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Abstract: In the absence of enough run-to-failure data, step-stress accelerated degradation testing (SSADT) is 

often an attractive alternative way to evaluate the reliability of a product, with the advantage of requiring small 

sample size and short test time. However, the development of a statistical SSADT model for reliability assessment 

should take into account different sources of variability in the degradation process that generate uncertainty: 1) 

temporal variability determining the inherent variability of degradation process over time; 2) unit-to-unit variability 

in three aspects: degradation rates, initial degradation values, time-points of elevating stress levels; and 3) 

measurement errors in both covariates and degradation performance. As a contribution towards this aim, a new 

nonlinear Wiener-process-based SSADT model considering simultaneously nonlinearity and three sources of 

variability is proposed. Using the proposed SSADT model, the lifetime law of the tested product under normal 

conditions is derived based on the concept of first hitting time (FHT) of a predetermined failure threshold. 

Following an approach based on genetic algorithms (GA), a modified simulation and extrapolation method, called 

GA-SIMEX, is also developed for the model parameter estimation. Finally, a simulation study of fatigue crack 

length growth is presented to illustrate the implementation of the proposed SSADT model. 
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ADT accelerated degradation test 

CSADT constant stress accelerated degradation test 

 

Nomenclature 

K   Number of accelerated stress levels in the SSADT 

N  Number of test units 

 1, , KS S S  Predetermined accelerated stress levels in the SSADT 

T  Terminal time of the SSADT 

,1 , 1, ,i i K    Time-points of elevating stress levels
 

1 1, , KH H 
 Predetermined threshold levels of elevating stress levels

 

 X t  Theoretical degradation performance at time t  

 B t  Standard Wiener process 

 ; ,t    Nonlinear drift of the degradation model 

B
 

Diffusion parameter of the degradation model 

 0X
 

Initial degradation value 

   Measurement errors in degradation performance 


  Measurement errors in covariates 

 Y t
 

Actual degradation measurement at time t  

'S
 

Measurement error-prone covariates 

0S
  Normal stress level of the products 

0T
  Lifetime of products under normal stress level 

 0f t
  

Pdf for exponential nonlinear Wiener process with random effects 

 1f t
 

Pdf for exponential nonlinear Wiener process with random effects and covariates 

 f t
 

Pdf for exponential nonlinear Wiener process with random effects, covariates and 

random initial degradation values 

 
,,1, ,2, , ,, , ,

i k

T

i k i k i J kt t t
i,k

t
 

Observation times of the thi  product under the thk  stress level 
kS  

i,k
T  Nonlinear transformation of 

i,k
t   

 
,,1, ,2, , ,, , ,

i k

T

i k i k i J kx x x
i,k
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Theoretical degradation performance of the thi  product under the thk  stress level 

 
,,1, ,2, , ,, , ,

i k

T

i k i k i J ky y y
i,k

Y
 

Actual degradation measurement of the thi  product under the thk  stress level 
kS  

,i kΓ
 

The thk  time point of elevated stress level of the thi  product 

i,kJ
I

 
Unit matrix with dimension 

,i kJ  



 

 

1 Introduction 

Continuous improvements in modern design and manufacturing technologies, coupled with increasing social 

requirements for high quality products, have promoted the production of goods with extremely high reliability and 

long life. Since reliability tests of such products, even accelerated life tests (ALTs), often fail to generate sufficient 

lifetime data, analysis of degradation data turns to be an alternative way to evaluate product reliability. It assumes 

that the degradation of a product quality characteristic is related to its reliability, and collects degradation data 

under severer-than-normal stresses to predict the product reliability under normal condition, which is called an 

accelerated degradation test (ADT) [1]. 

In industry applications, ADTs can be conducted in mainly two ways due to the different settings of stress 

loadings, i.e., constant stress accelerated degradation test (CSADT) [2] and step-stress accelerated degradation test 

(SSADT) [3]. SSADT has an advantage over CSADT since it allows a comparable assessment accuracy with a 

lower sample size [4]. Therefore, the last few decades have witnessed wide application of SSADT in reliability 

tests for LEDs [5], electrical connectors [6], missile tanks [7] and transistors [8]. The purpose of this study is to 

model the SSADT process in a more practical way, and the emphasis is to handle with various sources of variability 

simultaneously. 

Generally, several sources of variability contribute to the uncertainty of degradation processes under normal 

conditions, which have attracted much attention recently. Si et al. [9] developed a Wiener process based 

degradation model considering three-source variability, including temporal variability, unit-to-unit variability of 

degradation rates and degradation performance measurement variability. Tang et al. [10] presented a methodology 

for managing prognostic uncertainty, which consists of modeling uncertainty, sensor measurement uncertainty, 

future load profile uncertainty and fault detection (diagnostics) uncertainty. Baraldi et al. [11] classified the sources 

of uncertainty that contribute to the RUL prediction of degradation processes into three categories: randomness in 

the future degradation of equipment, modeling error and uncertainty in current and past equipment degradation 

data. 

Just as under normal conditions considered in the above mentioned works, degradation processes under severe 

conditions (i.e. in SSADT procedures) also witness several sources of variability, including temporal variability, 

unit-to-unit variability of degradation rates and so on. Furthermore, the complexity and new characteristics of 

SSADTs lead to the existence of new sources of variability, such as the heterogeneity of time-points of elevating 

stress levels among test units. In addition, nonlinearity is another feature commonly encountered in SSADTs 

conditions. This study intends to develop a more practical SSADT model by integrating nonlinearity and three 

sources of variability, including temporal variability, various kinds of unit-to-unit variability and measurement 

errors in both degradation performance and covariates. 

First, temporal variability determines the inherent variability of degradation process over time. Pandey et al. 

[12] compared the common used random variable degradation model with stochastic process model, and pointed 

out that the stochastic process model can incorporate the temporal variability associated with the evolution of 

degradation. Recent advances in applying stochastic process model, including Wiener process, Gamma process and 

Inverse Gaussian Process, in SSADTs can be found in many papers. For example, Liao and Tseng [13] used a 

stochastic diffusion process to model the SSADT and derived the optimal test plan by searching optimization 



 

 

algorithm. Tseng, Balakrishnan and Tsai [14] designed an efficient SSADT plan based on Gamma process for 

degradation processes with a monotone increasing pattern. Wang et al. [15] proposed a cumulative exposure model 

based on Inverse Gaussian degradation process for the typical SSADT problem and provided an optimal test plan. 

Second, unit-to-unit variability in SSADTs results from the heterogeneity among test units, including the 

variability in degradation rates, initial degradation values as well as time-points of elevating stress levels. First of 

all, a random effect model [16] is often adapted to capture the conventional unit-to-unit variability referring to the 

heterogeneity among degradation rates of units. Besides that, the variability in initial degradation values [17] of 

different units also leads to diversity in reliability analysis of such degradation processes. Furthermore, the 

traditional SSADTs always elevate the test stress to a higher level at some predetermined time-points for all units, 

which causes a problem that some units may experience little or even no degradation within a specified test 

duration. Confronted with this, Pan and Balakrishnan [18] presented another stress level elevating scheme, i.e., 

elevating stress levels when the degradation path of a unit firstly reaches pre-specified values. This test scheme 

results in randomness in time-points of elevating stress levels between units. To be more practical and economical, 

Amini, Shemehsavar and Pan [19] extended the previous degradation-value-based stress level elevating scheme 

from continuous inspections to discrete ones. 

Last, measurement errors can be found in most measurement processes of both covariates (test stresses) and 

degradation performance, due to the limitations of measurement equipment’s performance, artificial deviations in 

the reading of analogue measuring instruments and approximation of measurement procedures. For measurement 

errors in covariates, He, Yi and Xiong [20] presented a novel accelerated failure time model with measurement 

error-prone covariates to study the impact of ignoring covariates measurement error, and proposed a corresponding 

simulation and extrapolation (SIMEX) parameter estimation method. Based on the longitudinal observations with 

covariates subject to Berkson-type measurement errors, Zhang and Zhang [21] developed an ADT model and 

derived the minimum distance estimator for the covariates measurement error model parameters. For error-prone 

degradation performance measurement, extensive researches can be referred to in [22–25]. For example, Lu, 

Pandey and Xie [22] adopted a Genz transform and quasi-Monte Carlo method to filter out the effect of sizing 

errors from the in-service and non-destructive measured degradation data. Ye and Xie [23] provided a summary of 

stochastic process models for degradation processes contaminated by random white noises. 

Besides the different kinds of variability mentioned above, nonlinearity is another feature that should be 

considered in SSADT modelling process. In fact, many degradation processes are not linear and extensive studies 

have been devoted to it. Lei et al. [26] constructed a novel nonlinear degradation model considering the temporal 

variability, unit-to-unit variability in degradation rates, measurement variability and nonlinear variability. Huang et 

al. [27] employed a state-space based method to characterize nonlinear heterogeneous degradation processes. 

Zheng et al. [28] presented a general degradation model considering nonlinearity as well as three important sources 

of variability, i.e., temporal variability, unit-to-unit variability in degradation rates, and measurement variability in 

degradation performance. 

All the above introductory remarks lead to the conclusion that the deterioration nonlinearity and the existence 

of three sources of variability, including temporal variability, unit-to-unit variability and measurement errors, are all 

important features to be taken into consideration in the development of SSADT models. However, most works on 



 

 

SSADT modelling are limited to the case of considering only one or two of the above-mentioned features. Besides, 

researches concerning variability in initial degradation values and measurement errors in covariates are extremely 

limited. This paper precisely addresses this problem, and makes a threefold contribution: 

 First, a new nonlinear Wiener-process-based SSADT model is developed, which simultaneously considers 

nonlinearity, temporal variability, various kinds of unit-to-unit variability and measurement errors in both 

degradation performance and covariates. 

 Secondly, based on the concept of first hitting time (FHT) of a failure threshold, and using the proposed 

SSADT model, the reliability of the tested item under normal conditions is assessed, which can be useful for 

establishing more economical and efficient design improvement methods and maintenance strategies. 

 Finally, the inference issue is studied for the proposed model, and by combining the methods of SIMEX and 

genetic algorithm (GA), a modified GA-SIMEX method is proposed to estimate the model parameters based 

on SSADT data. 

The rest of the article is organized as follows. Section 2 gives the description of the nonlinear SSADT model 

considering three sources of variability. In Section 3, reliability assessment methods under normal conditions are 

derived. And Section 4 develops a modified GA-SIMEX method to estimate the model parameters. Section 5 

provides numerical experiments on fatigue crack length simulated data to illustrate the implementation and the use 

of the proposed model. Finally, some conclusions are given in Section 6. 

 

2 Model description 

We consider a K-steps step-stress accelerated degradation test with N  units operating independently. The 

SSADT starts at a lower stress level 
1S  at fixed time 0, and ends at fixed time T . Each unit will experience a 

predetermined stress loading process  1 2, , , KS S SS . And the stress level for a unit is elevated when its 

degradation performance reaches for the first time a predetermined threshold level  1,2, , 1jH j K  . Denote 

,0 0i  , ,i K T   and  , 1,2, , 1i j j K    are the time points of elevating stress levels for the thi  unit. 

Therefore, its testing stress of the K-steps SSADT can be expressed in Equation (1) and shown in Figure 1. 
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Figure 1 The stress loading process for the thi  unit in the step-stress accelerated degradation test  

Denote the theoretical degradation at time t  under stress level S  by  X t , which is characterized by a 

standard Wiener process  B t  and a nonlinear drift  ; ,t    along with the diffusion 
B , i.e., 

        0 ; , BX t X t B t       (2) 

The initial degradation value  0X  is assumed to be a random variable representing the heterogeneity and 

randomness in product manufacturing processes. The nonlinear drift  ; ,t    is assumed to satisfy the regularity 

condition with the special cases of    ; , 1tt e     ,  ; ,t t    , etc., where   is dependent on the 

acceleration variable S ,  ; ,S a b  , and the random variable a  represents the unit-to-unit variability, while 

b  is the fixed effect for all units. Furthermore, measurement errors in degradation performance and covariates can 

be respectively characterized by random variables   and  , which makes that the actually measured degradation 

level  Y t  is expressed as 

 
         

'= + ;

; ' 0 ; , , ' B

S S

Y t X t S X t S B t



     




     
  (3) 

For a specific product, the distribution of the initial degradation value  0X  can be selected and tested based 

on the factory testing or incoming inspection for batches of products. In the case that prior knowledge is available 

or the degradation physics of the considered products is known, the form of  ; ,t    can be obtained easily. 

Otherwise, a statistical method can be used for the determination of the form of the nonlinear function, by fitting 

the test data with possible time-transformed forms, such as the linear function, binomial function, power law 

function and exponential function, and a best fitting is determined by some indicators like correlation coefficient 

2R . Besides, the model for covariates  ; ,S a b   is often determined based on engineering experience, like 

different types of accelerated test for the same product or the same type of accelerated test for similar products. For 



 

 

the distributions of measurement errors   and  , they can be obtained through measurement system analysis, 

such as the uncertainty analysis of a measurement system. 

For a better illustration of the proposed model without loss of generality, and following classical assumptions 

in relevant papers [9, 16, 17, 20, 23, 30], the rest of this article will respectively take    2 2

0 00 ~ ,X N   , 

   ; , 1tt b e    , /b Sae  ,  2~ ,a aa N   ,  2~ 0,N    and  2~ 0,N    as examples of the distribution 

of the initial degradation value, nonlinear drift, model for covariate and distributions of measurement errors. Under 

these assumptions, the actually measured degradation level  Y t  is given by 

 
         / '

'= + ;

; ' 0 1b S t

B

S S

Y t X t S X ae e B t



  




      
  (4) 

It should be noted that, because of measurement errors, 'S  is the stress level that is actually applied to the 

system, even if the intended stress level is S . Consequently, the actually measured degradation level  Y t  

depends on the measurement error-prone covariates - but unknown - 'S , rather than on the measured covariates S , 

because generally accelerated degradation tests are assumed to be conducted under specified stresses S , which are 

measured and controlled to specified level in the test. But the existence of measurement error makes that the 

products are actually degrading under unknown test stresses 'S . 

The basic principles for the proposed SSADT model considering nonlinearity and three sources of variability 

are shown in Figure 2. 

Measured degradation processTheoretical degradation process

  : Random initial degradation values

       ; 0 ; , BX t S X t B t     

Temporal variability

   2 2

0 00 ~ ,X N  

:Nonlinear drift   ; , 1tt e    

:Covariates/b Sae 

:Unit-to-unit variability 2~ ,a aa N  

:Measurement errors in 

degradation performance
   ; 'Y t X t S  

:Random time-points of

 elevating stress levels

1 ,0 ,1

, 1 ,

,

=

,

i i

i

K i K i K

S t

S

S t

 

 

 


  

:Measurement errors in covariates'= +S S 

 

Figure 2 Basic principles for the proposed SSADT model considering nonlinearity and three sources of variability 

 

3 Reliability assessment 

Since the purpose of an ADT, both CSADT and SSADT, is to assess the reliability of products under normal 

stress level 0S , this section derives the reliability assessment method based on the proposed SSADT model. 

Although the reliability assessment results derived in the following are based on a specific example with 



 

 

   2 2

0 00 ~ ,X N   ,    ; , 1tt b e    , /b Sae  ,  2~ ,a aa N   ,  2~ 0,N    and  2~ 0,N   , the 

reliability assessment procedure and the obtained results are also applicable for other models with different 

nonlinear drift and covariates. 

Generally, the lifetime 0T  in degradation analysis is defined as the first hitting time (FHT) of a predetermined 

threshold level H , i.e., 

   0 inf :T t X t H   (5) 

Then the corresponding reliability function  0R t  is: 

       0 0R t P T t P M t H     (6) 

where    
0
max

s t
M t X s

 
  is the Wiener maximum Process [29]. 

For the most original case, i.e., the linear Wiener process without random effects or random initial degradation 

values, it is known that the lifetime follows an inverse Gaussian distribution [30]. Then based on some assumptions 

and the law of total probability, the probability density function (pdf) of the FHT for an exponential nonlinear 

Wiener process with random effects is obtained by [31]: 
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  (7) 

Furthermore, when introducing covariates  / 2, ~ ,b S

a aae a N    into the model, the lifetime pdf can be 

derived by replacing  2~ ,N      with  0 0/ 2 /2~ ,
b S b S

a aN e e   
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  (8) 

Introducing random initial degradation values into the model, the products lifetime turns to be: 
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which means that the lifetime is equivalent to the FHT of a random threshold level  0H X  with normal 

distribution    2

0 00 ~ , H X N H   , and its pdf is denoted by    0H X
f h


. 

By the law of total probability, the reliability function can be expressed as follows: 
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Differentiate the above equation, and the pdf of lifetime T  can be obtained: 
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where  1 ;f t h  represents the pdf of lifetime in Equation (8), where the threshold level is equal to h . 

Before the derivation of the pdf, a lemma is given in advance. 

Lemma 1: If Z  is a normal distributed variable  2~ ,Z N   , and , , , B C D E R , then 
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Proof: 

Since  2~ ,Z N    and , , , B C D E R , the pdf of Z is formulated by: 
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And the second part of Equation (14) can be derived in a similar way: 

 
 

 

 

2
2

22
2

2

D
Z D

E
E

Z

E
E e e

E










 
 
  

  

  (16) 

Therefore Equations (14), (15) and (16) jointly completes the proof of Lemma 1. 

Based on Lemma 1, the pdf of T  can be formulated as: 
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After obtaining the pdf of lifetime T , the reliability curve can also be obtained through formula 

   
0

0
0

1
t

R t f t dt   . Since the analytical form of  R t  can be hard to derive, a numerical integration method can 

be utilized in the computation process. 

4 Parameter estimation 

Considering that the test stresses, such as temperature, humidity and so on, are usually measured by commonly 

used instruments, it is feasible to estimate the parameter 2

  from independent samples. Therefore 2

  are 

assumed to be known in this article. Besides, since the distribution of the random initial degradation value, 

   2 2

0 00 ~ ,X N   , can be fitted based on initial measurements of the test samples, the parameters  2

0 0,   are 

easy to be estimated by distribution fitting method and logically independent of the other unknown parameters 

 2 2 2, , , , ,a a Bb     θ , whose estimators are obtained in the rest of this section. 

Suppose that the test stress levels are  1 2, , , KS S SS , and under the thk  stress level 
kS , 

,i kJ  

measurements for the thi  product are observed at times 
, ,i j kt , where 
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Y . Besides, the thk  time point of elevated stress level of the thi  product is 
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4.1 Maximum likelihood estimation without measurement error in covariates 

Based on the degradation measurement model (4) in Section 2 and the above denotations, and ignoring the 

measurement error of covariates  , the likelihood function can be derived by [18] 
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where  g t
iΓ

;θ,S  and  ;f y
i,kY

θ,S  respectively denote the pdf of 
i

Γ  and  ,i k tY  with measurement error-free 

covariates S . 

From the system description and Equation (4), it can be derived that  ,i k tY  with measurement error-free 

covariates S  follows a multivariate normal distribution with mean and covariance as follows: 
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where 
i,kJ

I  is an unit matrix with dimension 
,i kJ . 

Therefore,  Y t  with measurement error-free covariates S  is distributed by: 
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As for  g
i

Γ ;θ,S , since  , 1,2, , 1i jΓ j K   is the time point when the degradation performance firstly 

reaches the independently predetermined threshold level  1,2, , 1jH j K  , 
,1 ,2 , 1, , ,i i i KΓ Γ Γ     are 

statistically dependent variables due to the characteristic of SSADT. And the randomness in initial degradation 

values of the products makes that 
,1iΓ  has a different distribution with 

,2 ,3 , 1, , ,i i i KΓ Γ Γ    . 

Based on Section 3 and Equation (17), it can be derived that the pdf of 
,1iΓ  is: 

  
 

 

 

2

1 0

2
0

1

2
20 1 0

2 2

0 0

H D

E

Γ

D H EE
f t A B C e

E E



 

 

 






  
     

  (22) 

where 

 1
2

2 /2 2 2

1

2 1
b S t

a B

A

t e e t  


  
  

, 
   

 

1

1

/2

2
2 /2 2

1 1
1

1

b S t t t

a

b S t

a B

e e e te
B

e e t

  



 

 





  
 

 
,

 

 

1

1

/ 2

2
2 /2 2

1

1

b S t t

a B

b S t

a B

e t e te
C

e e t

 



  

 





 


 
, 

 1/
1

b S t

aD e e 
   and  1

2
2 /2 21

b S t

a BE e e t    
  

. 

By ignoring the randomness in initial degradation values, i.e., 
0 1mH  , 2

0 0  , the conditional pdf of 

 , 2,3, , 1i mΓ m K    can be obtained: 
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The Jacobean of the transformation from  i
Γ θ,S  to  

i
Γ θ,S  is: 
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Therefore 1J   and 
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4.2 GA-SIMEX method considering measurement error in covariates 

However, the existence of measurement errors in covariates makes the theoretical covariates S  unknown. 

Therefore, the degradation measurements are actually taken under measurement error-prone covariates 'S S   , 

where  2~ 0,N   , and the likelihood function (18) should be updated by introducing the covariate measurement 

error  , which makes it rather difficult to derive an analytical form of the likelihood function. Confronted with the 

estimation problem of parametric covariate measurement error models, Cook and Stefanski [33] proposed a SIMEX 

(simulation and extrapolation) method to adjust for the bias when introducing the covariate measurement error, and 

its superior performance in nonlinear models has been proven by [34]. Based on this, a modified GA- SIMEX 

method is proposed in this paper to deal with parameters estimation of nonlinear step-stress accelerated degradation 

models considering three sources of variability, and its algorithm consists of the following three steps: 

 

(1) Simulation step 

Given an integer B  and a sequence  1 2= , , , Cv v vΛ , where 
1 0v  , 

Cv  is a given positive number, and 



 

 

2 1, , Cv v 
 are random numbers generated from  0, CU v . For 1,2, ,k K  and 1,2, ,b B , K B  samples 

are generated from normal distribution  0,1N  and denoted by 
kbu . Therefore setting 

 , , 1,2, ,k k c kbS b c S v u c C    leads to the simulations of thk  stress level of covariates S . 

(2) GA-based estimation step 

Based on the actually measured degradation data vector  , , 
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Y t   and the simulated covariates 
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Since unknown parameters have to be estimated, and it is quite complicated to derive analytical estimators 

from a computational viewpoint, the GA method is employed here to obtain the maximum values of the likelihood 

function, thus the corresponding MLEs  ˆ ,b cθ
 

are obtained. 

(3) Extrapolation step 

For 1,2, ,b B , define    
1

1ˆ ˆ ,
B

b

c b c
B 

 θ θ . Then for sequences    ˆ :c cc v v ,θ , regression analysis is 

conducted separately for each component of  ˆ cθ . And the final parameter estimations θ̂  can be obtained by 

extrapolating the regression models to 1v   . 

 

5 Numerical experiments and performance evaluation 

In this section, the proposed SSADT model and the corresponding parameter estimation method are illustrated 

by an example of fatigue-crack length growth. A structure made of 2017-T4 aluminum alloy is declared to be failed 

when its fatigue-crack length exceeds a predefined threshold level. And Si et.al [31] modelled the degradation of 

the fatigue-crack length by a nonlinear Wiener process. To exemplify the effectiveness of the SSADT model 

proposed in this article, simulated experiment data sets are generated by extending the constant stress degradation 

test in [31] to a corresponding SSADT. 

5.1 Simulation of data 

According to the model assumptions in Section 2, the nonlinear SSADT model considering three source of 

variability are as follows: 

 
         / '

'= + ;

; ' 0 1b S t

B

S S

Y t X t S X ae e B t



  




      
  (27) 

Experiment data sets with sample size =10N  are generated based on the model parameters listed in Table I. 

Based on the initial fatigue-crack lengths of 4 test specimens in [31], parameters 0  and 0  are estimated under 



 

 

normal assumption. Parameters 
a , 

a , 
B , b  and   are obtained by referring to the estimation results in 

Table V of [31]. Other parameters concerning the measurement errors in degradation performance and covariates, 

i.e., 
  and 

 , are assumed for the purpose of illustration. Considering the degradation test in [31] are 

conducted under a stress level of 200 MPa, which can be viewed as the normal stress level 0S , three higher levels 

are selected here to be the accelerated stress levels: 
1 2 3240, 260, 280S S S   . 

For each of the 10 samples, the degradation test is first under stress level 
1S , and the fatigue crack length is 

measured with intervals 3000M   cycles. When the degradation measurements firstly reach the threshold level 

1 2H  , the stress level is elevated to 
2S , and the time point of elevating the accelerated stress level from 

2S  to 

3S  is the FHT of 
2 6H  . The SSADT is terminated at a fixed time 5=2.7 10 revolutionsT  . The simulated 

fatigue-crack growth data are shown graphically in Figure 3. It can be seen that the degradation path of each unit 

firstly crosses the predetermined threshold levels of 
1 2H   and 

2 6H   at different times, therefore the time 

points of elevating stress levels for them vary slightly. According to the analysis in [31] and the plot of simulated 

data, it is clear that the degradation of fatigue crack length displays a nonlinear pattern, and an exponential function 

is appropriate to describe the nonlinearity. In addition, the initial degradation values  0X  for all 10 units are 

listed in Table II. And for test of normality, Shapiro-Wilk test [34] in Table III indicates that under confidence level 

0.05, it can be assumed that  0X  follows a normal distribution. 

Table I Parameter values of the SSADT model 

Parameter 
0  0  b    

a  a  
B  

    

Value 0.27 0.1553 7 4.44 1.50E-4 3.53E-5 7.79E-3 0.1 1 

 

Table II Initial degradation values  0X  of the simulated 10 units 

0.2245  0.3800  0.2311  0.3130  0.1697  

0.4349  0.3381  0.3684  0.3025  0.2080  

 

Table III Test of normality for the initial degradation value 

sample size statistic p value test result 

10 0.96054 0.79197 Can't reject normality 

 



 

 

 

Figure 3 Degradation measurements of fatigue-crack growth data 

5.2 Reliability assessment 

Based on the simulated data, the modified GA-SIMEX method is conducted to estimate the unknown model 

parameters  2 2 2, , , , ,a a Bb     θ , and the estimation results, along with the true values of model parameter, are 

listed in Table II. 

Table IV Comparison between true values and estimation results of model parameters 

Parameters 
0  0  b    

a  a  
B    

True value 0.27 0.1553 7 4.44 1.50E-4 3.53E-5 7.79E-3 0.1 

Estimation 0.2970 0.0861 6.46 4.46  1.67E-4 3.32E-5 5.29E-3 0.0828  

Since the 2017-T4 aluminum alloy fails once the fatigue crack length grows beyond 6mm, the pdf of its 

lifetime  f t  under normal stress level, i.e., 
0 200S Mpa , can be calculated based on the parameter estimation 

results and the derivation in Section 3. Furthermore, the reliability curve can also be obtained through formula 

   
0

0
0

1
t

R t f t dt   . The assessment results are separately plotted in Figure 4. 

It is shown that the reliability curves based on true parameter values and estimated parameter values are 

following the same pattern, i.e., the reliability of the 2017-T4 aluminum alloy is nearly constant for a period at first, 

which can be viewed as fatigue crack initiation time [35], and when the fatigue crack begins to grow, its reliability 

curve presents a sharp decline. Furthermore, the mean relative deviation between the two reliability curves is 

5.6350e-04, which is relatively low and indicates the effectiveness of the proposed model as well as the parameter 

estimation method. 



 

 

 

Figure 4 Reliability curves under normal stress level with the fatigue crack length data 

5.3 Sensitivity analysis 

In this section, a sensitivity analysis is performed to investigate the effect of stress-elevating threshold levels, 

sample size and measurement interval on reliability assessment results, with the purpose of providing some 

guidance to design an SSADT plan. Since all reliability curves present a nearly constant tendency before 

52 10 revolutions , and tend to 0 after 53 10 revolutions , the horizontal axis in the sensitivity analysis is set to be 

 52 ~ 3 10 revolutions . Furthermore, a performance indicator of mean relative deviation (MRD) between the 

estimated reliability curve and the true reliability curve, i.e., 
   

 

3
0

2
0

iR t R t
dt

R t


   , is utilized to compare the 

estimation accuracy under different stress-elevating threshold levels. 

First, 9 cases in all are studied under different stress-elevating threshold levels, i.e., 
1=2,2.5,3H  and 

2 =6,6.5,7H  respectively. Reliability curves for the 9 considered cases are plotted in Figure 5, along with the 

reliability curve under true model parameter values. Table III lists the values of   under different 
1H  and 

2H . 

From Figure 5 and Table III, it can be shown that under the proposed SSADT plan, i.e., with random time-points of 

elevating stress levels, the reliability curves with different 
1H  or 

2H  are all close to that based on the true 

parameter values, and the mean relative deviations are all quite small. Therefore it is indicated that under the 

constraint of total test duration, the accuracy of reliability assessment is not sensitive to the threshold levels of 

elevating stress levels, which shows that the proposed SSADT plan is superior to the traditional SSADT with 

pre-determined time duration under each stress level, since for nonlinear degradation processes with limited prior 

information, it is quite a difficult task to determine in advance appropriate time duration for observing obvious 

degradation tendency. And by elevating stress levels when the degradation path firstly reaches pre-specified values, 

tests data under all tress levels will be sufficient to obtain reliability assessment with high accuracy. 



 

 

Table V MRDs between true reliability curve and estimated reliability curves with different 
1 2,H H  

Order 1H  
2H  Mean relative deviation 

1 2 6 5.6530e-04 

2 2.5 6 3.6472e-04 

3 3 6 1.5823e-04 

4 2 6.5 1.8932e-04 

5 2.5 6.5 7.6439e-04 

6 3 6.5 4.1245e-04 

7 2 7 9.6219e-05 

8 2.5 7 4.2246e-04 

9 3 7 3.9420e-04 

 

 

Figure 5 Sensitivity analysis of stress-elevating threshold levels 

 

In addition, we have also investigated the effect of the sample size and the measurement interval. Three cases 

with different sample sizes, i.e., =10,20,30N , and three cases with different measurement intervals, i.e., 

1500,3000,4500M  , are studied respectively. In each case, the unknown parameters are estimated based on 

simulated data, and reliability curves are plotted in Figures 6-7, along with the reliability curves under the true 

model parameter values. Tables VI and VII list the values of   under different N  and M . These figures and 

tables all indicate that with an increased sample size or a decreased measurement interval, more accurate parameter 

estimation results and reliability assessment results can be obtained. 

Table VI MRDs between true reliability curve and estimated reliability curves with different N  

Order N  Mean relative deviation 

1 10 5.6530E-04 

2 20 3.9798E-04 

3 30 2.8046E-04 



 

 

 

Figure 6 Sensitivity analysis of sample size 

 

Table VII MRDs between true reliability curve and estimated reliability curves with different M  

Order M  Mean relative deviation 

1 0.015 9.3769E-04 

2 0.030 5.6530E-04 

3 0.045 3.3867E-04 

 

 

Figure 7 Sensitivity analysis of observation interval 



 

 

6 Conclusion 

Confronted with the variability in degradation processes in SSADTs, this paper developed a novel SSADT 

model simultaneously considering nonlinearity and three sources of variability. A nonlinear Wiener process is 

adopted to deal with the nonlinearity and temporal variability. Variability in degradation rates, initial degradation 

values as well as time-points of elevating stress levels are modelled as the heterogeneity among test units. The 

inevitable measurement errors in both degradation performance and covariates (test stresses) are also considered. 

Statistical inference including reliability assessment under normal condition and a modified GA-SIMEX parameter 

estimation method is developed based on the proposed SSADT model. A case study of a simulated SSADT for 

fatigue crack length growth is conducted to exemplify the proposed model, and the sensitivity analysis indicates 

that in a SSADT with random time-points of elevating stress levels, the reliability assessment accuracy is not 

sensitive to the threshold levels of elevating stress levels, which shows its superiority over SSADT with 

pre-determined time duration under each test level, because in the former way, it is easy to determine robust and 

appropriate threshold levels of elevating stress levels, and to observe obvious degradation tendency for all stress 

levels. 

For further investigation of this work, an analytical reliability assessment result can be obtained for general 

distribution forms of initial degradation value or the random effect variable. In addition, more sources of variability 

can be considered in the SSADT model, such as modelling uncertainty, which can be dealt with by means of model 

selection, hypothesis testing and mis-specification analysis. Another interesting direction is to design an optimal 

SSADT plan based on the newly proposed model, with the objective of minimum total experimental budget or 

maximum estimation accuracy. 
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