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In the absence of enough run-to-failure data, step-stress accelerated degradation testing (SSADT) is often an attractive alternative way to evaluate the reliability of a product, with the advantage of requiring small sample size and short test time. However, the development of a statistical SSADT model for reliability assessment should take into account different sources of variability in the degradation process that generate uncertainty: 1) temporal variability determining the inherent variability of degradation process over time; 2) unit-to-unit variability in three aspects: degradation rates, initial degradation values, time-points of elevating stress levels; and 3) measurement errors in both covariates and degradation performance. As a contribution towards this aim, a new nonlinear Wiener-process-based SSADT model considering simultaneously nonlinearity and three sources of variability is proposed. Using the proposed SSADT model, the lifetime law of the tested product under normal conditions is derived based on the concept of first hitting time (FHT) of a predetermined failure threshold.

Following an approach based on genetic algorithms (GA), a modified simulation and extrapolation method, called GA-SIMEX, is also developed for the model parameter estimation. Finally, a simulation study of fatigue crack length growth is presented to illustrate the implementation of the proposed SSADT model.
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Theoretical degradation performance of the th i product under the th Continuous improvements in modern design and manufacturing technologies, coupled with increasing social requirements for high quality products, have promoted the production of goods with extremely high reliability and long life. Since reliability tests of such products, even accelerated life tests (ALTs), often fail to generate sufficient lifetime data, analysis of degradation data turns to be an alternative way to evaluate product reliability. It assumes that the degradation of a product quality characteristic is related to its reliability, and collects degradation data under severer-than-normal stresses to predict the product reliability under normal condition, which is called an accelerated degradation test (ADT) [START_REF] Berenguer | Analysis of Performance-Degradation Data from Accelerated Tests[END_REF].
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In industry applications, ADTs can be conducted in mainly two ways due to the different settings of stress loadings, i.e., constant stress accelerated degradation test (CSADT) [START_REF] Carey | Reliability assessment based on accelerated degradation: a case study[END_REF] and step-stress accelerated degradation test (SSADT) [START_REF] Tseng | Step-Stress Accelerated Degradation Analysis For Highly Reliable Products[END_REF]. SSADT has an advantage over CSADT since it allows a comparable assessment accuracy with a lower sample size [START_REF] Huang | Lumen degradation modeling of white-light LEDs in step stress accelerated degradation test[END_REF]. Therefore, the last few decades have witnessed wide application of SSADT in reliability tests for LEDs [START_REF] Cai | Step-stress accelerated testing of high-power LED lamps based on subsystem isolation method[END_REF], electrical connectors [START_REF] Chen | Step-stress accelerated degradation test modeling and statistical analysis methods[END_REF], missile tanks [START_REF] Yao | Research of Step-down Stress Accelerated Degradation Data Assessment Method of a Certain Type of Missile Tank[END_REF] and transistors [START_REF] Chen | The degradation mechanism of an AlGaN/GaN high electron mobility transistor under step-stress[END_REF]. The purpose of this study is to model the SSADT process in a more practical way, and the emphasis is to handle with various sources of variability simultaneously.

Generally, several sources of variability contribute to the uncertainty of degradation processes under normal conditions, which have attracted much attention recently. Si et al. [START_REF] Si | Estimating Remaining Useful Life With Three-Source Variability in Degradation Modeling[END_REF] developed a Wiener process based degradation model considering three-source variability, including temporal variability, unit-to-unit variability of degradation rates and degradation performance measurement variability. Tang et al. [START_REF] Tang | Methodologies for uncertainty management in prognostics[END_REF] presented a methodology for managing prognostic uncertainty, which consists of modeling uncertainty, sensor measurement uncertainty, future load profile uncertainty and fault detection (diagnostics) uncertainty. Baraldi et al. [START_REF] Baraldi | Investigation of uncertainty treatment capability of model-based and data-driven prognostic methods using simulated data[END_REF] classified the sources of uncertainty that contribute to the RUL prediction of degradation processes into three categories: randomness in the future degradation of equipment, modeling error and uncertainty in current and past equipment degradation data.

Just as under normal conditions considered in the above mentioned works, degradation processes under severe conditions (i.e. in SSADT procedures) also witness several sources of variability, including temporal variability, unit-to-unit variability of degradation rates and so on. Furthermore, the complexity and new characteristics of SSADTs lead to the existence of new sources of variability, such as the heterogeneity of time-points of elevating stress levels among test units. In addition, nonlinearity is another feature commonly encountered in SSADTs conditions. This study intends to develop a more practical SSADT model by integrating nonlinearity and three sources of variability, including temporal variability, various kinds of unit-to-unit variability and measurement errors in both degradation performance and covariates.

First, temporal variability determines the inherent variability of degradation process over time. Pandey et al.

[12] compared the common used random variable degradation model with stochastic process model, and pointed out that the stochastic process model can incorporate the temporal variability associated with the evolution of degradation. Recent advances in applying stochastic process model, including Wiener process, Gamma process and Inverse Gaussian Process, in SSADTs can be found in many papers. For example, Liao and Tseng [START_REF] Liao | Optimal Design for Step-Stress Accelerated Degradation Tests[END_REF] used a stochastic diffusion process to model the SSADT and derived the optimal test plan by searching optimization algorithm. Tseng, Balakrishnan and Tsai [START_REF] Tseng | Optimal Step-Stress Accelerated Degradation Test Plan for Gamma Degradation Processes[END_REF] designed an efficient SSADT plan based on Gamma process for degradation processes with a monotone increasing pattern. Wang et al. [START_REF] Wang | Planning of step-stress accelerated degradation test based on the inverse Gaussian process[END_REF] proposed a cumulative exposure model based on Inverse Gaussian degradation process for the typical SSADT problem and provided an optimal test plan.

Second, unit-to-unit variability in SSADTs results from the heterogeneity among test units, including the variability in degradation rates, initial degradation values as well as time-points of elevating stress levels. First of all, a random effect model [START_REF] Tang | Accelerated Degradation Tests Modeling Based on the Nonlinear Wiener Process with Random Effects[END_REF] is often adapted to capture the conventional unit-to-unit variability referring to the heterogeneity among degradation rates of units. Besides that, the variability in initial degradation values [START_REF] Xiao | Optimal Design for Destructive Degradation Tests With Random Initial Degradation Values Using the Wiener Process[END_REF] of different units also leads to diversity in reliability analysis of such degradation processes. Furthermore, the traditional SSADTs always elevate the test stress to a higher level at some predetermined time-points for all units, which causes a problem that some units may experience little or even no degradation within a specified test duration. Confronted with this, Pan and Balakrishnan [START_REF] Pan | Multiple-Steps Step-Stress Accelerated Degradation Modeling Based on Wiener and Gamma Processes[END_REF] presented another stress level elevating scheme, i.e., elevating stress levels when the degradation path of a unit firstly reaches pre-specified values. This test scheme results in randomness in time-points of elevating stress levels between units. To be more practical and economical, Amini, Shemehsavar and Pan [START_REF] Amini | Optimal Design for Step-Stress Accelerated Test with Random Discrete Stress Elevating Times Based on Gamma Degradation Process: Optimal Design for Step-Stress Accelerated Test with Random Discrete Stress Elevating Times Based on Gamma Degradation Process[END_REF] extended the previous degradation-value-based stress level elevating scheme from continuous inspections to discrete ones.

Last, measurement errors can be found in most measurement processes of both covariates (test stresses) and degradation performance, due to the limitations of measurement equipment's performance, artificial deviations in the reading of analogue measuring instruments and approximation of measurement procedures. For measurement errors in covariates, He, Yi and Xiong [START_REF] He | Accelerated failure time models with covariates subject to measurement error[END_REF] presented a novel accelerated failure time model with measurement error-prone covariates to study the impact of ignoring covariates measurement error, and proposed a corresponding simulation and extrapolation (SIMEX) parameter estimation method. Based on the longitudinal observations with covariates subject to Berkson-type measurement errors, Zhang and Zhang [START_REF] Zhang | Analysis of accelerated degradation test under constant stress with errors for longitudinal data[END_REF] developed an ADT model and derived the minimum distance estimator for the covariates measurement error model parameters. For error-prone degradation performance measurement, extensive researches can be referred to in [START_REF] Lu | An efficient method for the estimation of parameters of stochastic gamma process from noisy degradation measurements[END_REF][START_REF] Ye | Stochastic modelling and analysis of degradation for highly reliable products: Z.-S. YE AND M. XIE[END_REF][START_REF] Zhai | Measurement errors in degradation-based burn-in[END_REF][START_REF] Ye | Degradation Data Analysis Using Wiener Processes With Measurement Errors[END_REF]. For example, Lu, Pandey and Xie [START_REF] Lu | An efficient method for the estimation of parameters of stochastic gamma process from noisy degradation measurements[END_REF] adopted a Genz transform and quasi-Monte Carlo method to filter out the effect of sizing errors from the in-service and non-destructive measured degradation data. Ye and Xie [START_REF] Ye | Stochastic modelling and analysis of degradation for highly reliable products: Z.-S. YE AND M. XIE[END_REF] provided a summary of stochastic process models for degradation processes contaminated by random white noises.

Besides the different kinds of variability mentioned above, nonlinearity is another feature that should be considered in SSADT modelling process. In fact, many degradation processes are not linear and extensive studies have been devoted to it. Lei et al. [START_REF] Lei | A nonlinear degradation model based method for remaining useful life prediction of rolling element bearings[END_REF] constructed a novel nonlinear degradation model considering the temporal variability, unit-to-unit variability in degradation rates, measurement variability and nonlinear variability. Huang et al. [START_REF] Huang | Remaining Useful Life Prediction for a Nonlinear Heterogeneous Wiener Process Model With an Adaptive Drift[END_REF] employed a state-space based method to characterize nonlinear heterogeneous degradation processes.

Zheng et al. [START_REF] Zheng | A Nonlinear Prognostic Model for Degrading Systems With Three-Source Variability[END_REF] presented a general degradation model considering nonlinearity as well as three important sources of variability, i.e., temporal variability, unit-to-unit variability in degradation rates, and measurement variability in degradation performance.

All the above introductory remarks lead to the conclusion that the deterioration nonlinearity and the existence of three sources of variability, including temporal variability, unit-to-unit variability and measurement errors, are all important features to be taken into consideration in the development of SSADT models. 

Model description

We consider a K-steps step-stress accelerated degradation test with N units operating independently. The SSADT starts at a lower stress level 1 S at fixed time 0, and ends at fixed time T . Each unit will experience a predetermined stress loading process
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. And the stress level for a unit is elevated when its degradation performance reaches for the first time a predetermined threshold level
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are the time points of elevating stress levels for the th i unit.

Therefore, its testing stress of the K-steps SSADT can be expressed in Equation ( 1) and shown in Figure 1. 
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, where  is dependent on the acceleration variable S ,
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Yt is expressed as
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For a specific product, the distribution of the initial degradation value   0 X can be selected and tested based on the factory testing or incoming inspection for batches of products. In the case that prior knowledge is available or the degradation physics of the considered products is known, the form of  

;, t    can be obtained easily.

Otherwise, a statistical method can be used for the determination of the form of the nonlinear function, by fitting the test data with possible time-transformed forms, such as the linear function, binomial function, power law function and exponential function, and a best fitting is determined by some indicators like correlation coefficient 2 R . Besides, the model for covariates
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is often determined based on engineering experience, like different types of accelerated test for the same product or the same type of accelerated test for similar products. For the distributions of measurement errors  and  , they can be obtained through measurement system analysis, such as the uncertainty analysis of a measurement system.

For a better illustration of the proposed model without loss of generality, and following classical assumptions in relevant papers [START_REF] Si | Estimating Remaining Useful Life With Three-Source Variability in Degradation Modeling[END_REF][START_REF] Tang | Accelerated Degradation Tests Modeling Based on the Nonlinear Wiener Process with Random Effects[END_REF][START_REF] Xiao | Optimal Design for Destructive Degradation Tests With Random Initial Degradation Values Using the Wiener Process[END_REF][START_REF] He | Accelerated failure time models with covariates subject to measurement error[END_REF][START_REF] Ye | Stochastic modelling and analysis of degradation for highly reliable products: Z.-S. YE AND M. XIE[END_REF][START_REF] Cox | The theory of stochastic processes[END_REF], the rest of this article will respectively take
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as examples of the distribution of the initial degradation value, nonlinear drift, model for covariate and distributions of measurement errors. Under these assumptions, the actually measured degradation level  

Yt is given by
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It should be noted that, because of measurement errors, '

S is the stress level that is actually applied to the system, even if the intended stress level is S . Consequently, the actually measured degradation level   Generally, the lifetime 0 T in degradation analysis is defined as the first hitting time (FHT) of a predetermined threshold level
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Then the corresponding reliability function
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where
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is the Wiener maximum Process [START_REF] Singpurwalla | On competing risk and degradation processes[END_REF].

For the most original case, i.e., the linear Wiener process without random effects or random initial degradation values, it is known that the lifetime follows an inverse Gaussian distribution [START_REF] Cox | The theory of stochastic processes[END_REF]. Then based on some assumptions and the law of total probability, the probability density function (pdf) of the FHT for an exponential nonlinear Wiener process with random effects is obtained by [START_REF] Si | Remaining Useful Life Estimation Based on a Nonlinear Diffusion Degradation Process[END_REF]: 
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Introducing random initial degradation values into the model, the products lifetime turns to be:
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which means that the lifetime is equivalent to the FHT of a random threshold level
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    0 HX fh  .
By the law of total probability, the reliability function can be expressed as follows:
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Differentiate the above equation, and the pdf of lifetime T can be obtained:
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f t h represents the pdf of lifetime in Equation [START_REF] Chen | The degradation mechanism of an AlGaN/GaN high electron mobility transistor under step-stress[END_REF], where the threshold level is equal to h . Before the derivation of the pdf, a lemma is given in advance.
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And the second part of Equation ( 14) can be derived in a similar way:
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Therefore Equations ( 14), ( 15) and ( 16) jointly completes the proof of Lemma 1.

Based Lemma 1, the pdf of T can be formulated as: After obtaining the pdf of lifetime T , the reliability curve can also be obtained through formula
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Rt can be hard to derive, a numerical integration method can be utilized in the computation process.

estimation

Considering that the test stresses, such as temperature, humidity and so on, are usually measured by commonly used instruments, it is feasible to estimate the parameter 2   from independent samples. Therefore 
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Maximum likelihood estimation without measurement error in covariates

Based on the degradation measurement model ( 4) in Section 2 and the above denotations, and ignoring the measurement error of covariates  , the likelihood function can be derived by [START_REF] Pan | Multiple-Steps Step-Stress Accelerated Degradation Modeling Based on Wiener and Gamma Processes[END_REF]       From the system description and Equation ( 4), it can be derived that   , ik t Y with measurement error-free covariates S follows a multivariate normal distribution with mean and covariance as follows: 
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where i,k J I is an unit matrix with dimension , ik J .

Therefore,  

Yt with measurement error-free covariates S is distributed by:
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are statistically dependent variables due to the characteristic of SSADT. And the randomness in initial degradation values of the products makes that
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Based on Section 3 and Equation ( 17), it can be derived that the pdf of
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The Jacobean of the transformation from
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Therefore
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4.2 GA-SIMEX method considering measurement error in covariates However, the existence of measurement errors in covariates makes the theoretical covariates S unknown.

Therefore, the degradation measurements are actually taken under measurement error-prone covariates ' SS  , where   2 ~0, N   , and the likelihood function ( 18) should be updated by introducing the covariate measurement error  , which makes it rather difficult to derive an analytical form of the likelihood function. Confronted with the estimation problem of parametric covariate measurement error models, Cook and Stefanski [START_REF] Carroll | Asymptotics for the SIMEX Estimator in Nonlinear Measurement Error Models[END_REF] proposed a SIMEX (simulation and extrapolation) method to adjust for the bias when introducing the covariate measurement error, and its superior performance in nonlinear models has been proven by [START_REF] Yap | Comparisons of various types of normality tests[END_REF]. Based on this, a modified GA-SIMEX method is proposed in this paper to deal with parameters estimation of nonlinear step-stress accelerated degradation models considering three sources of variability, and its algorithm consists of the following three steps:

(1) Simulation step Given an integer B and a sequence , the likelihood function [START_REF] Pan | Multiple-Steps Step-Stress Accelerated Degradation Modeling Based on Wiener and Gamma Processes[END_REF] turns to be: [START_REF] Lei | A nonlinear degradation model based method for remaining useful life prediction of rolling element bearings[END_REF] Since unknown parameters have to be estimated, and it is quite complicated to derive analytical estimators from a computational viewpoint, the GA method is employed here to obtain the maximum values of the likelihood function, thus the corresponding MLEs   ˆ, bc θ are obtained.
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Numerical experiments and performance evaluation

In this section, the proposed SSADT model and the corresponding parameter estimation method are illustrated by an example of fatigue-crack length growth. A structure made of 2017-T4 aluminum alloy is declared to be failed when its fatigue-crack length exceeds a predefined threshold level. And Si et.al [START_REF] Si | Remaining Useful Life Estimation Based on a Nonlinear Diffusion Degradation Process[END_REF] modelled the degradation of the fatigue-crack length by a nonlinear Wiener process. To exemplify the effectiveness of the SSADT model proposed in this article, simulated experiment data sets are generated by extending the constant stress degradation test in [START_REF] Si | Remaining Useful Life Estimation Based on a Nonlinear Diffusion Degradation Process[END_REF] to a corresponding SSADT.

Simulation of data

According to the model assumptions in Section 2, the nonlinear SSADT model considering three source of variability are as follows:

          /' '= + ; ; ' 0 1 b S t B SS Y t X t S X ae e B t                   (27)
Experiment data sets with sample size =10 N are generated based on the model parameters listed in Table I.

Based on the initial fatigue-crack lengths of 4 test specimens in [START_REF] Si | Remaining Useful Life Estimation Based on a Nonlinear Diffusion Degradation Process[END_REF], parameters 0  and 0  are estimated under normal assumption. Parameters a  , a  , B  , b and  are obtained by referring to the estimation results in Table V of [START_REF] Si | Remaining Useful Life Estimation Based on a Nonlinear Diffusion Degradation Process[END_REF]. Other parameters concerning the measurement errors in degradation performance and covariates, i.e.,   and   , are assumed for the purpose of illustration. Considering the degradation test in [START_REF] Si | Remaining Useful Life Estimation Based on a Nonlinear Diffusion Degradation Process[END_REF] are conducted under a stress level of 200 MPa, which can be viewed as the normal stress level 0 S , three higher levels are selected here to be the accelerated stress levels: 1 . The simulated fatigue-crack growth data are shown graphically in Figure 3. It can be seen that the degradation path of each unit firstly crosses the predetermined threshold levels of 1 2 H  and 2 6 H  at different times, therefore the time points of elevating stress levels for them vary slightly. According to the analysis in [START_REF] Si | Remaining Useful Life Estimation Based on a Nonlinear Diffusion Degradation Process[END_REF] and the plot of simulated data, it is clear that the degradation of fatigue crack length displays a nonlinear pattern, and an exponential function is appropriate to describe the nonlinearity. In addition, the initial degradation values   0 X for all 10 units are listed in Table II. And for test of normality, Shapiro-Wilk test [START_REF] Yap | Comparisons of various types of normality tests[END_REF] in Table III indicates that under confidence level 0.05, it can be assumed that , can be calculated based on the parameter estimation results and the derivation in Section 3. Furthermore, the reliability curve can also be obtained through formula

    0 0 0 1 t R t f t dt  
. The assessment results are separately plotted in Figure 4.

It is shown that the reliability curves based on true parameter values and estimated parameter values are following the same pattern, i.e., the reliability of the 2017-T4 aluminum alloy is nearly constant for a period at first, which can be viewed as fatigue crack initiation time [START_REF] Paroissin | Inference for the Wiener Process With Random Initiation Time[END_REF], and when the fatigue crack begins to grow, its reliability curve presents a sharp decline. Furthermore, the mean relative deviation between the two reliability curves is 5.6350e-04, which is relatively low and indicates the effectiveness of the proposed model as well as the parameter estimation method. From Figure 5 and Table III, it can be shown that under the proposed SSADT plan, i.e., with random time-points of elevating stress levels, the reliability curves with different 1 H or 2 H are all close to that based on the true parameter values, and the mean relative deviations are all quite small. Therefore it is indicated that under the constraint of total test duration, the accuracy of reliability assessment is not sensitive to the threshold levels of elevating stress levels, which shows that the proposed SSADT plan is superior to the traditional SSADT with pre-determined time duration under each stress level, since for nonlinear degradation processes with limited prior information, it is quite a difficult task to determine in advance appropriate time duration for observing obvious degradation tendency. And by elevating stress levels when the degradation path firstly reaches pre-specified values, tests data under all tress levels will be sufficient to obtain reliability assessment with high accuracy. 

Conclusion

Confronted with the variability in degradation processes in SSADTs, this paper developed a novel SSADT model simultaneously considering nonlinearity and three sources of variability. A nonlinear Wiener process is adopted to deal with the nonlinearity and temporal variability. Variability in degradation rates, initial degradation values as well as time-points of elevating stress levels are modelled as the heterogeneity among test units. The inevitable measurement errors in both degradation performance and covariates (test stresses) are also considered.

Statistical inference including reliability assessment under normal condition and a modified GA-SIMEX parameter estimation method is developed based on the proposed SSADT model. A case study of a simulated SSADT for fatigue crack length growth is conducted to exemplify the proposed model, and the sensitivity analysis indicates that in a SSADT with random time-points of elevating stress levels, the reliability assessment accuracy is not sensitive to the threshold levels of elevating stress levels, which shows its superiority over SSADT with pre-determined time duration under each test level, because in the former way, it is easy to determine robust and appropriate threshold levels of elevating stress levels, and to observe obvious degradation tendency for all stress levels.

For further investigation of this work, an analytical reliability assessment result can be obtained for general distribution forms of initial degradation value or the random effect variable. In addition, more sources of variability can be considered in the SSADT model, such as modelling uncertainty, which can be dealt with by means of model selection, hypothesis testing and mis-specification analysis. Another interesting direction is to design an optimal SSADT plan based on the newly proposed model, with the objective of minimum total experimental budget or maximum estimation accuracy.
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  Yt depends on the measurement error-prone covariates -but unknown -' S , rather than on the measured covariates S , because generally accelerated degradation tests are assumed to be conducted under specified stresses S , which are measured and controlled to specified level in the test. But the existence of measurement error makes that the products are actually degrading under unknown test stresses ' S . The basic principles for the proposed SSADT model considering nonlinearity and three sources of variability are shown in Figure 2. Measured degradation process Theoretical degradation process : Random initial degradation values
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  is a given positive number, and 21 ,, C vv  are random numbers generated from  

												0, Uv . For	1, 2, , kK 	and	1, 2, , bB 	,	KB  samples
													C
	are generated from normal distribution	N	  0,1	and denoted by	u	kb	. Therefore setting
	S	k	  , b c	k   S	c v			kb u	, 1, 2, , c 	C	leads to the simulations of th k	stress level of covariates S .
			(2) GA-based estimation step			
			Based on the actually measured degradation data vector   i ,, i Yt 	i		and the simulated covariates

Table II

 II 

	Initial degradation values	X	  0	of the simulated 10 units
	0.2245	0.3800	0.2311		0.3130	0.1697
	0.4349	0.3381	0.3684		0.3025	0.2080
	Table III Test of normality for the initial degradation value
	sample size statistic p value		test result
	10	0.96054 0.79197 Can't reject normality

  Table III lists the values of  under different 1 H and 2 H .

Table V

 V MRDs between true reliability curve and estimated reliability curves with different 12 ,

						HH
	Order	H	1	H	2	Mean relative deviation
	1	2	6		5.6530e-04
	2	2.5	6		3.6472e-04
	3	3	6		1.5823e-04
	4	2	6.5	1.8932e-04
	5	2.5 6.5	7.6439e-04
	6	3	6.5	4.1245e-04
	7	2	7		9.6219e-05
	8	2.5	7		4.2246e-04
	9	3	7		3.9420e-04

Table VI

 VI MRDs between true reliability curve and estimated reliability curves with different N

	Order N Mean relative deviation
	1	10	5.6530E-04
	2	20	3.9798E-04
	3	30	2.8046E-04
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