0, 1) → R a (stationary) feedback law satisfying

|G(y) -G(z)| M y -z L 2 (0,1) , ∀y ∈ L 2 (0, 1), ∀z ∈ L 2 (0, 1) and G(0) = 0, (4.46) 
|G(y)| M, ∀y ∈ L 2 (0, 1), (4.47)

for every y ± 0 ∈ L 2 (0, 1) satisfying

y ± 0 L 2 (0,1) R, (4.48) 
the solutions y ± to the Cauchy problem (4.45) satisfy

y + -y - L ∞ (t 1 ,t 2 ;L 2 (0,1)) C S (R, M, T ) y + 0 -y - 0 L 2 (0,1) . (4.49) 
Until the end of the proof of Theorem 3 our feedback law F is defined by A := 0, U 1 := 0, and (4.38)- (4.40). Let us recall that the time-varying feedback law in Section 4.2 is piecewisely (with respect to time) given by the stationary feedback laws (4.41), where K λ is designed in Section 4.1. Let us point out that, for every λ ∈ [1, +∞), |K λ (y)| 1, ∀y ∈ L 2 (0, 1), and K λ (0) = 0 (4.50)

and there exists M λ > 0 such that

|K λ (y 1 ) -K λ (y 2 )| M λ y 1 -y 2 L 2 (0,1) , ∀(y 1 , y 2 ) ∈ L 2 (0, 1) × L 2 (0, 1). (4.51)
Hence, by Lemma 29, these stationary feedback laws are proper on (-∞, +∞). In particular, the time-varying feedback law F is proper on [0, s 2 ] for every s 2 ∈ (0, T ). Hence, for every (y 0 , a 0 ) ∈ L 2 (0, 1) × R and t 1 ∈ [0, T ) we get the existence and the uniqueness of y : [t 1 , T ) → L 2 (0, 1) and a : [t 1 , T ) → R such that, for every t 2 ∈ (t 1 , T ) the restriction of (y, a) to [t This implies (4.52) and concludes the proof of the properness of the feedback law F 2 . Now we are ready to prove Theorem 3. Since "a" does not change (see (1.24)), it suffices to only consider y. About property (i), as we saw in Section 4.1, y(t) L 2 decays rapidly on [t n , t n+1 ) provided that y(t n ) is small enough in L 2 (0, 1). Our idea is to set y(0) L 2 sufficiently small so that the flow will decay exponentially (in L 2 (0, 1)) with rate λ 0 /2 on [t 0 , t 1 ); then at time t 1 , the energy y(t 1 ) is already small enough to have an exponential decay with rate λ 1 /2 on [t 1 , t 2 ). Continuing this way one may expect that, at the end, y(T ) = 0. In order to have an exponential decay with rate λ n /2 on [t n , t n+1 ), it is sufficient to have

           (y ± t 2 ) t -(y ± t 2 ) xx = f for (t, x) ∈ (t 2 , T ) × (0, 1), (y ± t 2 )(t, 0) = 0 for t ∈ (t 2 , T ), (y ± t 2 )(t, 1) = ±1 for t ∈ (t 2 , T ), (y ± t 2 )(t 2 , •) = y(t 2 ). ( 4 
y(t n ) L 2 e -2C 3 √ λn .
(4.63)

These exponential decay rates on [t n , t n+1 ) for every n ∈ N can be achieved for y(0) L 2 sufficiently small if there exists c > 0 such that 

c|Π λn ||Π -1 λn | n-1 k=n 0 |Π λ k ||Π -1 λ k |e -(t k+1 -t k )λ k /2 e -2C 3 n 4 , for all n ∈ N. ( 4 
Such c obviously exist, and one can find similar computations in [START_REF] Xiang | Small-time local stabilization for a Korteweg-de Vries equation[END_REF]. Actually, the above proof also shows the following lemma.

Lemma 31. Let ε > 0. Let 0 < T 0 < T . There exists a constant η > 0 such that

( y 0 , a 0 ) V η) ⇒ Φ 2 (t, t ; y 0 , a 0 ) V ε, ∀0 t t T 0 . ( 4 

.66)

The second part, (ii), of Theorem 3 is then a consequence of the following lemma.

Lemma 32. Let ε > 0. There exists 0 < T 1 < T such that 5 Proper feedback laws for system (1.2) Finally, we are now in position to define our proper feedback law F = (A, U 1 , U 2 ) for system (1.2). We define a 2T -periodic feedback law which leads to the approximate stabilization in the first stage ([0, T ]) and then "stabilizes" (y, a) to 0 in the second stage ([T, 2T )). Our feedback law F is defined as follows.

( y 0 , a 0 ) V ε) ⇒ Φ 2 (t, t ; y 0 , a 0 ) V 2ε, ∀T 1 t t T . ( 4 

A(t; y, a)

:= A 0 (y, a), if t ∈ [0, T /2), A 1 (a), if t ∈ [T /2, T ), 0, if t ∈ [T, 2T ), (5.1) 
B Appendix: Proof of Lemma 24

Let us start the proof of Lemma 24 by proving the following lemma, which deals with the well-posedness for small time of the Cauchy problem

               z t -z xx + zz x + a(t)z x = 0 for (t, x) ∈ (0, T ) × (0, 1), z(t, 0) = 0 for t ∈ (0, T ), z(t, 1) = 0 for t ∈ (0, T ), a t = Ã0 (z, a) for t ∈ (0, T ), z(0, •) = z 0 and a(0) = a 0 , (B.1) with Ã0 (z, a) = A 0 (z + a, a). (B.2)
Lemma 38. Let A 0 (y, a) be given by (3.22). Let R > 0. There exists T R > 0 such that, for every (z, a) ∈ L 2 (0, 1) × R such that (z, a) V R, there exists one and only one z Let us define For every (z, a) ∈ BR , by Proposition 5 and (A.10)-(A.12), we have

: [0, T R ] × (0, L) such that z ∈ C 0 ([0, T R ]; L 2 (0, 1)) ∩ L 2 (0, T R ; H 1 (0, 1)), (B.3) a ∈ C 0 ([0, T R ), a t =
W := {(z, a) : z ∈ C 0 ([0, T ]; L 2 (0, 1)) ∩ L 2 (0, T ; H 1 0 (0, 1 
     w t -w xx = -zz x -a(t)z x for (t, x) ∈ (0, T ) × (0, 1), w(t, 0) = 0 for t ∈ (0, T ), w(t, 1) = 0 for t ∈ (0, T ), w(0, •) = z 0 and b(0) = a 0 (B.
w C 0 L 2 ∩L 2 H 1 0 2 zz x + az x L 1 L 2 +2 z 0 L 2 CT 1/4 z 2 C 0 L 2 ∩L 2 H 1 0 +2T 1/2 a C 0 z L 2 H 1 0 +2R 2R + 9CR 2 T 1/4 + 9R 2 T 1/2 /η. (B.10) Moreover b C 0 |a 0 | + Ã0 (z, a) L 1 R + λ -2 1 0 z 2 x e -x dx + (1 -a) V 1 (z) - 2 3 1 0 z 3 e -x dx L 1 + V 1 2 - 1 2 λ(a -λV 1 (z)) 3 L 1 R + 2λ z 2 L 2 H 1 0 +λT z 2 C 0 L 2 +λT a C 0 z 2 C 0 L 2 +λT 1/2 z L 2 H 1 0 z 2 C 0 L 2 + T z 2 C 0 L 2 +λT ( a C 0 +λ z 2 C 0 L 2 ) 3 R + 18λR 2 + 9λT R 2 + 27λT R 3 /η + 27λT 1/2 R 3 + 9T R 2 + λT (3R/η + 9λR 2 ) 3 . (B.11) Hence (w, b) Wη 2R + 9CR 2 T 1/4 + 9R 2 T 1/2 /η + η(R + 18λR 2 ) + η(9λT R 2 + 27λT R 3 /η + 27λT 1/2 R 3 + 9T R 2 + λT (3R/η + 9λR 2 ) 3 ). (B.12)
We can successively choose η and T so that the right hand side of (B. It remains to get the contraction property. Suppose that (w i , b i ) := Λ((z i , a i )) with i ∈ {1, 2}, then by using Proposition 5 one gets With a good choice of η, µ and T , Γ is from B 1 R to B 1 R . By using similar estimates (see also the proofs of (A.50) and (A.51)), we have

w 1 -w 2 C 0 L 2 ∩L 2 H 1 0 2 z 1 (z 1 ) x -z 2 (z 2 ) x + a 1 (z 1 ) x -a 2 (z 2 ) x L 1 L 2 2CT 1/4 z 1 C 0 L 2 ∩L 2 H 1 0 + z 2 C 0 L 2 ∩L 2 H 1 0 z 1 -z 2 C 0 L 2 ∩L 2 H 1 0 + 2T 1/2 a 1 -a 2 C 0 z 2 L 2 H 1 +2T 1/2 a 1 C 0 z 1 -z 2 L 2 H 1 12CRT 1/4 + 12RT 1/2 /η (z 1 , a 1 ) -(z 2 , a 2 ) Wη (B.15) and b 1 -b 2 C 0 Ã0 (z 1 , a 1 ) -Ã0 (z 2 , a 2 ) L 1 λ -2 1 0 (z 1 ) 2 x -(z 2 ) 2 x e -x dx - 2 3 1 0 (z 3 1 -z 3 2 )e -x dx L 1 + V 1 (z 1 ) -V 1 (z 2 ) 2 L 1 + 1 2 λ (a 1 -λV 1 (z 1 )) 3 -(a 2 -V 1 (z 2 )) 3 L 1 +λ (1 -a 1 ) V 1 (z 1 ) -(1 -a 2 ) V 1 (z 2 ) L 1 12λR z 1 -z 2 L 2 H 1 0 +24λR 2 T 1/2 z 1 -z 2 L 2 H 1 0 + T (3R + 6λR) z 1 -z 2 C 0 L 2 +(27T R 2 /η) (
Γ(y 1 ) -Γ(y 2 ) C 0 L 2 C 1 2 y 1 + y 2 L 2 L ∞ y 1 -y 2 L ∞ L 2 +2(η + C η T 1/2 ) G(y 1 ) -G(y 2 ) C 0 C 1 Rµ y 1 -y 2 C 0 L 2 +2(η + C η T 1/2 )M y 1 -y 2 C 0 L 2 ,
and

Γ(y 1 ) -Γ(y 2 ) L 2 L ∞ CT 1/4 C 1 2 y 1 + y 2 L 2 L ∞ y 1 -y 2 L ∞ L 2 + 2CT 1/4 (η + C η T 1/2 ) G(y 1 ) -G(y 2 ) C 0 CT 1/4 C 1 Rµ y 1 -y 2 C 0 L 2 +2CT 1/4 (η + C η T 1/2 )M y 1 -y 2 C 0 L 2 .
Hence a good choice of η, µ, and T , makes Γ a contraction map. This concludes the proof of Lemma 39.

Remark 40. If we replace C 0 L 2 by L ∞ L 2 , we get the local well-posedness in L ∞ L 2 ∩ L 2 L ∞ .

So far, we get the local existence and uniqueness of the solution of (4.45). In order to get the global existence statement of Lemma 29 it suffices to control the L 2 -norm of y(t). This control follows from (4.44), which leads to (A.78) with B := M . This concludes the proof of Lemma 29.

D Appendix: Proof of Lemma 27

The proof is to consider an equation of z(x) := Π λ (y(x)) instead of equation (4.15) (see (4.16)), this gives the advantage that z(t, 0) = z(t, 1) = 0. The local existence and uniqueness of the solution z is given by a standard procedure (by considering the nonlinear term I as a force term and using Banach fixed point theorem).

Proof of Lemma 27. In this proof, the constant C may change from line to line, but it is independent of 0 < T < 1 and of R. 

y 1 -y 2 H 1 0 C z 1 -z 2 1/2 L 2 z 1 -z 2 1/2 H 1 0 + z 1 -z 2 1/2 L 2 z 1 + z 2 H 1 0 + z 1 + z 2 L 2 + C z 1 + z 2 1/2 L 2 z 1 + z 2 1/2 H 1 0 + z 1 + z 2 1/2 L 2 z 1 -z 2 H 1 0 + z 1 -z 2 L 2 C z 1 -z 2 1/2 L 2 z 1 -z 2 1/2 H 1 0 z 1 + z 2 H 1 0 + C z 1 + z 2 1/2 L 2 z 1 + z 2 1/2 H 1 0 z 1 -z 2 H 1 0 . (D.3)
Regarding the linear Cauchy problem

          
z t -z xx + λz = f for (t, x) ∈ (s, s + T ) × (0, 1), z(t, 0) = 0 for t ∈ (s, s + T ), z(t, 1) = 0 for t ∈ (s, s + T ), z(0, •) = z 0 , (D.4) similar to Proposition 5, we have

z C 0 L 2 z 0 L 2 + f L 1 L 2 , (D.5) z L 2 H 1 0 z 0 L 2 + f L 1 L 2 . (D.6)
As normal, let us denote the space C 0 ([s, s + T ]; L 2 (0, 1)) ∩ L 2 (s, s + T ; H 1 0 (0, 1)) endowed with norm (D.9)

• C 0 L 2 + • L
Hence, for every z ∈ B, by (D.2) we have 

Γ(z) H 2e 3/2C 1 √ λ R + 2 I(z) L 1 L 2 2e 3/2C 1 √ λ R + C z 1/2 L 2 z 3/2 H 1 0 L 1 (s,s+T ) 2e 3/2C 1 √ λ R + CT 1/4 z 1/2 C 0 L 2 z 3/2 L 2 H 1 0 2e 3/2C 1 √ λ R + 9CT
+ C z 1 + z 2 1/2 L 2 z 1 + z 2 1/2 H 1 0 z 1 -z 2 H 1 0 CT 1/4 z 1 -z 2 1/2 C 0 L 2 z 1 -z 2 1/2 L 2 H 1 0 z 1 + z 2 L 2 H 1 0 + CT 1/4 z 1 + z 2 1/2 C 0 L 2 z 1 + z 2 1/2 L 2 H 1 0 z 1 -z 2 L 2 H 1 0 T 1/4 3e 3/2C 1 √ λ RC z 1 -z 2 H . (D.12)
From (D.10) and (D.12), we get the existence of T tr R which completes the proof.
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 1 Figure 1: Small-time global stabilization of (y, a).
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  .67) Property (4.67) is a consequence of Proposition 10 and (4.42). This completes the proof of Theorem 3.

  α in the distribution sense, and a(0) = a 0 , (B.[START_REF] Badra | Stabilization of parabolic nonlinear systems with finite dimensional feedback or dynamical controllers: application to the Navier-Stokes system[END_REF] and such that y := z is a solution on [0, T R ] to the Cauchy problem (2.1), in the sense of Definition 4, for f := -zz x -a(t)z x , β := 0, γ := 0, and y 0 := z 0 .

  )), a ∈ C 0 ([0, T ])}. (B.5) We introduce the W η -norm on W by (z, a) Wη := z C 0 L 2 ∩L 2 H 1 0 +η a C 0 , (B.6) with η < 1. Hence (z, a) is as requested in Lemma 38 if and only if it is a fixed point of Λ : W → W , (z, a) → W (z, a) =: (w, b) where w is the unique solution to the Cauchy problem (in the sense of Definition 4)

  τ ), a(τ ))dτ for t ∈ [0, T ]. (B.8) It follows from Proposition 5 that Λ is well defined. For (z 0 , a 0 ) V R, we try to find a fixed point of Λ on BR := {(z, a) ∈ W : (z, a) Wη 3R}. (B.9)

  From

  (4.16) and (4.18)I(z) = -yy x + x 0 k λ (x, v)(yy x )(v)dv. (D.1)We notice thatI(z) L 2 (0,1) C yy x L 2 C y L ∞ y x L 2 C y
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 21 by H (or H T if necessary). For y 0 with y 0 L 2 R given, we havez 0 L 2 e 3/2C 1 √ λ y 0 L 2 e 3/2C 1 √ λ R. Let us define B := {z ∈ H : z H 3e 3/2C 1 √ λ R}. (D.7)We consider the map Γ : H → H, z → w where w is the unique solution of t -w xx + λw = I(z) for (t, x) ∈ (s, s + T ) × (0, 1), w(t, 0) = 0 for t ∈ (s, s + T ), w(t, 1) = 0 for t ∈ (s, s + T ), w(0, •) = z 0 .(D.8) From (4.12), (D.5), and (D.6), we know thatΓ(z) H 2e 3/2C 1 √ λ R + 2 I(z) L 1 L 2 .

  Remark 15. Let us point out that, with Definition 14, Proposition 10 does not imply the existence of a solution to the Cauchy problem (1.2) since, in Definition 14, u 1 and u 2 are assumed to be only in L ∞ (t 1 , t 2 ) and not necessarily in C 0 ([t 1 , t 2 ]

α in the distribution sense, and a(t 1 ) = a 0 , (2.24) (2.1) holds in the sense of Definition 4, with f := (-yy x ) + a(t), β := u 1 , γ := u 2 . (2.

[START_REF] Coron | Dissipative boundary conditions for onedimensional quasi-linear hyperbolic systems: Lyapunov stability for the C 1 -norm[END_REF] 

  1 , t 2 ] is the solution on [t 1 , t 2 ] to the Cauchy problem of the closed-loop system (1.4) with initial data (y 0 , a 0 ) at time t 1 (in the sense ofDefinition 16).In order to get the properness of the feedback law F 2 (defined in (1.24)), it suffices to show that Let t 2 ∈ (t 1 , T ). Let y ± t 2 be the solutions of

	lim t→T -	y(t) exists in L 2 (0, 1).	(4.52)
	In order to prove (4.52), we check that {y(t)}(t → T -) is a Cauchy sequence in L 2 (0, 1). Let
	us point out that		
	y ∈ L ∞ (t 1 , T ; L 2 (0, 1)) ∩ L 2 (t 1 , T ; L ∞ (0, 1)).	(4.53)
	Indeed, (4.53) follows from the maximum principle (Lemma 12), Proposition 10 (applied with
	f = 0, β = 0, γ = ±1), and (4.42). Let		
	f := -(1/2)(y 2 ) x .	(4.54)
	By (4.53) and (4.54),		
	f ∈ L 2 (t 1 , T ; H -1 (0, 1)).	(4.55)

  .56) Let us define w t 2 := (y t 2 ) + -(y t 2 ) -. Then

	  (w t 2 ) t -(w t 2 ) xx = 0        (w t 2 )(t 2 , •) = 0.   (w t 2 )(t, 0) = 0 (w t 2 )(t, 1) = 2	for (t, x) ∈ (t 2 , T ) × (0, 1), for t ∈ (t 2 , T ), for t ∈ (t 2 , T ),	(4.57)
	Let ε > 0. From Proposition 7, (4.54), and (4.57), there exists t 2 ∈ (t 1 , T ) such that	
	w t 2 C 0 ([t 2 ,T ];L 2 (0,1)) ε/4.	(4.58)
	Moreover, from the maximum principle in the linear case (see Proposition 6), (4.42), (4.45),
	and (4.56), we know that		
	y -t 2 (t) y(t) y + t 2 (t), ∀t ∈ [t 2 , T ),	(4.59)
	which, together with (4.58), implies that		
	y + t 2 -y C 0 ([t 2 ,T ];L 2 (0,1) ε/4.	(4.60)
	Since y + t 2 is in C 0 ([t 2 , T ]; L 2 (0, 1)), there exists t2 ∈ [t 2 , T ) such that	
	y + t 2 (t) -y + t 2 (T ) L 2 ε/4, ∀t ∈ [ t2 , T ].	(4.61)
	From (4.60) and (4.61),		
	y(t) -y(t ) L 2 ε, ∀t, t ∈ [ t2 , T ).	(4.62)

  z 1 , a 1 ) -(z 2 , a 2 ) Wη + λT a 1 -a 2 C 0 +λ z 1 -z 2 C 0 L 2 z 1 + z 2 C 0 L 2 • 4(3R/η + λ9R 2 ) 2 12λR + 24λR 2 T 1/2 + 3RT + 6λRT + 27T R 2 /η + 36λT R 2 (1/η + 6λR) 3 (z 1 , a 1 ) -(z 2 , a 2 ) Wη . (B.16) From (A.31)-(A.41) and (A.43)-(A.44), we getΓ(y) C 0 L 2 y 0 L 2 + C 1 2 y L 2 L ∞ y L ∞ L 2 +2(η + C η T 1/2 ) G(y) C 0 y 0 L 2 +2C 1 µR 2 + 4(η + C η T 1/2 )M R, (C.9) and Γ(y) L 2 L ∞ CT 1/4 y 0 L 2 +CT 1/4 C 1 2 y L 2 L ∞ y L ∞ L 2 +2CT 1/4 (η + C η T 1/2 ) G(y) C 0 CT 1/4 y 0 L 2 +2CT 1/4 C 1 µR 2 + 4CT1/4 (η + C η T 1/2 )M R. (C.10)

  ) -I(z 2 ) L 2 (0,1) C y 1 -y 2 L ∞ y 1x + y 2x L 2 +C y 1 + y 2 L ∞ y 1x -y 2x L 2

	and that						
	I(z 1 C y 1 -y 2	1/2 L 2 y 1 -y 2	1/2 H 1 0	y 1 + y 2 H 1 0	
	+ C y 1 + y 2	1/2 L 2 y 1 + y 2	1/2 H 1 0	
						1/2 L 2 y	3/2 H 1 0	C z	1/2 L 2 z	3/2 0 H 1	,	(D.2)

  1/4 e 3C 1For every z 1 and z 2 ∈ B, we haveΓ(z 1 ) -Γ(z 2 ) H 2 I(z 1 ) -I(z 2 ) L 1 L 2 , (D.11)Above estimate together with (D.3) giveΓ(z 1 ) -Γ(z 2 ) H C z 1 -z 2

	1/2 L 2 z 1 -z 2	1/2 H 1 0	z 1 + z 2 H 1 0

√ λ R 2 .

(D.10)

in [0, 1]. (4.10)

where λ n and t n are defined in (4. [START_REF] Coron | Local exponential H 2 stabilization of a 2 × 2 quasilinear hyperbolic system using backstepping[END_REF]) and (4.36), K λ is defined in (4.41), A 0 is defined in (3.22), and A 1 is defined in (3.25).

Thanks to Section 3.2 and Section 4.3, the feedback law (5.2)-(5.1) is proper (in the sense of Definition 17).

Small-time global stabilization

The small-time global stabilization (Theorem 1) contains two parts, (i) and (ii). Let us first consider (i). Let us denote by Φ the flow associated to the feedback law F . From (1.16) and (1.25) we get that Φ(2T, 0; y, a) = (0, 0). (6.1)

Let t ∈ [0, 2T ). Then Φ(4T, t; y, a) = Φ(4T, 2T ; Φ(2T, t; y, a)) = (0, 0), (

which shows that (i) holds. Property (ii) follows directly from (1.15), (1.26), and (6.1). This completes the proof of Theorem 1.
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A Appendix: Proofs of Proposition 7, of Proposition 10, of Lemma 12, and of Lemma 13 This appendix is devoted to the proof of two propositions and of two lemma that we stated in Section 2: Proposition 7, Proposition 10, Lemma 12, and Lemma 13. Let us start with the proof of Proposition 7. Without loss of generality we may assume that t 1 = 0. Let T 0 > 0 and let t 2 = T ≤ T 0 . We consider the Cauchy problem

If γ ∈ L ∞ (0, T ), then the solution is in C 0 ([0, T ]; H -1 (0, 1)). By the maximum principle (Lemma 6), one knows that y is also in L ∞ (0, T ; L 2 (0, 1)) ∩ L 2 (0, T ; L ∞ (0, 1)). Let us now assume that γ ∈ C 1 . Then that solution is in C 0 ([0, T ]; L 2 (0, 1)) ∩ L 2 (0, T ; H 1 (0, 1)). In order to give estimates on y in that space, let us define z := y -x n γ with n ∈ N \ {0, 1} to be chosen later.

(A.2)

Then, by Proposition 5, we have

For y ∈ H 1 (0, 1) such that y(0) = 0, let us define the Ḣ(0, 1)-norm of y by

By direct calculations, we know that

Let η ∈ (0, 1/2). Taking n large enough, we get the existence of C η > 0, which is independent of T T 0 and of γ, such that

Now, suppose that γ ∈ L ∞ . Let us consider the solution y ± of

(A.9)

By direct computations, there exists C > 0 such that, for every ϕ ∈ H 1 (0, 1) with ϕ(0) = 0,

Actually, since ϕ(0) = 0, we have

which leads to inequality (A.10). It is also a simple case of Gagliardo-Nirenberg interpolation inequality. From (A.10) one gets that, for every T > 0 and for every ϕ ∈ L ∞ (0, T ; L 2 (0, 1)) ∩ L 2 (0, T ; Ḣ1 (0, 1)) such that ϕ(•, 0) = 0 ∈ L 2 (0, T ),

L 2 (0,T ; Ḣ1 (0,1)) . (A.12)

Hence we have,

Since -v γ +v, by the maximum principle (Lemma 6), we have y -y y + , for all t ∈ [0, T ], (A.15)

which, together with (A.13) and (A. [START_REF] Chapouly | On the global null controllability of a Navier-Stokes system with Navier slip boundary conditions[END_REF], implies that

Let us now prove that if γ ∈ C 0 ([0, T ]) then the solution y is in C 0 ([0, T ]; L 2 (0, 1)) ∩ L 2 (0, T ; L ∞ (0, 1)). Suppose that γ ∈ C 0 ([0, T ]) is given, then there exists {γ n } n∈N , a sequence of C 1 ([0, T ]) functions which uniformly converges to γ.

(A.18)

Let us denote by {y n } n∈N the sequence of solutions of (A.1) with controls given by {γ n } n∈N . Thanks to (A.18), for any ε > 0, there exists N such that when m, n > N , we have

Hence, by (A. [START_REF] Clarke | Asymptotic controllability implies feedback stabilization[END_REF]) and (A.17),

which means that {y n } n∈N is a Cauchy sequence in C 0 ([0, T ]; L 2 (0, 1)). Hence

Letting also n to infinity in (A. [START_REF] Clarke | Asymptotic controllability implies feedback stabilization[END_REF]) and (A.17) for y n and γ n , we get again (A. [START_REF] Clarke | Asymptotic controllability implies feedback stabilization[END_REF]) and (A.17).

Let us finally consider the case where γ ∈ L ∞ (0, T ). Then there exists a sequence

One can, for example, take

Let us denote by {y n } n∈N * the sequence of solutions of (A.1) with control given by {γ n } n∈N * . Then {y n } n∈N * is bounded in L 2 ((0, T ) × (0, 1)). Then there exists a subsequence of the {y n } n∈N * , that one also denotes by {y n } n∈N * , and y ∈ L 2 ((0, T ) × (0, 1) such that

Then one easily checks that y is a solution of (A.1) with control given by γ and that y satisfies (A. [START_REF] Clarke | Asymptotic controllability implies feedback stabilization[END_REF]) and (A.17). All these calculations are based on the assumption β = 0. If γ = 0 and β = 0, similar estimates hold. By linearity, one then gets Proposition 7.

Remark 33. One can also get the continuity of y

The idea is to use directly (A.7).

Remark 34. Multiplying (A.1) by (1 -x)y and integration by parts show that

We are now ready to prove Proposition 10 and Lemma 12, the proof is given by 4 steps.

Step 1. Local existence and uniqueness of the solution,

Step 2. Continuity of the solution with respect to the initial data and the boundary conditions,

Step 3. Maximum principle (Lemma 12),

Step 4. Global existence of the solution.

Step 1. Local existence and uniqueness of the solution. In this step we prove the second part of the statement of Proposition 10. Again, for simplicity we only treat the case where β = 0. To simplify the notations we let t 1 = 0 and T := t 2 , i.e. we consider the Cauchy problem

We use the standard Banach fixed point theorem to get the local existence and uniqueness. We consider the space X := L ∞ (0, T ; L 2 (0, 1)) ∩ L 2 (0, T ; L ∞ (0, 1)) (A. [START_REF] Coron | Global exact controllability of the 2D Navier-Stokes equations on a manifold without boundary[END_REF] with the norm, adapted to deal with (2.16) and (2.17),

with µ > 0 to be chosen later. We denote by X µ the space X with the norm • Xµ , which is a Banach space. The choice of the norm • Xµ is based on the observation that y L 2 L ∞ can be sufficiently small once we set time small enough. We consider the following map Γ : X µ → X µ , where Γ(y) is the unique solution of

This map is well defined thanks to Proposition 5, (A. [START_REF] Clarke | Asymptotic controllability implies feedback stabilization[END_REF]) and (A.17). A function y is solution to (A.27) if and only if it is a fixed point of Γ. The function Γ(y) can be decomposed as follows

where z 1 , z 2 , and z 3 are the solutions to the following Cauchy problems

for t ∈ (0, T ),

From Proposition 5, (A.16), and (A.17), one gets

From (A.36), (A.10), and (A.12), we get further Then w := Γ(y 1 ) -Γ(y 2 ) is the solution of

2 ) x (t, x) for (t, x) ∈ (0, T ) × (0, 1), w(t, 0) = 0 for t ∈ (0, T ), w(t, 1) = 0 for t ∈ (0, T ), w(0, •) = 0.

(A.49) Hence, by Proposition 5,

When µ and T are small enough, we have

Hence we get the existence of a unique solution in B R . Let us now prove the uniqueness of solution in X µ . It suffice to show the uniqueness of solution in X µ for small time. Let y 0 L 2 R, γ L ∞ r. Let y ∈ X µ be a solution to (A.27). One can always find 0 < T s < T such that y L ∞ (0,Ts;L 2 (0,1)) + y L 2 (0,Ts;L ∞ (0,1)) 2R, (A.53) which implies the uniqueness of the solution in time (0, T s ).

The above proof gives the local existence and uniqueness of

Step 2. Continuity of the solution with respect to the data y 0 , β and γ. More precisely, in this step, we prove the following lemma.

Lemma 35. For every R > 0, r > 0, and ε > 0 such that 4εRC 1 < 1, there exists 0 < T ε R,r < T ε R,r such that, for every t 1 ∈ R and t 2 ∈ R such that t 1 < t 2 < t 1 + T ε R,r , for every y ± 0 ∈ L 2 (0, 1), for every β ± ∈ L ∞ (t 1 , t 2 ), and for every γ ± ∈ L ∞ (t 1 , t 2 ) such that

the solutions y ± to the Cauchy problem

Proof of Lemma 35. Let us first point out that the existence of y ± (on [t 1 , t 2 ]) follows from

Step 1 and (A.54). We also only treat the case where β = 0 in order to simplify the notations.

From Step 1 we also know that

2R, (A.57)

Let us denote z := y + -y -as the solution of

Hence by using the same estimates as in Step 1, we get

where

Remark 36. We observe from (A.61) that

Step 3. Maximum principle: nonlinear case (Lemma 12). Let us first point out that Lemma 12 is a consequence of the following local version of Lemma 12.

Lemma 37 (Local maximum principle: nonlinear case). Let R > 0, r > 0, and ε > 0 be given such that 4εRC 1 < 1. Let t 1 ∈ R and t 2 ∈ R be given such that t 1 < t 2 < t 1 + T ε R,r . Let y ± 0 ∈ L 2 (0, 1), β ± ∈ L ∞ (t 1 , t 3 ) be piecewise continuous, and γ ± ∈ L ∞ (t 1 , t 2 ) be piecewise continuous such that (2.19) holds and

Then the solutions y ± to the Cauchy problem (A.55) satisfy (2.20).

Indeed, using this lemma and arguing by contradiction, one easily gets that, under the assumptions of Lemma 12, ). Indeed, using the fact that β ± and γ ± are piecewise continuous, there are sequences

Moreover, using (2. [START_REF] Coron | On the controllability of the 2-D incompressible Navier-Stokes equations with the Navier slip boundary conditions[END_REF]) and (A.64), we may also impose that .70). This concludes the proof of Lemma 37.

Step 4. It only remains to prove the global existence of the solution to (2.12) with f = 0. Let Let y ± : (0, τ ± ) → L 2 (0, 1) be the (maximal) solution to the Cauchy problems

x (t, x) = 0 for (t, x) ∈ (0, τ ± ) × (0, 1), y ± (t, 0) = ±B for t ∈ (0, τ ± ), y ± (t, 1) = ±B for t ∈ (0, τ ± ), y ± (0, •) = y 0 .

(A.74) As for y, we have τ ± ≤ T M . Let z ± : [0, T M ] → L 2 (0, 1) be defined by

Moreover, thanks to the maximum principle (Lemma 12), we have

In particular, using (A.78),

This allows to redo the above procedure with the initial time T M and the initial data y(T M ), y -(T M ), and y + (T M ). Let us emphasize that the initial data for y ± at time T M is not y(T M ) but y ± (T M ) (which is given by the definition of y ± on [0, T M ]). In particular y, y 

We keep going and using an induction argument get that, for every integer n > 0, y is defined on [0, min{nT M , T }]. This concludes the proof of Proposition 10. At last, Lemma 13 follows directly from Lemma 35 and Step 4.

Hence one gets the contraction property of the map Λ on BR when η and T are well chosen, which implies the existence of a unique solution in BR . Then, proceeding as in the proof of uniqueness part of Proposition 10, we can further get the uniqueness of solution in W η . This completes the proof of Lemma 38.

In order to end the proof of Lemma 24, it only remains to prove the existence of the solution (z, a) for large time. For this existence in large time, it suffices to check that z(t) L 2 remains bounded. This can be done by using the maximum principle for the nonlinear Burgers equation (Lemma 12) as in the proof of Proposition 10 (Step 4).

C Appendix: Proof of Lemma 29

This section is devoted to the proof of Lemma 29. Let us start our proof of this lemma with a proof of the following lemma. Again, this map is well defined (one only need to notice the L ∞ L 2 estimate can be replaced by C 0 L 2 estimate since G(y(t)) is continuous). As in the proof of Proposition10, it suffices to find the unique fixed point in the following ball