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Abstract
Detail enhancement is a well-studied area of 3D rendering and image processing, which has few equivalents for 3D shape
processing. To enhance details, one needs an efficient analysis tool to express the local surface dynamics. We introduce Wavejets,
a new function basis for locally decomposing a shape expressed over the local tangent plane, by considering both angular
oscillations of the surface around each point and a radial polynomial. We link the Wavejets coefficients to surface derivatives and
give theoretical guarantees for their precision and stability with respect to an approximate tangent plane. The coefficients can
be used for shape details amplification, to enhance, invert or distort them, by operating either on the surface point positions or
on the normals. From a practical point of view, we derive an efficient way of estimating Wavejets on point sets and demonstrate
experimentally the amplification results with respect to noise or basis truncation.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Computational Geometry and Object
Modeling—Curve, surface, solid and object representations

1. Introduction

Many shape processing methods, whether they target shape seg-
mentation, shape denoising or shape editing, rely heavily on sur-
face derivatives estimates. Surface derivatives are indeed useful to
estimate important shape features such as normals or curvatures.
The signal processing viewpoint is slightly different: instead of an-
alyzing signal derivatives, signals are often processed by using a
frequency analysis and by devising filters operating on the Fourier
coefficients. In this paper, we propose to bring together these two
trends in a new function basis taking into account both the local sur-
face derivatives and the angular oscillations of the surface around
each point of the surface. We consider surfaces as smooth mani-
folds that can locally be expressed as a height field over a planar
parameterization. In this setting, we locally analyze the surface by
extending the osculating Jets [CP03] in order to take into account
both the local angular oscillation frequencies, and their evolution
with respect to an increasing radius. This formulation, which we
term Wavejets, gives valuable information on the shape by empha-
sizing that the local behavior of the surface along an arbitrary radial
direction from ppp is a polynomial function of the distance to ppp in the
parameterization plane. We propose to compute the Wavejets using
the tangent plane for parameterization purpose and we demonstrate
some theoretical properties of the Wavejets. In particular, we quan-
tify the stability of the decomposition for a small deviation of the
parameterization plane with respect to the tangent plane. This re-
sult is useful for estimating Wavejets on surfaces described by point
sets. Furthermore, Wavejets coefficients can be used to compute in-

teresting indicators of differential volumes that can be an alterna-
tive to using curvatures and further surface derivatives. Those in-
dicators are used to devise efficient surface filters. We demonstrate
two applications of these filters working directly on point sets: po-
sition filtering for detail modification (such as detail amplification
or detail inversion) and normal modification. Figure 1 shows an
example of detail amplification on the Armadillo shape.

Figure 1: Amplifying details of the Armadillo shape with a Wave-
jets filter.

To summarize, our contributions are:

• A local frequency framework for representing a surface, whose
precision and stability are proven.

• A practical method for computing Wavejets for point set surfaces
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• Efficient shape processing filters for detail amplification, inver-
sion and warping using Wavejets coefficients.

2. Related work

Surface derivatives estimation. Computing surface derivatives
has raised a lot of work in the geometry processing community.
[CP03] introduced the notion of osculating n-jets to analyze a sur-
face around a point. A n-jet is a truncated Taylor expansion used to
locally estimate a smooth surface. Each monomial coefficient of a
Taylor expansion is directly linked to a high order derivative of the
surface, which yields information about the normal, local curva-
ture, or higher order differential quantities. By fitting an osculating
jet of order K to a set of surface points in a neighborhood of radius
r, the precision of all k order derivatives is o(rK−k). [MT98] first
introduced a frequency interpretation of the local variations on a
surface. Given the principal curvatures at one point, a second or-
der smoothness measure is defined as the integral over a circle of a
second order polynomial. A similar process is proposed to define a
third order smoothness measure. Following this work, [JS10] pro-
posed to interpret third order derivatives of a surface as Fourier se-
ries coefficients of the height function above a circle in the tangent
plane. Interpreting high order derivatives as Fourier coefficients is
interesting since it makes the choice of the origin vector of the local
parameterization plane irrelevant.

In many cases, however, surfaces are known only through a set
of discrete and potentially noisy measures obtained by a 3D acqui-
sition system. Local surface derivatives are directly impacted by
this noise since the noise is amplified through an explicit deriva-
tion process. To alleviate this effect, one can compute some lo-
cal differential quantities by integration. Integral invariants build
on this principle to define principal curvatures based descriptors
[MCH∗06, PWY∗07, PWHY09]. Integral invariants can be com-
puted directly on meshes or on grids, or on point sets using lo-
cal surface regression or interpolation. Similarly, [DM14] used co-
variance analysis to compute principal directions and curvatures
of point sets in an asymptotically consistent way. On meshes, the
derivatives can be estimated by considering the provided connec-
tivity [MDSB03,WMKG07]. Finally, it is also possible to use met-
rics derived from heat diffusion to give new expressions of surface
derivatives [LSW09].

Signal Processing-like approaches. Many approaches have tack-
led the problem of surface filtering by mimicking standard signal
processing algorithms [PG01]. [Tau95] noticed that Fourier basis
functions are eigenfunctions of the Laplacian operator on R2. Thus,
by building a Laplacian operator over a surface and extracting its
eigenfunctions, the projection of the point coordinates functions
on such a basis gives a spectral decomposition which can be used
for designing low pass filters [Tau95, TZG96]. Pauly proposed to
use iterative Laplacian smoothing to separate the signal into high
and low frequency information and designs Fourier-like filters in
this setting [PKG06]. Defining a Laplacian operator on a mesh
has been widely discussed. [VL08] proposed a formulation yield-
ing an orthogonal basis: the Manifold Harmonics Basis. Spectral
processing can be directly performed in this basis as if it was a
Fourier basis, hence low-pass, high-pass or high-boost filtering has

a straightforward implementation, provided the shape eigenvectors
are known. Spherical Harmonics were also explored as a way to
get a spectral decomposition of a shape parameterized on a sphere
in a rotation-invariant way [KFR03]. Spherical harmonics are re-
stricted to genus 0 shapes and are a global basis of the shape, but
they can be used to design high- or low-pass filters [ZBS04] or for
detail transfer [MCAG08]. In this paper, we set up a framework for
the local decomposition of a surface using a new basis. This basis is
tailored for analyzing the surface around one point, and for comput-
ing differential quantities at that point. Decomposing the signal on
this meaningful function basis is the core of Wavejets. Wavejets are
therefore related to Zernike basis functions [Zer34], an orthogonal
basis, introduced for optical lenses analysis and used often for pro-
cessing images (e.g. [KH90]) or shape retrieval [NK03]. Although
a linear relationship exists between Wavejets and Zernike polyno-
mials, the latter do not give direct access to differential quantities,
which are provided by our Wavejets basis by construction.

Detail Exaggeration. While the literature for detail exaggeration
in image or video processing is large (e.g. [LTF∗05, DMIF15]) it
has been far less studied for surfaces. Existing methods can be
sorted out in two categories: the first one modifies the render-
ing of a shape while the second modifies the shape through its
normals or point positions to enhance the shape details. Modify-
ing the rendering of a shape to enhance the details can be con-
sidered as a non-photorealistic rendering method in the special
case where the purpose is to amplifly the details. Rusinkiewicz et
al. [RBD06] propose to modify the shader in a multiscale way and
merge this multiscale information with the classic shading color.
Detail Amplification through rendering has been also studied via
view-dependent feature computation [VPB∗09]. The second cate-
gory of approaches explicitly modifies the shape information in a
viewpoint-independent manner. In image processing the equivalent
operation is done by the so-called High Boost Filter, also known as
Unsharp Masking [PRM00, MLLY91, RSKMY96], which moves
each pixel value in a direction opposite to the one of the Laplacian
smoothing, to sharpen the contrasts. This idea dates back to Ga-
bor [Gab65, LFB94], and is known to produce artifacts if the filter
is iterated too many times. This filter can be trivially adapted to
point sets, and we will compare our method to it. Another way of
amplifying the visualization of details is to modify only the nor-
mals at the points. Cignoni et al. [CST05] propose to modify the
normals iteratively in a direction opposite to the mean normal of
the neighbors. This process can seen as a high boost filter applied
to the normals. Finally, as a side-benefit of Algebraic Point Set Sur-
faces rendering [GGG08], a curvature parameter controls the detail
enhancement or inversion, a feature that can also be obtained in our
Wavejets framework.

3. Wavejets

3.1. Definition

Osculating jets, originally introduced in [CP03] are high order
polynomials that correspond to local truncated Taylor expansions
of height field surfaces, thus providing interesting differential prop-
erties, such as the normal and principal curvatures, for smooth sur-
faces. We introduce a different kind of jets, named Wavejets, that
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Figure 2: Computation of some values of φk,n(ppp) for a radius Rφ corresponding to the height of the eyes of the statue. If k and n do not share
the same parity, coefficient φk,n is zero. For k ≥ 0 and n 6= 0, only the magnitude of φk,n is displayed since the phase depends on the origin
direction of the angles. For k ≥ 0, φk,0 is real, does not depend on the origin direction, and can be negative. Note that φ1,1(ppp) = 0 if the
parameterization plane is the tangent plane at ppp to the surface. φ0,0(ppp) measures the offset of the input point ppp to the surface which can be
nonzero in the practical case where the Wavejets order is too low to catch every local variation around ppp.

retain all nice properties of the osculating Jets but also provide a
natural interpretation in terms of local angular oscillations.

Let S be a smooth surface and ppp a point on S. As a consequence,
the surface can be locally parameterized as a height field f (x,y) in-
side a neighborhood of radius Rφ on a plane P(ppp) passing through
ppp. The neighborhood of ppp can be expressed as a Taylor Expansion:

f (x,y) =
∞
∑
k=0

k

∑
j=0

fxk− jy j (0,0)
(k− j)! j!

xk− jy j (1)

where fxk− jy j =
∂

k f
∂xk− j∂y j .

Restricting to a circle of radius r (r < Rφ) centered at ppp in P(ppp),
and expressing f with respect to an angle θ yields a periodic func-
tion θ→ f (r,θ). θ is measured with respect to an arbitrary origin
direction for the phases in P(ppp).

Using polar coordinates (r,θ) with (x,y) = (r cosθ,r sinθ) in
equation 1 and Euler’s formulas to express cos(nθ) and sin(nθ) as
polynomials of cosθ and sinθ, one can show that

f (r,θ) =
∞
∑
k=0

k

∑
n=−k

rk
φk,neiiinθ =

∞
∑

n=−∞

∞
∑

k=|n|
rk

φk,neiiinθ (2)

with φk,n = ∑
k
j=0

1
j!(k− j)! b(k, j,n) fxk− jy j (0,0). b(k, j,n) is defined

as follows :

• b(k, j,n) = 0 if k and n do not have the same parity

• b(k, j,n) = 1
2k iii j ∑

n−k
2

h=0

(
k− j

h

)(
j

n−k
2 −h

)
(−1)h otherwise (see

the supplementary material for the full derivation).

This amounts to decomposing the function on a new function basis
Bk,n(r,θ) = rkeiiinθ.

In other words, while osculating jets provide arbitrary high or-
der derivatives fxk− jy j (0,0), our representation provides arbitrary
high order Fourier coefficients φk,n( f ) which are a linear combina-
tion of high order derivatives, combining them in a certain way that
favors the independence of the coefficients with respect to the ori-
gin direction for the phases. More precisely, a rotation of the origin
vector in the parameterization plane P(ppp) induces a phase shift of
the coefficients. Figure 2 shows the amplitude of the first Wavejets
terms φk,n. Each φk,n is related to an order of radial derivation k
and to a number of oscillations n. A Wavejet of order K is called a
K-Wavejet.

3.2. Properties

Curvatures By explicitly writing the link between φk,n and the
derivatives of f , the mean curvature H(ppp) and the Gaussian curva-
ture K(ppp) at ppp can be obtained easily.

φ1,1 = φ
∗
1,−1 =

1
2
( fx + iii fy)

φ2,0 =
1
2
( fxx + fyy) ; φ2,2 = φ

∗
2,−2 =

1
4
( fxx− fyy + iii fxy)

(3)

Since the Gaussian curvature K(ppp) can be expressed w.r.t. partial

derivatives of f at ppp as K(ppp) =
fxx fyy− f 2

xy
(1+ f 2

x + f 2
y )

2 , we get:

K(ppp) =
4φ

2
2,0−16φ2,−2φ2,2(
1+4φ1,−1φ1,1

)2 (4)

Similarly, the mean curvature is expressed as H(ppp) =
(1+ f 2

x ) fxx+(1+ f 2
y ) fyy−2 fx fy fyy

2(1+ f 2
x + f 2

y )
3
2

, yielding:

H(ppp) =
2φ2,0

(
1+4φ1,−1φ1,1

)
+4φ2,−2φ

2
1,1 +4φ2,2φ

2
1,−1(

1+4φ1,−1φ1,1
) 3

2
(5)

IfP(ppp) = T (ppp), the tangent plane to S at ppp, then φ1,1 = φ1,−1 =
0, and :

K(ppp) = 4
(

φ
2
2,0−4φ2,−2φ2,2

)
, H(ppp) = 2φ2,0 (6)

The principal directions can be found using Wavejets by con-
sidering the signal ∑

2
n=−2 φ2,neiiinθ. This signal contains a constant

component φ2,0 and a component that oscillates two times and
whose maximum is aligned with the first principal curvature di-
rection (corresponding to the phase of φ2,2). As a consequence, the
principal curvatures κ1 and κ2 can also be recovered using Wave-
jets:

κ1 = 2
(
φ2,0 +φ2,2 +φ2,−2

)
and κ2 = 2

(
φ2,0−φ2,2−φ2,−2

)
(7)

3.3. Stability

We now turn to our main result for the stability of the Wave-
jets coefficients when the parameterization plane is close but dif-
ferent from the tangent plane. Let us call T (ppp) the true tangent
plane and P(ppp) the chosen parameterization plane, also passing
through ppp. Since ppp belongs to both planes, they intersect along a
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line T (ppp)∩P(ppp) of direction u. We consider the angle γ such that
the rotation of axis (ppp,u) and angle γ transforms P(ppp) into T (ppp).
Let us parameterize T (ppp) and P(ppp) so that a point of the sur-
face has coordinates (x = r cosθ,y = r sinθ,h) over T (ppp) and (x =
RcosΘ,y = RsinΘ,H) over P(ppp). Let us first assume that θ (resp.
Θ) corresponds to the angular coordinate of a point on the surface
with respect to u in T (ppp) (resp. with u in P(ppp)). In this setting,
the surface Wavejets decomposition at point ppp writes ∑

∞
k=0 ∑

n=k
n=−k

φk,nrkeiiinθ over T (ppp) and ∑
∞
k=0 ∑

n=+k
n=−k Φk,nRkeiiinΘ over P(ppp). Us-

ing the rotation of angle γ, we can express the Φk,n coefficients with
respect to the φk,n.

We will state our main theorem in this particular setting of ori-
gin vector for the phases. To generalize the theorem to an arbitrary
origin vector for the angular coordinate θ, recall that a rotation of
angle µ of the origin vector in T (ppp) amounts to a phase shift µ.
Thus, one can always change the origin vector, compute the Wave-
jets coefficients φk,n and recover the Wavejets coefficients for origin
direction u as φk,neiiinµ (similar formulas hold for Φk,n and an origin
vector change in P(ppp)).

Theorem 1 The coefficients Φk,n w.r.t to P(ppp) can be expressed
with respect to the coefficients φk,n in the tangent plane T (ppp) as
follows:

Φ0,0 = 0

Φ1,1 = Φ
∗
1,−1 =

γ

2
e−iii π

2 +o(γ)

Φk,n = φk,n + γF(k,n)+o(γ)

(8)

where F(k,n) is a function of the φ coefficients of order lower than
k.

Proof: see the supplementary material.

Corollary 1 It follows from Theorem 1 that |Φ1,1| = 1
2 γ + o(γ)

and arg(Φ1,1) =
π

2 +o(γ). Thus if the rotation is small enough, the
phase of Φ1,1 shifted by π/2 in the plane P(ppp) corresponds to the
axis of rotation u. Therefore, it is possible to correct the parame-
terization plane into the tangent plane by performing a rotation of
P(ppp) along the axis u with rotation angle 2|Φ1,1|.

Proof: see the supplementary material.

3.4. Error correction

Corollary 2 One can recover the true coefficients φk,n iteratively,
starting from the lowest order coefficients as:

φk,n = Φk,n− γ

k−2

∑
j=1

s j,k,n +o(γ) (9)

s j,k,n=∑
p+m=n
|p|≤k− j
|m|≤ j

φk− j,p

2iii
(φ j+1,m+1(m+ j+2)+φ j+1,m−1(m− j−2)) (10)

In particular, φ2,0 = Φ2,0 + o(γ), φ2,2 = Φ2,2 + o(γ), φ2,−2 =
Φ2,−2 + o(γ), which means that the mean, Gaussian and principal
curvatures are also stable in o(γ).

Proof: see the supplementary material.

3.5. Difference with Jets and Zernike

There exists a linear map between Wavejets φk,n, Jets Jk, j [CP03]
and Zernike polynomials Zn

k [Zer34]. This means that there is a way
to compute any quantity equivalently from either representation as
soon as the linear map is explicit. However this linear map is far
from trivial and computing certain quantities will be easier using
one or another function basis.

Jets give a direct expression of high-order cross derivatives of a
surface. This representation is well-suited to tangent plane estima-
tion, since the cross derivatives of order 1, J1,0 and J1,1, are equal to
0 if the surface is parameterized with respect to the tangent plane.
When fitting a jet to a set of surface points, the offset between the
parameterization plane and the approximated surface is given di-
rectly by J0,0.

Zernike polynomials give a polar representation of the surface.
Zernike basis is orthogonal, which makes it easy to estimate the co-
efficients on regular polar grids. However, the error between a pa-
rameterization plane and the tangent plane is hard to express using
Zernike coefficients. This error can be found as a non-trivial linear
combination of Z±1

k . Similarly, the error offset obtained when fit-
ting Zernike polynomials to a set of points is given by a non-trivial
linear combination of Z0

k .

Wavejets give a representation which is mid-way between Jets
and Zernike polynomials. Wavejets coefficients explicitly hold in-
formation about the tangent plane. When used to fit a set of sur-
face points, they also provide a direct information on the offset
between the surface and the parameterization plane. Besides, they
split the surface into components corresponding to different angu-
lar frequencies in a similar manner as Zernike decomposition. This
angular separation holds important information about the surface,
which we will use to design our filters. In particular, we will pro-
vide some integral invariants by integration over angle θ, which
is straightforward using Wavejets or Zernike and difficult with the
Jets. Finally, the error in the orientation of the tangent plane or the
offset to the surface are easy to express using Wavejets and Jets but
difficult using Zernike polynomials. Thus, Wavejets retain interest-
ing properties from Jets and Zernike polynomials while avoiding
some of their weaknesses.

4. Details filtering and enhancement

4.1. Principle

Let us consider the signed volume VVV (s) delimited by the surface
and the parameterization plane in a small radius s < Rφ around a
point ppp. We can express VVV (s) as the sum of infinitesimal angular
slices of the volume between the surface and the tangent plane:
VVV (s) =

∫ 2π

0 A(θ,s)dθ. In the plane corresponding to the angle θ,
A(θ,s) denotes the area enclosed between the surface and the tan-
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Input surface point
φ̃2,0 φ̃3,1 φ̃2,2 φ̃3,3

Paraboloid Hyperboloid Horse saddle Monkey saddle

9-Wavejets φ̃0 φ̃1 φ̃2 φ̃3

a0 2|a±1| 2|a±2| 2|a±3|

Figure 3: Wavejets decomposition around a point of a sur-
face. Left: approximated 9-Wavejets surface. Let φ̃k,n(r,θ) =

rk
(

φk,neiiinθ +φk,−ne−iiinθ
)

and φ̃n = ∑
∞
k=0 φ̃k,n. The amplitude of

the functions φ̃n is more comparable to the amplitude of the input
surface than the functions φ̃k,n.

gent plane, for a radius varying between 0 and s, each point of the
surface being scaled by the radius.

A(θ,s) =
∫ s

0

(
∞
∑
k=0

k

∑
n=−k

rk
φk,neiiinθ

)
rdr

=
∞
∑

n=−∞

(∫ s

0

∞
∑

k=|n|
φk,nrk+1dr

)
eiiinθ =

∞
∑

n=−∞
an(s)eiiinθ

(11)

Coefficients an(s) correspond to a Fourier decomposition of
A(θ,s). By developping the corresponding integrals for the radius
s, we obtain the following closed form:

an(s) =
∞
∑

k=|n|

φk,nsk+2

k+2
(12)

One can show that if n 6= 0, 2|a±n|(s) is the amplitude of the os-
cillating function

∫ s
0 φ̃n(r,θ)rdr, where φ̃n(r,θ), as defined in Fig-

ure 3, is the surface restricted to frequencies ±n. For the spe-
cial case n = 0, a0(s) is the static part of

∫ s
0 f (r,θ)rdr. Thus,

∀θ,a0(s) =
∫ s

0 φ̃0(r,θ)rdr (see Figure 3).

Each coefficient an(s) has interesting properties regarding the
local surface dynamics. 2πa0(s) is equal to the signed volume be-
tween the surface and the parameterization plane. Indeed,∫ 2π

0

∫ s

0
f (r,θ)rdrdθ =

∫ 2π

0
A(θ,s)dθ = 2πa0(s) (13)

Importantly enough, the an are intrinsic quantities of the local
surface neighborhood, and as such do not depend on the initial pa-
rameterization choice.

Remark 1 Equation (13) relates to the Volume Descriptor Vs(ppp)
introduced by [MCH∗06] as follows:

Vs(ppp)−2πa0 ≈
2
3

πs3 . (14)

Thus, a0(s) measures the local deviation of the surface with re-
gards to the tangent plane at ppp. Local mean curvature is commonly
used to reflect this local deviation, but it is meaningless in some
cases, for example some points might have 0 mean curvature but
nonzero higher orders derivatives and a0. Such is the case of (0,0)
for f (x,y) = x4 + y4. At those points, it is necessary to look at
higher order derivatives to reveal the local dynamics of the surface.
a0(s) involves higher order φk,0 with k > 0, whereas local mean
curvature is only proportional to φ2,0. In addition, the mean curva-
ture is a measure per point, whose estimation precision from point
sets is theoretically controlled by the polynomial order, therefore it
will capture extremely small variations. a0(s) will on the contrary
capture variations at a scale controlled by s.

Similarly, a±1(s) locally measures a first order antisymmetric
tendency of the surface to change its normal direction when one
moves away from ppp, along the direction given by θ. Here, this anti-
symmetric change corresponds to the variation of the tangent plane
to be added on top of the variation induced by the mean variation
of the position (reflected by a0(s)). More precisely, the normal di-
rection tends to change less when one moves away in the tangent
plane in the direction orthogonal to the phase arg(a−1(s)). Thus,
arg(a−1(s)) gives the direction in which the rotation of the tangent
plane is maximal. In a nutshell, it measures around which direc-
tion and with what intensity the normal evolves. φ3,±1 should theo-
retically be enough to give such information. However, similarly
to φ2,0, φ3,±1 is an infinitesimal measure whereas a±1(s) gives
smoother information while still being able to catch high-order lo-
cal variations thanks to the high-order estimation of the surface.
Figure 3 illustrates the sensitivity of coefficients φ2,0 and φ3,±1
compared to a0(s) and a±1(s) in the 9-Wavejets decomposition of
a surface. Using the an instead of the Wavejets coefficients them-
selves can also be seen as an extension of the use of averaged quan-
tities to compute surface derivatives [MCH∗06, PWY∗07, DM14].

To design the detail enhancement filters, we use Wavejets com-
puted w.r.t. the tangent plane of the surface, and we only rely on
a0(s) and a±1(s). Higher order values a±n(s) would carry further
information of higher order regarding the enclosed area in the direc-
tion θ. For example, a±2(s) measures the tendency of the evolution
of the local horse saddle shape, a±3(s) gives information about the
evolution of the monkey saddle shape, and so on. The only limit
to this computation is the precision for the coefficients when the
surface is only known through a set of points and that Wavejets
are fit, since, as demonstrated by [CP03], the precision of order k
derivatives is a o(RK−k

Φ
). In such cases, coefficient a±n(s) is less

interesting as n grows.

4.2. Position enhancement filter

Algorithm 1 Position Enhancement
procedure ENHANCEPOSITION(S, α0,K,Rφ,s)

for all (ppp,nnn) ∈ S do
N ←NEIGHBORHOOD(S,ppp,Rφ)
φ←COMPUTEWAVEJETS(ppp,nnn,N ,K,Rφ)

a0(s)← ∑
K
k=2

φk,0sk+2

k+2
ppp← ppp−

(
φ0,0 +2π(α0−1)a0(s)

)
nnn
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As noted previously, a0(s) gives the local deviation of the sur-
face. If the volume, estimated by 2πa0(s) (See Equation 13), was
to be increased, local details would be increased as well. Let α0
be the amplitude of the targeted detail enhancement. In order to
increase the volume, a point ppp with normal nnn is moved to a new
position ppp′ such that:

ppp′ = ppp+
(
φ0,0−2π(α0−1)a0(s)

)
nnn (15)

If α0 = 1, the motion is independent of a0(s) and the points are
simply projected on the Wavejets surface. Indeed, when the Wave-
jets order is K <∞, φ0,0 measures the distance between ppp and the
truncated Wavejets surface. If the Wavejets approximation is exact,
φ0,0 = 0. However, it is not the case in the presence of noise, on
sharp edges, or in the approximation framework for point sets de-
scribed in section 5. The Wavejets surface is however considered
as the true underlying surface and each point ppp is moved to this
surface by displacing it by φ0,0. This has the effect of smoothening
edges and canceling a part of the input noise. If α0 > 1, each point
is first moved to the underlying surface and then moved proportion-
ally to its underlying volume. Conversely, if α0 < 0, it will tend to
invert the details and create anti-details.

The computation of a0(s) must be performed by using the tan-
gent plane for parameterizing the surface at one point. Therefore,
the parameterization plane should be corrected beforehand if it does
not exactly fit the tangent plane as explained in section 3. Algo-
rithm 1 assumes that this parameterization plane update has been
performed. Notice that if the surface is smooth, the tangent plane
and the enclosed volumes a0(s) evolve continuously over the sur-
face. Therefore, the surface evolves continuously through the en-
hancement filter. In practice, this process cannot be applied to the
infinite set of points on the continuous surface, however the filter
definition remains valid in the continuous setting.

4.3. Normal enhancement filter

We propose a filter enhancing the details by exaggerating only the
dynamics of the normals. Recall that a±1(s) measures the local
balance of the shape by identifying the orientation (its phase) and
the intensity (its absolute value) of the antisymmetric evolution of
the tangent plane. The normal enhancement procedure amounts to
modifying φ1,±1 proportionally to a±1(s) at each point of the sur-
face. The corresponding false normal is then estimated as the nor-
mal to a plane obtained by rotation of the parameterization follow-
ing Corollary 1. Notice that this false normal is not coherent with
the real surface anymore. Given the desired detail normal evolution
gain α1 = α

∗
−1, the value of the new coefficient φ

′
1,±1 is defined as

follows:

φ
′
1,±1 =−π(α±1−1)a±1(s) (16)

Since φ1,1 = φ
∗
1,−1, it is enough to compute either of these coeffi-

cients and deduce the false normal using Corollary 1.

Setting α = 1 leaves the surface unchanged. If α1 = 2, normals
are enhanced, increasing the contrasts. If α1 = 0, the dynamic of
the normals is totally compensated, and the surface looks smoothed
out. If α1 < 0, normals are modified and "anti-details" appear in
the rendering. α1 can also take imaginary values, which skew nor-
mals towards one direction as shown in figure 15. Note that, when

Noisy
normals φ0,0 |φ1,1| φ2,0 |φ2,2| |φ3,1| |φ3,3|

Figure 4: Evolution of the coefficients of a 3-Wavejets with in-
creasing Gaussian noise on the normal direction (First row: no
noise, 2nd row: Gaussian noise of standard deviation π/15, 3rd
row: Gaussian noise of standard deviation π/9). Notice how φ1,1,
which is 0 without noise, captures most of the noise when the nor-
mals are perturbed. φ0,0 6= 0 because the order of a 3-Wavejets is
too low to catch all the details of this shape given a large radius,
leaving details as residue in φ0,0.

applying the normal enhancement filter, the positions of the sur-
face points are unchanged. However since rendering algorithms are
more sensitive to normals that positions, it looks as if the positions
had been modified. Algorithm 2 sums up the normal enhancement
filter.

Algorithm 2 Normal Enhancement
procedure ENHANCENORMAL(S, α1,K,Rφ,s)

for all (ppp,nnn) ∈ S do
N ←NEIGHBORHOOD(S,ppp,Rφ)
φ←COMPUTEWAVEJETS(ppp,nnn,N ,K,Rφ)

a1(s)← ∑
K
k=3

φk,1sk+2

k+2
φ1,1←−π(α1−1)a1(s)
Compute the false normal nnn given by φ1,1

5. Application to point sets

5.1. Wavejet Decomposition Equation

Given a surface S that is only known through a set of measured
points possibly spoiled by noise, we want to compute the Wavejets
representation of the underlying surface up to a chosen order K,
at an input point ppp. Let us assume that the surface is locally suffi-
ciently smooth, i.e. CK in a neighborhood of radius Rφ around ppp.
Our goal is to compute the φk,n coefficients that best decompose
the underlying surface on the basis functions Bk,n(r,θ) = rkeiiinθ in
the neighborhoodN (p) of radius Rφ of p. Let L denote the number
of samples in this neighborhood, and let ql be one of these sam-
ples, with cylindrical coordinates (rl ,θl ,zl) w.r.t. an axis that cor-
responds to a rough approximation of the normal direction at point
p. Then, the decomposition problem is formulated as finding φk,n
minimizing:

E(Φ) =
L

∑
l=1

∥∥∥∥∥zl−
K−1

∑
k=0

k

∑
n=−k

rl
keiiinθl φk,n

∥∥∥∥∥
2

2

(17)
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For clarity, we state the problem using the `2 norm even if it is un-
reliable if there are outliers. When dealing with noisy point sets or
outliers we solve this minimization using an iteratively reweighted
least squares procedure. The weighting scheme involves the use of
a diagonal matrix of weights W that are used to leverage the impor-
tance of emerging outliers within the norm.

To reformulate this energy minimization, let us reorder the B ba-
sis functions Bk,n into a vector Vb, and the B unknown φk,n into a
vector Φ, such that the bth component of Φ corresponds to the co-
efficient of the bth basis function in the decomposition. Let kb and
nb respectively denote the order of derivation, and the oscillation
frequency of the bth basis function (0 ≤ b ≤ B− 1). Using these
notations, the energy to be minimized is the following:

E(Φ) =
L

∑
l=1

(
zl−

B

∑
b=1

rl
kb eiiinbθl Φb

)2

(18)

This amounts to the minimization of ‖MΦ−Z‖2
2, where Z is a vec-

tor of size L containing the heights zl of neighbors ql and M is a
matrix of size L×B such that:

Ml,b = rkb
l eiiinbθl (19)

Minimizing ‖MΦ− Z‖2
2, is done by a QR decomposition of M.

Thus computing the Wavejets decomposition around a point ppp
amounts to building matrices M and Z and performing the QR de-
composition of M. Using a Cholesky decomposition instead of QR
fails because MM∗ is often ill-conditioned.

5.2. Algorithm

In order to compute Wavejets in the tangent plane, one can com-
pute a first estimate of Wavejets in a parameterization plane close
enough to the tangent plane. The initial parameterization plane
is obtained through a Principal Component Analysis. Importantly
enough the orientation is necessary neither to compute the Wave-
jets decomposition nor for the filtering, we only need a local pa-
rameterization with respect to an approximate tangent plane. Then
the parameterization plane is corrected into the tangent plane using
Corollary 1 and the Wavejets coefficients themselves are corrected
using Corollary 2.

Given a point set of N points, K the Wavejets order and L the
number of neighbors, the complexity of the computation, using
Equation 19 for all points is O(NLK2). To be able to solve the
equation we pick L ≈ K2, yielding a final complexity of O(NK4).
As a consequence, when K is big (i.e. 13 for example), the com-
putation cost increases a lot. Once the Wavejets decomposition is
computed, the filtering amounts to computing a sum of K terms for
each point, because the filter only involves coefficients of frequency
0 or 1 (K/2 coefficients instead of K2). Then each point is moved
in its normal direction, which is constant in time, thus the filtering
complexity reduces to O(NK).

6. Experiments and comparisons

Our algorithm was implemented in C++ using Nanoflann and Eigen
libraries, and parallelized using OpenMP. Detail enhancements is
performed by first computing the Wavejets decomposition and then

Original Enhanced normals Enhanced positions

Figure 5: Normal and position enhancement on a bunny with 6-
Wavejets. Rφ is equal to 3% of the shape diameter, and α0 = α±1 =
2.

K = 8 K = 2 K = 8
Unsharp Masking Unsharp Masking Ours

baseline baseline

Figure 6: Detail enhancement for different K-Wavejets and radii.
First column: naive Unsharp Masking with a precise mean cur-
vature computed using 8-Wavejets. Unsharp Masking is unstable
when applied to a precisely computed curvature. Second column:
our position-based detail enhancement algorithm (2-Wavejets).
This filtering is equivalent to a coarse Unsharp Masking since a0
is proportional to the mean curvature when K = 2. Third column:
result for K = 8. Increasing neighborhood radius makes the pro-
cedure less sensitive to small local variations while still catching
larger details with a high resolution. α0 = 3/Rφ.

applying the detail enhancement filters. Table 1 gives the parame-
ters and computation times for different models. The computational
bottleneck lies in the Wavejets decomposition. Although the com-
putation times are already good enough for processing common 3D
point sets, the implementation could be made faster by porting the
code to GPU.

In our implementation, for numerical reasons, the local surface
is rescaled before computing the Wavejets decomposition so that
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APSS APSS APSS APSS
Scale 4 Scale 10 Scale 20 Scale 30

Figure 7: Unsharp Masking applied with mean curvature com-
puted with APSS [GGG08] (Meshlab implementation) for different
Minimum Least Squares (MLS) scales. MLS spherical parameter is
set to 1. Each point is moved in the normal direction with a magni-
tude of 3 times the mean curvature

α±1 = 2 α±1 =±2iii α±1 =−2 α±1 =∓2iii

α±1 = 2 α±1 =±2iii α±1 =−2 α±1 =∓2iii

α±1 = 0 α±1 = 1 α±1 = 2 α±1 = 4

α±1 = 0 α±1 = 1 α±1 = 2 α±1 = 4

Figure 8: Influence of normal amplification gain α±1 and of order
K. Similarly to Figure 6, a high order yields a fine enhancement.
The phase of α±1 sets the orientation followed by normal amplifi-
cation. When α±1 = 0, the normals are blurred.

Rφ = 1. Sometimes, locally, the surface does not project well on the
tangent plane, this corresponds to locations where the surface can-
not be expressed as a height field over the parameterization plane
in a neighborhood of radius Rφ, but it would project nicely if the
radius was smaller. This happens for example on the fingers of Ar-
madillo on Figure 13. In such situations, Wavejets tend to have high
amplitudes and so do the an coefficients, leading to high amplitude
motion. To alleviate this problem, we set a threshold on the motion
amplitude. In our experiments this threshold is set to Rφ

2 . In all our
experiments we set the radius s for computing a0 and a1 equals Rφ.

The input to our algorithm is a point set with coarse normals
which can be computed with a Principal Component Analysis. If
the normal orientation is provided, this information is used to re-

Shape N Order Decomposition Filter
time time

Armadillo 5M K = 6 11min 31s 1.7s
Bunny 600k K = 6 49s 187ms
Caesar 600k K = 8 2min 18s 200ms

Pyramid 1.5M K = 6 1min 43s 614ms
Manuscript 1.5M K = 5 1min 44s 582ms

Table 1: Computation times for various point sets and Wavejets
orders. N is the number of points (desktop computer with 2 Intel
Xeon E5-2623 of 3.00GHz processors and 32GB RAM).

α0 =−2 α0 =−1 α0 = 0 α0 = 1 α0 = 2

Figure 9: Influence of position amplification gain α0 and order K.
A lower order induces a coarser amplification. When α0 < 0, the
shape tends to be carved in the orientation opposite to the details
(visually similar to normal filtering with α±1 < 0, Fig. 8).

strict the neighborhoods to points having normals deviating up to
π

2 with regard to the normal of the center point. This is done to
avoid capturing two different surface sheets in a neighborhood.

The stability of the Wavejets coefficients w.r.t. normal error is
shown in Figure 4. As can be seen, adding noise on the input nor-
mal direction mostly impacts φ1,±1, while order 2 coefficients are
very stable, which confirms the results of Theorem 1. In order to
test the stability of the a0 coefficients, the position enhancement
filter was tested on a perfect sphere of radius 1 randomly sampled
(600k points). The parameters for the filter were Rφ = s = 0.03,
K = 8 and α0 = 100. The resulting shape is, unsurprisingly, a
sphere with a larger radius. The radius of this enhanced sphere,
computed by measuring the average distance to the center, is 1.07
with a standard deviation σ = 3.8.10−5, meaning that our compu-
tation is quite stable. The resulting sphere is smooth and does not
exhibit any bumps. The theoretical equivalence between Wavejets
and the Zernike polynomials was also tested numerically. Given a
Wavejets and a Zernike decomposition of the same surface w.r.t.
the same parameterization plane, the average distance between the
2 reconstructed surfaces is around 10−15, i.e. of the order of nu-
merical precision.

Figure 5 shows the effects of normal and position based detail
enhancement filters on the Bunny. The exaggerated features have
a large scale, for example the borders of the ears and the fur fea-
tures. On Figure 6, one can see the influence of the chosen order K
on the detail amplification. As the neighborhood radius increases,
high order Wavejets allow to still amplify fine details, whereas low
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Shape Ground truth

Wavejets APSS, scale 2 APSS, scale 4

Figure 10: Estimated mean curvature on a shape with varying
sparsity and curvature. The Wavejets order is set to 15 but it de-
creases in sparse areas to adapt to the low number of neigh-
bors. We compare it with APSS [GGG08] (Meshlab implemen-
tation, spherical parameter set to 1). The equation of the shape
is ρ(θ,ϕ) = 1+ 0.005cos(100ϕ

2/π) in spherical coordinates. In
sparse areas (left part of the shape), our method tends to underper-
form (due to the necessary order change), similarly to APSS (scale
4). However, APSS (scale 2) performs well in sparse regions but is
less accurate in dense regions than ours (right part of the shape).

Dense Sparse

Figure 11: Root Mean Square Error (RMSE) of estimated mean
curvature with Wavejets and APSS [GGG08] on the shape of Figure
10. The left chart shows the RMSE computed on the part of the
shape where the number of neighbors is stricly greater than 150
so K = 15. The right chart shows the RMSE computed where the
number of neighbors is between 17 and 31. Wavejets of order 4 are
computed in such cases. RΦ is 2.5% of the diameter of the shape.

order Wavejets tend to blur the shape. Since high order Wavejets
give similar results over radius variation, a large neighborhood can
be chosen to enhance details while being resilient to position noise.
This holds as long as the height field assumption is respected. Fig-
ure 8 shows the influence of K on normal filtering. The higher K,
the more precise the output is. One can note that applying a normal
enhancement procedure with α±1 = 0 cancels local normal dynam-
ics. After normal update, a±1 is close to 0, which means that local
normals dynamics become low. Setting α±1 ∈C locally twists nor-
mals (see Figure 15) and gives a twisted look to local features. The
nose and lips of the mask statue are good examples of this twist
(first and second rows of Figure 8). Similarly, Figure 9 shows the
influence of K and α0 on position enhancement. Setting α0 < 0
tends to carve the shape in the opposite direction of the details.
Note that α0 = −2 gives similar visual results as α±1 = −2 (see
Figure 8 and 9).

Input α0 = 2 α±1 = 0 α±1 = 2

Figure 12: Influence of noise on detail enhancement: Noise was
added to the positions of the input points. Rφ corresponds to 4.5%
of the shape diameter. Position filtering with α±1 = 0 gives very
stable results. Position enhancement has been performed using pre-
processed normals filtered with α±1 = 0 so the direction of points
motion remains stable over the shape.

We compare our method to a baseline high boost filter, by com-
puting the mean curvature using Wavejets, and moving each point
in a direction opposed to the normal direction at a rate equal to
the mean curvature (Figure 6, first column). This naive amplifi-
cation is very sensitive to noise or to small local variations be-
cause of the high resolution of the mean curvature computed with
a high order K. In figure 7, we show Unsharp Masking applied to
the mean curvature computed with Algebraic Point Set Surfaces
(APSS) [GGG08] for different parameters. For high scales, the fil-
ter tends to produce similar outputs as our method with a low order
K. For a low scale, it tends to enhance very small variations. There
is a range of scales in which it produces similar results as our im-
plementation using a0 or a low order K with a small radius (see
Figures 6 and 7). In Figure 10, we show how Wavejets handle high
curvature variations and sparsity compared to APSS for computing
mean curvature. We use the PCA regression plane as parameteriza-
tion plane with Rφ as the neighborhood radius. Figure 11 shows the
Root Mean Square Error of computed mean curvatures. In dense re-
gions, our estimate starts to fail after frequency 40. Our representa-
tion approximates the surface with high precision in dense regions,
yielding lower RMSE than APSS. As sparsity increases, Wavejets
order decreases, yielding a coarser surface approximation. As one
can visualize in Figure 10, APSS performs better than our method
in such cases with MLS scale set to 2.

Detail exaggeration filters are more likely to be sensitive to po-
sition noise. If noise is considered as a detail to amplify by the
algorithm, the output will tend to be noisier than the input. Our al-
gorithm is resilient until a certain amplitude of noise. If the neigh-
borhood radius Rφ is large enough, noisy fluctuations in the signal
tend to compensate over the radial integration. On Figure 12, differ-
ent amplitudes of artificial noise over a shape are shown. On Figure
13, the detail exaggeration filter on the position is applied to the
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Figure 13: Outputs of our procedures on an armadillo (Left:original; Middle: normal-based detail enhancement with K = 7,α±1 = 3; Right:
position-based detail enhancement with K = 6,α0 = 2).

Original Positions enhanced Normals enhanced

Figure 14: On the left: input shape. On the top right: our position
and normal enhancement method. On the bottom right: the result
of a high-boost filter applied to manifold harmonics of the dino (no
normal enhancement is defined using this method). Our position
enhancement method highlights more local details as the Manifold-
Harmonics based high-boost filter. The rendering of the second row
is a capture of the MHB demo provided by the authors.

Armadillo shape. The details are particularly well enhanced by the
Wavejets filter: creases are more distinctive and small details, such
as the tortoise-shell texture on the legs, are amplified. The eyebrow
and teeth are also more prominent.

Figure 14 shows the difference of the output of our position fil-
ter with a high-boost filter applied to manifold harmonics. One can
see that our result enhances the details in a different manner: the

α1 = 24 α1 = 24eiii π

4 α1 = 24iii α1 = 24eiii 3π

4

α1 =−24eiii 3π

4 α1 =−24iii α1 =−24eiii π

4 α1 =−24

Original Ours (α1 = 24) [CST05] [RBD06]

Figure 15: Normal enhancement on a golf ball. First and Sec-
ond row : normal amplification for different α1 on a 9-Wavejet.
Note that α−1 = α

∗
1 on every examples. Last row: comparison

with [CST05] normal enhancement algorithm and with [RBD06]
detail exaggerating shading.

behavior highlighted by our approach is more local and less in-
fluenced by global shape structure. Indeed, both methods are very
different, since Wavejets filters operate only locally while Manifold
Harmonics take the whole shape into consideration for building the
function basis. Furthermore, manifold harmonics often require a
mesh (although some point clouds generalization exist). The man-
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ifold harmonics basis does not permit to filter or twist the normals
in such a simple way as our method does.

On Figure 16, we compare the result of our normal filter with
[CST05] and [RBD06]. [CST05] has an effect on the normals that
is similar to our algorithm. This algorithm takes as input a neigh-
borhood radius, a number of iterations to perform, and a step. If the
number of iterations is too high, the normal enhancement [CST05]
becomes unstable. On the contrary, our algorithm can perform
higher detail enhancement while remaining stable. [RBD06] has
a very different approach that is not based on enhancing normals,
but rather on a shading algorithm taking the light direction into ac-
count in a multiscale way. Our Enhancement filters can also be used
to exaggerate narrow details as shown in Figures 17 and 18 on ar-
chaeological artifacts. It makes details appear more clearly than on
the original point set.

Parameters. The parameters for our algorithm are the following:
the radius s for the computation of the volumes a0 and a1 and Rφ,
which we set equal in our tests, the order for the Taylor Expansion
K, and amplification gains α0 or α±1 depending on which filter is
chosen. Note that s = Rφ should be chosen so that the number of

neighbors L of each point is above (K+1)(K+2)
2 , which is the number

of Wavejets coefficients of order K. The neighborhood size L is
an important parameter. If L <

(K+1)(K+2)
2 , the system to solve is

underdetermined. In such cases, the order K is locally decreased
until the system can be safely solved. To do so, we add a parameter
β > 1, controlling the decrease rate of the order: K is decreased
until L < β

(K+1)(K+2)
2 . We set β = 1.1 in our implementation. In

presence of noise, β should be greater.

Limitations Our method is still computationally expensive. The
computational bottleneck lies in the system solve in order to com-
pute the Wavejets for each point, with a complexity of O(NK4).
The Wavejets order choice is thus critical for the computation time,
which is coherent with the measures of Table 1. In the presence of
fast enough varying features, stability of Wavejets coefficients de-
creases (see figure 11). Another limitation of our algorithm lies in
the assumption that the surface can be expressed as a height field
over a parameterization plane inside a neighborhood of given radius
r constant over the surface. For some points, r might be too large for
the assumption to hold and spurious artifacts can appear. To allevi-
ate this effect, Hamdi-Cherif et al. [HCDC17] proposed to encode
the surface as a height field over a quadric. This simple idea would
however require using the Fourier transform on geodesic circles,
which is a nontrivial adaptation. Another solution could be to adapt
the radius to the local feature size. [MGB∗12] proposes an interest-
ing approach to solve the problem of the right scale estimation that
could be adapted to Wavejets as a future work. As an alternative,
using multiscale Wavejets could alleviate the scale choice.

7. Conclusion

We introduced a new basis for decomposing locally a surface in a
basis that emphasizes both angular oscillations and surface deriva-
tives. This decomposition is proven to be stable with respect to a
small rotation of the parameterization plane from the tangent plane.
This allows to define and compute surface characteristic functions

at a very high precision and build explicit shape enhancing filters,
acting either on the normals or the point positions with a view
of amplifying, modifying or inverting shape details. Wavejets can
have a broader interest than this application, in a future work we
plan to study its application to surface description for shape match-
ing and shape registration.
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Original Enhanced shader [RBD06] [CST05] Ours (K = 5,α±1 = 3)

Figure 16: Normal enhancement with different methods. Note that our algorithm has very similar results as [CST05] (parameters: are a step
of 0.1 with 30 iterations). The main difference between the two procedures is that ours is not iterative, and might be more straightforward for
parameters choice. [RBD06] gives better visual results for this case, but is a totally different method which relies on a mesh where we use
unstructured point sets. Each point is rendered through a shading procedure taking the light direction into account while we only rely on the
local geometry of the surface. The snapshot of [RBD06] was done using Xshade, a software provided by the authors.

Original Normal enhanced Position enhanced

Figure 17: Applying order 7 (normal filter) and order 6 filters (po-
sition filter) to the Pyramid datasets with α0 = α±1 = 2.

Original Normal enhanced Position enhanced

Figure 18: Applying order 9 (normal exaggeration) and order 8
filters (position filter) to the Anubis datasets with α0 = α±1 = 2.
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