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Simultaneous Energy and Information Transmission:
A Finite Block-Length Analysis

Samir M. Perlaza, Ali Tajer, and H. Vincent Poor

Abstract—In this paper, a non-asymptotic analysis of the
fundamental limits of simultaneous energy and information
transmission (SEIT) is presented. The notion of information-
capacity region, i.e., the largest set of simultaneously achievable
information and energy rates, is revisited in a context in which
transmissions occur within a finite number of channel uses and
strictly positive error decoding probability and energy shortage
probability are tolerated. The focus is on the case of one
transmitter, one information receiver and one energy harvester
communicating through binary symmetric memoryless channels.
In this case, the information-capacity region is approximated
and the trade-off between information rate and energy rate is
thoroughly studied.

Index Terms—Information and Energy Transmission, Infor-
mation and Power Transfer, Finite Block-Length Regime.

I. INTRODUCTION

Simultaneous energy and information transmission (SEIT)
refers to a communication system in which a set of transmit-
ters aim to simultaneously carry on two tasks: information
transmission to a set of information receivers (IRs); and
energy transmission to a set of energy harvesters (EHs). The
performance of SEIT is often measured by the information
and energy transmission rates that can be simultaneously
achieved under certain reliability constraints. Reliability can be
measured by two metrics: decoding error probability (DEP);
and energy shortage probability (ESP). The fundamental limits
of SEIT consists of the largest set of information and energy
rate tuples that can be simultaneously achieved. This set is
often referred to as the information-energy capacity region
[1]. Traditionally, information-energy capacity regions are
calculated subject to the fact that both DEP and ESP must
be arbitrarily close to zero. This strong reliability constraint
leads to the unavoidable use of infinitely long communication
blocks and thus, these fundamental limits are meaningful only
under the assumption that the communication might last a very
long time. Within this context, the case of one transmitter
and one co-located IR and EH is studied in [2], [3], and [4].
The multi-user case is studied in [5], [6], [7], [8], [9], [10],
[11], [12], [13], [14], [15], and references therein. Despite the
existing literature, these approaches quickly lose relevance in
scenarios in which communications must occur within a short
period, e.g., the Internet of things.

More relevant fundamental limits, from an engineering
perspective, are those that take into account that SEIT occurs
within a finite number of channel uses and the system tolerates
strictly positive DEP and ESP. This paper introduces this novel
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approach building upon the existing results on the fundamen-
tal limits of information transmission in the non-asymptotic
block-length regime (c.f. [16] and [17]). The main result is
the characterization of the information-energy capacity region
of a SEIT system with one transmitter, one IR, and one EH
communicating over binary symmetric memoryless channels.
More specifically, for given number of channel uses and the
biggest DEP and ESP that can be tolerated, the largest set
of simultaneously achievable information and energy rates
is characterized. The trade-off between information rate and
energy rate, first reported in [2] and [3] in the asymptotic
regime, is studied in the non-asymptotic regime. The system
parameters for which information and energy transmission are
conflicting tasks are also characterized. These results reveal the
central role of the ESP in both the information transmission
rate and the energy transmission rate.

The paper is organized as follows. Sec. II formulates the
problem and introduces the notion of information-energy capa-
city region in the non-asymptotic block-length regime. Sec. III
focuses on the case of binary symmetric memoryless channels
and presents the main results. Sec. IV concludes this work.

II. SYSTEM MODEL

Consider a three-party communication system in which a
transmitter aims at simultaneously sending information to an
information receiver (IR) and energy to an energy harvester
(EH) through a noisy communication medium.
Consider a random transformation (X ,Y × Z, PY Z|X) from
an input alphabet X to an output alphabet Y × Z consisting
in a transition probability kernel PY Z|X . That is, given an
input x ∈ X , the output (y, z) ∈ Y × Z is observed
with probability PY Z|X(y, z|x). With loss of generality, the
noisy communication medium is represented by a memoryless
channel. A memoryless channel is a random transformation

(Xn,Yn ×Zn, PY Z|X), (1)

where n ∈ {1, 2, . . .} is the block length and Y =
(Y1, Y2, . . . , Yn) ∈ Yn, Z = (Z1, Z2, . . . , Zn) ∈ Zn and
X = (X1, X2, . . . , Xn) ∈ Xn are n-dimensional vec-
tors of random variables, such that given an input x =
(x1, x2, . . . , xn), the output (y1, y2, . . . , yn, z1, z2, . . . , zn) is
observed with probability:

PY Z|X(y, z|x) =
n∏
t=1

PY Z|X(yt, zt|xt). (2)

Within this context, two tasks are carried out by the transmit-
ter: (a) the information transmission task; and (b) the energy
transmission task.

A. Information Transmission Task
The message to be sent from the transmitter to the IR is a

realization of a random variable that is uniformly distributed
in {1, 2, . . . ,M}, with 1 < M < ∞. To carry out this task
within n channel uses, the transmitter uses an (n,M)-code.



Definition 1 ((n,M)-code): An (n,M)-code for the random
transformation in (1) is a system

{(u(1),D1), (u(2),D2), . . . , (u(M),DM )} , (3)

where for all (i, j) ∈ {1, 2, . . . ,M}2, with i 6= j,

u(i) = (u1(i), u2(i), . . . , un(i)) ∈ Xn, (4a)
u(i) 6= u(j), (4b)
Di ⊂ Yn (4c)
Di ∩ Dj = ∅; and (4d)
D1 ∪ D2 ∪ . . . ∪ DM ⊆ Yn. (4e)

Given the system in (3), to transmit the message index i,
the transmitter inputs the symbol ut(i) to the channel at time
t ∈ {1, 2, . . . , n}. The IR observes at the end of channel use
t, the output yt. At the end of n channel uses, the IR states
that the symbol i was transmitted if it satisfies the rule:

(y1, y2, . . . , yn) ∈ Di. (5)

The probability of error associated with the transmission of
message index i, denoted by λi ∈ [0, 1], is

λi = Pr [Y ∈ Dc
i | X = u(i)] , (6)

where the probability is with respect to the marginal PY |X of
the joint probability distribution in (2). The average probability
of error, denoted by λ, is

λ =
1

M

M∑
m=1

λm. (7)

Given a parameter ε ∈ [0, 1], the information transmission
task is said to be reliably performed if one of the following
criteria is satisfied:
(a) The average decoding error probability is smaller than ε,
i.e., λ < ε, or
(b) The maximum decoding error probability is smaller than
ε, i.e., for all i ∈ {1, 2, . . . ,M}, λi < ε.
An (n,M)-code that satisfies the first criterion is said to be
an (n,M, ε)-code with average decoding error probability.
Alternatively, an (n,M)-code that satisfies the second criterion
is said to be an (n,M, ε)-code with maximal decoding error
probability.

B. Energy Transmission Task
Let g : Z → R+ be a positive measurable function with

respect to the largest sigma-algebra induced by the set Z and
the Borel sigma-algebra in [0,∞). The amount of energy de-
livered to the EH by the channel outputs z = (z1, z2, . . . , zn),
denoted by Bn, is:

Bn(z) =
n∑
t=1

g(zt). (8)

The objective of the transmitter is to ensure that a minimum
amount of energy b is harvested at the EH at the end of n
channel uses, with b

n > 0, as the average energy transmission
rate in energy units per channel use. An energy shortage is
said to occur when the energy harvested at the EH is less
than the minimum required at the end of the transmission.
The probability of an energy shortage when transmitting the
message symbol i ∈ {1, 2, . . . ,M}, denoted by θi, is:

θi = Pr [Bn(Z) < b | X = u(i)] , (9)

where the probability is with respect to the marginal PZ|X of
the joint probability distribution in (2). The average probability
of energy shortage, denoted by θ, is

θ =
1

M

M∑
i=1

θi. (10)

Given a parameter δ ∈ [0, 1], the energy transmission task is
said to be reliably performed if one of the following criteria
is satisfied:
(c) The average energy shortage probabilityis smaller than δ,
i.e., θ < δ, or
(d) The maximum energy shortage probability is smaller than
δ, i.e., for all i ∈ {1, 2, . . . ,M}, θi < δ.
An (n,M, ε)-code that satisfies the first criterion is said to be
an (n,M, ε, δ, b)-code with average energy shortage probabil-
ity. Alternatively, an (n,M, ε)-code that satisfies the second
criterion is said to be an (n,M, ε, δ, b)-code with maximal
energy shortage probability.

C. Fundamental Limits
The non-asymptotic fundamental limits of SEIT are de-

scribed by the notion of information-energy capacity region.
Definition 2 (Information-Energy Capacity Region): The

information-energy capacity region C ∈ N2 × [0, 1]2 × R
of the random transformation in (1) is the set of all tuples
(n,M, ε, δ, b) for which there exists an (n,M, ε, δ, b)-code
satisfying at least one of the reliability criterion pairs: (a, c);
(a, d); (b, c); or (b, d).

The information-energy capacity region C in Definition 2
is an element of a vector space over R5, which is difficult
to characterize. In this work, given fixed parameters (n, ε, δ),
the focus is on the subset C(n, ε, δ) that contains the pairs
(M, b) ∈ N × R+ such that (n,M, ε, δ, b) ∈ C. Therefore,
if (M, b) ∈ C(n, ε, δ), then the information rate log2(M)

n

bits per channel use; and the energy rate b
n energy units

per channel use are jointly achievable within n channel uses
with a (maximal or average) decoding error probability ε and
(maximal or average) energy shortage probability δ.

The subset C(n, ε, δ) is an element of a vector space
over R2. In order to emphasize the reliability criteria, when
needed, the information-energy capacity region C(n, ε, δ) is
often written as C(a,c)(n, ε, δ), C(a,d)(n, ε, δ), C(b,c)(n, ε, δ) or
C(b,d)(n, ε, δ), respectively. A similar notation is used for the
larger region C.

III. MEMORYLESS BINARY SYMMETRIC CHANNELS

This section focuses on the case in which X = Y = Z =
{0, 1} and the random transformation in (1) is such that for
all x ∈ {0, 1}n, the outputs y ∈ {0, 1}n and z ∈ {0, 1}n are
observed with probability:

PY Z|X(y, z|x) =
n∏
t=1

PY |X(yt|xt)PZ|X(zt|xt), (11)

where for all (x, y, z) ∈ {0, 1}3,

PY |X(y|x)=α11{x 6=y} + (1− α1)1{x=y}, (12)
PZ|X(z|x)=α21{x 6=z} + (1− α2)1{x=z}, (13)

and α1 ∈ [0, 12 ) and α2 ∈ [0, 12 ) are the crossover probabilities
of the channel. Let

b0 = g(0) > 0 and b1 = g(1) > 0, (14)



be the energy harvested when the output of the channel at
the EH is 0 and 1, respectively. The case in which b0 = b1
is trivial, since the harvested energy is always nb1 = nb0
energy units, independently of the codebook. This implies that
the information transmission task can be carried out without
taking into account the energy transmission task. Hence, for
avoiding the trivial cases, the following assumption is adopted
without loss of generality:

b1 < b0. (15)

For all z ∈ {0, 1}n, it follows that

Bn(z)=b0N(0|z) + b1N(1|z) (16)
=(b0 − b1)N(0|z) + nb1, (17)

where N(0|z) and N(1|z) are the number of zeros and ones
in the vector z, respectively. Note that Bn(z) is bounded for
all z ∈ Zn, i.e.,

nb1 6 Bn(z) 6 nb0. (18)

The inequalities in (18) imply that there exists a case in
which energy transmission might occur with zero (maximal
or average) energy shortage probability at a given energy rate
b
n 6 b1. This is because, the event Bn(Z) < nb1 is observed
with zero probability. Basically, transmitting any symbol,
either zero or one, is indifferent from the energy transmission
perspective. In this case, the information transmission task can
be carried out independently of the energy transmission task
given that nb1 energy units can always be reliably transmitted
in n channel uses. Alternatively, any energy transmission rate
b
n > b0 cannot be achieved with an average or maximal energy
shortage probability strictly smaller than one. This is also due
to (18).

Given an (n,M)-code described by the system in (3), let the
empirical probability distribution of the channel input symbols
induced by the codeword u(i) be denoted by P̄ (i)

X such that

P̄
(i)
X (0) = 1− P̄ (i)

X (1) =
1

n

n∑
t=1

1{ut(i)=0}, (19)

for all i ∈ {1, 2, . . . ,M}. Let also the empirical distribution
of the channel input symbols jointly induced by all codewords
be denoted by P̄X(0) such that

P̄X(0) = 1− P̄X(1) =
1

nM

M∑
i=1

n∑
t=1

1{ut(i)=0}. (20)

Using these empirical distributions some upper bounds can
be obtained on both the energy and information transmission
rates.

A. An Upper Bound on the Energy Rate of (n,M)-Codes

Define Q : R → [0, 1] as the complementary cumulative
distribution function of the standard normal distribution, and
define Q−1 : (0, 1)→ R as the functional inverse of Q. Using
this notation, the following lemma provides an upper bound
on the number of energy units b that can be reliably delivered
by any given (n,M)-code with an average or maximal energy
shortage probability δ ∈ (0, 1).

Lemma 1: Given any (n,M)-code of the form in (3)
for the random transformation in (1) satisfying (15), with

maximal energy shortage probability δ, it holds that for all
i ∈ {1, 2, . . . ,M}, the energy rate b must satisfy:

b<n

Å
(b0 − b1)

(
(1− 2α2) P̄

(i)
X (0) + α2

)
+ b1

ã
−
»
n(b0 − b1)2α2(1− α2)Q−1(δ)

−
…
π

2
(b0 − b1)

Å
(1− α2)2 + α2

2

ã
. (21)

whereas with average energy shortage probability δ, the
energy rate b must satisfy:

b<n

Å
(b0 − b1)

(
(1− 2α2) P̄X(0) + α2

)
+ b1

ã
−
»
n(b0 − b1)2α2(1− α2)Q−1(δ)

−
…
π

2
(b0 − b1)

Å
(1− α2)2 + α2

2

ã
. (22)

Proof of Lemma 1: Note that taking into account the
reliability criterion (d), it follows that b must satisfy, for all
i ∈ {1, 2, . . . ,M},

b < sup
{
a > 0 : ∀i Pr [Bn(Z) < a | X = u(i)] < δ

}
, (23)

where the probability operator in (23) applies with respect
to the marginal PZ|X of the joint distribution in (11). Note
also that the random variable B(Z) in (23) is the sum of
the n binary random variables 1{Zt=0}, where Zt follows the
distribution PZ|X=ut(i). That is,

Pr [Bn(Z) < a | X = u(i)] =

Pr

[
n∑
t=1

1{Zt=0} <

Å
a− nb1
b0 − b1

ã]
.

Hence, from the Berry-Essen theorem [18], it follows that for
all i ∈ {1, 2, . . . ,M}:

Pr [Bn(Z) < a | X = u(i)] 6
(1− α2)2 + α2

2

2
√
nα2(1− α2)

+Q

Ñ
n
Ä
(1− 2α2)P̄

(i)
X (0) + α2

ä
− a−nb1

b0−b1√
nα2(1− α2)

é
. (24)

Note that the right-hand side of (24) is monotonically increas-
ing with a. Hence, the supremum on the right-hand side of
(23) can be approximated by the value of a > 0 that satisfies

n
Ä
(1− 2α2)P̄

(i)
X (0) + α2

ä
− a−nb1

b0−b1√
nα2(1− α2)

= Q−1

(
δ − (1− α2)2 + α2

2

2
√
nα2(1− α2)

)
. (25)

The expression above yields (21) by solving for a. A similar
procedure can be performed to prove (22). This completes the
proof.
For fixed parameters (n, α2, δ, b0, b1), let ρ∗ : R+ → R+ be
defined as

ρ∗(b) = min
(
1, ρ+(b)

)
, (26)



with

ρ+(b) =Å
b−nb1
n(b0−b1) − α2 +

»
α2(1−α2)

n Q−1(δ) +
√

π
2

Å
(1−α2)

2+α2
2

n

ãã+
1− 2α2

.

Using this notation, the following corollary is an immediate
result from Lemma 1.

Corollary 1: Consider two (n,M, ε, δ, b)-codes of the form
(3) for the random transformation in (1), one with average
energy shortage probability and another one with maximal
energy shortage probability. Then, the empirical input distri-
bution P̄X of the former satisfies

P̄X(0)>ρ∗(b), (27)

whereas the empirical input distribution P̄ (i)
X of the latter with

respect to codeword u(i) satisfies for all i ∈ {1, 2, . . . ,M},

P̄
(i)
X (0)>ρ∗(b), (28)

where ρ∗(b) is defined in (26).
Corollary 1 leads to interesting conclusions by noticing

that ρ∗(b) is a lower bound on the fraction of zeros in each
codeword (maximal energy shortage probability) or the frac-
tion of zeros among all codewords (average energy shortage
probability) when energy is transmitted at an average energy
rate b

n .
First, note that the input distribution that achieves the largest

information transmission rate is the uniform distribution [16].
That is, P̄X(0) = 1 − P̄X(1) = 1

2 . Hence, from Corollary
1, it follows that for fixed parameters (n, δ, α2, b0, b1), when
ρ∗(b) 6 1

2 , there always exists an (n,M, ε, δ, b)-code for
which there is no penalty in terms of information rate due
to energy transmission. The following corollary describes this
observation.

Corollary 2: Given the random transformation in (1) and
fixed parameters (n, δ, α2, b0, b1) satisfying (15) and

b6n
Å
b0 + b1

2

ã
−
»
n (b0 − b1)

2
α2(1− α2)Q−1(δ)

−
…
π

2
(b0 − b1)

(
(1− α2)2 + α2

2

)
, (29)

there always exists an (n,M, ε, δ, b)-code for which there is
no trade-off between energy and information rates.

Essentially, Corollary 2 determines a threshold on the num-
ber of energy units b below which the energy transmission
task is no longer conflicting with the information transmission
task. Interestingly, this holds independently of whether the
average or maximal energy shortage probability is considered.
That is, under the conditions of Corollary 2, (n,M, ε, δ, b)-
codes with average or maximal energy shortage probability
can be designed by exclusively considering the information
transmission performance.

Secondly, for fixed parameters (n, δ, α2, b0, b1), if ρ∗(b) =
1, no information transmission is feasible at strictly positive
rate. This is basically because there is only one feasible code-
word: an n-dimensional vector with zero entries. Moreover,
when ρ∗(b) > 1, either information or energy transmission
at a positive rate is impossible because even the codeword
with all zero entries is unable to meet the number of energy
units b with (maximal or average) energy shortage probability
δ strictly smaller than one. The following corollary describes
this observation.

Corollary 3: Given the random transformation in (1) and
fixed parameters (n, δ, α2, b0, b1) satisfying (15) and

b>n
(
(1− α2)b0 + α2b1

)
−
»
n (b0 − b1)

2
α2(1− α2)Q−1(δ)

−
…
π

2
(b0 − b1)

(
(1− α2)2 + α2

2

)
, (30)

there does not exist an (n,M, ε, δ, b)-code with M > 1. If the
inequality is strict, there does not exist an (n,Mε, δ, b)-code
with δ < 1.

Finally, for the parameters that do not satisfy the conditions
in Corollary 2 or Corollary 3, both information and energy
can be simultaneously and reliably transmitted with a partic-
ular trade-off. The following sections explore this conflicting
interaction.

B. An Upper Bound on the Information Rate of (n,M)-Codes
The following proposition describes a bound on M the

number of different codewords in a given system of the form
in (3). This bound does not take into account the decoding
error probability and thus, it might be loose in some cases.
However, for parameters that do not satisfy the conditions in
Corollary 2 and Corollary 3, this bound might be tight.

Proposition 1: Given the random transformation in (1),
fixed parameters (n, δ, α2, b0, b1) satisfying (15), and b not
satisfying (29) and (30), it holds that for any (n,M)-code
with either reliability criterion pair (a,d) and (b,d):

M 6

Ç
n

dnρ∗(b)e

å
2(n−dnρ

∗(b)e), (31)

where ρ∗(b) is defined by (26).
Proof of Proposition 1: Corollary 1 provides an approx-

imation to the minimum number of zeros in each codeword in
any given (n,M, ε, δ, b)-code with average or maximal prob-
ability of energy shortage. That is, for all i ∈ {1, 2, . . . ,M}
if follows that:

N(0|u(i)) > dnρ∗(b)e. (32)

This immediately provides the upper-bound on M the number
of different codewords in (3), given that all codewords must
contain at least dnρ∗(b)e zeros. Hence, the right-hand side
of (31) is the maximum number of codewords of length n
for which at most n − dnρ∗(b)e symbols can be ones. This
completes the proof.

Note that when ρ∗(b) ∈ ( 1
2 , 1], the upper-bound (31) on

M is monotonically decreasing with b. The following section
provides the joint analysis of both information and energy
transmission rates.

C. An Approximation to the Information-Energy Capacity
Region

This section provides an approximation to the information-
energy capacity region C(n, ε, δ) for fixed parameters (n, ε, δ).
The approximation consists of the description of two regions,
i.e., an achievable region C(n, ε, δ) and a converse region
C̄(n, ε, δ), that satisfy the following inclusion:

C(n, ε, δ) ⊆ C(n, ε, δ) ⊆ C(n, ε,δ). (35)

Let the probability mass function of a multinomial distribu-
tion with k possible outcomes with probabilities p1, p2, . . ., pk
and n trials be denoted by fk,n(x1, x2, . . . , xk; p1, p2, . . . , pk).
Let the function ψ : N2 × [0, 1]→ [0, 1] be defined as

ψ(n, `, α) =
`−1∑
`0=0

Ç
n

`0

å
αn−`0(1− α)`0 . (36)



φ(n,M∗, ρ, α1) =min

[
1, (M∗ − 1)

n∑
`0=0

`0∑
`1=0

n−`0∑
`2=0

`1+`2∑
`3=0

`0∑
`4=0

Ç
`0
`4

åÇ
n− `0
`3 − `4

å
ρn−`0−`3+2`4(1− ρ)`0+`3−2`4

f4,n (`1, `0 − `1, n− `1 − `2 − `3, `2; ρ(1− α1), (1− ρ)α1, α1ρ, (1− α1)(1− ρ))

]
(33)

χ(n, ρ, α,B∗, b0, b1)=min

[
1,

n∑
t=1

Ç
n

t

å
ρt(1− ρ)n−tQ

(
(1− 2α2)t+ nα2 − B∗−nb1

b0−b1√
nα2(1− α2)

)
+

(1− α2)2 + α2
2

2
√
nα2(1− α2)

]
(34)

Using this notation, the following theorems describe the sets
C(n, ε, δ) and C(n, ε, δ).

Theorem 1 (A Converse Region): Given fixed parameters
(n, ε, δ), the information-energy capacity region C(n, ε, δ) of
the random transformation in (11), with b0 and b1 satisfying
(15), is contained into the set

C̄(n, ε, δ) =
{

(M, b) ∈ N×R+ : M < M(b) and b < B+
}
,

(37)
where

B+=n

Å
(1− α2)b0 + α2b1

ã
−
»
n(b0 − b1)2α2(1− α2)Q−1(δ)

−
…
π

2
(b0 − b1)

Å
(1− α2)2 + α2

2

ã
. (38)

and

M(b) = min

[
1

(1− µ)ψ(n,L, 12 ) + µψ(n,L+ 1, 12 )
, (39)Ç

n

dnρ∗(b)e

å
2(n−dnρ

∗(b)e)

]
(40)

with µ ∈ [0, 1] and L ∈ N chosen to satisfy

(1− µ)ψ(n,L, α1) + µψ(n,L+ 1, α1) = 1− ε. (41)

Theorem 2 (An Achievable Region): Given fixed parameters
(n, ε, δ), the information-energy capacity region C(n, ε, δ) of
the random transformation in (11), with b0 and b1 satisfying
(15), contains the set

C(n, ε, δ) = {(M, b) ∈ N×R+ : M < M∗ and b < B∗} ,
(42)

where M∗ is the largest natural that satisfies

φ(n,M∗, ρ, α1) < ε, (43)

and B∗ is the largest real that satisfies

χ(n, ρ, α2, B
∗, b0, b1) < δ, (44)

for some ρ ∈ [0, 1]. The functions φ and χ are defined in (33)
and (34), respectively.

IV. CONCLUSIONS

In this paper, the fundamental limits of SEIT have been stud-
ied under the assumption that the transmission occurs during
a finite number of channel uses at the expense of strictly pos-
itive DEP and ESP. From this perspective, a non-asymptotic
fundamental limit has been introduced: the information-energy
capacity region. That is, the largest set of jointly achievable

energy and information rates. The focus is on the case of one
transmitter, one IR and one EH communicating via binary
symmetric memoryless channels. In this case, the information-
energy capacity region is approximated and the information-
energy transmission trade-off is thoroughly studied.
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