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The latest release of the Crystal program for solid state quantum-mechanical ab initio simula-
tions is presented. The program adopts atom-centered Gaussian-type functions as a basis set, which
makes it possible to perform all-electron as well as pseudopotential calculations. Systems of any
periodicity can be treated at the same level of accuracy (from 0D molecules, clusters and nanocrys-
tals, to 1D polymers, helices, nanorods and nanotubes, to 2D monolayers and slab models for
surfaces, to actual 3D bulk crystals), without any fictitious repetition along non-periodic directions
for 0-2D systems. Density functional theory calculations can be performed with a variety of func-
tionals belonging to several classes: local-density (LDA), generalized-gradient (GGA), meta-GGA,
global hybrid, range-separated hybrid and self-consistent system-specific hybrid. In particular, hy-
brid functionals can be used at a modest computational cost, comparable to that of pure LDA and
GGA formulations, because of the efficient implementation of exact non-local Fock exchange. Both
translational and point-symmetry features are fully-exploited at all steps of the calculation, thus
drastically reducing the corresponding computational cost. The various properties computed en-
compass electronic structure (including magnetic spin-polarized open-shell systems, electron density
analysis), geometry (including full or constrained optimization, transition-state search), vibrational
properties (frequencies, infrared and Raman intensities, phonon density of states), thermal proper-
ties (quasi-harmonic approximation), linear and non-linear optical properties (static and dynamic
(hyper)polarizabilities), strain properties (elasticity, piezoelectricity, photoelasticity), electron trans-
port properties (Boltzmann, transport across nanojunctions) as well as X-ray and inelastic neutron
spectra. The program is distributed in serial, parallel and massively parallel versions. In this paper,
the original developments that have been devised and implemented in the last four years (since the
distribution of the previous public version, Crystal14, occurred in December 2013) are described.

I. INTRODUCTION

Quantum-mechanical simulations based on the
density-functional-theory (DFT) do represent an ef-
fective mean to the prediction and characterization at
the atomistic scale of several properties of materials.1–3

The detailed chemical and physical insight provided
by first-principle theoretical simulations is increasingly
acknowledged by a broad community so that the com-
putational approach has recently become a standard
complementary tool to the experimental characterization
in many fields of research.
An obvious prerequisite to the effectiveness and

popularity of quantum-mechanical simulations in a
solid state context is the availability of general-purpose,
numerically-robust, user-friendly, computationally-
efficient programs. In this paper, the functionalities of
one such program, namely Crystal17, are illustrated.
In particular, the new developments and improvements
with respect to the previous major release of the
program, Crystal14,4 are discussed into detail.
At variance with most other programs for solid state

applications, in Crystal use is made of atom-centered
Gaussian-type functions as a basis set.5 All-electron or
valence-only basis sets with effective core pseudopoten-

tials can be used. Both Hartree-Fock (HF) and DFT
calculations can be performed. Systems periodic in one
dimension (1D polymers, helices, nanotubes, nanorods),
two dimensions (2D monolayers, slab models for sur-
faces) and three dimensions (3D bulk crystals and amor-
phous materials through a super-cell approach) can be
treated. As a limit case, non-periodic molecular systems
(0D molecules, clusters, fullerenes, nanocrystals) can also
be studied at the same level of theory and with the same
numerical accuracy. Closed-shell as well as spin-polarized
systems can be investigated. Both translational invari-
ance and point-symmetry are thoroughly exploited at all
steps of the calculation.6–8 A schematic overview of the
features of Crystal is given in Figure 1. The main new
features of Crystal17 are highlighted in the figure, sum-
marized below, and discussed into detail in Section II.

The Direct Inversion of Invariant Subspace (DIIS)
convergence accelerator has been implemented for
the self-consistent-field (SCF) procedure and for
first- and second-order Coupled-Perturbed-Hartree-
Fock/Kohn-Sham (CPHF/KS) self-consistent proce-
dures. The use of such a scheme is found to drastically
reduce the required number of iterations to get conver-
gence and is thus activated by default.

A fully-automated algorithm has been devised to com-
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pute quasi-harmonic thermal properties of solids beyond
the harmonic approximation. The quasi-harmonic ap-
proximation (QHA) takes into explicit account the de-
pendence of vibration phonon frequencies on volume
and allows to compute volume-dependent thermody-

namic properties such as the thermal expansion coef-
ficient, constant-pressure (versus constant-volume har-
monic) thermodynamic functions, thermal dependence of
bulk modulus, etc.

FIG. 1: Detailed list of features of the Crystal program. For each topic, the new developments made in the Crystal17 major
release are highlighted in the darker boxes at the bottom.

A user-friendly (input parameter-free) implementation
of Grimme’s -D3 correction for the inclusion of weak
dispersive interactions into DFT functionals has been
made, which proves particularly suitable for the study
of molecular, organic crystals and adsorption phenom-
ena. The geometrical counterpoise (gCP) scheme to au-
tomatically correct for the basis-set-superposition-error
(BSSE) in structural optimizations of molecular organic
crystals has also been implemented. By combining the
-D3 and gCP corrections, the newly-proposed composite
HF-3c and PBEh-3c methods have been made available
specifically targeted to molecular crystals.

The extension of first-order CPHF/KS equations to

the description of dynamic (i.e. electric field frequency-
dependent) polarizabilities and first-hyperpolarizabilities
has been achieved, which makes it possible to simulate
the second harmonic generation (SHG) and Pockels ten-
sors.

New algorithms for the description of strain-related
properties of materials have been devised allowing for:
i) the calculation of the fourth-rank elastic tensor (and
derived elastic properties) under pressure; ii) a thorough
characterization of the anisotropic distribution of phase
and group acoustic wave velocities, as well as of the re-
lated power flow angles and enhancement factors; iii)
the analytical evaluation of the direct piezoelectric ten-
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sor through a CPHF/KS approach; iv) the evaluation
of the nuclear-relaxation term of elastic and piezoelec-
tric tensors through the internal-strain tensor rather than
through numerical geometry optimizations of atomic po-
sitions at strained configurations; v) the calculation of
the piezo-optic tensor of crystals of any symmetry, which
measures the variation of the dielectric response induced
by an external stress.
One of the peculiar features of the Crystal program

is given by the high computational efficiency with which
hybrid functionals (i.e. including a fraction of exact
non-local HF exchange) of the DFT are treated. Hy-
brid calculations in the Crystal program are only 2-3
times more computationally demanding than pure DFT
ones both in terms of time and memory occupancy. A
new family of hybrid functionals has been implemented:
self-consistent hybrids, where a system-specific optimal
fraction of exact exchange is automatically defined as
inversely proportional to the dielectric response of the
system. The applicability of a bunch of range-separated
hybrid functionals has also been extended to CPHF/KS
calculations.
The Crystal program can be run in sequential mode

and in two parallel modes: a replicated-data parallel one
and a distributed-data massively-parallel one. The latest
improvements as regards parallel scalability are discussed
and an overview is presented of recent studies where the
parallel versions of the program are used to study large
systems in an effort to try to extend the applicability
domain of DFT simulations for solids to more complex
and possibly more realistic structural models.
The Hirshfeld-I partitioning scheme for the electron

charge density has been implemented, which provides a
further measure of atomic charges with respect to the pre-
viously available Mulliken, Born and Bader approaches.
The X-ray diffraction spectrum can also be computed.
Total and atom-projected vibrational densities-of-

states can now be computed both from a Γ-only vibration
frequency calculation (to be used for large cell systems)
and from a phono-dispersion calculation. The neutron-
weighted phonon density-of-state is also computed, which
can be compared to inelastic-neutron-scattering (INS)
spectra.
Algorithms have been developed for the calculation of

some electronic transport properties (such as the elec-
tronic conductivity, the Seebeck effect, the electronic
contribution to the thermal conductivity) according to
Boltzmann’s semiclassical transport theory.

II. NEW FEATURES

A. DIIS for Improved SCF and CPHF/KS
Convergence

The Direct Inversion of Invariant Subspace (DIIS) is
a powerful technique to accelerate the SCF convergence.
Initially proposed by Pulay in 1984,9,10 it gained consid-

erable reputation during the last 30 years. In previous
versions of the Crystal code, a Fock matrix damping,
in conjunction possibly with eigenvalue shifting, was
used as a default. Modified Broyden11 and Anderson12

convergence accelerators were also available.
Let us consider an SCF iterative procedure. Cycle n
starts with the definition of a density matrix Dn(k),
either obtained as an initial guess (at cycle 0) or from
eigenvectors of the previous cycle. A Fock matrix Fn(k)
is then obtained from this density matrix, and then
diagonalized at each k point of the First Brillouin Zone
to obtain the new eigenvectors Cn(k). These form
the Dn+1(k) density matrix, and so on. In the DIIS
procedure, at each iterative cycle n, instead of the Fock
matrix Fn(k), an averaged effective Fock matrix is
generated as a linear combination of the Fock matrices
of previous iterations:

Fn =
n
∑

i=1

ciFi . (A.1)

The ci coefficients are obtained by minimizing a suit-
able error functional e, subject to the constraint that
∑n

i=1 ci = 1. This is obtained by solving the linear
equation system:

(

e 1T

1 0

)(

c

λ

)

=

(

0

1

)

, (A.2)

where e is an error matrix having the size of the iterative
space up to cycle n and λ is a Lagrange multiplier. The
error matrix is defined through scalar products of suitable
error vectors in the Γ point (k = 0) of the Brillouin zone:

enm =< en(Γ)|em(Γ) > . (A.3)

Other choices are possible (such as considering all k

points, either with equal weight or weighted by Kerker
factors13 to avoid charge sloshing) but the above has been
identified as the best default choice since it works well in
most cases and minimizes the amount of information to
be stored on disk.14 According to Pulay’s commutator-
DIIS (CDIIS) formulation,10 we define the error vector
for the SCF procedure as:

en(k) = Fn(k)Dn(k)S(k) − S(k)Dn(k)Fn(k) , (A.4)

where S(k) is the overlap matrix. In the case of peri-
odic systems, the CDIIS formulation is particularly con-
venient, with respect to Eq. (A.5) below, since it allows
the number of occupied orbitals in a given k point to
change from one iteration to another. Hence, in the case
the system is conducting, or is an insulator that passes
through a conducting state during the SCF iteration, it
allows the “sloshing” of electronic charge through the
Brillouin zone. Eq. (A.4) is the one implemented in
Crystal17 for the SCF procedure.



4

FIG. 2: Average SCF cycles needed to reach convergence
with (green bars) and without (blue bars) DIIS convergence
accelerator, as benchmarked on a test set of 42 periodic sys-
tems, grouped in 7 categories. MOF stands for Metal-Organic
Frameworks and M/O for Metal/Oxide Interfaces. The right-
most column reports the global average. For more details see
text.

In Figure 2 we report the effect of the DIIS acceler-
ator as compared with the Fock mixing + level shifting
scheme that was default in Crystal14, benchmarked on
a representative test set of 42 periodic systems. The test
set is described in detail in Ref. 14 and comprises 3D,
2D and 1D periodic systems, with basis sets ranging from
minimal to quadruple-zeta. The 42 systems are equally
divided in 7 groups according to their physico-chemical
properties (molecular crystals, semiconductors, metals,
oxides, nanostructures, magnetic solids, metal-organic
frameworks and metal-oxide interfaces). Within each
group Hartreee-Fock and 5 different functionals (LDA,
PBE, PBE0, B3LYP, HSE06) were adopted. In all cases
DIIS and NODIIS converged to the same solution, even
though Fock mixing percentage had to be raised from
30% to 60% or even 90% in order to obtain convergence
for the NODIIS case, for some systems. The threshold
for convergence on energy was set in all cases to 10−10

Hartree.

It is easily seen from the rightmost bars of Fig. 2 that
more than a factor of 3 in the number of SCF cycles
is gained on average. The gain is consistent through-
out the test set (in fact, in all cases DIIS is faster), and
it is definitely more pronounced in the case of metallic
systems, nanostructures (which includes graphene and
carbon nanotubes) and magnetic systems.

The Coupled-Perturbed Hartree-Fock/Kohn-Sham
(CPHF/KS) iterative procedure for the response to
an external electric field E is similar to the SCF one

FIG. 3: Average CPHF and CPHF2 cycles needed to reach
convergence with (red bars) and without (orange bars) DIIS
convergence accelerator, as benchmarked on a test set of 25
periodic systems. White numbers reported on the bars in-
dicate the number of calculations which reached convergence
over the total of 25.

outlined above, except that a density matrix perturbed
by a field along Cartesian direction t is obtained at each
cycle, DEt

n (k). A perturbed Fock matrix is built and
used to improve the perturbation matrix, without any
diagonalization. For obtaining the formulation of the
CPHF-DIIS error vector, it is convenient to start from
the most general definition of the error vector:

|en(k) >=
[

Gn(k)
]OV

= CO †
n (k)Fn(k)C

V
n (k) , (A.5)

where O and V superscripts indicate occupied and virtual
blocks, respectively. Eq. (A.5) is completely equivalent
to Eq. (A.4) if the orbital occupation does not change
during the iterations, and this is precisely the case of
CPHF/KS iterations, which apply a perturbative treat-
ment to the already converged SCF solution. On the
other hand, Eq. (A.5) is formally simpler than (A.4) and
then easier to differentiate.
Then, the error vectors for the first– and second–order

coupled perturbed procedures are obtained as:

|e(Eu)
n (k) > = ∂|en(k)>

∂Eu
(A.6)

|e(Eu,Ev)
n (k) > = ∂|en(k)>

∂Eu∂Ev
. (A.7)

The full derivation and operative expression of such er-
ror vectors is provided in Ref. 14. Once computed,

|e(Eu)
n (k) > or |e(Eu,Ev)

n (k) > can be plugged in Eq. (A.3)
so to obtain the DIIS error matrix and solve the linear
equation system (A.2), identically as in the case of SCF
iterations. Also in the case of CPHF/KS it turns out that
the Γ-point only formulation of the error vector is suffi-
cient for optimal performance and much more efficient
from the point of view of information storage.14

In Figure 3 we report the average number of CPHF and
CPHF2 cycles needed to reach convergence, as bench-
marked on a subset of 25 of the 42 systems of Figure
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2. The restriction of the set was mainly dictated by the
impossibility of applying CPHF to conducting systems,
and by the fact that functional derivatives for the range-
separated HSE06 functional are not yet implemented in
the code. Threshold on polarizability and second hyper-
polarizability values was set to 10−4 a.u. Figure 3 shows
that, roughly speaking, a factor of 3 is gained in CPHF,
and of 2 in CPHF2. Most importantly, the DIIS proce-
dure guaranteed convergence in all cases, which was not
possible adopting the Fock damping scheme, not even
with very high values of the damping percentage.

B. Thermal Properties through the
Quasi-harmonic Approximation

Thermodynamic properties of solids can be computed
with standard quantum-mechanical techniques by solv-
ing the lattice dynamics of the system and by applying
the laws of statistical thermodynamics, through the def-
inition of a canonical partition function. In a solid state
context, the harmonic approximation (HA) to the lattice
potential is usually adopted in the description of nuclear
vibrations, which, as long as very light atoms (such as
H, He, Li) are not present, provides a rather satisfactory
description of most spectroscopic features of infrared, Ra-
man and neutron-scattering spectra of materials.15–27

However, when it comes to thermodynamic properties,
the limitations of the HA for solids are well-known. In-
deed, the harmonic vibrational contribution to the in-
ternal energy of a crystal turns out to be independent
of volume and thus many physical properties could not
be properly described at this level of theory: i) thermal
expansion would be null, ii) elastic constants would be
independent of temperature, iii) constant-pressure and
constant-volume thermodynamic properties (such as spe-
cific heat and entropy) would coincide with each other,
iv) nuclear thermal conductivity would be infinite as well
as phonon lifetimes, etc.28,29

In order to go beyond most of the above-mentioned
limitations of the HA, the so-called quasi-harmonic ap-
proximation (QHA) can be invoked, which, due to its for-
mal simplicity and relatively low computational cost, rep-
resents an effective method of choice for describing many
anharmonic features of solids. The QHA essentially in-
troduces the explicit volume dependence of phonon fre-
quencies by retaining the simple harmonic expression for
the Helmholtz free energy of the system (i.e. normal
modes are still harmonic and independent of one another
but now depend on volume):30,31

FQHA(T, V ) = UZP
0 (V )+kBT

∑

kp

[

ln

(

1− e
−

~ω
kp(V )

kBT

)

]

,

(B.1)
where kB is Boltzmann’s constant and UZP

0 (V ) is the
zero-temperature internal energy of the crystal which in-
cludes the zero-point energy of the system: EZP

0 (V ) =
∑

kp ~ωkp(V )/2. The equilibrium volume V (T ) at a

given temperature T is obtained by minimizing the
isothermal Helmholtz free energy of Eq. (B.1) with re-
spect to volume by keeping T as a fixed parameter. A
volumetric thermal expansion coefficient αV (T ) can be
defined as:

αV (T ) =
1

V (T )

(

∂V (T )

∂T

)

P=0

. (B.2)

The temperature-dependent isothermal bulk modulus of
the system,KT (T ), can also be obtained as an isothermal
second derivative of Eq. (B.1) with respect to the volume:

KT (T ) = V (T )

(

∂2FQHA(V ;T )

∂V 2

)

T

. (B.3)

The adiabatic bulk modulus KS(T ) can also be evaluated
within the QHA.32 From the knowledge of V (T ), α(T )
andKT (T ), the difference between constant-pressure and
constant-volume specific heats can also be computed at
each temperature as:33

CP (T )− CV (T ) = α2
V (T )K(T )V (T )T . (B.4)

The QHA also allows for combining pressure and tem-
perature effects on structural, elastic and thermodynamic
properties of materials. By differentiating Eq. (B.1) with
respect to the volume and changing sign, the thermal
pressure is obtained:

P (V ;T ) = −∂F
QHA(V ;T )

∂V
, (B.5)

which can be used to evaluate the equilibrium volume,
bulk modulus and thermodynamic functions at simulta-
neous high pressures and temperatures. The anisotropic
thermal expansion of crystals can also be determined,
by optimizing the lattice parameters with respect to the
purely internal energy E at different volumes. In princi-
ple, a more accurate description of the anisotropic ther-
mal expansion would be achieved by optimizing with re-
spect to the free energy F ,34,35 which, however, would
require a much larger set of calculations to be performed
and would seldom result in significant changes.
Temperature-dependent elastic constants could also be

obtained within the QHA as second free energy den-
sity derivatives with respect to the strain: CT

vu(T ) =
1/V (T )[∂2F/(∂ηv∂ηu)], which, however, would require
the costly calculation of phonons at several strained
lattice configurations.36 A simpler way to obtain those
thermo-elastic quantities is represented by the so-called
quasi-static approximation (QSA),37,38 which, taking ad-
vantage of the V (T ) relation obtained through the QHA,
consists in evaluating static internal-energy E derivatives
at the volume corresponding to the desired temperature:
CT

vu(T ) ≈ 1/V (T )[∂2E/(∂ηv∂ηu)].
A fully-automated scheme for computing the above-

mentioned quasi-harmonic properties of crystals has been
implemented in the new version of the Crystal pro-
gram, which relies on computing and fitting harmonic
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FIG. 4: Thermal expansion coefficient of MgO periclase as
determined experimentally42–44 (black symbols) and through
quasi-harmonic lattice dynamical simulations40 (black line).
The QHA is expected to be valid only up to the tempera-
ture (marked by a vertical red dashed line) above which the
computed thermal expansion coefficient starts deviating from
linearity (the linear region is marked by a blue line).

vibration frequencies at different volumes (four volumes
being enough for most systems) after having performed
volume-constrained geometry optimizations.32,39–41 The
implemented algorithm requires a single calculation to be
performed to get the whole set of thermal properties of
the system.
It is worth stressing that the validity domain of the

QHA (i.e. the temperature range in which it is expected
to provide a reliable description of such thermodynamic
properties) is strongly system-dependent and can hardly
be expressed as a general function of the Debye temper-
ature, θD, or melting temperature, TM , of a material; it
rather appears to be related to the chemical nature of the
bond framework of the structure. In general, one might
just expect that the weaker the interatomic interactions,
the softer the phonon modes, the larger the intrinsic an-
harmonic effects and the smaller the validity domain.45

If the validity domain of the QHA can not be predicted a
priori, it can be determined a posteriori, according to the
strategy sketched in Figure 4: i) the “high-temperature”
linear behavior of the computed quasi-harmonic thermal
expansion coefficient has to be identified (blue line in
the figure); ii) the temperature above which the com-
puted coefficient starts deviating from linearity (vertical
red line in the figure) marks the upper-bound of the va-
lidity domain of the QHA. Above that temperature, an
explicit treatment of the intrinsic anharmonicity of the
potential (i.e. cubic and quartic terms mainly) would be
required to get a reliable description of thermal features.
It is worth mentioning that an external applied pressure
tends to suppress down explicit anharmonic terms and
thus to widen the applicability domain of the QHA with
respect to the zero pressure case.32,41

The fully-automated implementation of the QHA in
the Crystal program has been applied to study sev-
eral thermal properties (structural, elastic, thermody-
namic, electronic) of various systems with different
chemical features in the last couple of years: fully-
covalent diamond,39 ionic MgO and CaO,40 LiF,46

mixed ionic/covalent corundum α-Al2O3,
32 forsterite α-

Mg2SiO4,
41 calcium stannate CaSnO3,

47 and the molecu-
lar crystals of urea, purine and carbamazepine.48–50 Some
considerations can be done: i) in all cases, the evaluation
of the vibration frequencies at just 4 volumes ensured
stable and reliable results; ii) at variance with the de-
termination of absolute values of constant-volume ther-
modynamic functions (which requires phonon dispersion
to be carefully taken into account), the volume depen-
dence of such thermodynamic quantities shows a fast
convergence with respect to phonon dispersion sampling
so that Γ-only vibration frequencies are enough for the
latter in most systems; iii) again, at variance with their
absolute values, the volumetric and thermal dependence
of structural, elastic and thermodynamic properties of
solids is found to be rather insensitive to the particular
exchange-correlation functional used (with a slight sys-
tematic underestimation of the thermal expansion at the
LDA level).

C. Dispersion-corrected Functionals and
Composite Methods for Molecular Crystals

The proper description of noncovalent interactions re-
quires the inclusion of long-range electron correlation ef-
fects that are missing in both HF and DFT methods.
In particular, the treatment of the weak London forces is
crucial because of their attractive and ubiquitous nature.
They play a crucial role in many phenomena as for in-
stance crystal packing of molecular solids, physisorption
of molecules on surfaces or in microporous materials and
interlayer interactions in layered materials.51 A way to
account for the missing dispersion energy in DFT is to
augment the total energy as computed for a given density
functional approximation with a dispersion term:51,52

EDFT−D = EDFT + EDisp . (C.1)

An efficient and cost-effective approach is to use a sim-
ple atom-atom (e.g. 2-body) correction that includes the
long-range dispersion energy through the asymptotic se-
ries (i.e. −C6/R

6 − C8/R
8 − C10/R

10 − ...) as:

EDisp = −
∑

AB

∑

n=6,8,10

(

CAB
n

Rn
AB

)

. (C.2)

In the new version of the code, the Grimme’s DFT-D2
semiclassical dispersion correction53,54 has been extended
to the more recent DFT-D3 approach,55 as implemented
in a fully-automated way, which requires no definition of
any input parameter by the user.
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When using atom-centered basis sets, as in Crystal,
artificial dispersion mimicking effects can be present due
to the basis set superposition error (BSSE) between inter-
acting fragments. Indeed, BSSE gives a spurious extra-
binding that mimics the dispersion energy and incon-
sistently sums to the dispersion correction. This be-
comes more relevant when small-to-medium size basis
sets are employed and the system size increases. An
empirical correction to BSSE for HF and DFT calcula-
tions has been recently proposed by Kruse and Grimme56

that solely depends on the geometry of the system with
the aim of reproducing the Boys-Bernardi counterpoise
correction57 through an atom-atom pairwise model. The
method has been denoted as geometrical counterpoise
correction (gCP). It can be applied in combination with
the D2/D3 dispersion corrections to cancel out the BSSE
and keep the correct asymptotic long-range decay of the
dispersion energy.

By taking advantage of the combination of D3 and gCP
corrections, an efficient composite approach HF-3c has
been proposed by Sure and Grimme58,59 that combines
a minimal basis set HF calculation with three pairwise
corrections: D3, gCP and an additional term to correct
for short-range basis set incompleteness effects. In a sim-
ilar fashion, another method, dubbed PBEh-3c, has been
later proposed by Grimme and co-workers59,60 aimed at
making a step further in the trade-off of cost and accu-
racy with respect to HF-3c. Such a composite method
is based on a revised version of the hybrid PBE0 func-
tional that includes a larger amount of HF exchange (i.e
42%), the D3 (2- and 3-body terms) and gCP corrections
in combination with a modified version of the def2-SVP
basis set.61

The D3 and gCP corrections as well as both HF-3c
and PBEh-3c approaches, originally proposed for molec-
ular calculations, have been extended to periodic systems
and implemented in the Crystal17 code62–65 The two
composite methods are particularly targeted to model
molecular crystals. For instance, in Table 1 a statistical
analysis on the performance of these composite methods
as compared to standard ones is reported. The analysis
is performed on the optimized unit cell volume and on
the corresponding lattice energy for the X23 dataset66,67

of molecular crystals.

HF-3c gives good results in spite of its semiempirical
nature. A slightly modified version in which the two-
body C8 term of the D3 correction is scaled by 0.27, im-
proves significantly the agreement for predicted geome-
tries. This modified HF-3c version can then be used ei-
ther as a low-cost initial guess for a geometry optimiza-
tion or as reference geometries for single-point energy
calculation with higher level methods. For instance, the
combination of B3LYP-D*/TZP//HF-3c (denoted as SP-
B3LYP65 in Table 1) gives cohesive energies of compara-
ble accuracy as the full B3LYP-D*/TZP approach. The
good accuracy of the HF-3c method makes it interesting
for application to larger sets of molecular crystals. In-
deed, in Ref. 65 it has been successfully applied to a set

TABLE 1: Statistical indicators for the composite and refer-
ence methods for unit cell volumes V (in %) and lattice en-
ergies LE (in kJ/mol) of the X23 benchmark set (deviations
from experimental reference values). Data are reported in the
following format: Mean Absolute Error±Standard Deviation
(Maximum absolute error).

Method V (%) LE (kJ/mol) Ref.

HF-3c 8.0±2.5 (12.4) 8.2±8.8 (21.3) 65

HF-3c (0.27 s8) 1.9 ± 2.3 (5.0) 13.1±8.7 (26.6) 65

PBEh-3c 2.7±3.2 (10.2) 5.4±7.1 (15.5) 60

B3LYP-D*/TZP 3.0±1.9 (6.0) 4.6±6.0 (17.9) 65

SP-B3LYP-D* 5.2±5.8 (15.6) 65

of 87 molecular crystals. From Table 1, it can also be seen
that PBEh-3c performs equally well for both geometries
and lattice energies with an accuracy comparable to the
more costly B3LYP-D*/TZP method.

D. Strain-related Properties: Elasticity,
Piezoelectricity, Piezo-optics

First-principle calculations based on the density func-
tional theory (DFT) are known to represent an effec-
tive way to the accurate determination of many tenso-
rial strain-related properties of solids: third-rank direct
and converse piezoelectric, fourth-rank elastic stiffness
and compliance, fourth-rank photo-elastic and piezo-
optic tensors.68–86 The quantum-mechanical determina-
tion of such high-order tensorial properties involves the
evaluation of high-order total energy derivatives with re-
spect to three main kinds of perturbations: periodicity-
preserving atomic displacements, homogeneous strains
and electric fields. If the main formal aspects related
to the systematic treatment of these three perturbations,
when combined together up to second- and third-order,
have now been understood,87,88 the determination of all
components of any of these high-order tensors still repre-
sents a computationally demanding task from a practical
perspective. This is due to the fact that a large number
of fundamental calculations is required, which, in most
implementations have to be performed independently via

external programs or scripts.80,89

In the implementation of strain-related tensorial prop-
erties of solids into the Crystal program, we have tried
to devise fully-automated algorithms, capable of manag-
ing the large number of required calculations thus elimi-
nating any intermediate action from the user, so that now
each strain-related tensorial property mentioned above
can be computed by running a single-calculation of the
main program. An account of these developments has
recently been reported.90 In the following of this Section,
we summarize the main developments made for these
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properties in the Crystal17 version of the program with
respect to Crystal14.

1. Elastic Constants Under Pressure

At zero pressure, second-order elastic constants are de-
fined as second energy density derivatives with respect to
pairs of infinitesimal Eulerian strains, as evaluated at the
equilibrium volume V0:

C0
ijkl =

1

V0

(

∂2E

∂ηij∂ηkl

)

η=0

, (D.1)

where η is the second-rank symmetric pure strain
tensor and i,j,k,l are Cartesian indices. A fully-
automated scheme (with a full exploitation of point-
symmetry) for the calculation of the whole elastic tensor
was implemented in previous versions of the Crystal

program,77,78 also for low-dimensionality, 1D and 2D,

systems.91

When a finite pre-stress σpre is applied in the
form of a hydrostatic pressure P , within the frame
of finite Eulerian strain, the elastic stiffness constants
become:33,76,92–94

Cijkl = C0
ijkl +

P

2
(2δijδkl − δilδjk − δikδjl) , (D.2)

where δij are Kronecker’s delta and provided that V0
in equation (D.1) is replaced by the equilibrium volume
V (P ) at pressure P . An implementation in the Crys-

tal17 program of the calculation of the stiffness tensor C
(and of related elastic properties) under pressure has re-
cently been presented95 and applied,96–98 which relies on
the evaluation of the analytical stress tensor.99–101 Let us
introduce a two-index representation of the elastic stiff-
ness tensor to be used below (Cijkl → Cvu), by exploiting
Voigt’s notation, according to which v, u = 1, . . . , 6 (1 =
xx, 2 = yy, 3 = zz, 4 = yz, 5 = xz, 6 = xy).102

FIG. 5: Upper panels: elastic wave phase velocities as a function of propagation direction; lower panels: the corresponding
power flow angles as a function of propagation direction. Data refer to the simple cubic crystal of MgO.

2. Elastic Wave Velocities

Once the fourth-rank elastic stiffness tensor of Eq.
(D.1) has been computed, directional elastic wave ve-
locities can be determined. Indeed, according to the

elastic continuum theory, the velocities of the acoustic
waves propagating along a direction represented by the
unit wave-vector q̂ are obtained by solving Christoffel’s
equation, which can be given an eigenvalues/eigenvectors
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form as follows:103,104

Aq̂U = V2U with Aq̂
kl =

1

ρ

∑

ij

q̂iCiklj q̂j ,

(D.3)
where ρ is the crystal density, q̂i is the i-th element of
the unit vector q̂, V is a 3×3 diagonal matrix whose
three elements give the acoustic phase velocities and U

= (û1,û2,û3) is the eigenvectors 3×3 matrix where each
column represents the polarization û of the correspond-
ing eigenvalue. The three acoustic wave velocities can
be labeled as quasi-longitudinal vp (P mode), slow quasi-
transverse vs1 (slow S mode) and fast quasi-transverse vs2
(fast S mode), depending on the polarization direction û

with respect to wave-vector q̂.76

In Crystal17, phase and group elastic wave veloc-
ities, as well as the related power flow angles and en-
hancement factors, can be computed for all crystallo-
graphic directions in the same calculation of the elastic
tensor via the Awesome code by Muñoz-Santiburcio et

al., which has been merged and has become a keyword
of Crystal17.105,106 This option allows to represent the
computed properties according to different graphical rep-
resentations. An example, referring to the simple MgO
cubic crystal, is given in Figure 5, where the three elastic
wave phase velocities (for the P mode, slow S mode and
fast S mode) and the corresponding power flow angles
(i.e. the angles ψ linking phase Vp and group Vg veloc-
ities through Vg = Vp/cos(ψ)) are represented in polar
plots, as a function of propagation direction. We refer to
Ref. 105 for the definition of all quantities.

3. Analytical Direct Piezoelectricity

The direct proper piezoelectricity of a non-
centrosymmetric crystal is usually evaluated numerically
through the Berry-phase approach.68–70 This was
also the case in previous versions of the Crystal

program.107,108 In particular, in the Crystal14 ver-
sion, a fully-automated algorithm was implemented
for computing the direct piezoelectric tensor via the
Berry-phase approach,71 which was also generalized to
low-dimensional 1D and 2D systems.91 In these imple-
mentations, the nuclear relaxation term was accounted
for by performing geometry optimizations of atomic
positions at strained lattice configurations.
In Crystal17, a fully-automated scheme has now

been implemented for the quasi-analytical calculation of
the direct piezoelectric tensor where the electric dipole
derivatives in both the electronic “clamped nuclei” and
“nuclear relaxation” terms are computed through the
CPHF/KS approach.109 In addition, the “nuclear relax-
ation” term is evaluated using the “internal-strain” ten-
sor as combined with the interatomic force constant ma-
trix (see Section IID 4 for more details).110 With this new
strategy, the original shape of the lattice cell is preserved
at all steps of the calculation.

4. The Internal-strain Tensor

Strain-induced response properties of solids can be for-
mally decomposed into a purely electronic “clamped-
nuclei” term and a nuclear-relaxation term due to the
rearrangement of atomic positions upon strain. The eval-
uation of the latter is generally much more computa-
tionally expensive than that of the former. In princi-
ple, two alternative approaches can be used to account
for nuclear-relaxation effects: i) performing numerical ge-
ometry optimizations to relax atomic positions at actual
strained lattice configurations,111,112 or ii) evaluating in a
more analytical fashion the “internal-strain” tensor of en-
ergy second-derivatives with respect to atomic displace-
ments and lattice deformations, as combined with the
interatomic force constant Hessian matrix.87 Given that
geometry optimizations at strained configurations are
rather slowly-converging numerical procedures requiring
particularly tight convergence criteria, the second ap-
proach is to be preferred as it ensures higher accuracy
and requires less severe computational parameters to be
used.113

As a matter of fact, in previous versions of the Crys-

tal program, only the first numerical strategy was avail-
able. In Crystal17, the second approach has now been
implemented for the elastic and piezoelectric tensors,
which relies on the calculation of the “internal-strain”
tensor by fully-exploiting its point-symmetry features.110

Beside being more robust, the new strategy has also
been documented to be more computationally efficient
for most crystalline systems.90

The elements of the force-response internal-strain ten-
sor are second-energy derivatives with respect to an
atomic displacement and to a lattice distortion:

Λai,v =
∂2E

∂uai∂ηv

∣

∣

∣

∣

∣

E

, (D.4)

where uai are Cartesian components of the displace-
ment vector ua of atom a (i=x, y, z). A displacement-
response internal-strain tensor Γ, which describes first-
order atomic displacements as induced by a first-order
strain, can be defined as:87

Γai,v = − ∂uai
∂ηv

∣

∣

∣

∣

E

=
∑

bj

(H−1)ai,bjΛbj,v , (D.5)

where H is the interatomic force-constant Hessian ma-
trix of energy second derivatives with respect to pairs of
periodicity-preserving atomic displacements:

Hai,bj =
∂2E

∂uai∂ubj

∣

∣

∣

∣

∣

E,η

. (D.6)

When mass-weighted and diagonalized, the force-
constant matrix of Eq. (D.6) provides vibration frequen-
cies of Brillouin zone-center phonon modes. The H−1
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matrix in Eq. (D.5) has to be considered a pseudoin-
verse of H where translational degrees of freedom are
projected out, as discussed in detail elsewhere.87

The nuclear-relaxation contribution to elastic and
piezoelectric constants can be expressed in terms of the
internal-strain tensor Λ (or Γ):87

Cnuc
vw = − 1

V0

∑

ai

Λai,vΓai,w , (D.7)

enuckv = − 1

V0

∑

ai

Z∗
k,aiΓai,v , (D.8)

where the Z∗ tensor in Eq. (D.8) contains the Born dy-
namical effective charges:

Z∗
k,ai =

∂2E

∂Ek∂uai

∣

∣

∣

∣

∣

η

. (D.9)

In the current fully-automated implementation into the
Crystal program, the elements Λai,v of the force-
response internal-strain tensor are computed as finite dif-
ferences of analytical lattice gradients with respect to
atomic Cartesian displacements, by means of a general-
ized “Pulay’s force method” originally proposed for in-
teratomic force constants.114 This strategy is quite com-
putationally convenient as it requires the same atomic
displacements to be considered as per the calculation of
H. As a consequence, Λ and H are computed simultane-
ously, nearly at the same computational cost as for the
calculation of H alone.

5. The Piezo-optic Tensor

The anisotropy of the linear optical properties of a
crystal can be represented by its optical indicatrix: an el-
lipsoid oriented along the principal axes of the dielectric
tensor ǫ and whose semi-axes give the principal refrac-
tive indices of the system.102 Any change in the shape,
size and orientation of the indicatrix would result in the
modification/modulation of the linear optical properties
of a material. Such changes can be induced by electric
fields, strains and stresses giving rise to the electro-optic,
elasto-optic and piezo-optic effects, respectively.
In the Crystal14 version of the program a fully-

automated algorithm was developed to compute the
fourth-rank elasto-optic (or photo-elastic) tensor,84

whose components pijkl measure the variation of the in-
verse dielectric tensor ǫ−1 as induced by strain:

∆ǫ−1
ij = pijklηkl . (D.10)

As both the inverse dielectric tensor ǫ−1 and the pure
strain tensor η are symmetric, Voigt’s notation can be
adopted also in this case so that the photo-elastic tensor
p can be given a 6×6 matrix representation as for the
elastic tensor.

FIG. 6: Left panel: the crystal structure of tetragonal
PbMoO4. Right panel: indicative surfaces of the piezo-optic
effect (in Brewster) of PbMoO4 when a uniaxial pressure is
applied parallel to the X3 principal optical axis (A) and par-
allel to the X1 principal optical axis (B).86

Given the stress-strain relation, the fourth-rank piezo-
optic tensor π (whose elements are the stress-optical co-
efficients πvu) can be obtained from the photo-elastic ten-
sor p and elastic tensor C as:

π = p S and conversely p = π C . (D.11)

At variance with the elastic C and compliance S ≡ C−1

tensors, p and π are not symmetric (i.e. in general
pvu 6= puv and πvu 6= πuv). It follows that the number of
symmetry-independent components to be determined for
the stress-optical and strain-optical tensors is generally
larger than for the elastic tensors.

In Crystal17, a fully-automated algorithm has been
developed to compute the whole fourth-rank piezo-optic
tensor with a single-run calculation.85 The piezo-optic
effect has proven to be an effective tool for mapping 2D
and 3D mechanical stresses through stress tensor-field
tomography,115,116 and is important in the field of opto-
electronics where the search for highly efficient electro-
optic and piezo-optic materials is experiencing a great in-
terest in recent years due to their applications as photo-
elastic modulators of light polarization and as compo-
nents of many devices related to acousto-optic light mod-
ulators, deflectors, tunable spectral filters, etc.104,117–123

This scheme has recently been applied to the in-
vestigation of the piezo-optic response of tetragonal
CaWO4 and PbMoO4, and monoclinic triglycine sulfate
(TGS).85,86,124 The anisotropy of the piezo-optic effect
can be represented in terms of indicative surfaces. In
Figure 6, two indicative surfaces are reported for the
PbMoO4 tetragonal crystal corresponding to two cases
in which a uniaxial pressure is applied parallel to the X3

and X1 optical axes.
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E. Dynamic Polarizabilities and
First-hyperpolarizabilities: Second Harmonic

Generation and Pockels Effects

The Coupled-Perturbed-Hartree-Fock/Kohn-
Sham (CPHF/KS) scheme for dynamic (hy-
per)polarizabilities,125 as adapted to periodic systems,126

is a perturbative, self-consistent method that focuses
on the description of the relaxation of the crystalline
orbitals under the effect of an external frequency-
dependent electric field. Starting from an unperturbed
SCF solution at convergence, the electric field is intro-
duced by means of standard perturbation theory and
resulting equations are solved iteratively.
The adaptation to the periodic case is non-trivial,

since the molecular form of the electric field opera-
tor (E · r) is not bound and breaks translational in-
variance. Hence, a more complex expression formula
has to be adopted127–129 (E · ıeık·r∇ke

−ık·r). The
CPHF/KS method was first implemented in Crystal09

for static fields, allowing for the calculation of the elec-
tronic contribution to the static polarizability tensor α
(or ǫ∞ dielectric tensor) of closed- and open-shell pe-
riodic systems.130,131 The CPHF/KS scheme was fur-
ther extended to second-order in the perturbed wavefunc-
tion in Crystal14, thus allowing for the calculation of
static nonlinear properties (namely, second hyperpolariz-
abilities and n+ 1 rule first hyperpolarizabilities).132,133

The CPHF/KS approach is also used in the evalua-
tion of observables that are obtained as a mixed deriva-
tive of the total energy, such as infrared and Raman
intensities20–22,134 and piezoelectric tensor.109

It is of great interest to go beyond the static limit,
and study the interaction of crystalline solids with dy-
namic fields. In Crystal17, the ω-frequency of the field
has been introduced in the CPHF(KS) method. This al-
lows the study of the variation of the real part of ǫ∞(ω)
and refractive index n =

√
ǫ∞, with respect to the light

wavelength.135

If the field is frequency-dependent, the determination
of the dynamic polarizability for a closed-shell system is
obtained as follows:

αuv(−ω; +ω) = − ∂2ETOT

∂Eu[−ω]∂Ev[ω]
= − 2

nk
ℜ
{

Pu[−ω],v[+ω]

BZ
∑

k

Tr

[

n
(

Ω(Eu[−ω])(k)U(Ev[+ω])(k)
)

]

}

, (E.1)

where Tr signifies the trace, nk is the number of k-points
sampling the Brillouin zone (BZ), and P is a permutation
operator.136,137 Ω(Eu)(k) corresponds to the matrix of

the operator Ω̂(Eu) = u + i∇ku
in the AO basis, t, u, v

are Cartesian directions, n is the diagonal occupation
matrix, with eigenvalues either equal to 2 (for occupied
orbitals, in a closed-shell case) or equal to 0 (for virtual
orbitals). The U matrices, that determine the first-order
perturbed orbitals, are obtained as:135,138–140

U
(Et[±ω])

ia (k) = lim
η→0+

G
(Et[±ω])

ia (k)

ǫ
(0)
a (k)− ǫ

(0)
i (k) ± ω + ıη

, (E.2)

where G
(Et[±ω])

ia (k) is the derivative of the Fock matrix
element with respect to the ω-frequency dependent field
along t-direction, which has subsequently been projected
onto the unperturbed crystalline orbital basis set:

G
(Et[±ω])
ia (k) =

∑

µ,ν

C∗
µi(k)F

(Et[±ω])
µ,ν (k)Cνa(k) , (E.3)

and ǫ
(0)
i(a)(k) is the unperturbed eigenvalue of the occupied

i (virtual a) crystalline orbital for each k-point (k) of
the reciprocal space. Since F (Et[±ω])(k) and, thereby,
G(Et[±ω])(k) depends upon U the solution of Eq. (E.2)
for the U (Et[±ω])(k) matrices is obtained by fixing the
value of ω and then solving iteratively.

A formula for the dynamic first hyperpolarizability can
be obtained starting with the 2n+1 rule working expres-
sion for the static limit (see Eq. 58 in Ref. 141), which
has the same form as that shown below except, of course,
that all frequencies are set equal to zero. The 3D static
result was obtained, in fact, by generalizing the 1D peri-
odic frequency-dependent treatment of Kirtman et al.142

which, in turn, was based on the time-dependent Hartree-
Fock formulation for molecules developed by Karna and
Dupuis.139 The latter treatment has been generalized so
as to be applicable for arbitrary frequencies and peri-
odic systems. In addition, we introduce the operator
Pt[−ωσ]u[+ω1]v[+ω2] which permutes the pairs (t[−ωσ]),

(u[+ω1]), and (v[+ω2]).
136,137 From the approach just

described the general expression for the first hyperpolar-
izability of closed-shell periodic systems in the presence
of frequency-dependent fields may be written as:143

βtuv(−ωσ;ω1, ω2) = − ∂3ETOT

∂Et[−ωσ ]∂Eu[ω1]∂Ev[ω2]
= − 2

nk
ℜ
{

Pt[−ωσ ],u[+ω1],v[+ω2]

BZ
∑

k

Tr

[

n U(Et[−ωσ ]) †(k)

(

G(Eu[+ω1])(k)U(Ev[+ω2])(k) −U(Ev[+ω2])(k)G(Eu[+ω1])(k) + ı∂U
(E

v[+ω2])(k)
∂ku

)

]







. (E.4)

The full derivation of Eq. (E.4) alongside with a robust validation of the implementation is reported in Ref. 144.
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Such third-order rank tensor depends on the three Carte-
sian directions of the field t, u, v, and on three frequencies,
ωσ, ω1 and ω2 with ωσ = ω1 + ω2. The last term of Eq.
(E.4) appears only for infinite periodic systems.

Eqs. (E.1) and (E.4) hold for Hartree-Fock. The ex-
tension to KS-DFT has also been carried out in the pre-
vious work (Ref. 145 for the static case, Ref. 144 for the
dynamic) and implemented in the Crystal code. We do
not repeat the DFT expression here since it is quite long
(e.g. see Eq. 8 of Ref. 144), even though straightforward
to evaluate.

Among all possible choices of ω1 an ω2, there are two
cases of particular relevance: i) Second Harmonic Gener-
ation (SHG), in which ω1 = ω2 = ω and ωσ = 2ω, and ii)
dc-Pockels effect, in which ω1 = ω, ω2 = 0 and ωσ = ω.

As a demonstrative application, we report in Fig-
ure 7 the SHG dxyz component of the molecular crys-
tal of urea as a function of the wavelength for different
Hamiltonians.143 The d tensor is directly obtained from
β via the relation d = π

V
β, with V being the unit cell

volume. The other non-vanishing component, dzxy, has a
similar dispersion behavior and has not been plotted. We
can see in the figure that the curves for the various meth-
ods remain practically parallel except as one approaches
the first resonance. It clearly shows the well-known ten-
dency of LDA and GGA functionals to largely overesti-
mate high-order electric susceptibilities, which is exag-
gerated near the first resonance. It is noteworthy that
dxyz increases at each frequency when the percentage of
HF-exchange decreases. This is not unexpected because
it correlates with the predicted band gap for the differ-
ent Hamiltonians which decreases from HF (14.0 eV) to
PBE0 (7.4 eV) and B3LYP (6.9 eV) to PBE (5.2 eV) and
LDA (4.8 eV).

FIG. 7: SHG dxyz tensor component of bulk urea as a function
of wavelength λ = 2π/ω, as obtained with various functionals.
The computed data are fit to the three parameter function:
d(λ) = a + b(1/(ω0 − 2ω)(ω0 − ω) + 1/(ω0 + ω)(ω0 − ω) +
1/(ω0 + ω)(ω0 + 2ω)).

F. Hybrid Functionals

Within the framework of the density-functional-theory
(DFT), a class of functionals of particular interest is rep-
resented by so-called hybrids, which, by introducing a
fraction of exact non-local Fock exchange, partially cor-
rect for the self-interaction error of local or semilocal
formulations.146

In a molecular context, hybrid functionals have been
widely used in the last couple of decades, since their
original formulation by Becke in 1993.147 Their advan-
tages over local-density (LDA) and generalized-gradient
(GGA) approximations are well-known and extensively
documented in terms of an improved description of a
large set of properties (from thermochemical formation
energies to molecular structures, vibration frequencies,
polarizabilities, chemical shifts, hyperfine coupling con-
stants, and others).146,148–153

In a solid state context, the advantages of the hy-
brid approach grow to an even greater extent because
of their better description of mechanical, dielectric, op-
tical properties (leading to more reliable values for the
electronic band gap, for instance), and of electron local-
ization, which is crucial to the study of magnetic proper-
ties, defects, transition-metal compounds, spin-polarized
systems, etc.154–157 Despite these clear advantages, their
popularity for material modeling has been significantly
hindered for many years by the high computational cost
of their plane-wave implementations, particularly so for
the original full-range (i.e. global) formulation compared
to recent screened-exchange ones.158–161

By use of a basis set of atom-centered localized
Gaussian-type functions instead of plane waves, Fock
exchange was demonstrated to be very efficiently com-
putable for any range.162 This satisfied a fundamental
prerequisite for the first implementation of a Hartree-
Fock (HF) code for solids: Crystal, first released in
1988.5 Within such a local basis set formalism, a mixed
DFT/HF approach for solids was already implemented
in 1987 based on an a posteriori correlation correction to
the Hartree-Fock total energy of periodic systems using
the Colle-Salvetti density functional.163,164 A priori hy-
brid functionals were first included for solids in the Crys-

tal95 version of the program (only a couple of years later
than Becke’s original proposal) and have been available
to the community of solid state physicists and chemists
since then.165

1. Self-Consistent Hybrids

For a long time, hybrid functionals (either global or
screened-exchange) have been characterized by a fixed,
system-independent Fock exchange fraction α (0.2 in
B3LYP, 0.25 in PBE0 and HSE06, 0.16 in B1WC, for
instance).147,166–168 Many properties of solids turn out
to be significantly affected by the α parameter, which
makes the identification of its optimal value important.
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For instance, it is known that the electronic band struc-
ture of small or large band gap solids is better reproduced
by use of smaller or larger values of α, respectively.154,169

In recent years, the use of a system-specific optimal ex-
change fraction, linked to the static electronic screening
of the system, has been suggested. In this proposal, α
is chosen to be inversely proportional to the static elec-
tronic dielectric constant ǫ∞ of the material.169–174 The
dielectric constant in the functional is either taken from
experiment or computed. Skone et al. have recently
proposed a promising iterative scheme for the calcula-
tion of the optimal Fock exchange fraction of global hy-
brids, where the static electronic dielectric response of
the material and α are self-consistently determined.175

Self-consistent hybrids are becoming popular in solid
state applications mainly because of their reliable de-
scription of the electronic band structure and some opti-
cal properties.176–185

The system-specific character of self-consistent hybrid
functionals has the advantage of improving the elec-
tronic screening in the material but makes it neces-
sary to determine α for each system as a pre-step to
any calculation. This implies higher computational cost
and reduced user-friendliness compared to standard hy-
brids, unless computationally-efficient, automated strate-
gies are devised. A fully-automated (i.e. requir-
ing a single calculation), computationally-efficient im-
plementation of self-consistent hybrid functionals has
been coded into the Crystal17 program.186 The static
electronic dielectric tensor of the system is computed
by adopting a Coupled-Perturbed-Hartree-Fock/Kohn-
Sham (CPHF/KS) approach with full advantage taken
of internal guesses for the perturbed and unperturbed
density matrices from previous iterations to achieve high
computational efficiency. The latter has been docu-
mented to reduce the computational cost of the whole
process by at least a factor of 2.

2. Range-Separated Hybrids

Range-separated (RS) hybrid functionals have received
more and more attention in the last years for application
in quantum chemistry calculations. Unlike global hybrid
functionals, in RS hybrids the constant amount of HF
exchange is usually replaced by a contribution either at
short-range (i.e. screened Coulomb range-separated hy-
brids, SC-RSH) or at long-range (i.e. long-range cor-
rected hybrids, LC-RSH) as a function of a given range-
separation parameter. In particular, the inclusion of HF
exchange at long-range recovers the correct decay of the
exchange potential and reduces the self-interaction error
that plagues standard exchange-correlation functionals.
It turns out that LC-RSH methods show better perfor-
mance in the prediction of valence occupied and unoccu-
pied orbital energies, charge transfer excitation energies
and in the evaluation of dielectric response properties
such as first- and second-hyperpolarizabilities.187

In Crystal17, a bunch of range-separated hybrid
functionals (RSHXLDA,188,189 ω-B97, ω-B97X,190 LC-
BLYP191,192 and CAM-B3LYP193) has been extended to
the CPHF/KS scheme thus allowing for the calculation of
linear and nonlinear optical properties with these meth-
ods. An example of application of LC-RSH to the predic-
tion of the SHG electric susceptibility of the urea crystal
is shown in Figure 7. The results for the long-range cor-
rected hybrid functional based on the Iirikura-Tsuneda-
Yanai-Hirao scheme, LC-BLYP,191,192 are in good agree-
ment with experimental values.143 The LC-BLYP func-
tional has also been recently applied to the prediction of
the dipole polarizabilities of hBN–graphene hybrid struc-
tures for finite (0D) and periodic (2D) models194 and of
infinite linear chains of phenalenyl radicals.195

G. Massively-Parallel Version for Large Systems

In order to extend the application domain of stan-
dard ab initio and DFT methods in a solid state con-
text, the possibility of investigating larger, progressively
more realistic, systems is obviously crucial. A thorough
exploitation of the opportunities brought by parallel com-
puting represents a primary means of doing so, particu-
larly when combined with high-performance computing
(HPC) resources. Indeed, a clever exploitation of parallel
computing allows not only for i) a faster time-to-solution,
but also for ii) a reduction of the required memory per
core, which makes the investigation of larger systems pos-
sible.
A replicated-data parallel version of the program,

Pcrystal using message-passing-interface (MPI) direc-
tives, has been available since 1996, in which a complete
copy of all necessary data for the calculations is held
by every process, but different processes are performing
different independent parts of the calculation at a given
instant.196 The evaluation of one- and two-electron inte-
grals is very efficiently parallelized within this scheme, as
independent subsets of integrals may be assigned to dif-
ferent processes. For the SCF procedure, parallelism is
mainly achieved by exploiting the factorization of many
computational tasks in reciprocal space (such as the
Fourier transform of the main matrices, Kohn-Sham ma-
trix diagonalization, etc.), into essentially independent
k-points. When spin-unrestricted formulations are used
for open-shell systems, parallelism is also extended to α
and β spins. From the Crystal14 version of the pro-
gram, this kind of parallelism has further been pushed
to include point-symmetry factorization within each k-
point based on the corresponding irreps.197 All features
of the program can be computed with the replicated-
data strategy, including one-electron properties through
the recently-developed parallel version of the Proper-

ties module.198 This strategy is particularly effective
for systems containing up to several tens of symmetry-
irreducible atoms per cell (say < 100) and a standard or
dense sampling of reciprocal space.
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A distributed-data massively-parallel version of the
program, MPPcrystal, has been available since 2010.
In MPPcrystal all the largest arrays required by a
calculation are partitioned and distributed among the
processes so that each process stores in memory only
a fraction of the total array on which it operates, and
ScaLAPACK libraries are used for performing linear al-
gebra tasks.199,200 In particular, all objects that depend
upon the square of the system size, including such enti-
ties as the Kohn-Sham matrix and its eigenvectors, are
either distributed in this way or have been eliminated
from the code. Further, all large objects in direct space
(such as Fock and density matrices for each direct lat-
tice cell) are stored in their most compact “irreducible”
form and deallocated when not needed (during the recip-
rocal space operations, for instance), thus reducing the
memory footprint of the program. We also note that
this compact representation scales linearly with the sys-
tem size, not quadratically. Owing to the distributed-
data strategy, the larger the number of processes, the
smaller the required memory per process as each process
holds a smaller part of the distributed matrices. Thus
the distributed-data parallel version represents the ideal
tool to study very large systems (containing several hun-
dreds or thousands of atoms per cell), with little or no
point-symmetry, and a coarse reciprocal space sampling.
At variance with the replicated-data version, not all algo-
rithms have been extended to the distributed-data strat-
egy yet. Available algorithms include the ordinary self-
consistent-field procedure, analytical gradients, geometry
optimization, vibration frequencies and infrared intensi-
ties (through a Berry-phase approach), as well as elastic
and piezoelectric tensors. Work is constantly in progress
to extend this strategy to other properties.

In recent years, the massively-parallel version of the
program has been improved in three respects: i) the
required memory per core has been further reduced by
adopting a direct strategy (according to which some ar-
rays are recomputed when needed instead of being stored
on memory) for smaller matrices, which would eventually
constitute a memory bottleneck; ii) the scalability of the
wall-clock time needed to complete the calculation with
respect to the number of cores used has been improved.
This requires almost all tasks (including those taking very
little time for small- or medium-sized systems) to be ef-
ficiently parallelized; iii) the scalability with respect to
system size has also been improved by means of a com-
plete restructuring of the routines for the selection of
Coulomb and exchange two-electron integrals. For sys-
tems with no point-symmetry (i.e. belonging to the P1
space group, which is often the case for very large sys-
tems) this produced a significant reduction of the pre-
factor cost. Here we only briefly address point ii). For a
more detailed account on the recent improvements of the
massively parallel version of Crystal, we refer to Ref.
201.

Figure 8 documents the so-called strong scaling of
the MPPcrystal program, that is the wall-clock time

FIG. 8: Wall-clock time speedup of MPPcrystal as a func-
tion of the number of cores used for the X8 (upper panel) and
X24 (lower panel) supercells of the MCM-41 model (solution
of the SCF procedure). The baseline used in the definition of
the speedup is 512 and 4,096 cores for X8 and X24, respec-
tively. The dashed line shows the fit of the speedup values
to Amdahl’s law. At each point, the scaling efficiency is re-
ported (in %), where the diagonal of the plot corresponds to
the ideal scaling.

speedup as a function of the number of processors used
for a system of fixed size. The upper and lower panels
refer to systems with 4,632 and 13,896 atoms per cell,
respectively. Both systems are supercells (8 and 24 times
larger) of a primitive cell containing 579 atoms, which is a
structural model of the MCM-41 compound (amorphous
mesoporous silica, with no point-symmetry). MCM-41
has been used as a benchmark in previous documenta-
tions of the MPPcrystal parallel efficiency.4,200 The
PBE functional was used in combination with a 6-31G∗

Pople basis set (corresponding to 7,756 atomic orbitals,
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AOs, per primitive cell). All calculations were run on the
SuperMUC (LRZ, Germany) HPC IBM iDataPlex ma-
chine powered by 16 Intel cores per node running at 2.7
GHz, with 2 GB/core. A couple of key results:

• The largest calculation (system containing 13,896
atoms per cell) could be run in parallel over up to
32,768 processors;

• The wall-clock time speedup as a function of the
number of processors shows a regular behavior and
high scalability, due to the very high degree of par-
allelization of the entire code;

The last statement can be quantified by fitting the
speedup values at different number of processors to the
popular Amdahl model, which assumes that the code can
be divided into a perfectly parallelized fraction p, and
into a complementary sequential fraction s = 1 − p.202

Dashed lines in Figure 8 represent the fitting to Am-
dahl’s law. Despite the oversimplification introduced by
this model, the measured speedup values are found to be
nicely described by Amdahl’s law. In each panel of the

figure, the value of the fraction of the non-parallelized
code s is reported, as determined from the fitting. Very
low values of s are obtained, which document the high de-
gree of parallelization of most (including irrelevant ones
for smaller systems) steps in the calculation.
The parallel versions of the program have been exten-

sively used in recent years to perform accurate quantum-
mechanical simulations of structural, electronic, thermo-
dynamic, spectroscopic, elastic and piezoelectric proper-
ties of a large variety of systems of different periodicity.
Let us briefly review here those studies where the largest
systems have been investigated so far (see Figure 9 for
a graphical representation of the structure of some of
them).
As regards non-periodic “molecular” systems, the

structural, electronic and energetic properties of a fam-
ily of (n,n) giant icosahedral carbon fullerenes have been
investigated, for instance, where the largest system, cor-
responding to n = 10, contains 6,000 atoms. A basis set
of 14 atomic orbitals per atom was used (84,000 AOs for
the largest system) along with the global hybrid B3LYP
functional.203

FIG. 9: Selected large-scale systems studied with the parallel versions of the Crystal program in recent years. See text for
the size of the basis set adopted for each system.
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In another recent study, several features of non-
periodic clusters, of increasing size (containing up to
1,293 atoms and about 13,000 AOs), of defective diamond
were investigated at the hybrid B3LYP level and com-
pared to the outcomes of fully periodic calculations.204

Two different defects were put in the center of the clus-
ters (a vacancy and the 〈100〉 split self-interstitial), whose
structural, electronic and spectroscopic features were
recently investigated with periodic calculations.205,206

While structural and energetic features of the defects are
found to be rather local and show a fast convergence with
respect to the size of the model, other properties (such
as the electronic band gap and the spectroscopic Raman
fingerprint) are much more collective in nature and do
show a very slow convergence.

As an example of a 1D periodic system, we refer to the
recent investigation of structural and energetic properties
of single-walled chrysotile [Mg3Si2O5(OH)4] nanotubes
of increasing size, containing up to 5,004 atoms per unit
cell, corresponding to about 90,000 AOs per cell and to
a tube radius of 205 Å. Hybrid B3LYP calculations were
performed and the stability of the rolled structures hav-
ing the chirality (n,−n) and (n,n), with respect to the
flat slab of lizardite, was investigated. The appearance
of clear minima in the energy profile as a function of the
tube radius at about 89 Å was observed.207

More recently, one-dimensional stacked nanorings and
nanohelices of elemental phosphorus were studied.208

Structures up to 4,010 atoms and 108,270 AOs per unit
cell – this is the case for the (20,1) helix – were studied
in a few hours at the PBE0-D3 level with modest compu-
tational resources (12 CPU cores), thanks to the efficient
exploitation of the 401 symmetry operators inherent to
the system.

A cutting-edge study has recently been performed, by
exploiting the capabilities of MPPcrystal for the struc-
tural and energetic properties of the crystalline form of
the “small” protein crambin. Crambin is a thionin hy-
drophobic protein with 46 amino acids and a distinct
secondary structure characterized by both α-helices and
β-sheets. The unit cell hosts two protein molecules (1,284
atoms). Two models of further structural complexity
were considered by including an increasing number of
solvating water molecules, up to 172, which brought the
system to 1,800 atoms and 16,482 AOs per cell. Use of
a global hybrid functional (B3LYP) was made in com-
bination with a semi-empirical correction for dispersive
interactions. The geometry was fully relaxed and found
to agree to a large extent to that experimentally de-
termined. The crystal formation, protein-water, and
protein-protein interaction energies were computed.209

Large structural models (supercells of smaller unit
cells, in this case) have to be considered also when
the accurate determination of thermodynamic proper-
ties of solids is needed for the “direct-space” approach
to phonon-dispersion. In a recent investigation, phonon
dispersion and converged thermodynamic properties of
two end-members of the silicate garnet family of rock-

forming minerals (Pyrope Mg3Al2Si3O12 and Grossular
Ca3Al2Si3O12) were determined with the hybrid B3LYP
functional. The unit cell of these cubic systems contains
80 atoms; 3×3×3 super-cells were considered with 2,160
atoms and 40,176 AOs per cell (corresponding to sam-
pling the phonon dispersion over 27 k-points within the
Brillouin zone in reciprocal space). This allowed fully
converged thermodynamic properties to be obtained as
well as an understanding of the atomistic origin of the
entropic difference between the two species.27

The capabilities of MPPcrystal have also been ex-
ploited to shed some light on the atomistic details of
the interaction between ibuprofen (one of the most com-
mon nonsteroidal anti-inflammatory drugs) and a realis-
tic model of MCM-41 (one of the most studied meso-
porous silica materials for drug delivery). Quantum-
mechanical calculations (at the B3LYP-D level of theory)
were performed to find the fully relaxed structure and to
simulate the infrared spectrum.210

Structural, energetic and host/guest features of a gi-
ant metal-organic framework, MIL-100, containing up to
2,812 atoms per unit cell (and 50,256 AOs per cell) were
also investigated. The interaction energy for CO2 adsorp-
tion at different sites of the cavities was investigated.211

H. Tools for Magnetic Systems

The computationally efficient implementation of exact
non-local Fock exchange makes the Crystal program
particularly suitable to study magnetic, spin-polarized,
open-shell systems. Indeed, exact exchange is known to
favor spin localization, which is crucial for a correct de-
scription of magnetic configurations both at short range
(singlets, doublets, triplets, etc.) and at long range
(ferromagnetism, anti-ferromagnetism, ferrimagnetism,
etc.). In this section, we briefly review some of the im-
provements made in the program as regards open-shell
systems.

1. Spin Contamination

When restricted spin-orbitals are used, the spatial or-
bitals are constrained to be identical for α and β spins

(φαi = φβi ). On the contrary, unrestricted formulations
work with spin-orbitals in which the spatial parts for α

and β electrons can be different (φαi 6= φβi ). Although the
removal of this constraint typically leads to lower energy
solutions with respect to restricted cases, the unrestricted
determinants are no longer guaranteed to be eigenfunc-
tions of the Ŝ2 operator, as the wave-function is contam-
inated by terms with higher spin multiplicity.212,213

Let us consider an open-shell system with Nα spin-up
electrons and Nβ < Nα spin-down electrons. The spin
contamination of an unrestricted solution is defined as
follows (a molecular formalism is here adopted for sim-
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FIG. 10: Graphical representation of four point-defects in
diamond: a) the 〈100〉 split self-interstitial (in red); b) the
VI1 defect where a vacancy and a self-interstitial are first
neighbors; c) the VIS2 defect where a vacancy is a second-
neighbor of a self-interstitial with all C-C single bonds, and
d) the VID2 defect where a vacancy is a second-neighbor of a
self-interstitial with one C-C double bond (in green).

plicity):

∆S = 〈Ŝ2〉 − 〈Ŝ2〉pure = Nβ −
Nα
∑

i=1

Nβ
∑

j=1

〈φαi |φβj 〉〈φ
β
j |φαi 〉 ,

(H.1)

where 〈Ŝ2〉pure is the ideal expectation value of the Ŝ2

operator for a pure spin state:

〈Ŝ2〉pure = Sz(Sz + 1) with Sz =

(

Nα −Nβ

2

)

. (H.2)

In order to evaluate the spin contamination, the last term
in Eq. (H.1) has to be computed, which can be rewritten
as follows by expressing the spin-orbitals as a linear com-
bination of atomic orbitals (AOs): |φσi 〉 =

∑

µC
iσ
µ |χµ〉,

with σ either α or β:

Nα
∑

i=1

Nβ
∑

j=1

〈φαi |φβj 〉〈φ
β
j |φαi 〉 =

occ.
∑

i,j

∑

µνλρ

Ciα∗
µ C

jβ
ν C

jβ∗
λ Ciα

ρ 〈χµ|χν〉〈χλ|χρ〉 =

∑

µνλρ

Pα
ρµP

β
νλSµνSλρ = Tr

(

PαSPβS
)

, (H.3)

where P and S are the density and overlap matrices,
respectively, in the basis of the AOs.

As an example, we consider several open shell elec-
tronic configurations of 4 different point defects of dia-
mond: the 〈100〉 split self-interstitial defect (in both its
singlet Sz = 0 and triplet Sz = 1 states), the VI1 defect
where a vacancy and a self-interstitial are first neighbors
(in its singlet, triplet and quintuplet Sz = 2 states), the
VIS2 defect where a vacancy is a second-neighbor of a self-
interstitial with all C-C single bonds, and the VID2 defect
where a vacancy is a second-neighbor of a self-interstitial
with one C-C double bond. A graphical representation
of the structure of the four defects is given in Figure 10.
The spin contamination ∆S, as introduced in Eq. (H.1),
for the different systems and spin states is reported in
Table 2, along with the total expectation value 〈Ŝ2〉 and
the ideal value of a pure state 〈Ŝ2〉pure. As one might ex-
pect, the spin contamination of high-spin electronic con-
figurations (triplets and quintuplets) is always found to
be rather small (i.e. it is never larger than 2.5%). On the
contrary, low-spin states (i.e. singlets, with Sz = 0) are,
in general, highly spin contaminated, which is an indica-
tion of the need for a multi-configurational treatment.

2. Restricted Open Shell Hartree-Fock

For the description of systems containing unpaired
electrons, a single determinant might not be enough
to accurately describe the spin features of the wave-
function. In its general formulation,214 the Restricted
Open-shell Hartree-Fock (ROHF) wave-function is a sum
of Slater determinants where each determinant contains
a closed-shell subset (with doubly occupied orbitals) and
an open-shell subset (with singly occupied orbitals). In
the Crystal code, the ROHF method was implemented
in the early 90’s for “half-closed shell” configurations,
where the wave-function is still expressed as a single
determinant.215 Within this approach, two sets of or-
bitals are defined: in the first set orbitals are populated
by paired electrons, in the second by unpaired electrons
with parallel spin. This latter constraint allows the con-
struction of wave-functions that are eigenstates of Ŝ2 but,
on the other hand, does not allow for solutions with lo-
cally negative spin densities, which is mandatory for a
correct description of anti-ferromagnetic systems, for in-
stance.
Locally negative spin densities can be obtained within

the Unrestricted Hartree-Fock (UHF) method, whose so-

lutions are, however not pure eigenstates of Ŝ2. Due
to its much larger variational flexibility, UHF has been
preferred to ROHF. As a matter of fact, the ROHF im-
plementation in the Crystal program became obsolete
a few years ago and was no longer available in the latest
versions of the code. However, in recent years, there has
been a renewed interest in ROHF solutions, mainly as an
improved starting point for post-HF treatments,216–222

which motivated us to restore the ROHF functionality in
the program. A parallel implementation of ROHF has
also been devised.
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TABLE 2: The spin contamination (∆S = 〈Ŝ2〉 − 〈Ŝ2〉pure)
of different open-shell electronic configurations (characterized
by different values of Sz) of four point-defects of diamond: the
〈100〉 split self-interstitial, and three different combinations of
a vacancy with an interstitial.

System Sz 〈Ŝ2〉 〈Ŝ2〉pure ∆S

〈100〉 0 1.0093 0.0000 1.0093

1 2.0052 2.0000 0.0052

VI1 0 0.0000 0.0000 0.0000

1 2.0498 2.0000 0.0498

2 6.0535 6.0000 0.0535

VIS2 0 1.4654 0.0000 1.4654

1 2.0086 2.0000 0.0086

2 6.0167 6.0000 0.0167

VID2 0 1.6986 0.0000 1.6986

2 6.0354 6.0000 0.0354

3. Non-integer Spin Locking

Convergence to an (anti)ferromagnetic ground state
solution often requires locking the value of the desired
total spin per cell, at least for the first few itera-
tions of the SCF process. For metallic or half-metallic
(anti)ferromagnets, it has now been made possible to
fix the number of majority and minority spin electrons
without forcing the calculation into an insulating state,
also allowing for the calculation of unstable spin states
in these systems. Furthermore, it is now possible to force
the total spin to assume non-integer values, which often
happens to be the case for the ground state in magnetic
metals. This also allows to compute the static spin sus-
ceptibility χs = ∂Ms/∂B, where Ms is the spin magne-
tization and B the magnetic field, by finite differences
using the formula χs = (∂2Etot/∂Ms

2)−1.223

I. Hirshfeld-I Partitioning Scheme for the Electron
Charge Density

Atomic charges represent one of the most popular con-
cepts for the analysis of the electron density. However,
the partition of the electron density into atomic contri-
butions is not unique and thus several schemes have been
proposed in this respect. In previous versions of the
Crystal program, Mulliken, Born and Bader charges
could be computed. In Crystal17, the Hirshfeld-I par-
titioning scheme (HI-I),224 which presents some improve-
ments with respect to the original Hirshfeld scheme,225

has also been implemented.226 In particular, an algo-

TABLE 3: Atomic charges (in |e|) of several crystals as cal-
culated according to four different partitions of the electron
density: a Mulliken’s scheme, the Hirshfeld-I (HI-I) approach,
Born charges, and Bader’s QTAIM method. The time needed
for running the corresponding calculations in parallel over 16
processors is also reported (in seconds).

System Atom Mulliken HI-I Born QTAIM

Li 0.625 1.014 1.026 0.934

LiF F -0.625 -1.014 -1.026 -0.934

time (s) 1 18 13570 54148

B 1.325 1.577 2.082 2.200

BN N -1.325 -1.577 -2.082 -2.200

time (s) 0.1 114 5670 46084

Al 1.985 3.041 2.938 2.555

α-Al2O3 O -1.323 -2.027 -1.959 -1.703

time (s) 0.1 119 21030 41225

Al 1.967 2.903 2.873 2.547

Bayerite O -1.021 -1.547 -1.512 -1.456

H 0.365 0.579 0.550 0.607

time (s) 0.7 3784 156691 799965

O -0.600 -0.898 -0.950 -1.246

Ice H 0.300 0.449 0.475 0.623

time (s) 0.1 428 2714 44532

rithm to deal with open-shell systems has been included,
and the need to evaluate the promolecular density has
been eliminated by implementing the Iterative Stock-
holder Atoms method.227 The implementation full ex-
ploits the point-symmetry of the system and has been
shown to scale linearly with the unit cell size.226

In Table 3, atomic charges as obtained with the
HI-I method are reported and compared with Mul-
liken, Born (computed through an analytical CPHF/KS
approach228), and Bader charges229 from the Quantum
Theory of Atoms in Molecules (QTAIM). The latter is
considered to be one of the most rigorous (but costly)
partitioning schemes. Several systems were considered
covering a wide range of bonding types (ionic LiF, cova-
lent hexagonal BN, mixed ionic/covalent corundum and
bayerite, and the hydrogen-bonded ice molecular crys-
tal). For sake of comparison, all the calculations were
performed at the same B3LYP/TZP level by using the
triple-zeta plus polarization basis set as optimized for
solid-state calculations.230 Since both the HI-I and Bader
approaches require a dense numerical integration grid for
the DFT part, the largest pre-defined grid was used; it
corresponds to 99 radial and 1454 angular points. From
the table, it is clearly seen that the Mulliken scheme sys-
tematically underestimates the atomic charges in com-
parison with all other methods. Apart from the case
of covalent hexagonal BN, the HI-I approach provides
atomic charges that are quite similar to the Born charges,
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but at a significantly lower computational cost (by 1-2
orders of magnitude).

J. Vibrational Density-of-States and Inelastic
Neutron Scattering Spectra

The calculation of harmonic vibration frequencies at
the Γ point (k = 0, the center of the First Brillouin Zone,
FBZ) is available since the Crystal03 version of the
program and relies on the diagonalization of the mass-
weighted Hessian matrix:

WΓ
ai,bj =

H0
ai,bj√
MaMb

with H0
ai,bj =

(

∂2E

∂u0ai∂u
0
bj

)

,

(J.1)
where E denotes the total energy per cell and atoms a
and b in the reference cell, with atomic mass Ma and
Mb, are displaced along the ith and jth Cartesian di-
rections from the equilibrium configuration. First-order
derivatives are computed analytically, whereas second-
order derivatives are obtained numerically.15,16

The calculation of phonon dispersion was introduced
in the Crystal09 version of the program. Beside WΓ,
a set of dynamical matrices, Wk, need to be defined for
a set of wavevectors k =

∑

i
κi

Li
bi expressed as linear

combinations of reciprocal lattice basis vectors bi with
fractional coefficients referred to shrinking factors Li, κi
being an integer ranging from 0 to Li− 1, thus including
Γ and points within the FBZ. Phonons at k points other
than Γ can be obtained by the direct method,231–234 which
requires the construction of supercells (SC) of the original
unit cell:

Wk
ai,bj =

∑

g∈SC

Hg
ai,bj√
MaMb

eık·g . (J.2)

Indeed, equation (J.2) shows that each dynamical ma-
trix in the FBZ is obtained by Fourier transforming the
Hessian matrices, Hg, for an adequate set of real space
lattice vectors g. Lattice vectors g =

∑

i l
g
i ai, expressed

in terms of the real lattice basis vectors {ai} through the
integer coefficients lgi , are all contained in the SC in real
space whose size and shape are determined by parame-
ters Li. At variance with equation (J.1), the matrix el-
ement Hg

ai,bj = ∂2E/(∂u0ai∂u
g
bj) refers to a displacement

of atom b in cell g inside the SC along the Cartesian
direction j, along with all its images throughout the su-
perlattice generated by the SC. Li are the same both
in the real and the reciprocal space so as to maintain
a one-to-one matching between g vectors in the SC and
sampled k points. From diagonalization of the dynamical
matrices the normal modes and corresponding vibration
frequencies (ωkp) are sampled over the entire FBZ.
Knowledge of the full phonon dispersion of a sys-

tem also allows to compute the phonon density-of-states
(PDOS) and to simulate the results of inelastic neutron

FIG. 11: Upper panel: total (black continuous line) and
atomic (dashed green line for O, blue dotted for Al, dark
red dot-dashed for Si and continuous red for either Mg or
Ca) phonon density-of-states (PDOS) of the grossular sili-
cate garnet, computed on a supercell containing 2160 atoms,
with additional k points obtained by Fourier interpolation
(for a overall sampling of phonon dispersion over 13,824 k
points in the FBZ). Lower panel: calculated incoherent (blue
thin line) and coherent (thick orange line) neutron-weighted
phonon density-of-states (NW-PDOS) for grossular. The ex-
perimental coherent INS spectrum is reported in red.235

scattering (INS) experiments. The total PDOS g(ω) is
defined by the equation:

g(ω) =
1

VBZ

∫

BZ

3N
∑

p=1

δ(ωkp − ω)dk , (J.3)

where VBZ is the volume of the Brillouin zone and the
integration is performed over it. From equation (J.3),
the PDOS is normalized to 3N , being N the number of
atoms per cell (

∫

g(ω)dω = 3N). The total PDOS can be
partitioned into atomic contributions g(ω) =

∑

a ga(ω)xa
where the sum runs over the atomic species of the system,
xa is the fraction of atomic species a with respect to N ,
and

ga(ω) =
1

nk

∑

p,k

|ep,k;a|2δ(ωkp − ω) , (J.4)

where ep,k are the eigenvectors of the dynamical matrices
Wk defined in equation (J.2) and the integral in equation
(J.3) has been replaced by the sum over the sampled
points within the FBZ.
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From atomic projected PDOS, a neutron-weighted
phonon density-of-states (NW-PDOS) may be defined,
which can be compared to the outcomes of INS experi-
ments:

gNW(ω) = C
∑

a

σa
Ma

ga(ω)xa , (J.5)

where C is a normalization factor such that
∫

gNW(ω)dω = 3N , and the weight of each atomic
species a is given by the ratio of the atomic scattering
cross-section σa and the atomic massMa.

236,237 Depend-
ing on whether the inelastic scattering is coherent or
incoherent, different cross-sections have to be considered,
which are tabulated and available on-line.238,239 In the
Crystal17 version of the program, some options have
been developed to compute PDOS and NW-PDOS of
solids.27

As an example, in Figure 11 we report the PDOS
and the NW-PDOS of the grossular silicate garnet,
Ca3Al2Si3O12. In the upper panel, total and atomic pro-
jected PDOS are reported, which exhibit the following
features:27 a broad band up to about 700 cm−1, a phonon
band-gap of about 120 cm−1 and a second, sharper band
above approximately 800 cm−1 and below about 1100
cm−1. The upper band is seen to be utterly dominated by
motions of the SiO4 tetrahedra. The interesting part of
the spectrum (particularly so for thermodynamic proper-
ties) is the low-frequency one, which is seen to be mostly
affected by the motions of cations in dodecahedral sites
(Ca in this case). In the lower panel, we report both the
coherent (orange lines) and incoherent (blue lines) NW-
PDOS of grossular, as compared with available INS ex-
perimental data. A coherent INS spectrum, normalized
to 3N as in present calculations between 0 and 1100 cm−1

(that is, by neglecting the spurious spectral region above
1100 cm−1), was reported for grossular.235 The agree-
ment is very satisfactory both on peak positions and on
the absolute amplitude of the spectral bands.

K. X-ray Diffraction Spectra

X-ray static structure factors Fhkl can be computed
from the first versions of the program, and correspond to
a discrete Fourier transform of the electron charge density
of the crystal:

Fhkl =

∫

cell

ρ(r)ei2πk·rdr , (K.1)

where k = hb1 + kb2 + lb3 is a reciprocal lattice vector
(being b1, b2 and b3 the fundamental reciprocal lattice
vectors) and h,k,l Miller’s indices. From the Crystal09

version of the program, Debye-Waller thermal factors can
be computed to transform static into dynamical struc-
ture factors, starting from harmonic atomic anisotropic
displacement parameters (ADPs).234,240 The intensity of
the diffraction peaks is affected by many factors and is

FIG. 12: XRD spectrum of Al2O3 Corundum as computed
within the DFT with the PBE functional (upper panel), as
corrected for Lorentz-polarization factors (middle panel) and
as experimentally recorded (lower panel).

proportional to:

Ihkl ∝ |Fhkl|2 ×Mhkl × LP (θ) , (K.2)

where Mhkl is the symmetry multiplicity of the struc-
ture factor and LP (θ) is a correction for Lorentz and
Polarization effects, with a functional form depending on
Bragg’s angle θ (linked to Miller’s indices through the
spacing of the corresponding crystallographic planes and
the wavelength of the experiment). In Crystal17, an
option has been implemented, which computes the struc-
ture factor multiplicities Mhkl, converts h,k,l Miller’s in-
dices into Bragg’s angle θ, and corrects the intensities for
the Lorentz and Polarization (LP) effects. Figure 12 re-
ports the X-ray diffraction spectrum of Al2O3 Corundum
as experimentally measured (bottom panel), as computed
from static structure factors at the PBE level of theory
(upper panel), and as computed and corrected for the
LP term (middle panel). The LP correction is seen to
largely affect relative intensities and to bring the com-
puted spectrum closer to the experimental one.

L. Electronic Transport Properties

Electron transport is a property of primary interest
in materials and devices, as it is related to important
macroscopic observables such as conductivity (resistiv-
ity), the Seebeck effect, thermal conductivity, and many
others. The ab initio evaluation of the electron trans-
port requires a different treatment according to whether
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one considers periodic or non-periodic directions. Crys-

tal17 offers two tools for the above two cases, which we
will discuss in the following of this subsection.

1. Boltzmann Transport Properties

We are interested in evaluating the three transport co-
efficients σ (electrical conductivity), S (Seebeck coeffi-
cient) and κel (electronic part of the thermal conductiv-
ity). According to Boltzmann’s semiclassical transport
theory,241 the expressions of the three transport coeffi-
cients are obtained (in atomic units) as:

[σ]qr(µ, T ) =

∫

dE
(

− ∂f0
∂E

)

Ξqr(E) ; (L.1)

[σS]qr(µ, T ) =
1

T

∫

dE
(

− ∂f0
∂E

)

(E − µ)Ξqr(E) ;(L.2)

[κel]qr(µ, T ) =
1

T

∫

dE
(

− ∂f0
∂E

)

(E − µ)2Ξqr(E) ,(L.3)

where µ is the chemical potential, T is the temperature,
E is the energy, e is the electron charge, f0 is the Fermi-
Dirac distribution and Ξ is the transport distribution
function (TDF). In the above equations, the TDF Ξ is
defined as:

Ξqr(E) = τ
∑

k

1

Nk

∑

i

vi,q(k)vi,r(k)δ
(

E − Ei(k)
)

,

(L.4)
where q and r are Cartesian directions, vi,q(k) is the ve-
locity of the i-th band calculated along the direction q
and τ is the lifetime which we assumed to be independent
of k according to the constant relaxation time approxi-
mation. The critical quantity that has to be calculated,
then, is the band velocity, that along one Cartesian direc-
tion q is expressed as the derivative of the band energies
Ei(k) with respect to a Cartesian component q of the
reciprocal space vector k:

vi,q(k) =
∂Ei(k)

∂kq
. (L.5)

The evaluation of this derivative is not trivial if the
wavefunction is expanded in a plane-wave basis set.
In fact, approaches developed previously rely either
on the interpolation of k-space eigenvalues (e.g. the
BoltzTrap242 program) or localization of the solution
(e.g. the BoltzWann243 program). We have recently
implemented244 in Crystal a novel treatment for such
derivatives that allows for an entirely analytical evalua-
tion of band velocities. Thanks to the analytical differen-
tiation, possible problems due to band crossings and/or
numerical accuracy of the procedure are avoided.
By differentiating the expression Ei(k) =

C
†
i (k)F(k)Ci(k) with respect to the reciprocal space

vector component kq we obtain:

∂Ei(k)

∂kq
=

[

C†(k)
∂F(k)

∂kq
C(k)

]

ii

−
[

C†(k)
∂S(k)

∂kq
C(k)E(k)

]

ii

.

(L.6)

Note how all the quantities in Eq. (L.6) are directly
obtained from the simple SCF HF or DFT solution, apart
from ∂F(k)/∂kq and ∂S(k)/∂kq, that are however readily
computed as a modified Fourier transform of the corre-
sponding direct space quantities

∂F(k)

∂kq
=
∑

g

igq F(g) e
ik·g ;

∂S(k)

∂kq
=
∑

g

igq S(g) e
ik·g .

(L.7)
In Figure 13 we show how the abovementioned trans-

port coefficients (Equations L.1 – L.3) are computed by

FIG. 13: Transport properties of cubic CoSb3 skutterodite
crystal evaluated at the PBE0 level at three different temper-
atures as a function of chemical potential. Plotted values are
tensor elements along principal direction xx ≡ yy ≡ zz; others
are null. The zero of the potential is set at the Fermi level,
defined as the top of conduction bands. For other details see
text.
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Crystal17 for the CoSb3 crystal.244 Calculations are
performed at the PBE0 level, using an [ECP:8811s-661p-
61d] basis set on antimonium and an all electron [6s-
6631sp-31d-1f] basis on cobalt, as described in the sup-
plementary information of Ref. 156. Gaussian smearing
is applied.
Cobalt antimonide (cubic Im3̄ space group) is a pro-

totypical thermoelectric material. A high sensitivity of
the Seebeck coefficient to temperature is the main indica-
tor of the thermoelectric behavior, and it is evident from
the middle panel of Fig. 13 that our simulation fully
reproduces such sensitivity. As CoSb3 is an insulator,
at low applied voltage – that is, at values of µ immedi-
ately above the Fermi level – the electrical conductivity
is null. Nevertheless, above 1.3 eV (corresponding to the
band gap, and thus to the estimated breakdown volt-
age), conductivity ramps up quickly. In a frozen band
approximation, this information can be also correlated
to the conductivity of the material at a given doping
level (that is, assuming that in the material permanently
contains a number of carriers having energy in the con-
duction band). Our results in Figure 13 and those in
Ref. 244 can be directly compared to those obtained by
other approaches,242,243 showing excellent agreement de-
spite the different basis set – that is a plane wave one in
those cases.
We underline that our analytical approach has no prob-

lems with band crossings, since the local basis set allows
to exploit the shortsightedness of the Fock operator. As a
consequence, it can be straightforwardly applied to con-
ducting systems as well (in Ref. 244 the case of graphene
is reported). As in all properties directly related to the
electronic band structure, the use of hybrid functional is
highly recommended, as an accurate description of band
gaps is key to reliable electronic transport results.

2. Transport across Nano-junctions

In the emerging field of molecular electronics, the goal
is to create devices based on electronic current passing
through one or more molecules connecting metal leads
(such as in the lead-conductor-lead configuration of the
nano-junction sketched in Figure 14). Assuming that
the Fermi level of the metal leads, EF , lies between
the HOMO and LUMO electronic states of the bridg-
ing molecule, the application of a small voltage results in
electron transport through the molecule via non-resonant
tunneling.
The tunneling probability is quantified by the so called

β parameter. For each energy E of the scattering elec-
trons, the β(E) curve gives a simple quantitative mea-
sure of the decay rate (in the insulating central region)
of the wavefunctions carrying the tunneling current and
so reveals the expected dependence of the current flowing
through the junction as a function of the junction length
L:

I = I0 exp(−βL) . (L.8)

FIG. 14: Schematic representation of a lead-conductor-lead
nano-junction, where the conductor layer (of thickness L) is
constituted by organic molecules.

The tunneling electrons are those located near or at EF ,
so, in order to understand electron transport through the
nano-junction, it is necessary to estimate where EF lies
relatively to the insulator energy levels.
The complex band structure approach (CBS) proposed

by Tomfohr and Sankey,245 provides a clear picture of
the nature of the electron states in the gap region of a
molecule. Within this approach, the CBS has to be eval-
uated in the limit of an infinitely thick insulating region
and the outcome of this procedure is a set of β(E) curves.
The value β0 to be compared with the experiments is the
smallest one aligned with the Fermi level of the junction

β0 = β(EF ) . (L.9)

The Fermi level alignment is not computed explicitly but
it can be roughly estimated by evaluating β(E) at the en-
ergy where dβ/dE = 0, the so called branch point. This
method is originally due to Tersoff and is based on the
pinning of EF by metal-induced gap states.246 A direct
evaluation of the Fermi level alignment is also possible
(and in some cases needed) but requires an explicit cal-
culation for the insulator plus metal leads systems.
In principle, the β0 parameter also depends on the

atomistic details at the lead-conductor interface, but it
mostly embodies the properties of the tunneling layer
itself, which allows for its evaluation from a single
quantum-mechanical calculation of the infinite molecular
chain (i.e. polymer) within the CBS theory. Such a cal-
culation can easily be performed with the Crystal pro-
gram. The whole CBS procedure is implemented in the
WanT code,247 which has been conveniently interfaced
to Crystal17. An application of such a scheme to vari-
ous conjugated polymers has recently been reported.248

III. CONCLUSIONS

An overview of the functionalities of the publicly
distributed Crystal17 program for the quantum-
mechanical simulation of physical and chemical proper-



23

ties of condensed matter has been presented. In particu-
lar, the new features of the code with respect to the previ-
ous major release, namely Crystal14, include: i) imple-
mentation of a DIIS scheme for SCF and CPHF/KS con-
vergence acceleration (now active by default); ii) fully-
automated implementation of the quasi-harmonic ap-
proximation for volume-dependent thermal properties;
iii) input parameter-free implementation of Grimme’s
DFT-D3 correction for weak dispersive interactions as
well as a semiempirical composite method for molecular
crystals; iv) calculation of elastic constants under pres-
sure, directional elastic wave velocities, the piezo-optic
tensor, and the piezoelectric tensor through an analyti-
cal CPHF/KS approach; v) calculation of dynamic linear
polarizabilities, second harmonic generation and Pock-
els effect; vi) self-consistent system-specific hybrid func-
tionals; vii) improved scalability of the massively-parallel
version of the program, MPPcrystal; viii) implemen-
tation of new tools for magnetic systems (evaluation of
spin contamination, restricted open-shell Hartree-Fock,
and non-integer spin locking); ix) atomic partition of
the electron charge density according to the Hirshfeld-
I scheme; x) calculation of total and projected phonon
density-of-states as well as its neutron-weighted counter-

part (for simulation of inelastic neutron scattering); xi)
calculation of X-ray diffraction spectra; and xii) evalua-
tion of several electronic transport properties (electrical
conductivity, Seebeck coefficient, electronic contribution
to thermal conductivity and transport across nanojunc-
tions).

The CrysPlot web-oriented applica-
tion has also been developed (available at
http://crysplot.crystalsolutions.eu) for the graphi-
cal representation and plotting of most properties of
solids computed by the Crystal program. The appli-
cation has been designed with the advanced graphical
javascript library Plotly and allows data to be easily
read from output files generated by Crystal.
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R. Dovesi, J. Chem. Phys. 139, 164101 (2013).

22 L. Maschio, B. Kirtman, M. Rérat, R. Orlando, and
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130 M. Ferrero, M. Rérat, R. Orlando, and R. Dovesi, J.

Comp. Chem. 29, 1450 (2008).
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144 L. Maschio, M. Rérat, B. Kirtman, and R. Dovesi, J.

Chem. Phys. 143, 244102 (2015).
145 R. Orlando, V. Lacivita, R. Bast, and K. Ruud, J. Chem.

Phys. 132, 244106 (2010).
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