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Reduced Basis Approximation and a Posteriori Error Estimation
for Affinely Parametrized Elliptic Coercive Partial Differential
Equations

Application to Transport and Continuum Mechanics

G. Rozza · D.B.P. Huynh · A.T. Patera

Abstract In this paper we consider (hierarchical, Lagrange)
reduced basis approximation and a posteriori error estima-
tion for linear functional outputs of affinely parametrized
elliptic coercive partial differential equations. The essen-
tial ingredients are (primal-dual) Galerkin projection onto
a low-dimensional space associated with a smooth “para-
metric manifold”—dimension reduction; efficient and ef-
fective greedy sampling methods for identification of opti-
mal and numerically stable approximations—rapid conver-
gence; a posteriori error estimation procedures—rigorous
and sharp bounds for the linear-functional outputs of in-
terest; and Offline-Online computational decomposition
strategies—minimum marginal cost for high performance
in the real-time/embedded (e.g., parameter-estimation, con-
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trol) and many-query (e.g., design optimization, multi-
model/scale) contexts. We present illustrative results for heat
conduction and convection-diffusion, inviscid flow, and lin-
ear elasticity; outputs include transport rates, added mass,
and stress intensity factors.

1 Introduction and Motivation

In this work we describe reduced basis (RB) approximation
and a posteriori error estimation methods for rapid and re-
liable evaluation of input-output relationships in which the
output is expressed as a functional of a field variable that
is the solution of an input-parametrized partial differential
equation (PDE). In this particular paper we shall focus on
linear output functionals and affinely parametrized linear
elliptic coercive PDEs; however the methodology is much
more generally applicable, as we discuss in Sect. 2.

We emphasize applications in transport and mechanics:
unsteady and steady heat and mass transfer; acoustics; and
solid and fluid mechanics. (Of course we do not preclude
other domains of inquiry within engineering (e.g., electro-
magnetics) or even more broadly within the quantitative dis-
ciplines (e.g., finance).) The input-parameter vector typi-
cally characterizes the geometric configuration, the physical
properties, and the boundary conditions and sources. The
outputs of interest might be the maximum system tempera-
ture, an added mass coefficient, a crack stress intensity fac-
tor, an effective constitutive property, an acoustic waveguide
transmission loss, or a channel flowrate or pressure drop. Fi-
nally, the field variables that connect the input parameters
to the outputs can represent a distribution function, temper-
ature or concentration, displacement, pressure, or velocity.

The methodology we describe in this paper is motivated
by, optimized for, and applied within two particular con-
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texts: the real-time context (e.g., parameter-estimation [54,
96, 154] or control [124]); and the many-query context (e.g.,
design optimization [107] or multi-model/scale simulation
[26, 49]). Both these contexts are crucial to computational
engineering and to more widespread adoption and applica-
tion of numerical methods for PDEs in engineering practice
and education.

We first illustrate the real-time context: we can also char-
acterize this context as “deployed” or “in the field” or “em-
bedded.” As an example of a real-time—and in fact, often
also many-query—application, we consider a crack in a crit-
ical structural component such as a composite-reinforced
concrete support (or an aircraft engine). We first pursue
Non-Destructive Evaluation (NDE) parameter estimation
procedures [17, 96, 154]—say by vibration or thermal tran-
sient analysis—to determine the location and configuration
of the delamination crack in the support. We then evaluate
stress intensity factors to determine the critical load for frac-
ture or the anticipated crack growth due to fatigue. Finally
we modify “on site” the installation or subsequent mission
profile to prolong life. Safety and economics require rapid
and reliable response in the field.

We next illustrate the many-query context. As an ex-
ample of a general family of many-query applications, we
cite multiscale (temporal, spatial) or multiphysics models
in which behavior at a larger scale must “invoke” many
spatial or temporal realizations of parametrized behavior
at a smaller scale. Particular cases (to which RB methods
have been applied) include stress intensity factor evaluation
[5, 62] within a crack fatigue growth model [63]; calculation
of spatially varying cell properties [26, 75] within homoge-
nization theory [25] predictions for macroscale composite
properties; assembly and interaction of many similar build-
ing blocks [79] in large (e.g., cardio-vascular [137]) biologi-
cal networks; or molecular dynamics computations based on
quantum-derived energies/forces [36]. In all these cases, the
number of input-output evaluations is often measured in the
tens of thousands.

Both the real-time and many-query contexts present a
significant and often unsurmountable challenge to “classi-
cal” numerical techniques such as the finite element (FE)
method. These contexts are often much better served by the
reduced basis approximations and associated a posteriori er-
ror estimation techniques described in this work. We note,
however, that the RB methods we describe do not replace,
but rather build upon and are measured (as regards accuracy)
relative to, a finite element model [22, 41, 126, 147, 158]:
the reduced basis approximates not the exact solution but
rather a “given” finite element discretization of (typically)
very large dimension N . In short, we pursue an algorithmic
collaboration rather than an algorithmic competition.

2 Historical Perspective and Background

The development of the reduced basis (RB) method can
perhaps be viewed as a response to the considerations and
imperatives described above. In particular, the parametric
real-time and many-query contexts represent not only com-
putational challenges, but also computational opportunities.
We identify two key opportunities that can be gainfully ex-
ploited:

Opportunity I. In the parametric setting, we restrict our at-
tention to a typically smooth and rather low-dimensional
parametrically induced manifold: the set of fields engen-
dered as the input varies over the parameter domain; in the
case of single parameter, the parametrically induced man-
ifold is a one-dimensional filament within the infinite di-
mensional space which characterizes general solutions to
the PDE. Clearly, generic approximation spaces are unnec-
essarily rich and hence unnecessarily expensive within the
parametric framework.

Opportunity II. In the real-time or many-query contexts, in
which the premium is on marginal cost (or equivalently as-
ymptotic average cost) per input-output evaluation, we can
accept greatly increased pre-processing or “Offline” cost—
not tolerable for a single or few evaluations—in exchange
for greatly decreased “Online” (or deployed) cost for each
new/additional input-output evaluation. Clearly, resource
allocation typical for “single-query” investigations will be
far from optimal for many-query and real-time exercises.

We shall review the development of RB methods in terms
of these two opportunities.

Opportunity I

Reduced Basis discretization is, in brief, (Galerkin) projec-
tion on an N -dimensional approximation space that focuses
(typically through Taylor expansions or Lagrange “snap-
shots”) on the parametrically induced manifold identified in
Opportunity I. Initial work grew out of two related streams
of inquiry: from the need for more effective, and perhaps
also more interactive, many-query design evaluation—[48]
considers linear structural examples; and from the need for
more efficient parameter continuation methods—[4, 98, 99,
101, 104, 105] consider nonlinear structural analysis prob-
lems. (Several modal analysis techniques from this era [92]
are also closely related to RB notions.)

The ideas present in these early somewhat domain-
specific contexts were soon extended to (i) general finite-
dimensional systems as well as certain classes of PDEs (and
ODEs) [19, 47, 76, 100, 106, 120, 131, 132], and (ii) a
variety of different reduced basis approximation spaces—
in particular Taylor and Lagrange [119] and more recently
Hermite [67] expansions. The next decade(s) saw further
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expansion into different applications and classes of equa-
tions, such as fluid dynamics and the incompressible Navier-
Stokes equations [57, 66–69, 114].

However, in these early methods, the approximation
spaces tended to be rather local and typically rather low-
dimensional in parameter (often a single parameter). In part,
this was due to the nature of the applications—parametric
continuation. But it was also due to the absence of a pos-
teriori error estimators and effective sampling procedures.
It is clear that in more global, higher-dimensional para-
meter domains the ad hoc reduced basis predictions “far”
from any sample points can not necessarily be trusted, and
hence a posteriori error estimators are crucial to reliabil-
ity (and ultimately, safe engineering interventions in par-
ticular in the real-time context). It is equally clear that in
more global, higher-dimensional parameter domains simple
tensor-product/factorial “designs” are not practicable, and
hence sophisticated sampling strategies are crucial to con-
vergence and computational efficiency.1

Much current effort is thus devoted to development of
(i) a posteriori error estimation procedures and in partic-
ular rigorous error bounds for outputs of interest [121],
and (ii) effective sampling strategies in particular for higher
(than one) dimensional parameter domains [32, 33, 97, 136,
153]. The a posteriori error bounds are of course indispens-
able for rigorous certification of any particular reduced ba-
sis (Online) output prediction. However, the error estima-
tors can also play an important role in efficient and effective
(greedy) sampling procedures: the inexpensive error bounds
permit us first, to explore much larger subsets of the para-
meter domain in search of most representative or best “snap-
shots,” and second, to determine when we have just enough
basis functions. Just as in the finite element context [12],
the simultaneous emergence of error estimation and adap-
tive sampling/approximation capabilities is certainly not a
coincidence.

We note here that greedy sampling methods are similar in
objective to, but very different in approach from, more well-
known Proper Orthogonal Decomposition (POD) methods
[8, 24, 58, 73, 77, 93, 127–129, 144, 145, 157]. For reasons
that we shall explore, the former are applied in the (multi-
dimensional) parameter domain, while the latter are most
often applied in the (one-dimensional) temporal domain.
However, POD economization techniques can be, and have
successfully been, applied within the parametric RB con-
text [31, 40, 42, 49, 59, 83, 154]. (We shall conduct a brief
comparison of greedy and POD approaches—computational
cost and performance—in Sect. 8.1.4.)

1Several early papers [102–104] did indeed discuss a posteriori error
estimation and even adaptive improvement/sampling of the RB space;
however, the approach could not be efficiently or rigorously applied
to partial differential equations due to the computational requirements,
the residual norms employed, and the absence of any stability consid-
erations.

Opportunity II

Early work on the reduced basis method certainly exploited
Opportunity II—but not fully. In particular, and perhaps at
least partially because of the difficult nonlinear nature of the
initial applications, early RB approaches did not fully de-
couple the underlying FE approximation—of very high di-
mension N—from the subsequent reduced basis projection
and evaluation—of very low dimension N . More precisely,
most often the Galerkin stiffness equations for the reduced
basis system were generated by direct appeal to the high-
dimensional FE representation: in nuts and bolts terms, pre-
and post-multiplication of the FE stiffness system by rectan-
gular basis matrices. As a result of this expensive projection
the computational savings provided by RB treatment (rela-
tive to classical FE evaluation) were typically rather modest
[98, 119, 120] despite the very small size of the ultimate
reduced basis stiffness system.

Much current work is thus devoted to full decoupling of
the FE and RB spaces through Offline-Online procedures:
the complexity of the Offline stage depends on N (the di-
mension of the FE space); the complexity of the Online
stage—in which we respond to a new value of the input
parameter—depends only on N (the dimension of the re-
duced basis space) and Q (which measures the parametric
complexity of the operator and data, as defined below). In
essence, in the Online stage we are guaranteed the accuracy
of a high-fidelity finite element model but at the very low
cost of a reduced-order model.

In the context of affine parameter dependence, in which
the operator is expressible as the sum of Q products of
parameter-dependent functions and parameter-independent
operators, the Offline-Online idea is quite self-apparent
and indeed has been re-invented often [15, 66, 70, 114];
however, application of the concept to a posteriori error
estimation—note the Online complexity of both the output
and the output error bound calculation must be independent
of N—is more involved and more recent [64, 121, 122]. In
the case of nonaffine parameter dependence the develop-
ment of Offline-Online strategies is much less transparent,
and only in the last few years have effective procedures—in
effect, efficient methods for approximate reduction to affine
form—been established [18, 53, 138]. Clearly, Offline-
Online procedures are a crucial ingredient in the real-time
and many-query contexts.

We note that historically [47] and in this paper RB meth-
ods are built upon, and measured (as regards accuracy) rel-
ative to, underlying finite element discretizations (or related
spectral element approaches [79–82, 111]): the variational
framework provides a very convenient setting for approx-
imation and error estimation. However there are certainly
many good reasons to consider alternative settings: a sys-
tematic finite volume framework for RB approximation and
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a posteriori error estimation is proposed and developed in
[60]. We do note that boundary and integral approximations
are less amenable to RB treatment or at least Offline-Online
decompositions, as the inverse operator will typically not be
affine in the parameter.

3 Current Status of Reduced Basis Methods

3.1 Affinely Parametrized Elliptic Coercive Problems

In this paper we shall consider the case of linear func-
tional outputs of affinely parametrized linear elliptic coer-
cive partial differential equations. This class of problems—
relatively simple, yet relevant to many important applica-
tions in transport (e.g., conduction and convection-diffusion)
and continuum mechanics (e.g., linear elasticity)—proves a
convenient expository vehicle for the methodology. We pro-
vide here a brief “table of contents” for the remainder of this
review.

In Sect. 4 (compliant problems) and at the conclusion of
the paper in Sect. 11 (non-compliant problems) we describe
the affine linear elliptic coercive setting; in Sect. 5 we con-
sider admissible classes of piecewise-affine geometry and
coefficient parametric variation; in Sect. 6 we introduce sev-
eral “working examples” which shall serve to illustrate the
formulation and methodology.

In Sect. 7.1 for compliant problems and subsequently
Sect. 11.2 for non-compliant problems we discuss (primal-
dual [117]) RB Galerkin projection [121] and optimality; in
Sect. 7.2 we describe (briefly) POD methods [8, 24, 58, 73]
and (more extensively) greedy sampling procedures [32, 33,
153] for optimal space identification; in Sect. 8.1 for one
parameter and Sect. 8.2 for many parameters we investigate
the critical role of parametric smoothness [47, 85] in con-
vergence theory and practice.

In Sect. 9 we present rigorous and relatively sharp a pos-
teriori output error bounds [3, 23, 108] for RB approxi-
mations [121, 142]; in Sect. 10 we develop the coercivity-
constant lower bounds [64] required by the a posteriori error
estimation procedures.

In Sect. 7.1 for the output prediction and Sect. 9.4 for the
output error bounds [84] we present the Offline-Online com-
putational strategies crucial to rapid real-time/many-query
(Online) response. In Sect. 8.2 we also provide a quantita-
tive comparison between RB (Offline and Online) and FE
computational performance.

Although this paper focuses on the affine linear elliptic
coercive case, the reduced basis approximation and a pos-
teriori error estimation methodology is much more general.
Furthermore, most of the basic concepts introduced in the
affine linear elliptic coercive case are equally crucial—with
suitable extension—to more general equations. In the next
section we briefly review the current landscape and provide
references for further inquiry.

3.2 Extensions and Generalizations

First, the reduced basis approach can also be readily ap-
plied to the more general case of affine linear elliptic non-
coercive problems.2 The canonical example is the ubiqui-
tous Helmholtz (reduced-wave equation) relevant to time-
harmonic acoustics [141], elasticity [95], and electromag-
netics. (We also note that a special formulation for quadratic
output functionals [62, 141]—important in such applica-
tions as acoustics (transmission loss outputs) and linear elas-
tic fracture theory (stress intensity factor outputs)—is per-
force non-coercive.) With respect to the elements we con-
sider in the current paper on coercive problems, the key
new methodological challenges for non-coercive problems
are the development of (i) discretely stable primal-dual RB
approximations [86, 134], and (ii) efficient Offline-Online
computational procedures [64, 142] for the construction of
lower bounds for the (no longer coercivity, but rather) inf-
sup constant [9] required by the a posteriori error estima-
tors. The possibility of resonances and near-resonances can
adversely affect the efficiency of both the RB approximation
and the RB error bounds, often limiting the dimensionality
or extent of the parameter domain.

RB-like “snapshot” ideas are also found in some of the
many Reduced Order Model (ROM) approaches in the tem-
poral domain [14, 38, 39, 89, 116, 130, 145, 155, 156]: POD
sampling procedures are often invoked, and more recently
greedy sampling approaches have also been considered [21].
Thus, combination of “parameter + time” approaches—
essentially the marriage of ROM in time with RB in parame-
ter, sometimes referred to as PROM (Parametric ROM)—is
quite natural [31, 40, 42, 46, 59, 83, 143]. The exploration
of the “parameter + time” framework in the important con-
text of affine linear (stable) parabolic PDEs—such as the
heat equation and the passive scalar convection-diffusion
equation (also the Black-Scholes equation of derivative the-
ory [118])—is carried out in [52, 55, 60, 133]; many of the
primal-dual approximations, greedy (or, better yet, greedy +
POD) sampling strategies, a posteriori error estimation con-
cepts, and Offline-Online computational strategies described
here for elliptic PDEs admit ready extension to the parabolic
case.

The reduced basis methodology, in both the elliptic and
parabolic cases, can also be extended to problems with non-
affine parametric variation. The strategy is ostensibly sim-
ple: reduce the nonaffine operator and data to approximate
affine form, and then apply the methods developed for affine
operators described in this paper. However, this reduction

2The special issues associated with saddle problems [28, 29], in par-
ticular the Stokes equations of incompressible flow, are addressed for
divergence-free spaces in [57, 67, 114] and non-divergence-free spaces
in [135, 139].
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must be done efficiently in order to avoid a proliferation
of parametric functions and a corresponding degradation of
Online response time. This extension is based on the Empir-
ical Interpolation Method (EIM) [18]: a collateral RB space
for the offending nonaffine coefficient functions; an interpo-
lation system that avoids costly (N -dependent) projections;
and several (from less rigorous/simple to completely rig-
orous/very cumbersome) a posteriori error estimators. The
EIM within the context of RB treatment of elliptic and par-
abolic PDEs with nonaffine coefficient functions is consid-
ered in [52, 53, 95, 138, 148]; the resulting approximations
preserve the usual Offline-Online efficiency—the complex-
ity of the Online stage is independent of N .

The reduced basis approach and associated Offline-
Online procedures can be applied without serious compu-
tational difficulties to quadratic (and arguably cubic [34,
153]) nonlinearities. Much work focuses on the station-
ary incompressible (quadratically nonlinear) Navier-Stokes
equations [29, 50, 57] of incompressible fluid flow: suitable
stable approximations are considered in [57, 67, 114, 123,
137, 139]; rigorous a posteriori error estimation—within the
general Brezzi-Rappaz-Raviart (“BRR”) a posteriori frame-
work [30, 34]—is considered in [45, 97, 151, 152]. The lat-
ter is admittedly quite complicated, and presently limited
to very few parameters—a Reynolds number and perhaps a
Prandtl number or aspect ratio.

Symmetric eigenproblems associated with (say) the
Laplacian [10] or linear elasticity operator are another im-
portant example of quadratic nonlinearities. Reduced basis
formulations for one or two lowest eigenvalues (as relevant
in structural mechanics) and for the first “many” eigenvalues
(as relevant in quantum chemistry) are developed in [84] and
[35, 36, 113], respectively. Here, implicitly, the interpreta-
tion of the BRR theory is unfortunately less compelling due
to the (guaranteed) multiplicity of often nearby solutions;
hence the a posteriori error estimators for eigenvalue prob-
lems [84, 113] are currently less than satisfactory.

Nonpolynomial nonlinearities (in the operator and also
output functional) for both elliptic and parabolic PDEs may
be considered. The Empirical Interpolation Method can be
extended to address this important class of problems [36,
53, 113]: the nonlinearity is treated in a collateral reduced
basis expansion, the coefficients of which are then obtained
by interpolation relative to the reduced basis approximation
of the field variable; the usual Offline-Online efficiency can
be maintained—Online evaluation of the output is indepen-
dent of N . (For alternative approaches to nonlinearities in
the ROM context, see [16, 39, 115].) Unfortunately, for this
difficult class of problems we can not yet cite either rigorous
a posteriori error estimators or particularly efficient sam-
pling procedures. (It perhaps not surprising that initial work
in RB methods [98, 101], which focused on highly nonlinear
problems, attempted neither complete Offline-Online decou-
pling nor rigorous error estimation.)

Finally, we mention two other topics of current research
interest. First, the “reduced basis element method” [79–82]
is a marriage of reduced basis and domain decomposition
concepts that permits much greater geometric complexity
and also provides a framework for the integration of mul-
tiple models. Second, (at least linear) hyperbolic problems
are also ripe for further development: although there are
many issues related to smoothness and stability, there are
also proofs-of-concept in both the first order [60, 111] and
second order [74] contexts which demonstrate that RB ap-
proximation and a posteriori error estimation can be gain-
fully applied to hyperbolic equations.

4 Elliptic Coercive Parametric PDEs

We consider the following problem: Given µ ∈ D ⊂ RP ,
evaluate

se(µ) = !(ue(µ)),

where ue(µ) ∈ Xe(Ω) satisfies

a(ue(µ), v;µ) = f (v), ∀v ∈Xe. (1)

The superscript e refers to “exact.” Here µ is the input
parameter—a P -tuple; D is the parameter domain—a sub-
set of RP ; se is the scalar output; ! is the linear output
functional; ue is the field variable; Ω is a suitably regular
bounded spatial domain in Rd (for d = 2 or 3) with bound-
ary ∂Ω ; Xe is a Hilbert space; and a and f are the bilinear
and linear forms, respectively, associated with our PDE.

We shall exclusively consider second-order partial differ-
ential equations, and hence (H 1

0 (Ω))ν ⊂ Xe ⊂ (H 1(Ω))ν ,
where ν = 1 (respectively, ν = d) for a scalar (respec-
tively, vector) field. Here H 1(Ω) = {v ∈ L2(Ω) | ∇v ∈
(L2(Ω))d},H 1

0 (Ω) = {v ∈ H 1(Ω)|v|∂Ω = 0}, and L2(Ω)

= {v measurable |
∫
Ω v2 finite}. We associate to Xe an inner

product and induced norm (equivalent to the H 1(Ω) norm),
the choice of which shall be described below.

We shall assume that the bilinear form a(·, · ;µ): Xe ×
Xe → R is continuous and coercive over Xe for all µ in D.
(We provide precise definitions of our continuity and coer-
civity constants and conditions below.) We further assume
that f is a bounded linear functional over Xe. Under these
standard hypotheses on a and f , (1) admits a unique solu-
tion.

We shall further presume for most of this paper that we
are “in compliance” [112]. In particular, we assume that
(i) a is symmetric—a(w,v;µ) = a(v,w;µ), ∀w,v ∈ Xe,
∀µ ∈ D, and furthermore (ii) ! = f . This assumption will
greatly simplify the presentation while still exercising most
of the important RB concepts; furthermore, many important
engineering problems are in fact “compliant” (see Sect. 6).
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At the conclusion of the paper, Sect. 11, we indicate the
rather straightforward (primal-dual) extension to the “non-
compliant” case in which now a may be non-symmetric and
! may be any bounded linear functional over Xe.

We shall make one last assumption, crucial to Offline-
Online procedures and hence computational performance.
In particular, we assume that the parametric bilinear form a

is “affine” in the parameter µ, by which we shall mean

a(w,v;µ) =
Q∑

q=1

Θq(µ)aq(w,v). (2)

Here, for q = 1, . . . ,Q, the Θq :D→ R are (typically very
smooth) µ-dependent functions, and the aq :Xe × Xe → R
are µ-independent Xe-continuous bilinear forms. (In the
compliant case the aq , 1 ≤ q ≤ Q, are additionally sym-
metric; however, in neither the compliant nor non-compliant
cases do we place any restrictions on the “sign” of the aq ,
1 ≤ q ≤ Q.) In actual practice, f may also depend affinely
on the parameter: in this case, f (v;µ) may be expressed as
a sum of Qf products of parameter-dependent functions and
parameter-independent Xe-bounded linear forms.

As we shall see in Sect. 5, the assumption of affine para-
meter dependence is broadly relevant to many instances of
both property and geometry parametric variation. Further-
more, as already described in Sect. 3.2, the assumption of
affine parameter dependence may be relaxed; however, even
in the non-affine case, the (now approximate) representation
(2) shall still play a crucial computational role in the Offline-
Online computational procedures.

We next proceed to the finite element (FE) approximation
to the problem (1): Given µ ∈D ⊂ RP , evaluate

sN (µ) = f (uN (µ))

(recall our compliance assumption: ! = f ), where uN (µ) ∈
XN ⊂Xe satisfies

a(uN (µ), v;µ) = f (v), ∀v ∈XN . (3)

Here XN ⊂ Xe is a sequence of (conforming) FE approxi-
mation spaces indexed by dim(XN ) ≡N . It follows directly
from our assumptions on a, f , and XN that (3) admits a
unique solution. (Note in actual practice we must often re-
place a with aN and f with fN to reflect numerical quadra-
ture and domain approximation “variational crimes.”) We re-
call that our RB field and RB output shall approximate, for
given N , the FE field uN (µ) and FE output sN (µ) (and not
ue(µ) and se(µ)).

We can now define our inner products and norms for
members of XN and Xe. First,

((w,v))µ ≡ a(w,v;µ), ∀w,v ∈Xe, (4)

|||w|||µ ≡ ((w,w))
1/2
µ , ∀w ∈ Xe, (5)

shall define our energy inner product and energy norm, re-
spectively. (Recall that a is coercive and symmetric.) Next,
for given µ ∈D and (non-negative) real τ ,

(w,v)X ≡ ((w,v))µ + τ(w,v)L2(Ω), ∀w,v ∈Xe,

‖w‖X ≡ (w,w)
1/2
X , ∀w,v ∈ Xe,

(6)

shall define our XN and Xe inner product and norm, re-
spectively; here (w,v)L2(Ω) ≡

∫
Ω wv. Corresponding dual

norms and dual spaces—for which we must now distinguish
between XN and Xe—will be introduced as needed.3 It is
imperative to observe that although our RB approximation
shall be built relative to a finite-dimensional FE approxima-
tion, we must insist on (H 1(Ω)-equivalent) norms that are
stable as N →∞.

Finally, we can now define more precisely our coercivity
and continuity constants (and coercivity and continuity con-
ditions). In particular, we define the exact and FE coercivity
constants as

αe(µ) = inf
w∈Xe

a(w,w;µ)

‖w‖2
X

, (7)

and

αN (µ) = inf
w∈XN

a(w,w;µ)

‖w‖2
X

, (8)

respectively. It follows from our coercivity hypothesis that
αe(µ) ≥ α0 > 0,∀µ ∈D, and from our conforming hypoth-
esis (ignoring any variational crimes) that αN (µ) ≥ αe(µ),
∀µ ∈ D. Similarly, we define the exact and FE continuity
constants as

γ e(µ) = sup
w∈Xe

sup
v∈Xe

a(w,v;µ)

‖w‖X‖v‖X
, (9)

and

γN (µ) = sup
w∈XN

sup
v∈XN

a(w,v;µ)

‖w‖X‖v‖X
, (10)

respectively. It follows from our continuity hypothesis that
γ e(µ) is finite ∀µ ∈ D, and from our conforming hy-
pothesis (ignoring any variational crimes) that γN (µ) ≤
γ e(µ),∀µ ∈D.

5 Problem “Scope”

We begin in Sect. 5 with perhaps the most difficult issue: the
family of geometric parametric variations consistent with

3We note that the choice of µ and τ will affect the quality and effi-
ciency of our RB a posteriori error estimators, but will not directly
affect our RB output predictions. We return to this point in Sects. 10
and 11.

6



our affine restriction, (2). Then, in Sect. 5.2 we describe the
general class of scalar problems that admit the abstract state-
ment of Sect. 4. (For simplicity, we consider only the scalar
case; the vector case [61] permits an analogous treatment.)

5.1 Geometry

5.1.1 Affine Geometry Precondition

The RB recipe, in effect, requires that Ω be a parameter-
independent domain: if we wish to consider linear combi-
nations of snapshots, these snapshots must be defined rel-
ative to a common spatial configuration. Thus to permit
geometric variation we must interpret Ω , our parameter-
independent reference domain, as the pre-image of Ωo(µ),
the parameter-dependent “actual” or “original” domain of
interest. The geometric transformation will yield variable
(parameter-dependent) coefficients in the reference-domain
linear and bilinear forms that, under suitable hypotheses to
be discussed below, will take the requisite affine form, (2).

We shall assume that, for all µ in D, Ωo(µ) is expressed
as

Ωo(µ) =
Lreg⋃

!=1

Ro,!(µ), (11)

where the Ro,!(µ), 1 ≤ !≤Lreg, are mutually non-overlap-
ping open “regions,”

Ro,!(µ)∩Ro,!′(µ) = ∅, 1 ≤ ! <! ′ ≤ Lreg, (12)

the integrity of which must be respected/preserved in subse-
quent representations and discretizations. Typically the dif-
ferent regions correspond to different materials and hence
material properties, or more generally different (discontin-
uously varying in space) PDE coefficients; however the re-
gions may also be introduced for algorithmic purposes to
ensure well-behaved mappings, as discussed in the next sec-
tion. We shall refer to the boundaries of Ro,!(µ), 1 ≤ ! ≤
Lreg, that do not reside on the boundary of Ωo(µ) as inter-
nal interfaces.

We next introduce, for all µ in D, a domain decomposi-
tion of Ωo(µ),

Ωo(µ) =
Kdom⋃

k=1

Ω
k
o(µ), (13)

where the Ωk
o (µ), 1 ≤ k ≤ Kdom, are mutually non-overlap-

ping open subdomains,

Ωk
o (µ)∩Ωk′

o (µ) = ∅, 1 ≤ k < k′ ≤ Kdom, (14)

that “honor” the regions in the sense that

Ro,!(µ) =
⋃

k∈K!

Ω
k
o(µ), (15)

where the K!, 1 ≤ ! ≤ Lreg, are mutually exclusive subsets
of {1, . . . ,Kdom}.

We now choose a value µref ∈D and define our reference
domain as Ω ≡Ωo(µref). It immediately follows from (13),
(14), and (15) that

Ω =
Kdom⋃

k=1

Ω
k
, (16)

Ωk ∩Ωk′ = ∅, 1 ≤ k < k′ ≤Kdom, (17)

and

R! =
⋃

k∈K!

Ω
k
, (18)

for Ωk = Ωk
o (µref), 1 ≤ k ≤ Kdom, and R! = Ro,!(µref),

1 ≤ !≤Lreg.
We will build our FE approximation on a very fine

“N ” FE subtriangulation of the coarse “Kdom” domain
decomposition—which we shall denote our “RB triangula-
tion”—of Ω . (Recall that our FE and RB approxima-
tions are defined over the reference domain.) This FE
subtriangulation ensures that the FE approximation accu-
rately treats the perhaps discontinuous coefficients (arising
from property and geometry variation) associated with the
different regions; the subtriangulation also plays an impor-
tant role in the generation of our affine representation, (2).
We emphasize that µref only affects the accuracy of the un-
derlying FE approximation upon which the RB discretiza-
tion and a posteriori error estimator is built: typically a value
of µref at the “center” of D minimizes distortion and reduces
the requisite N (for a given acceptable FE error over D).

We now state our Affine Geometry Precondition. We can
treat any original domain Ωo(µ) and associated regions (11)
that admits a domain decomposition (13)–(15) for which
(there exists a µref ∈D such that), ∀µ ∈D,

Ω
k
o(µ) = T aff,k(Ω

k;µ), 1 ≤ k ≤ Kdom, (19)

for affine mappings T aff,k(·;µ): Ωk → Ωk
o (µ), 1 ≤ k ≤

Kdom, that are (i) individually bijective, and (ii) collectively
continuous,

T aff,k(x;µ) = T aff,k′(x;µ),

∀x ∈Ω
k ∩Ω

k′
,1 ≤ k < k′ ≤Kdom. (20)

The Affine Geometry Precondition is a necessary condition
for affine parameter dependence as defined in (2). Note that
we purposely define Kdom with respect to the exact problem,
rather than the FE approximation: Kdom can not depend on
N (to be meaningful).
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We now define our (bijective) affine mappings more ex-
plicitly: for 1 ≤ k ≤Kdom, any µ in D, and any x ∈Ωk ,

T aff,k
i (x;µ) = Caff,k

i (µ) +
d∑

j=1

Gaff,k
ij (µ)xj , 1 ≤ i ≤ d,

(21)

for given Caff,k : D → Rd and Gaff,k : D → Rd×d . We can
then define the associated Jacobians

J aff,k(µ) = |det(Gaff,k(µ))|, 1 ≤ k ≤ Kdom, (22)

where det denotes determinant; note the Jacobian is constant
in space over each subdomain. We further define, for any
µ ∈D,

Daff,k(µ) = (Gaff,k(µ))−1, 1 ≤ k ≤Kdom; (23)

this matrix shall prove convenient in subsequent derivative
transformations.

We may interpret our local mappings in terms of a global
transformation. In particular, for any µ ∈D, the local map-
pings (19) induce a global bijective piecewise-affine trans-
formation T aff(·;µ): Ω →Ωo(µ): for any µ ∈D,

T aff(x;µ) = T aff,k(x;µ), k = min
k′∈{1,...,Kdom}|x∈Ωk′

k′; (24)

note the one-to-one property of this mapping (and, hence
the arbitrariness of our “min” choice in (24)) is ensured by
the interface condition (20). We can further demonstrate that
these global continuous mappings are compatible with our
second-order PDE variational formulation: for any µ ∈ D,
given any wo ∈ H 1(Ωo(µ)), w ≡ wo ◦ T aff ∈ H 1(Ω); this
ensures that our mapped problem on the reference domain
is of the classical “conforming” variety.

Although this largely concludes the formal exposition
of admissible geometry variations, the relevance and ulti-
mately application of these conditions requires familiarity
with the scope of the affine mappings (21). We first consider,
in Sect. 5.1.2, a single subdomain (and hence necessarily
a single region). We next consider, in Sect. 5.1.3, the case
of multiple subdomains: we give a prescriptive definition of
a family of admissible domains, and we briefly summarize
an algorithm to identify the associated domain decomposi-
tion and affine mappings. Finally, in Sects. 5.2 and 5.3, we
discuss the incorporation of these affine mappings into our
weak form and provide several illustrative computational re-
sults.

5.1.2 Affine Mappings: Single Subdomain

As we consider a single subdomain in this section, we shall
suppress the subdomain superscript for clarity of exposition.

We shall focus on the two-dimensional case (d = 2); the ex-
tension to three dimensions (d = 3) is, although certainly
possible, not trivial. Note that some of the elementary mate-
rial presented here is available in linear algebra or computer
graphics texts [90, 146]; we emphasize application within
our particular parametric PDE context.

We first rewrite our affine transformation (21), for sim-
plicity, without the subdomain superscript: for any given
µ ∈ D, the reference domain Ω induces the parameter-
dependent geometry of interest, Ωo(µ), through the affine
mapping

T aff
i (x;µ) = Caff

i (µ) +
d∑

j=1

Gaff
ij (µ)xj , 1 ≤ i ≤ d; (25)

we shall refer to Caff(µ) ∈ Rd and Gaff(µ) ∈ Rd×d as the
“mapping coefficients.” Under our assumption that the map-
ping is invertible we know that our Jacobian, J aff(µ) of (22),
is strictly positive, and that the derivative transformation ma-
trix, Daff(µ) = (Gaff(µ))−1 of (23), is well defined.

We recall that, in two dimensions, an affine transforma-
tion maps straight lines to straight lines and in fact paral-
lel lines to parallel lines and indeed parallel lines of equal
length to parallel lines of equal length: it follows that a tri-
angle maps onto a triangle (or a tetrahedron onto a tetrahe-
dron in three dimensions), that a parallelogram maps onto a
parallelogram (or a parallelepiped onto a parallelepiped in
three dimensions), and that an n-gon maps onto an n-gon
(or an n-hedron onto an n-hedron in three dimensions). We
also recall that an affine transformation maps ellipses to el-
lipses (and ellipsoids to ellipsoids). These “straight line” and
“ellipse” properties will be crucial for the descriptions of do-
mains relevant in the engineering context.

Basic Technology

Our affine transformation (25) is completely defined, for
d = 2, by the (d(d +1)) = 6 mapping coefficients Caff(µ) ∈
Rd=2 and Gaff(µ) ∈ Rd×d=2×2. It immediately follows
that, for any µ ∈ D, we can uniquely identify Caff(µ) and
Gaff(µ) from the relationship between 3 non-colinear pre-
image points—or “nodes”—in Ω , (z1,z2,z3) ≡ ((z1

1, z
1
2),

(z2
1, z

2
2), (z

3
1, z

3
2)), and 3 parametrized image nodes in

Ωo(µ), (z1
o(µ),z2

o(µ),z3
o(µ))≡ ((z1

o1, z
1
o2), (z

2
o1, z

2
o2), (z

3
o1,

z3
o2))(µ). (Note that, from our assumption that the affine

transformation is bijective, the image nodes are perforce also
non-colinear.) In particular, for given µ ∈D, application of
(25) to the selected “nodes” yields

zm
oi (µ) = Caff

i (µ) +
2∑

j=1

Gaff
ij (µ)zm

j ,

1 ≤ i ≤ 2, 1 ≤m ≤ 3; (26)
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(26) constitutes 6 independent equations by which to deter-
mine the 6 mapping coefficients. (In three space dimensions,
we must follow the “trajectories” of the 3 coordinates of
4 pre-image/image points: this yields 12 equations for the
12 mapping coefficients.)

To be more explicit in our construction, we first form the
matrix Baff ∈ R6×6 (more generally, R(d2+d)×(d2+d)),

Baff =





1 0 z1
1 z1

2 0 0

0 1 0 0 z1
1 z1

2

1 0 z2
1 z2

2 0 0

0 1 0 0 z2
1 z2

2

1 0 z3
1 z3

2 0 0

0 1 0 0 z3
1 z3

2





. (27)

We further introduce the vector V aff(µ) of image nodal lo-
cations,

V aff(µ) =





z1
o1(µ)

z1
o2(µ)

z2
o1(µ)

z2
o2(µ)

z3
o1(µ)

z3
o2(µ)





. (28)

The solution of the linear system (26) can then be succinctly
expressed as




Caff
1 (µ)

Caff
2 (µ)

Gaff
11 (µ)

Gaff
12 (µ)

Gaff
21 (µ)

Gaff
22 (µ)





= (Baff)−1V aff(µ); (29)

note that Baff is non-singular under our hypothesis of non-
colinear pre-image nodes.

The matrix Baff is independent of µ; the parametric de-
pendence derives from V aff(µ). In particular, the µ depen-
dence of the geometry “enters” through the parametrized lo-
cations of the image nodes (z1

o(µ),z2
o(µ),z3

o(µ)) as repre-
sented in V aff(µ). To illustrate how the parametric depen-
dence propagates from the (desired) parametrized domain to

the mapping coefficients—and to exercise the general affine
technology presented above—we now consider several dif-
ferent domains. (In Sect. 5.2 we consider how the paramet-
ric dependence further propagates from the mapping coeffi-
cients to the affine expansion of the bilinear form, (2), asso-
ciated with our PDE.)

We note that parallelograms and (in three space dimen-
sions) parallelepipeds are the most intuitive subdomains by
which to effect transformations “by hand”—invoking the
usual translation, dilation, rotation, and shear primitives; we
consider such a case in the three-dimensional linear elas-
ticity example of Sect. 6. However, it is (Standard) trian-
gles, Elliptical Triangles, and more general “Curvy” Tri-
angles which admit symbolic and numerical automation,
and which are thus the building blocks of choice in general
multi-subdomain software (e.g., [1]). We shall thus focus on
triangular building blocks in our discussion here.

Ωo(µ): (Standard) Triangles

Triangles will thus be the “workhorses” in our geomet-
ric decompositions: the fundamental building blocks. To
demonstrate the application of the technology to triangu-
lar domains, we consider a single parameter, µ≡ µ1 ∈D ≡
[0.5,2]. We take for Ω the triangle with vertices (counter-
clockwise) (0,0), (1,0), (1,1); these vertices shall also
serve as the pre-image nodes, and hence z1 = (0,0), z2 =
(1,0), z3 = (1,1). We take for Ωo(µ) the triangle with
vertices (counter-clockwise) (0,0), (µ1,0), (1,1); these
vertices shall also serve as the image nodes, and hence
z1

o(µ1) = (0,0), z2
o(µ1) = (µ1,0), z3

o(µ1) = (1,1). (Note
for triangles, our three points uniquely define not only the
transformation but also the reference and parametrized do-
mains.) As already noted in Sect. 5.1.1, the pre-image nodes
correspond to the image nodes for a particular value of
the parameter: in our example here, µ1ref = 1 such that
(z1,z2,z3) = (z1

o(µ1ref), z2
o(µ1ref), z3

o(µ1ref)). The domains
Ω and Ωo(µ) are depicted in Figs. 1a and b, respectively.

Fig. 1 (a) Reference domain Ω , and (b) actual (or original) domain
Ωo(µ1)
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If we turn the crank, we find from (29) that




Caff
1 (µ1)

Caff
2 (µ1)

Gaff
11 (µ1)

Gaff
12 (µ1)

Gaff
21 (µ1)

Gaff
22 (µ1)





=





1 0 0 0 0 0

0 1 0 0 0 0

−1 0 1 0 0 0

0 0 −1 0 1 0

0 −1 0 1 0 0

0 0 0 −1 0 1









0

0

µ1

0

1

1





,

(30)

and hence (Caff(µ1) = 0—no translation—and)

Gaff(µ1) =




µ1 1 −µ1

0 1



 . (31)

It directly follows from (22) and (23) that

J aff(µ1) = µ1, (32)

and

Daff(µ1) =




1
µ1

− 1−µ1
µ1

0 1



 . (33)

Note that Daff is not linear in µ1. (We also note that a trans-
lation would affect Caff(µ1) but not Gaff(µ1), J aff(µ1), or
Daff(µ1).)

We can readily construct an affine map from any refer-
ence triangle in R2 (simplex in d space dimensions), Ω ≡
SIM, onto any desired triangle in R2, Ωo(µ) ≡ SIMo(µ): it
will prove most convenient to choose for our nodes (say,
in two dimensions) (z1,z2,z3) and (z1

o(µ), z2
o(µ), z3

o(µ))
the vertices of SIM and SIMo(µ). (We could also choose the
“barycentric” co-ordinates of the FE context [27, 41].)

Ωo(µ): “Elliptical Triangles”

It is important to note that the Geometric Affine Precondi-
tion places no restriction on the shape of the (sub)domains:
although an affine mapping transforms straight lines to
straight lines, we are not constrained (say, for d = 2)
to straight lines in the definition of the boundary of the
(sub)domain. For example, if Ω is the unit circle then trans-
lation creates a shifted circle, isotropic dilation creates a
larger or smaller circle, and anisotropic dilation creates an
ellipse.

In fact, an “Elliptical Triangle” Ωo(µ) and even a more
general “Curvy Triangle” Ωo(µ) shall be the basic building
blocks in our multidomain framework of Sect. 5.2. We con-
sider in this section the former. We depict in Fig. 2 the two

Fig. 2 (a) “Inwards” (convex domain) Elliptical Triangle, and
(b) “Outwards” (non-convex domain) Elliptical Triangle

types of Elliptical Triangles, “Inwards” and “Outwards.”
In both cases, the Elliptical Triangle Ωo(µ) is defined by
the three nodes (vertices) z1

o(µ),z2
o(µ),z3

o(µ), by the two

straight edges z1
o(µ)z2

o(µ) and z1
o(µ)z3

o(µ), and by an ellip-

tical arc z2
o(µ)z3

o(µ)
arc

. We now define each of these com-
ponents more precisely, and identify constraints that must be
honored in order to obtain admissible/controlled geometric
descriptions.

We shall describe a point on a prescribed parametrized
ellipse

(xo −O(µ))TQrot(µ)S−2(µ)Qrot(µ)T(xo −O(µ)) = 1
(34)

as

xo ≡
(

xo1

xo2

)

= O(µ) + Qrot(µ)S(µ)

(
cos t

sin t

)

(35)

for given t ∈ R. Here O(µ): D → R2 is the center of the
ellipse; ρ1: D → R+ and ρ2: D → R+ are semi-axes that
define the diagonal dilation or “scaling” matrix

S(µ) ≡
(
ρ1(µ) 0

0 ρ2(µ)

)

; (36)

and φ(µ): D→ R is an angle of inclination that defines the
rotation matrix

Qrot(µ) =
(

cosφ(µ) − sinφ(µ)

sinφ(µ) cosφ(µ)

)

. (37)

We depict the geometry in Fig. 3.
We now take our points z2

o(µ), z3
o(µ) as

zm
o (µ) = O(µ) + Qrot(µ)S(µ)

(
cos tm

sin tm

)

, m = 1,2,

(38)
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Fig. 3 Definition of a point on a prescribed parametrized ellipse

for prescribed t2 ∈ R, t3 ∈ R, such that 0 ≤ t3 − t2 < π ; the
desired elliptical arc is then given by

z2
o(µ)z3

o(µ)
arc

=
{
O(µ) + Qrot(µ)S(µ)

(cos t

sin t

) ∣∣∣∣ t2 ≤ t ≤ t3
}
. (39)

It remains to choose the third point (actually, the first point,
z1

o) to achieve our ends.
In particular, for an “Elliptical Triangle,” and unlike a

Standard Triangle, the choice of the first point is not arbi-
trary: z1

o(µ) must be selected such that, under affine trans-
formation, we generate the desired arc (39); if the first point
is not selected appropriately not only will we not control
the arc but, in the multidomain context, we risk a discon-
tinuous global mapping. The first point must also be chosen
to ensure a “proper” (Elliptical) Triangle: the internal angle
condition 0 < θ12 < π , 0 < θ23 < π , 0 < θ31 < π , must be
satisfied. (We shall initially assume that the internal angle
condition is satisfied, and subsequently derive the relevant
prescriptive criteria.)

We shall choose the first point as

z1
o(µ) = O(µ) +ωQrot(µ)S(µ)

(cos t1

sin t1

)
, (40)

for given ω ∈ R and t1 ∈ [t2, t3]. We can hence express our
three image points zm

o (µ), 1 ≤ m ≤ 3, as

zm
o (µ) = O(µ) +ωmQrot(µ)S(µ)

(cos tm

sin tm

)
, (41)

for ω1 = ω, ω2 = ω3 = 1. It follows that our pre-image
points are then given by

zm = O(µref) +ωmQrot(µref)S(µref)

(cos tm

sin tm

)
, (42)

for 1 ≤ m≤ 3.
We conclude from (41),(42) that (recall Qrot(µ) is or-

thogonal)

zm
o (µ) = O(µ)

+ Qrot(µ)S(µ)S(µref)
−1Qrot(µref)

T

× (zm −O(µref))

= O(µ)−Qrot(µ)S(µ)S(µref)
−1

×Qrot(µref)
TO(µref)

+ Qrot(µ)S(µ)S(µref)
−1Qrot(µref)

Tzm, (43)

for 1 ≤ m≤ 3. We can then directly identify our affine map-
ping coefficients from (43) as

Caff(µ) = O(µ)−Qrot(µ)S(µ)S(µref)
−1

×Qrot(µref)
TO(µref), (44)

and

Gaff(µ) = Qrot(µ)S(µ)S(µref)
−1Qrot(µref)

T; (45)

T aff is then given by (25). (Of course, if we were to apply
the formal procedure of (27)–(29) we would arrive at the
same result.)

We note from (44)–(45) that

xo −O(µ) = Qrot(µ)S(µ)S(µref)
−1

×Qrot(µref)
T(x −O(µref)), (46)

and hence

x −O(µref) = Qrot(µref)S(µref)S(µ)−1Qrot(µ)T

× (xo −O(µ)). (47)

We observe, not unexpectedly, that the mapping is a transla-
tion combined with the product of a rotation and dilation.

We can now define our Elliptical Triangles. In particu-
lar, for both the Inwards and Outwards cases, we can write
(since Ω is perforce star-shaped with respect to z1)

Ω =
⋃

t∈[t2,t3]
z1

(
O(µref) + Qrot(µref)S(µref)

(
cos t

sin t

))
.

(48)

It immediately follows from (46)—recall straight lines map
to straight lines—that

Ωo(µ)

= T aff
⋃

t∈[t2,t3]
z1

(
O(µref) + Qrot(µref)S(µref)

(
cos t

sin t

))

=
⋃

t∈[t2,t3]
T affz1

(
O(µref) + Qrot(µref)S(µref)

(
cos t

sin t

))

=
⋃

t∈[t2,t3]
z1

o

(
O(µ) + Qrot(µ)S(µ)

(
cos t

sin t

))
, (49)
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Fig. 4 Regions in which z1
o(µ) must reside for an Inwards Elliptical

Triangle (RIn(µ)) and an Outwards Elliptical Triangle (ROut(µ)) in
order to ensure the internal angle condition

as required by (39). (It might appear that to obtain the requi-
site elliptical arc we must sacrifice free selection of z1(µ):
this is true. However, in the multidomain context, the z1(µ)

shall always be internal nodes; we shall thus retain control
of the (boundary of the) actual domain Ωo(µ).)

It remains to obtain conditions on ω such that the three
internal angles, θ12, θ23, θ31, are all bounded between 0
and π : the angle conditions ensure a well-defined domain
and subsequent finite element triangulation. It is also impor-
tant to confirm, as we shall, that the condition can be sat-
isfied for all µ ∈ D. To begin, we consider the diagram in
Fig. 4. Clearly, a necessary and sufficient condition to en-
sure the angle condition for Inwards Elliptical Triangles (re-
spectively, Outward Elliptical Triangles) is z1

o(µ) ∈RIn(µ)

(respectively, z1
o(µ) ∈ROut(µ)), where

RIn(µ) =
{
z1

o(µ) ∈ R2∣∣(z1
o(µ)− z2

o(µ))Tn2(µ) < 0,

(z1
o(µ)− z3

o(µ))Tn3(µ) < 0,

(z1
o(µ)− z2,3

o (µ))Tn2,3(µ) < 0
}

(50)

and

ROut(µ) =
{
z1

o(µ) ∈ R2∣∣(z1
o(µ)− z2

o(µ))Tn2(µ) > 0,

(z1
o(µ)− z3

o(µ))Tn3(µ) > 0
}

(51)

for zm
o (µ), 1 ≤ m ≤ 3, given by (41). Here n2(µ) and

n3(µ) are the outwards-oriented normals to the ellipse at
z2

o(µ) and z3
o(µ), respectively, z2,3

o (µ) = 1
2 (z2

o(µ)+ z3
o(µ)),

and n2,3(µ) is the “outward” normal to the line segment
z2

o(µ)z3
o(µ) at z2,3

o (µ).
It is simple to derive, based on elementary trigonomet-

ric identities, explicit conditions on ω such that the an-
gle conditions (50), (51) shall be satisfied. Several happy
circumstances conspire to ensure that our condition is µ-
independent: hence if the angle condition is honored for
µref ∈ D corresponding to the reference domain, then the
angle condition is satisfied for all µ ∈ D. We provide here

the condition for the particular choice t1 = 1
2 (t2 + t3). For

this choice, recalling that 0 < t3 − t2 < π , (50) reduces to

ω < cos
(

t3 − t2

2

)

for the Inwards case, and (51) reduces to

ω >
1

cos( t3−t2

2 )

for the Outwards case. (It is clear that, in the multidomain
context, t3 − t2 must be not just less than π but in fact well
away from π .)

It is evident that we must exercise some care in the con-
struction of Elliptical Triangles to ensure controlled ellip-
tical arcs, continuous (Inwards/Outwards) mappings, and
well-defined internal angles. We do note (as some consola-
tion) that Elliptical Triangles are “consistent” under refine-
ment: if we split either a straight edge or the elliptical arc of
an Elliptical Triangle described by (41) for ω satisfying the
internal angle conditions (50), (51), we obtain two daughter
Elliptical Triangles each described by (41) for (different) ω
satisfying the internal angle conditions (50), (51). (In fact,
the daughter Elliptical Triangles share the same affine map-
ping as the parent.) This edge-split consistency property pro-
vides, in the multidomain context, a simple mechanism by
which to integrate Elliptical Triangles into domain decom-
positions which respect boundaries and internal interfaces.
We discuss this further below.

Ωo(µ): “Curvy” Triangles

The extension from “Elliptical” Triangles to (general)
“Curvy” Triangles is, at least formally, very straightforward:
we simply replace cos t , sin t in (41) (and in all subsequent
occurrences) with a general parametrization g1(t), g2(t). We
restrict our attention to curvy arcs which, within a particular
“Curvy” Triangle, are either strictly convex (“Inwards”) or
strictly concave (“Outwards”) for all µ ∈D; this condition is
easily articulated in terms of the sign of the derivative of the
normal, or equivalently the curvature. It can then be shown
that our internal angle conditions (50), (51) are directly ap-
plicable and (as in the Elliptical case) parameter indepen-
dent. We can further demonstrate that, for a proper choice
of “center,” these angle conditions reduce to a simple set
of algebraic equations—in terms of g1(t), g2(t), g′

1(t), and
g′

2(t) evaluated at t1, t2, and t3—that indeed admit a feasi-
ble solution. However, even in the convex/concave case, we
can not express the Curvy Triangle solution in any simple
closed form analogous to the Elliptical Triangle result.

5.1.3 Piecewise-Affine Mappings: Multiple Subdomains

A single affine mapping can treat only a very limited family
of parametrized domains Ωo(µ). However, piecewise affine
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mappings—in our case (typically) based on a domain de-
composition in Standard, Elliptical, and Curvy Triangles—
can address a much larger class of geometric variations. We
restrict attention here to two space dimensions (in the ex-
amples of Sect. 6 we consider a specific three-dimensional
problem).

We shall consider “Elliptical-Edge” domains: domains
and associated regions for which the boundary and internal
interfaces can be represented by either straight edges or the
elliptical arcs described by (39); we shall naturally choose
for our building blocks (Standard and) Elliptical Triangles.
(An analogous family of “Curvy-Edge” domains built from
Curvy Triangles can also be considered. The Curvy-Edge
procedure is very similar to the Elliptic-Edge procedure, but
on somewhat less firm theoretical ground. We consider an
example in the next section.)

There are three steps to the multidomain mapping process.
First (our emphasis in this section), we shall generate an
“RB triangulation” (17) of the reference domain Ω , (16),
and associated reference regions, (18), that is compatible
with the mapping continuity condition (20); second (as
already developed in the previous section), we will con-
struct the parameter-dependent affine mappings (21) for
each subdomain following the recipe (27)–(29); third (as de-
scribed in the next section), we will translate these paramet-
ric mappings into PDE coefficients, and then “optimize”—
coalesce similar mapping-induced PDE coefficients into sin-
gle terms—to arrive at an economical affine expansion, (2).
In fact, the first and second steps are implicitly coupled—
most notably (but not exclusively) for Elliptical Triangles in
which the point selection must be constrained, (41) and (50),
(51), to ensure consistent, continuous, and invertible affine
mappings.

Our focus here is thus on the RB triangulation of Ω . We
wish to generate a domain decomposition (17) of our ref-
erence geometry Ω , (16), and associated reference regions,
(18), that is compatible with the mapping global continuity
condition (20) (and in particular satisfies the Elliptical Tri-
angle consistency/continuity (41) and internal angle, (50),
(51), conditions). The User input is a set of (parametrized)
“control” points and edges that completely specify the do-
main boundary and region internal interfaces. There are two
stages to the algorithm (which shares some features with
classical FE triangulation):

Stage 1. In this stage we focus on the Elliptical Triangles
required by non-straight edges on the boundary or internal
interfaces. We introduce an (Inwards or Outwards) Ellipti-
cal Triangle for each elliptical-arc boundary edge and two
(an Inwards and an Outwards) Elliptical Triangles for each
elliptical-arc internal interface edge; we perform “splits”
of the elliptical-arc boundary/interface edges as necessary
to ensure reference Elliptical Triangles that satisfy both the
internal angle conditions (50), (51) and the region integrity

conditions (18). The new points created by introduction of
the Elliptical Triangles are denoted interior control points.

Stage 2. In this stage we “fill” in the remainder of the do-
main with Standard Triangles: (a) We perform a Delau-
nay triangulation on the boundary/internal interface con-
trol points (initially provided by the User) and the interior
control points (initially introduced in Stage 1 of the algo-
rithm). (b) We next search for a (any) “disrespectful” edge:
here a “disrespectful” edge is an edge that belongs to the
domain boundary or an internal interface or an Elliptical
Triangle but does not (yet) belong to the Delaunay trian-
gulation. (c) We then split the “disrespectful” edge; note
this step will create additional boundary/internal interface
or interior control points (and Elliptical Triangles). (d) We
repeat (a)–(c) until no disrespectful edges remain. (Note
that since Stage 1 already enforces all curved-edge consid-
erations, Stage 2 need only consider “logical” edges asso-
ciated with the control point connectivity graph.)

Note the mapping continuity condition (20) is satisfied
for both (i) Elliptical Triangles—the constrained choice of
points, (41), ensures Inwards/Outwards compatibility, and
(ii) Standard Triangles—two affine mappings that agree at
the endpoints of a segment also agree at all points on the
segment.

Unfortunately, our algorithm does not guarantee—even
for very simple parametric domains Ωo(µ) with straight-
edge boundaries decomposed in Standard Triangles—that
the Jacobians of the associated affine mappings will remain
(strictly) positive for all µ ∈ D, and in particular for µ far
from µref. Equivalently, our algorithm does not guarantee
that a “valid” domain decomposition of Ω , (16)–(18), will
induce a “valid” domain decomposition of Ωo(µ), (13)–
(15), for all µ ∈D.4 Furthermore, even if the Jacobian does
not vanish, “small” Jacobians corresponding to excessive
distortion will lead to FE approximations—which we recall
shall be built on a very fine “N ” FE subtriangulation of the
coarse “Kdom” RB triangulation—that are at best inefficient
and at worst very ill-conditioned.

We further caution that even well-behaved/non-singular
mappings can be quite “inefficient” as regards ultimate per-
formance of the reduced basis approximation. Inefficient
RB triangulations are characterized by many parametrically
“dissimilar” triangles that, in turn, generate many distinct
affine mappings (21): we obtain a large value for Q in (2)
and ultimately (as we shall see) poor Offline and Online RB

4The Elliptical Triangles of Stage 1 satisfy the parameter-independent
angle conditions (50), (51): hence the Elliptical Triangles of Stage 1 re-
main non-singular. However, the Standard Triangles of Stage 2 are not
in general of the form (41) and will not satisfy the conditions (50), (51):
hence the Standard Triangles of Stage 2 may degenerate to a line—zero
Jacobian—and then proceed to “penetrate” other (Standard or Ellipti-
cal) Triangles.
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performance.5 In contrast, efficient RB triangulations are
characterized by (not necessarily relatively few triangles, but
rather) relatively few parametrically “dissimilar” triangles
that, in turn, generate relatively few distinct affine mappings
(21)—in particular, relatively few distinct J aff,· and Daff,·:
we obtain a smaller value for Q in (2) and ultimately better
Offline and Online RB performance.

Fortunately, proper selection of the initial control point/
edge data perhaps supplemented by the introduction of “ar-
tificial” regions—regions motivated by mapping considera-
tions rather than physical/mathematical (e.g., discontinuous
property/coefficient) considerations—can ensure both well-
behaved/non-singular and efficient transformations; in most
cases, good (and bad) choices are rather self-evident. We
shall consider several examples in the next section, but we
must first understand the connection between the domain de-
composition and associated mapping coefficients developed
here and the final affine representation of the PDE bilinear
form, (2).

5.2 Bilinear Form

As already indicated, we shall consider here only the scalar
case; the vector case (linear elasticity) admits an analogous
treatment [61].

5.2.1 Formulation on “Original” Domain

Our problem is initially posed on the “original” domain
Ωo(µ), which we assume realizes the Affine Geometry Pre-
condition as described in the previous section. We shall as-
sume for simplicity that Xe

o(µ) = H 1
0 (Ωo(µ)), which corre-

sponds to homogeneous Dirichlet boundary conditions over
the entire boundary ∂Ωo(µ); we subsequently discuss nat-
ural (Neumann and Robin) conditions.

Given µ ∈D, we evaluate

se
o(µ) = fo(u

e
o(µ)),

where ue
o(µ) ∈Xe

o(µ) satisfies

ao(u
e
o(µ), v;µ) = fo(v), ∀v ∈ Xe

o(µ).

We now place conditions on ao and fo such that, in conjunc-
tion with the Affine Geometry Precondition, we are ensured
an affine expansion of the bilinear form.

In particular, we require that ao(·, ·;µ): H 1(Ωo(µ)) ×
H 1(Ωo(µ))→ R can be expressed as

5As discussed in Sects. 7.1 and 9.4, the RB Offline computational
complexity scales as Q, and the RB Online computational complex-
ity scales as Q2.

ao(w,v;µ)

=
Lreg∑

!=1

∫
⋃

k∈K!
Ωk

o (µ)

[
∂w
∂xo1

∂w
∂xo2

w
]
Ko,!ij (µ)





∂v
∂xo1

∂v
∂xo2

v



 ,

(52)

where xo = (xo1, xo2) denotes a point in Ωo(µ). Here, for
1 ≤ ! ≤ Lreg, Ko,!: D → R3×3 is a given symmetric pos-
itive semidefinite matrix (we must ensure coercivity of our
bilinear form): the upper 2 × 2 principal submatrix of Ko,!

is the usual tensor conductivity/diffusivity; the (3,3) ele-
ment of Ko,! represents the identity operator (“mass ma-
trix”); and the (3,1), (3,2) (and (1,3), (2,3)) elements of
Ko,!—which we can choose here as zero thanks to our cur-
rent restriction to symmetric operators—permit first deriva-
tive (or “convection”) terms. (In Sect. 11 we consider non-
compliant and in particular non-symmetric bilinear forms,
in which case the convection contributions are non-zero.)

Similarly, we require that fo: H 1(Ωo(µ)) → R can be
expressed as

fo(v) =
Lreg∑

!=1

∫

∪k∈K!
Ωk

o (µ)
Fo,!(µ)v,

where, for 1 ≤ ! ≤ Lreg, Fo,!: D → R. (As we discuss be-
low, somewhat greater generality is in fact permitted.)

5.2.2 Formulation on Reference Domain

We now apply standard techniques to transform the problem
statement over the original domain to an equivalent problem
statement over the reference domain: Given µ ∈D, we find

se(µ) = f (ue(µ)),

where ue(µ) ∈ Xe ≡H 1
0 (Ω) satisfies

a(ue(µ), v;µ) = f (v), ∀v ∈Xe.

We may then identify se(µ) = se
o(µ) and ue(µ) = ue

o (µ) ◦
T aff(·;µ).

The transformed bilinear form, a, can be expressed as

a(w,v;µ) =
Kdom∑

k=1

∫

Ωk

[
∂w
∂x1

∂w
∂x2

w
]
Kk

ij (µ)





∂v
∂x1

∂v
∂x2

v



 ,

(53)

where x = (x1, x2) denotes a point in Ω . Here the Kk: D→
R3×3, 1 ≤ k ≤ Kdom, are symmetric positive semidefinite
matrices given by

Kk(µ) = J aff,k(µ)Gk(µ)Ko,!(µ)(Gk(µ))T, ∀k ∈ K!,

(54)
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for 1 ≤ ! ≤ Lreg; the Gk : D → R3×3, 1 ≤ k ≤ Kdom, are
given by

Gk(µ) =



Daff,k(µ)
0
0

0 0 1



 ; (55)

J aff,k(µ) and Daff,k(µ), 1 ≤ k ≤ Kdom, are given by (22)
and (23), respectively; and T denotes transpose.

Similarly, the transformed linear form can be expressed
as

f (v) =
Kdom∑

k=1

∫

Ωk
Fk(µ)v.

Here Fk : D→ R, 1 ≤ k ≤ Kdom, is given by

Fk = J aff,k(µ)Fo,!(µ), ∀k ∈ K!, 1 ≤ !≤ Lreg.

(We recall that, for 1 ≤ !≤ Lreg, K! is the set of subdomains
associated with region !: K! ∩ K!′ = 0, 1 ≤ ! <! ′ ≤ Lreg,

and
⋃Lreg

!=1 K! = {1, . . . ,Kdom}.)
We note that, in general, the Kk(µ) and Fk(µ), 1 ≤ k ≤

Kdom, will be different for each subdomain Ωk . The differ-
ences can arise either due to “property” variation or to geom-
etry variation—or both. We thus require, as already indi-
cated earlier, that the FE approximation be built upon a sub-
triangulation of the RB triangulation: discontinuities in PDE
coefficients are thereby restricted to element edges to en-
sure (more) rapid convergence; and identification/extraction
of the terms in the affine expansion (2) is more readily
effected—as we now discuss.

5.2.3 Affine Form

We focus here on a, though f admits a similar treatment.
We simply expand the form (53) by considering in turn each
subdomain Ωk and each entry of the diffusivity tensor Kk

ij ,
1 ≤ i, j ≤ 3, 1 ≤ k ≤ Kdom. Thus,

a(w,v;µ) = K1
11(µ)

∫

Ω1

∂w

∂x1

∂v

∂x1

+K1
12(µ)

∫

Ω1

∂w

∂x1

∂v

∂x2
+ · · ·

+KKdom
33 (µ)

∫

ΩKdom
wv. (56)

We can then identify each component in the affine expan-
sion: for each term in (56), the pre-factor represents Θq(µ),
while the integral represents aq .

Taking into account the symmetry of the bilinear form,
such that (effectively) only the (1,1), (1,2) (= (2,1)),
(2,2), and (3,3) entries of Ko,!(µ)—and hence Kk(µ)—
must be accommodated, there are (at most) Q = 4K terms

in the affine expansion. The Θq(µ) are given by (for the
obvious numbering scheme) Θ1(µ) = K1

11(µ),Θ2(µ) =
K1

12(µ), . . . ,Θ5(µ) = K2
11(µ), . . . ,ΘQ(µ) = KKdom

33 (µ);
the aq(w,v) are given by

a1(w,v) =
∫

Ω1

∂w

∂x1

∂v

∂x1
,

a2(w,v) =
∫

Ω1

∂w

∂x1

∂v

∂x2
,

...

a5(w,v) =
∫

Ω2

∂w

∂x1

∂v

∂x1
,

...

aQ(w,v) =
∫

ΩKdom
wv.

This identification constitutes a constructive proof that the
Affine Geometry Precondition and the property/coefficient
variation permitted by (52) do indeed yield a bilinear form
which can be expressed in the requisite affine form, (2).

In fact, many of the terms in the development (56) may
indeed vanish: often, many entries in Ko,!, 1 ≤ ! ≤ Lreg,
or in Gk , 1 ≤ k ≤ Kdom, will be zero. For example, for a
“pure Laplacian” with isotropic diffusivity and “pure dila-
tion” geometry transformations, we immediately reduce the
number of non-zero terms in (56) to Q = 2Kdom. In prac-
tice, even in more complicated/general situations, not only
will there often be many zero entries, but there will also be
many “duplicate”—linearly dependent—entries: in our de-
velopment (56), if (say) K2

11(µ) = ConstK1
11(µ), we may

eliminate Θ5(µ) and redefine

a1(w,v) =
∫

Ω1

∂w

∂x1

∂v

∂x1
+ Const

∫

Ω2

∂w

∂x1

∂v

∂x1
,

thereby reducing Q. Symbolic manipulation techniques can
identify and eliminate all (zero and) redundant terms in (56)
to arrive at a minimal-Q affine expansion. However, “good”
choice of the User-provided initial control points/edges for
our RB triangulation—a choice that honors symmetries and
isolates geometric variation—remains important: we de-
scribe an example below. (We re-emphasize that fewer sub-
domains is not important; many parametrically similar sub-
domains will generate “like terms” that will be automatically
coalesced by symbolic economization procedures.)

We close with a discussion of generality. In fact, the
conditions we provide are sufficient but not necessary. For
example, we can permit affine polynomial dependence on
xo in both Ko,!(xo;µ) and Fo,!(xo;µ) and still ensure an
affine development, (2); furthermore, in the absence of geo-
metric variation (in a particular region !), Ko,!(xo;µ) and
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Fig. 5 (a) Original domain
Ωo(µ) with single region
Ro,1(µ) and initial control
points/edges indicated, and
(b) Kdom = 2 RB triangulation
Ω = ⋃Kdom

k=1 Ω
k

(the numbers
refer to subdomains)

Fig. 6 (a) Original domain
Ωo(µ) with Lreg = 2 regions
Ro,1(µ) (left triangle), and
Ro,2(µ) (right triangle) and
initial control points/edges
indicated, and (b) Kdom = 4 RB
triangulation Ω =∪Kdom

k=1 Ω
k

Fo,!(xo;µ) can take on any “separable” form in x,µ. How-
ever, the affine expansion (2) is by no means completely
general: for more complicated data parametric dependen-
cies, non-affine techniques [18, 53, 138] must be invoked.

Another memento mori is provided by inhomogeneous
natural boundary conditions. Homogeneous Neumann con-
ditions obviously pose no problem, as neither a nor f is
affected in this case: we may thus consider homogeneous
Neumann conditions on any straight, circular, elliptical, or
generally curvy edge of ∂Ω . However, for inhomogeneous
Neumann conditions (which modify f ) or Robin conditions
(which modify a), the situation is less satisfactory: effect-
ing the usual mapping techniques (in this case involving the
“edge” Jacobian), we find that the transformed equations ad-
mit an affine form (2) only in the case of straight or circular
edges. Again, to treat the more general case, non-affine tech-
niques [18] must be invoked.

5.3 Computational Results

We consider here several examples of parametrized geome-
tries that illustrate the RB triangulation, mapping, and
affine decomposition (and economization) procedures de-
scribed in the previous sections. We consider either homo-
geneous Dirichlet boundary conditions, homogeneous Neu-
mann conditions, or inhomogeneous Neumann conditions
on straight edges. We restrict our attention to the affine rep-
resentation associated with the bilinear form a, (2), though

in all cases considered f also admits an affine representa-
tion.

As our first example, we consider the original domain
Ωo(µ) shown in Fig. 5a: an obelisk with vertices (0,0),
(1,1), (0,µ1), (−1,1). The single (P = 1) parameter µ1
corresponds to the height of the upper part of the obelisk;
the parameter domain is given by D = [0.5,3]. We choose
for our reference parameter µref = µ1ref = 2.5.

In the first instance we choose a single region, hence
Lreg = 1, corresponding to the entire domain shown in
Fig. 5a; the User-provided control points ((0,0), (1,1),
(0,µ1), (−1,1)) and control edges (sequential point pairs)
are also indicated in Fig. 5a. In this case we obtain the RB
triangulation (we need only perform one “sweep” of Stage 2
of the algorithm of Sect. 5.1.3) shown in Fig. 5b; clearly, at
µ1 = 1 the mapping will become singular.

In the second instance we now consider the two regions,
Lreg = 2, shown in Fig. 6a; the User-provided control points
(in fact, still (0,0), (1,1), (0,µ1), (−1,1)) and control
edges—which now include a vertical bisector—are also in-
dicated in Fig. 6a. We now obtain the RB triangulation—in
this case we require an edge split, and hence two sweeps of
Stage 2—shown in Fig. 6b; the resulting mapping is well
defined, even if somewhat “distorted,” for all µ ∈ D. (We
re-iterate that the regions primarily serve to identify dif-
ferent/discontinuous PDE coefficients; however, the regions
can also serve to “stimulate” better mappings.)
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Fig. 7 (a) Original domain Ωo(µ) with single region Ro,1(µ) and ini-
tial control points/edges indicated, and (b) Kdom = 8 RB triangulation
Ω = ⋃Kdom

k=1 Ω
k

(the numbers refer to subdomains)

We now consider a second, only slightly more involved
example, to illustrate how the choice of control points can
affect not only well-posedness but also efficiency of the
“economized” affine representation, (2). (The dependence
of the algorithm on the User-provided control points is in
fact a liability, not a feature: we would prefer complete au-
tomation. Our goal here is only to demonstrate that without
too much effort we can guide the triangulation in the good
direction.) We shall consider both (i) the Laplacian with
isotropic diffusivity corresponding to Ko,!11 = Ko,!22 = 1
and all other entries of Ko,! zero for 1 ≤ ! ≤ Lreg, and
(ii) linear elasticity for an isotropic (either plane stress or
plane strain) material [61]. We consider the original do-
main Ωo(µ) = ]−2,2[ × ]−2,2[ \ [−µ1,µ1] × [−µ2,µ2]:
a square with a variable rectangular hole; we choose a single
region, hence Lreg = 1, corresponding to the entire domain.
The two (P = 2) parameters correspond to the dimensions
of the rectangular hole; the parameter domain is given by
D = [0.5,1.5] ×[ 0.5,1.5]. We choose µref = (1.0,1.0).

In the first instance, we choose the User-provided control
points/edges as shown in Fig. 7a, which yields the Kdom = 8
RB triangulation of Ω shown in Fig. 7b. Upon economiza-
tion, there are Q = 10 terms and Q = 19 terms in our affine
expansion (2) for the Laplacian and elasticity problems, re-
spectively. There is some symmetry in the RB triangulation,
and the economization does reduce the number of terms in
the affine expansion (say, for the Laplacian) from the max-
imum possible of 24 to 10. However, the RB triangulation
includes many (unnecessary) shear terms, which leads to the
rather large Q for this relatively simple problem.

In the second instance, we choose the User-provided
control points/edges as shown in Fig. 8a, which yields the
Kdom = 16 RB triangulation shown in Fig. 8b. Upon econ-
omization, there are Q = 6 terms and Q = 7 terms in our
affine expansion (2) for the Laplacian and elasticity prob-
lems, respectively. In this case, the RB triangulation both
retains the available symmetries and avoids (unnecessary)
shear contributions. The control points of Fig. 8a do ex-
hibit one drawback: the effect of the hole “propagates” to the

Fig. 8 (a) Original domain Ωo(µ) with single region Ro,1(µ) and ini-
tial control points/edges indicated, and (b) Kdom = 16 RB triangulation
Ω = ⋃Kdom

k=1 Ω
k

Fig. 9 (a) Original domain Ωo(µ) with Lreg = 2 regions Ro,1(µ) and
Ro,2(µ) and initial control points/edges indicated, and (b) Kdom = 34

RB triangulation Ω = ⋃Kdom
k=1 Ω

k

outer boundary, and hence would not be efficient if Ωo(µ)

in fact represents a region within a larger more complex do-
main; in the latter case, the control points of Fig. 7a, which
localize the geometric variation, are preferred.

We now turn to an Elliptical-Edge domain. We con-
sider a Laplacian with a “sink/reaction” term: Ko,!ij = δij ,
1 ≤ i, j ≤ 3, 1 ≤ ! ≤ Lreg; here δij is the Kronecker delta.
We consider the original domain Ωo(µ) with two regions:
Ro,1(µ) is the ellipse defined by x2

o1/µ
2
1 + x2

o2/µ
2
2 < 1;

Ro,2(µ) = ]−2,2[ × ]−2,2[ \ Ro,1(µ). In actual practice,
we would introduce different (parameter-dependent) ma-
terial properties/discontinuous coefficients in the PDE in
the two regions: for simplicity here, we consider just the
two (P = 2) geometric parameters which define the el-
lipse major/minor axes; the parameter domain is given by
D = [0.5,1.5] ×[ 0.5,1.5]. We choose µref = (1.0,1.0).

We select the User-provided control points/edges shown
in Fig. 9a; we obtain the Kdom = 34 RB triangulation of Ω
shown in Fig. 9b. (Note the many control points/edges in
Fig. 9b relative to Fig. 9a: we perform many edge splits in
both Stage 1 and Stage 2.) Note that all the subdomains in-
side the ellipse are Inwards Elliptical Triangles, and the sub-
domains k = 16, 18, 20, 21, 24, 25, 29, 31 are all Outwards
Elliptical Triangles.
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Fig. 10 (a) Original domain Ωo(µ) with single region Ro,1(µ) and
initial control points/edges indicated, and (b) Kdom = 8 RB triangula-
tion Ω = ⋃Kdom

k=1 Ω
k

In this case, we obtain Q = 15, which is quite modest;
furthermore, the geometric feature is “localized” in the sense
that the control points on the outer square are parameter-
independent. We observe that many subdomains does not
necessarily imply large Q; in this case, all the Inwards and
Outwards Elliptical Triangles share the same (anisotropic)
dilation mapping, and hence generate similar mapping coef-
ficients that can be coalesced in the final affine representa-
tion.

As our last example, we consider a more general Curvy-
Edge domain with a single region. We consider an isotropic
Laplacian corresponding to Ko,1 11 = Ko,1 22 = 1 (all other
entries of Ko,1 are set to zero). We consider the original do-
main Ωo(µ) given by {(xo1, xo2) | 0 < xo1 < 1,−1 < xo2 <

µ1 cosπxo1}. The single (P = 1) parameter represents the
amplitude of the cosinusoidal top boundary; the parameter
domain is given by D = [ 1

6 , 1
2 ]. We choose µref = 1/3.

We select the User-provided control points and edges
shown in Fig. 10a. Note for the Curvy Edge associated with
control points (0,µ1) and (1/2,0) we choose center (0,0)

and hence our parameterization is given by
(

xo1
xo2

)
=

[
1 0
0 µ1

][
t

cosπt

]
(57)

for 0 ≤ t ≤ 1/2; for the Curvy Edge associated with control
points (0,1/2) and (1,−µ1) we choose center (1,0) and
hence our parameterization is given by
(

xo1
xo2

)
=

[
1
0

]
+

[
1 0
0 µ1

][
t − 1

cosπt

]
(58)

for 1/2 ≤ t ≤ 1. These choices yield the Kdom = 8 RB trian-
gulation of Ω shown in Fig. 10b. We note that subdomains
k = 5,6 correspond to Outwards and Inwards Curvy Trian-
gles, respectively.

In this case we obtain Q = 9, again rather modest. This
particular problem is more obviously treated by a “stretch”
mapping (which is not affine); however, for our purposes we
clearly prefer the piecewise-affine mapping presented here.
We emphasize that arbitrary Curvy Edge domains will not,

Fig. 11 Thermal Block problem for B1 = B2 = 3

in general, permit affine treatment: the Curvy Edges must
admit a (parameter-independent) concave/convex decompo-
sition and appropriate centers in order for our approach to
be directly applicable.

6 Working Examples

6.1 Scalar Problems

We consider two “working” examples. The first shall serve
as a vehicle for the convergence theory; the second is in-
tended to illustrate an application. We note that in all cases
we provide the formulation for the “exact” problem (super-
script e); the FE approximation is then derived from the ex-
act statement (and RB triangulation) following the proce-
dures described earlier. Note also that all problems are pre-
sented in non-dimensional form.

6.1.1 Thermal Block

We consider heat conduction in a square domain. The square
comprises B1 × B2 blocks: each block is a different region
with different thermal conductivity; the geometry is depicted
in Fig. 11. Inhomogeneous Neumann (non-zero flux) bound-
ary conditions are imposed on (so as to match notation in
Fig. 11) Γbase; homogeneous Dirichlet (temperature) con-
ditions are imposed on Γtop; and homogeneous (zero flux)
Neumann conditions are imposed on the two sides. The out-
put of interest is the average temperature over (so as to
match notation in Fig. 11) Γbase [6, 7].

The parameters are then the conductivities in the first
B1B2 − 1 blocks (with the blocks numbered as shown in
Fig. 11); note in our non-dimensionalization the conduc-
tivity of the last block, which serves for normalization, is
unity. Hence P = B1B2 − 1 and µ = (µ1, . . . ,µP ), where
µp is the conductivity of block p; the parameter domain
is then given by D = [µmin,µmax]P with µmin = 1/

√
µr ,

µmax =√
µr for µr = 100 (hence µmax/µmin = 100).
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We immediately recover our abstract statement of (1): we
identify Xe ≡ {v ∈ H 1(Ω) | v|Γtop = 0}, which imposes the
Dirichlet conditions;

a(w,v;µ) =
P∑

i=1

µi

∫

Ri

∇w · ∇v +
∫

RP+1

∇w · ∇v, (59)

which represents the Laplacian and homogeneous Neumann
conditions (as well as internal flux continuity conditions);
and

f (v)≡ f Neu(v)≡
∫

Γbot

v, (60)

which imposes the inhomogeneous Neumann conditions.
Here

Ω =
P+1⋃

i=1

Ri ,

where the Ri , i = 1, . . . ,P + 1, correspond to the regions
associated with the respective blocks/conductivities, as indi-
cated in Fig. 11.

The problem is readily demonstrated to be coercive, sym-
metric, and compliant (the Neumann boundary condition
functional indeed corresponds to the average temperature
functional). The problem is also affine in parameter, (59): in
this case no geometric transformations are required, though
the regions still serve to accommodate the discontinuous
PDE coefficients; we directly observe that Q = P + 1 with
Θq(µ) = µq , 1 ≤ q ≤ P , ΘP+1 = 1, and

aq(w,v) =
∫

Rq

∇w · ∇v, 1 ≤ q ≤ P + 1.

(Note for this problem f is indeed independent of µ.)
This problem shall serve to illustrate the convergence rate

of the RB discretization, both for P = 1 in which we can
compare with available a priori theory, and for P = 8 corre-
sponding to “many parameters.”

6.1.2 Inviscid Flow: Added Mass

We consider inviscid incompressible flow induced by small
motions of a square body in a “basin.” In this case, there is
only a single region: the physical (flow) domain Ωo(µ)—
the basin\the body—is depicted in Fig. 12a. The governing
equation is Laplace’s equation for the pressure. Inhomoge-
neous Neumann boundary conditions on the pressure (corre-
sponding to inhomogeneous conditions on the normal veloc-
ity) are imposed on Γ ±

o,1; homogeneous Dirichlet (“free sur-
face”) conditions on the pressure are imposed on Γo,s ; and
homogeneous Neumann conditions on the pressure (zero
normal flow) are imposed on all other boundaries. The out-
put of interest is the classical added mass [94].

Fig. 12 (a) Original domain Ωo(µ) with single region Ro,1(µ) and
initial control points/edges indicated, and (b) Kdom = 22 RB triangu-
lation Ω = ⋃Kdom

k=1 Ω
k

The three parameters—in this case, all the parameters
are geometric—are indicated in Fig. 12a. Hence P = 3 and
µ = (µ1,µ2,µ3): µ1 is the lateral extent of the basin, µ2

is the minor axis of the elliptical arc describing the bot-
tom of the basin, and µ3 is the horizontal location of the
(center of the) square block; the parameter domain is given
by D = [1.5,3] ×[ 0.5,1.5] × [−0.35,−0.35]. We choose
µref = (2,1,0) which in turn defines our reference domain
Ω =Ωo(µref).

We again realize the abstraction of (1), however in
this case—and in fact, in all cases involving geomet-
ric variation—it shall prove more convenient to define
the constituents with respect to the “original” (parameter-
dependent) domain. In particular, we identify Xe

o(µ) ≡ {v ∈
H 1(Ωo(µ))|v|Γo,s = 0}, which imposes the Dirichlet condi-
tions;

ao(w,v;µ) =
∫

Ωo(µ)
∇w · ∇v,

which represents the Laplacian and homogeneous Neu-
mann/zero normal flow conditions; and
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fo(v)≡
∫

Γ +
o,1

v −
∫

Γ −
o,1

v,

which imposes a xo1-velocity of unity on both Γ +
o,1 and Γ −

o,1.
The problem is clearly coercive, symmetric, and compliant
(the normal velocity functional also corresponds to the pres-
sure force—and hence added mass—functional).

We may then apply our methods of Sect. 5.1: for the
control points/edges indicated in Fig. 12a, the algorithm
of Sect. 5.1.3 yields the Kdom = 22 RB triangulation of
Ω depicted in Fig. 12b; we then construct the associated
affine mappings according to the recipe of Sect. 5.1.2; we
next effect the re-formulation on the reference domain,
as described in Sect. 5.2.2; finally, we extract and coa-
lesce/economize the terms in the affine expansion, (2), fol-
lowing the process defined in Sect. 5.2.3. In this particular
case, we obtain an affine expansion (2) with Q = 34 terms.
(For this problem, f does not depend on µ, as the edges
Γ ±

o,1 do not depend on the parameters.) Note this prolif-
eration of terms from P = 3 to Q = 34—typical of more
geometrically complex problems—adversely affects Online
performance (which depends on Q), and in practice limits
the scope of our approach; without economization, the situ-
ation would be much worse.

We note that the current added-mass example also illus-
trates the many query context: in practice, the output might
appear as a position-dependent (µ3-dependent) coefficient
in the acceleration term of the dynamical equation for the
position of the body; numerical integration of these equa-
tions of motion could thus require repeated evaluation of
the added-mass output. (Applications can be conceived at
both the large ocean engineering scale or the small bio-
engineering scale.) Reduced basis methods are very efficient
for treatment of this class of problems.

6.2 Vector Problems: Linear Elasticity

We consider two “working” examples. The first (in d = 3
space dimensions) shall serve as a vehicle for quantifying
computational performance; the second (in d = 2 dimen-
sions) is intended to illustrate an application. We note that
in all cases we provide the formulation for the “exact” prob-
lem (superscript e); the FE approximation is then derived
from the exact statement (and RB triangulation) following
the procedures described earlier—suitably extended to the
vector case. Note also that all problems are presented in non-
dimensional form.

6.2.1 Elastic Block 3D

We consider linear elasticity in a cubic domain ]0,3[3 with a
centered parallelepiped of different material—an inhomoge-
neous inclusion—and of variable dimension. Each material

Fig. 13 Domain (and two regions) for Elastic Block 3D

is associated with a different region; we depict the geome-
try Ωo(µ) and two regions in Fig. 13. The governing equa-
tion is the equation of linear elasticity (isotropic material)
for the displacement. Inhomogeneous Neumann boundary
conditions on the displacement (corresponding to uniform
normal stress) are imposed on Γo,T ; homogeneous Dirich-
let conditions on the displacement (“clamped”) are imposed
on Γo,D ; and homogeneous Neumann conditions on the dis-
placement (zero normal and tangential stress) are imposed
on all other boundaries. The output of interest is the inte-
grated normal displacement over Γo,T [150].

There are four parameters. The first three parameters
are geometric, while the fourth parameter relates to ma-
terial properties. Hence P = 4 and µ = (µ1,µ2,µ3,µ4):
µ1,µ2, and µ3 are the extent of the parallelepiped inclu-
sion (with center (3/2,3/2,3/2)) in the xo1, xo2, and xo3
coordinates, while µ4 is the Young’s modulus of the in-
clusion relative to the Young’s modulus of the “continu-
ous phase” (the two materials are assumed to have the same
Poisson ratio νPo = 0.3); the parameter domain is given by
D = [0.5,2]3 × [0.1,10]. We choose µref = (1,1,1, ·).

We again realize the abstraction of (1). As before, it is
most convenient to define the constituents with respect to the
“original” (parameter-dependent) domain. In particular, we
identify Xe

o(µ) ≡ {v ∈ (H 1(Ωo(µ)))3|v|Γo,D = 0}, which
imposes the clamped conditions;

ao(w,v;µ) =
∫

Ro,1(µ)

∂wi

∂xoj
C1ijmn(µ)

∂vm

∂xon

+
∫

Ro,2(µ)

∂wi

∂xoj
C2ijmn(µ)

∂vm

∂xon
,

where for != 1,2,

C!ijmn(µ) = λ1
!(µ)δij δmn + λ2

!(µ)(δimδjn + δinδjm),

with δij the Kronecker delta symbol and

λ1
1(µ) = µ4ν

Po

(1 + νPo)(1 − 2νPo)
, λ2

1(µ) = µ4

2(νPo + 1)
,

λ1
2(µ) = νPo

(1 + νPo)(1 − 2νPo)
, λ2

2(µ) = 1
2(νPo + 1)

,
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the non-dimensional Lamé constants for an isotropic elastic
material; finally,

fo(v;µ) ≡
∫

Γo,T

v1,

which imposes the normal stress of unity on Γo,T . The prob-
lem is clearly coercive, symmetric, and compliant (the nor-
mal stress functional also corresponds to the integrated dis-
placement functional).

We now apply (the vector version of) our methods of
Sect. 5, but in this case “by hand”: we choose 27 cu-
bic subdomains as our uniform RB “triangulation” of Ω—
the inclusion region Ro,1(µ) (respectively, the continu-
ous phase region Ro,2(µ)) comprises the “middle” sub-
domain ! = 14 (respectively, the remaining subdomains
! = 1, . . . ,13,15, . . . ,27); we then construct the associ-
ated affine mappings by inspection—anisotropic dilations;
we next effect the re-formulation on the reference domain,
as described in Sect. 5.2.2 (suitably extended to the vector
case); finally, we extract and coalesce/economize the affine
expansion, (2), following the process defined in Sect. 5.2.3.
In this particular example, we obtain an affine expansion for
a, (2), with Q = 48 terms. (For this problem, f does depend
on µ: f (v;µ) admits a 4-term affine expansion.) As is typ-
ically the case—in particular for rectilinear problems—the
Θq(µ) are low-order rational polynomials in µ.

This example shall serve to (quantitatively) assess com-
putational performance of the RB method relative to the FE
method. This problem is also quite similar to the cell prob-
lems that must be solved in the many-query non-periodic
homogenization context; see [26] for application of the RB
approach to non-periodic homogenization theory.

6.2.2 Elastic Crack: Stress Intensity Factor

We consider linear elasticity for a crack emanating from
a hole in “Mode I” tension; we consider only one quarter
of the domain thanks to symmetry of geometry and load-
ing. We depict the geometry (and single region) Ωo(µ) in
Fig. 14; note the crack corresponds to boundary segment
Γo,1. The governing equation is the equation of linear elas-
ticity (isotropic material) for the displacement. Inhomoge-
neous Neumann boundary conditions on the displacement
(corresponding to uniform normal stress) are imposed on
Γo,4; mixed homogeneous Dirichlet/Neumann conditions on
the displacement (“symmetry”) are imposed on Γo,2 and
Γo,5; homogeneous Neumann conditions on the displace-
ment (zero normal and tangential stress) are imposed on all
other boundaries (including the crack and hole). The ulti-
mate output of interest is the Stress Intensity Factor for the
crack, which we shall derive from an intermediate (compli-
ant) energy output by application of the virtual crack exten-
sion approach [109].

Fig. 14 Elastic Crack: (a) Original domain Ωo(µ) (single region) with
initial control points/edges indicated, and (b) Boundary segments on
∂Ωo(µ)

There are two parameters; both parameters are geometric
in origin, as shown in Fig. 14. (In our scaling, the Young’s
modulus of the material is unity; the Poisson ratio is fixed
at νPo = 0.3.) Hence P = 2 and µ = (µ1,µ2): µ1 is the
length of the crack (as measured from the hole), while µ2
is the radius of the hole; the parameter domain is given by
D = [0.1,0.3]×[ 0.1,0.5]. We now choose µref = [0.2,0.3]
which in turn defines our reference domain Ω = Ωo(µref).
(Note that as µ1 varies for µ2 fixed the length of the crack
changes but the radius of the hole is invariant; this shall be
important in evaluating the Stress Intensity Factor.)

We again realize the abstraction of (1). As before, it is
most convenient to define the constituents with respect to the
“original” (parameter-dependent) domain. In particular, we
identify Xe

o(µ) ≡ {v ∈ (H 1(Ωo)(µ))2|v1|Γo,5 = 0, v2|Γo,2 =
0}, which imposes the Dirichlet component of the symmetry
conditions;

ao(w,v;µ) =
∫

Ωo(µ)

∂wi

∂xoj
Cijkl

∂vk

∂xol
,

where

Cijkl = λ1δij δkl + λ2(δikδjl + δilδjk),

with δij the Kronecker delta symbol and

λ1 = νPo

(1 − νPo)2 , λ2 = 1
2(νPo + 1)

the non-dimensional Lamé constants for an isotropic linear
elastic material in plane stress (νPo = 0.3); finally,

fo(v;µ) ≡
∫

Γo,4

v1,

which imposes the normal stress of unity on Γo,4. The prob-
lem is clearly coercive, symmetric, and—by construction—
compliant.
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Fig. 15 Elastic Crack:
Kdom = 6 RB triangulation
Ω = ⋃Kdom

k=1 Ω
k

We may then apply (the vector version of) our methods of
Sect. 5: for the control points/edges indicated in Fig. 14a (re-
call there is a single region in this example), the algorithm
of Sect. 5.1.3 yields the Kdom = 6 RB triangulation of Ω

depicted in Fig. 15; we then construct the associated affine
mappings according to the recipe of Sect. 5.1.2; we next
effect the re-formulation on the reference domain, as de-
scribed in Sect. 5.2.2 (suitably extended to the vector case);
finally, we extract and coalesce/economize the affine expan-
sion, (2), following the process defined in Sect. 5.2.3. In this
particular case, we obtain an affine expansion for a, (2), with
Q = 25 terms. (For this problem, f does not depend on µ.)
We again note the modest but non insignificant amplification
from P = 2 (geometric) parameters to Q = 25 terms in the
affine expansion.

As already indicated, the (transformed) output se(µ) =
f (ue(µ)) is, in this example, only an intermediate result “on
the way” to the Stress Intensity Factor (SIF). In particular,
the virtual crack extension method [109]—based on the en-
ergy formulation of the Stress Intensity Factor—yields the
Energy Release Rate (ERRe), Ge, as

Ge(µ) =−
(
∂se(µ)

∂µ1

)

in terms of which (in our non-dimensionalization) the
Stress Intensity Factor can then be expressed as SIFe(µ) =√

Ge(µ). We can thus construct, for suitably small δµ1, a
finite-difference approximation to the ERRe as

Ĝe(µ) =−
(

se(µ + δµ1)− se(µ)

δµ1

)

and subsequently to the SIFe as ŜIFe
(µ) =

√
Ĝe(µ). We

shall later develop first a FE approximation and subse-
quently a corresponding RB approximation—and associated
RB error bound—for Ĝe(µ).

The ERR and SIF often serve in the real-time or many-
query contexts. In the real-time context, we might require
“in the field” evaluation of fracture for given (varying) en-
vironmental conditions [20]. In the many-query context, we

might require evaluation of crack growth from Paris’s law
in which the SIF—itself a function a crack length—is the
crucial term.

7 The Reduced Basis Method

7.1 Reduced Basis Approximation

7.1.1 RB Spaces

We assume that we are given a FE approximation space of
dimension N , XN . (We shall subsequently confirm that all
our results are computationally and mathematically stable
as N →∞; however, in order to define a particular reduced
basis space, we may consider a fixed N .) We then intro-
duce, given a positive integer Nmax, an associated sequence
of (what shall ultimately be reduced basis) approximation
spaces: for N = 1, . . . ,Nmax, XN

N is a N -dimensional sub-
space of XN ; we further suppose that

XN
1 ⊂XN

2 ⊂ · · ·XN
Nmax

⊂XN . (61)

As we shall see, the nested or hierarchical condition (61) is
important in ensuring (memory) efficiency of the resulting
reduced basis approximation. (In one instance—which we
will clearly mark—we will for purely theoretical purposes
consider a non-hierarchical sequence of spaces.)

We recall from Sect. 2 that there are several classical RB
proposals—Taylor, Lagrange, and Hermite spaces—as well
as several more recent contenders—such as POD spaces. All
of these spaces “focus” in one fashion or another on the low-
dimensional, smooth parametric manifold, MN = {u(µ) |
µ ∈ D}, already identified in Opportunity I of Sect. 2: in-
deed, the central role of this parametric manifold is the
defining (albeit somewhat imprecisely defined here) charac-
teristic of “proper” reduced basis spaces. Much of what we
present—in particular, all the material of this section related
to optimality, discrete equations, conditioning, and Offline-
Online procedures, and all the material of Sect. 9 related
to a posteriori error estimation—shall be relevant to any of
these reduced basis spaces/approximations.

However, some of what we shall present, in particular re-
lated to sampling strategies in Sect. 7.2, is restricted to the
particular reduced basis space which shall be our primary
focus: the Lagrange reduced basis spaces [119], which we
shall denote by (XN

N =) WN
N . In order to define a (hierar-

chical) sequence of Lagrange spaces WN
N , 1 ≤ N ≤ Nmax,

we first introduce a “master set” of parameter points µn ∈D,
1 ≤ n≤ Nmax. We then define, for given N ∈ {1, . . . ,Nmax},
the Lagrange parameter samples

SN = {µ1, . . . ,µN }, (62)

22



Fig. 16 The “snapshots”
uN (µn), 1 ≤ n≤ N , on the
parametric manifold MN

and associated Lagrange RB spaces

WN
N = span{uN (µn), 1 ≤ n≤ N}. (63)

We observe that, by construction, these Lagrange spaces
XN

N = WN
N satisfy (61): the samples (62) are nested—

S1 = {µ1} ⊂ S2 = {µ1,µ2} ⊂ · · · ⊂ SNmax ; the Lagrange
RB spaces (63) are hierarchical—WN

1 = span{uN (µ1)} ⊂
WN

2 = span{uN (µ1), uN (µ2)} ⊂ · · · ⊂ WN
Nmax

.
The uN (µn), 1 ≤ n ≤ Nmax, are often referred to as

“snapshots” of the parametric manifold MN . For reasons
that will become clear subsequently, we shall denote these
snapshots more precisely as “retained snapshots.” We de-
pict the retained snapshots graphically in Fig. 16. It is clear
that, if indeed the manifold is low-dimensional and smooth
(a point we return to later), then we would expect to well
approximate any member of the manifold—any solution
uN (µ) for some µ in D—in terms of relatively few retained
snapshots. However, we must first ensure that we can choose
a good combination of the available retained snapshots
(Sect. 7.1.2), that we can represent the retained snapshots
in a stable RB basis (Sect. 7.1.2), that we can efficiently ob-
tain the associated RB basis coefficients (Sect. 7.1.3), and fi-
nally that we can choose our retained snapshots—in essence,
the parameter sample SNmax —optimally (Sect. 7.2.2). (Note
only the last item is specific to Lagrange RB spaces.)

7.1.2 Galerkin Projection

For our particular class of equations, Galerkin projection is
arguably the best approach. Given µ ∈D, evaluate (recalling
our compliance assumption)

sNN (µ) = f (uNN (µ)),

where uNN (µ) ∈ XN
N ⊂ XN (or more precisely, uN

XN
N

(µ) ∈
XN

N ) satisfies

a(uNN (µ), v;µ) = f (v), ∀v ∈XN
N . (64)

We emphasize that our ultimate interest is the output predic-
tion: the field variable serves as an intermediary. (We discuss
below a simpler but less rigorous and typically less efficient
alternative: direct approximation/ interpolation of the input-
output relation µ→ s(µ).)

We immediately obtain the classical optimality result in
the energy norm (5):

|||uN (µ)− uNN (µ)|||µ ≤ inf
w∈XN

N

|||uN (µ)−w|||µ; (65)

in the energy norm, the Galerkin procedure automatically
selects the best combination of snapshots. (Similar but sub-
optimal results obtain in other equivalent norms.) It is also
readily derived that

sN (µ)− sNN (µ) ≡ |||uN (µ)− uNN (µ)|||2µ; (66)

the output—our quantity of interest—converges as the
“square” of the energy error. (Although this latter result de-
pends critically on the compliance assumption, extension via
adjoint approximations to the non-compliant case is possi-
ble; we discuss this further in Sect. 11.)

We now consider the discrete equations associated with
the Galerkin approximation (64). We must first choose an
appropriate basis for our space: incorrect choice of the RB
basis can lead to very poorly conditioned systems; this is im-
mediately apparent in the Lagrange case—if WN

N provides
rapid convergence then, by construction, the snapshots of
(63) will be increasingly co-linear as N increases. Towards
this end, we apply the Gram-Schmidt process [88, 149] in
the (·, ·)X inner product to our snapshots uN (µn), 1 ≤
n ≤ Nmax, to obtain mutually orthonormal functions ζNn ,
1 ≤ n ≤ Nmax: (ζNn , ζNm )X = δnm, 1 ≤ n,m ≤ Nmax, where
δnm is the Kronecker delta symbol. We then choose the sets
{ζNn }n=1,...,N as our bases for WN

N , 1 ≤N ≤Nmax.
We now insert

uNN (µ) =
N∑

m=1

uNNm(µ)ζNm , (67)

and v = ζNn , 1 ≤ n ≤ N , into (64) to obtain the RB “stiff-
ness” equations

N∑

m=1

a(ζNm , ζNn ;µ)uNNm(µ) = f (ζNn ), 1 ≤ n≤ N, (68)

for the RB coefficients uNNm(µ), 1 ≤ m ≤ N ; we can subse-
quently evaluate the RB output prediction as

sNN (µ) =
N∑

m=1

uNNm(µ)f (ζNm ). (69)

It can be readily proven [112] that the condition number
of the matrix a(ζNm , ζNn ;µ), 1 ≤ n,m ≤ N , is bounded by
γ e(µ)/αe(µ) independent of N and N .
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7.1.3 Offline-Online Procedure

The system (68) is nominally of small size: a set of N linear
algebraic equations in N unknowns. However, the formation
of the stiffness matrix, and indeed the load vector, involves
entities ζNn , 1 ≤ n≤N, associated with our N -dimensional
FE approximation space. If we must invoke FE fields in or-
der to form the RB stiffness matrix for each new value of
µ the marginal cost per input-output evaluation µ→ sN(µ)

will remain unacceptably large.
Fortunately, we can appeal to affine parameter depen-

dence to construct very efficient Offline-Online procedures,
as we now discuss. In particular, we note that our system
(68) can be expressed, thanks to (2), as

N∑

m=1

(
Q∑

q=1

Θq(µ)aq(ζNm , ζNn )

)

uNNm(µ) = f (ζNn ),

1 ≤ n≤N. (70)

We observe that the ζN. are now isolated in terms that are
independent of µ and hence that can be pre-computed in an
Offline-Online procedure.

In the Offline stage, we first compute the uN (µn), 1 ≤
n≤Nmax, and subsequently the ζNn , 1 ≤ n≤Nmax; we then
form and store the

f (ζNn ), 1 ≤ n≤ Nmax, (71)

and

aq(ζNm , ζNn ), 1 ≤ n,m≤ Nmax, 1 ≤ q ≤ Q. (72)

The Offline operation count depends on Nmax, Q, and N .
In the Online (or “deployed”) stage, we retrieve (72) to

form

Q∑

q=1

Θq(µ)aq(ζNm , ζNn ), 1 ≤ n,m≤ N; (73)

we solve the resulting N ×N stiffness system (70) to obtain
the uNNm(µ), 1 ≤ m≤ N ; and finally we access (71) to eval-
uate the output (69). The Online operation count is O(QN2)

to perform the sum (73), O(N3) to invert (70)—note that the
RB stiffness matrix is full, and finally O(N) to effect the in-
ner product (69). The Online storage (the data archived in
the Offline stage) is—thanks to our hierarchical condition
(61)—only O(QN2

max) + O(Nmax): for any given N , we
may extract the necessary RB N ×N matrices (respectively,
N -vectors) as principal submatrices (respectively, principal
subvectors) of the corresponding Nmax×Nmax (respectively,
Nmax) quantities.

The Online cost (operation count and storage)—and
hence marginal cost and also asymptotic average cost—to

evaluate µ → sNN (µ) is thus independent of N . The im-
plications are two-fold: first, if N is indeed small, we will
achieve very fast response in the real-time and many-query
contexts; second, we may choose N very conservatively—
to effectively eliminate the error between the exact and FE
predictions—without adversely affecting the Online (mar-
ginal) cost. We now turn to a more detailed discussion of
sampling and (in Sect. 8) convergence in order to under-
stand how, and to a certain extent why, we can achieve high
accuracy for N independent of N and indeed N 3N .

7.2 “Sampling” Strategies

We first indicate a few preliminaries. We then turn to two
examples of sampling strategies.

We shall denote by Ξ a finite sample of points in D.
These “test” samples Ξ shall serve as surrogates for D in
the calculation and presentation of errors (and, in Sect. 9,
error bounds and effectivities) over the parameter domain.
Typically these samples are chosen by Monte Carlo meth-
ods with respect to a uniform or log-uniform density. For
brevity we will often report neither the specific distribution,
nor the precise number, of points in Ξ : we always ensure
(and empirically confirm) that Ξ is sufficiently large that
the reported results are insensitive to further refinement of
the parameter sample.

Given a function y: D→ R, we define

‖y‖L∞(Ξ) ≡ max
µ∈Ξ

|y(µ)|,

and

‖y‖Lp(Ξ) ≡
(

|Ξ |−1
∑

µ∈Ξ
|y|p(µ)

)1/p

.

Given a function z:D→XN (or Xe), we then define

‖z‖L∞(Ξ ;X) ≡ max
µ∈Ξ

‖z(µ)‖X,

and

‖z‖Lp(Ξ ;X) ≡
(

|Ξ |−1
∑

µ∈Ξ
‖z(µ)‖p

X

)1/p

.

Here |Ξ | denotes the cardinality of (the finite number of el-
ements in) the test sample Ξ .

We denote the particular samples which shall serve to se-
lect our RB space—or “train” our RB approximation—by
Ξtrain. The cardinality of Ξtrain will be denoted |Ξtrain| =
ntrain. We note that although the “test” samples Ξ serve pri-
marily to understand and assess the quality of the RB ap-
proximation and a posteriori error estimators, the “train”
samples Ξtrain serve to generate the RB approximation. The
choice of ntrain and Ξtrain thus have important Offline and
Online computational implications.
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7.2.1 POD RB Spaces: XN POD
N

These POD RB spaces can be defined very simply [37, 58,
72, 73, 78]: Given Ξtrain, the XN POD

N , 1 ≤ N ≤ Nmax, are
the solution to the optimization problem

XN POD
N

= arg inf
XN

N ⊂span{uN (µ)|µ∈Ξtrain}
‖uN −ΠXN

N
uN ‖L2(Ξtrain;X),

(74)

where ΠXN
N

: XN → XN
N refers to the projection in the X

inner product. We shall denote the functions uN (µ),µ ∈
Ξtrain, as “candidate snapshots.” Although certainly not im-
mediately apparent, it can be readily demonstrated that the
POD spaces are indeed hierarchical, (61).

It is a well-known but nevertheless remarkable fact [58]
that the optimization problem (74)—ostensibly of combina-
torial complexity in ntrain—can be reduced to the solution
of an ntrain × ntrain correlation-matrix eigenproblem—of al-
gebraic complexity in ntrain.6 However, the POD approach
is nevertheless very expensive: first, and most importantly,
we must compute all ntrain (FE) candidate snapshots—
and perform n2

train/2 candidate snapshot-candidate snap-
shot X inner products—in order to form the correlation
matrix; second, we must solve for the first Nmax eigen-
values/eigenproblems of the very large—ntrain × ntrain—
correlation matrix. In practice, this can severely limit ntrain,
which in turn (in particular for higher parameter dimensions
P ) can result in poor spaces—slow convergence, and large
errors over D \Ξtrain.

7.2.2 Greedy Lagrange RB Spaces: W
N Greedy
N and

W
N Greedy,en
N

We now develop a sample strategy particular to RB La-
grange spaces. The method can be viewed as a “heuristic”
(more precisely, sub-optimal) solution to the L∞(Ξtrain;X)

optimization problem analogous to the L2(Ξtrain;X) POD
optimization problem (74).

We are given Ξtrain and Nmax, as well as S1 = {µ1},
W

N Greedy
1 = span{uN (µ1)}. (In actual practice we may set

Nmax either directly, or indirectly through a prescribed error
tolerance.) Then, for N = 2, . . . ,Nmax, we find

µN = arg max
µ∈Ξtrain

∆N−1(µ),

6The eigenfunctions associated with the Nmax largest eigenvalues—
with minor postprocessing—directly provide the requisite orthonormal
basis functions [112]. Note, however, that each basis function in gen-
eral will combine all ntrain candidate snapshots uN (µ), µ ∈Ξtrain, and
thus the XN POD

N will not correspond to Lagrange RB spaces.

set SN = SN−1 ∪µN , and update W
N Greedy
N = W

N Greedy
N−1 +

span{uN (µN)}. As we shall describe in detail in Sect. 9,
∆N(µ) is a sharp, (asymptotically) inexpensive a posteriori
error bound for ‖uN (µ)− uN

W
N Greedy
N

(µ)‖X .

Roughly, at iteration N the greedy algorithm appends to
the retained snapshots that particular candidate snapshot—
over all candidate snapshots uN (µ), µ ∈ Ξtrain—which is
(predicted by the a posteriori error bound to be the) least
well approximated by (the RB prediction associated to)
W

N Greedy
N−1 . Typically, this greedy approach will be much

less expensive than the POD approach: in the greedy ap-
proach, we need compute only the N—typically very few—
FE retained snapshots; in the POD approach, we must com-
pute all ntrain—typically/desirably very many—FE candi-
date snapshots.7 Furthermore we shall observe empirically,
although at present we have no proof, that the short-horizon
“greedy” selection criterion in fact engenders rapidly con-
vergent RB approximation spaces—typically as good as the
POD spaces. (The temporal evolution case is quite differ-
ent: the greedy approach [52, 55] can encounter difficulties
best treated by incorporating elements of the POD selection
process [60].)

We can develop an analogous greedy procedure in the
energy norm; the energy norm is particularly relevant in the
“compliant” case, since the error in the energy norm is di-
rectly related to the error in the output (see Sect. 7.1.2). As
before, we are given Ξtrain and Nmax, as well as S1 = {µ1},
W

N Greedy,en
1 = span{uN (µ1)} . Then, for N = 2, . . . ,Nmax,

we find

µN = arg max
µ∈Ξtrain

(ωN(µ))−1∆en
N−1(µ),

set SN = SN−1 ∪µN , and update W
N Greedy,en
N =

W
N Greedy,en
N−1 + span{uN (µN)}. As described in detail in

Sect. 9.3, ∆en
N (µ) is a sharp, (asymptotically) inexpensive

a posteriori error bound for |||uN (µ) − uN
W

N Greedy,en
N

(µ)|||µ.

The prefactor ωN(µ) is typically chosen either as unity or
(as in all cases in this paper) |||uN

W
N Greedy,en
N

(µ)|||µ; for the

latter choice, the greedy selects on relative energy error (the
square of which yields the relative output error).

We now turn to theoretical and computational evidence
that this greedy selection process generates spaces which
are, if not optimal, at least very good.

7Clearly the accuracy and cost of the a posteriori error estimator
∆N(µ) are crucial to the success of the greedy algorithm: we provide
theoretical results for the effectivity and asymptotic average operation
count in Sect. 9. Detailed operation counts for the aggregate greedy
procedure, including all a posteriori estimation contributions, are pro-
vided in [112].
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Fig. 17 Thermal Block
problem: B1 = 2, B2 = 1

8 Convergence of RB Approximations

8.1 Single Parameter Case: P = 1

8.1.1 Model Problem

We shall consider the Thermal Block problem of Sect. 6.1.1
for the case in which B1 = 2,B2 = 1, as shown in Fig. 17.
The governing equations are then given by (59), (60) for
two blocks/regions R1 and R2, the single parameter µ =
µ = µ1 representing the conductivity of region R1 (the con-
ductivity of region R2 is unity), and the parameter domain
D = [µmin,µmax] ≡[ 1/

√
µr,

√
µr ] for µr = 100; the as-

sociated affine expansion (2) now comprises only Q = 2
terms. The FE discretization is then described by (3): for
most of our results, we consider a FE approximation with
N = 1024 degrees of freedom; as we describe in Sect. 8.2.1,
our results are largely insensitive to N for sufficiently large
N (and any fixed N ).

Our RB approximation is then given by (64). We shall
consider three choices for our space: the hierarchical POD
spaces XN

N = XN POD
N , 1 ≤ N ≤ Nmax, generated by the al-

gorithm described in Sect. 7.2.1; the hierarchical Lagrange
spaces XN

N = W
NGreedy,en
N , 1 ≤ N ≤ Nmax, generated by

the (energy version) of the greedy algorithm described in
Sect. 7.2.2; and finally, purely for theoretical purposes, the
non-hierarchical Lagrange spaces WN nh,ln

N , 1 ≤ N ≤ Nmax,
given by

WN nh,ln
N = span{uN (µn

N),1 ≤ n≤ N}, (75)

for the (non-nested, or only occasionally nested) parameter
points given by

µn
N = µmin exp

{
n− 1
N − 1

ln
(

µmax

µmin

)}
,

1 ≤ n≤N, 2 ≤N ≤Nmax. (76)

We denote the corresponding RB approximations by uN
XNPOD

N

or simply uN POD
N , uN

W
N Greedy,en
N

or simply u
N Greedy,en
N , and

uN
W

N nh,ln
N

or simply uN nh,ln
N , respectively.

The a priori theory described below suggests that the
spaces (75)—which we shall denote “equi-ln” spaces—
contain certainly optimality properties, though we shall ob-
serve that our more automatic sample selection procedures
do just as well (and perhaps even better for larger N ). We
note the analysis presented here in fact is relevant to a large
class of single parameter coercive problems [85, 87, 112].

8.1.2 Equi-ln Spaces: A Priori Theory

We present from [85, 87, 112] an a priori theory for RB
approximations associated with the specific non-hierarchical
equi-ln spaces (75). (In fact, the parameters need only be
quasi-uniform in lnµ [85, 87].) In particular, for the model
problem of Sect. 8.1.1, given general data f (of which f Neu

of (60) is a particular example), we obtain [112]

Proposition 1 For any N ≥ Ncrit, and ∀µ ∈D,

|||uN (µ)− uN nh,ln
N (µ)|||µ

|||uN (µ)|||µ
≤ exp

{
− N − 1

Ncrit − 1

}
, (77)

where

Ncrit = 1 + [2e lnµr ]+.

(Here [ ]+ returns the smallest integer greater than or equal
to its real argument.)

Note we can directly derive from Proposition 1 and (66)
a bound on the relative (compliant) output error.

The proof is a “parameter” version of the standard (fi-
nite element) variational arguments. In particular, we first
invoke (65); we then take as our surrogate for the best fit
a high-order polynomial interpolant in the parameter µ (in
fact, in the mapped parameter ln µ) of uN (µ); we next ap-
ply the standard Lagrange interpolant remainder formula; fi-
nally, we appeal to an eigenfunction expansion to bound the
parametric (sensitivity) derivatives and optimize the order
of the polynomial interpolant. The result is not particularly
sharp: independent tests [112] indicate that the interpolant
in parameter is in fact reasonably accurate (though of course
sub-optimal in the energy norm relative to the Galerkin pro-
jection); however, our estimate for the parametric derivatives
and hence interpolant error is rather crude—thus yielding a
rather pessimistic bound.

Nevertheless, we can draw several important conclusions
from Proposition 1. First, the notion of RB approximation as
a “parameter domain” analogue to FE approximation in the
“physical domain” is not only qualitatively but also quanti-
tatively relevant. Second, and related, RB convergence relies
on smoothness in parameter but not on spatial regularity—
recall that Proposition 1 is valid for any f ∈ (Xe)′. Third,
the RB convergence rate—more precisely, our bound (77)
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for the RB convergence rate—does not depend on N . (The
actual convergence rate does in fact depend on the underly-
ing FE approximation space, however for any fixed N this
dependence vanishes as N increases.) Fourth, the RB con-
vergence rate depends quite weakly on the extent of the pa-
rameter domain: the exponent in the convergence rate de-
creases only logarithmically with µr ; the RB approximation
is indeed global. Fifth, and finally, the RB approximation
can converge very quickly.

8.1.3 Greedy Lagrange Spaces: XN = W
N Greedy,en
N

In actual practice, we invoke the hierarchical, automatically
generated, spaces W

N Greedy,en
N —RB approximations asso-

ciated with Lagrange spaces generated by the (energy ver-
sion of the) greedy algorithm described in Sect. 7.2.2—
not the non-hierarchical, “hand-crafted” equi-ln spaces
WN nh,ln

N .
We present in Fig. 18 the relative energy error in the

L∞(Ξ) norm as a function of N for the non-hierarchical
equi-ln spaces associated with our a priori theory of
Sect. 8.1.2,

max
µ∈Ξ

( |||uN (µ)− uN
W

N nh,ln
N

(µ)|||µ
|||uN (µ)|||µ

)
, (78)

and for our greedy spaces,

max
µ∈Ξ

( |||uN (µ)− uN
W

N Greedy,en
N

(µ)|||µ
|||uN (µ)|||µ

)
. (79)

(Here Ξ is a suitably large log-random sample over D.) We
observe, first, that both spaces provide extremely fast con-
vergence: the relative energy error is 1E−6 (and hence from
(66) the relative output error is 1E−12) already for N = 6.
Second, we observe that the greedy spaces are initially very
slightly worse than the equi-ln spaces, but for “larger” N the
greedy and equi-ln results are indistinguishable.

The nearly identical convergence results could signal ei-
ther that there are many possibly very different spaces all
of which provide very rapid convergence, or that the equi-
ln and greedy spaces are in fact quite similar. In Fig. 19
we present (in log-lin format) (i) the sample points µn

N=6
for the equi-log space, (76), and (ii) the sample points µn′ ,
1 ≤ n′ ≤ 6, for the hierarchical space generated by the en-
ergy version of the greedy algorithm. (The greedy points are
plotted in ascending order for easier comparison.) We ob-
serve that the greedy algorithm selects points quite close to
the equi-ln distribution: this result can serve (somewhat cir-
cularly) as evidence of the optimality of either the equi-ln
distribution or the greedy distribution. In fact, it appears that

Fig. 18 Thermal Block problem for B1 = 2, B2 = 1: L∞(Ξ) rela-
tive energy error as a function of N for the spaces WN nh,ln (∗) and
W

N Greedy,en
N (◦) ((78) and (79), respectively)

Fig. 19 Thermal Block problem for B1 = 2, B1 = 1: Sample points
µn

N=6 for WN nh,ln (∗) and µn′ for W
N Greedy,en
N=6 (◦)

the greedy distribution is tending to a Chebyshev in lnµ dis-
tribution, with clustering near the endpoints of the parame-
ter domain: the Chebyshev-ln distribution perhaps performs
better than the equi-ln distribution.

8.1.4 POD Spaces: XN
N = XNPOD

N

We recall that the POD truly minimizes the projection er-
ror in L2(Ξtrain;X), whereas the greedy algorithm heuristi-
cally minimizes the RB error bound in L∞(Ξtrain;X). (Note
in this subsection, in order to more directly compare with
the POD result, we consider the X-norm rather than en-
ergy version of the greedy algorithm of Sect. 7.2.2.) We
might thus expect that, if the greedy heuristic is performing
well, then the POD RB error should be smaller (respectively,
larger) than the greedy RB error in the L2(Ξtrain;X) norm
(respectively L∞(Ξtrain;X) norm); equivalently, we might
conclude that if the POD RB error is in fact smaller (respec-
tively, larger) than the greedy RB error in the L2(Ξtrain;X)

norm (respectively L∞(Ξtrain;X) norm), then the greedy
heuristic is indeed performing well.
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Fig. 20 Thermal Block problem for B1 = 2, B2 = 1:
(a) ‖uN − uN POD

N ‖L2(Ξ ;X) (×) and ‖uN − u
N Greedy
N ‖L2(Ξ ;X)

(♦) as a function of N ; (b) ‖uN − uN POD
N ‖L∞(Ξ ;X) (◦) and

‖uN − u
N Greedy
N ‖L∞(Ξ ;X) (∗) as a function of N

We present in Fig. 20a the L2(Ξ ;X) errors for the
RB approximations associated with the POD and greedy
Lagrange spaces, ‖uN − uN POD

N ‖L2(Ξ ;X) and ‖uN −
u
N Greedy
N ‖L2(Ξ ;X), respectively, as a function of N ; we

present in Fig. 20b the L∞(Ξ ;X) errors for the RB
approximations associated with the POD and greedy La-
grange spaces, ‖uN − uN POD

N ‖L∞(Ξ ;X) and ‖uN −
u
N Greedy
N ‖L∞(Ξ ;X), respectively, as a function of N . In both

cases, Ξ is a suitably large test sample. We observe, as
anticipated, that the POD spaces perform a bit better than
the greedy spaces in the L2(Ξ ;X) norm, while the greedy
spaces perform very slightly better than the POD spaces in
the (somewhat stronger) L∞(Ξ ;X) norm. Presuming that
this performance is “generic,” and taking into account the
much lower cost of the greedy algorithm in particular for
larger ntrain, we conclude that the greedy approach—despite
the very short-horizon heuristic—is a computationally at-
tractive alternative to the POD. (Further improvement to the
greedy algorithm is possible: [32, 33] replaces the simple
enumeration maximization of the error bound described in
Sect. 7.2.2 with a much more efficient gradient-based search
procedure.)

Fig. 21 Thermal Block problem for B1 = 2, B2 = 1: Relative output
error as a function of N for the output interpolant (∗) and RB output
prediction (♦) ((80) and (81), respectively)

8.1.5 Output Interpolation

It might appear that the reduced basis approach is full of
sound and fury (and complicated algorithms), signifying lit-
tle computational advantage. Indeed, there is a much simpler
alternative that avoids the field-variable “intermediary”: di-
rect interpolation (in parameter) of the output sN (µ).

We compare in Fig. 21 the N -point Gauss-Lobatto
Chebyshev polynomial interpolant in ln µ [112, 125] of
sN (µ), denoted sNN,int(µ), to the RB output associated with

the greedy (energy) spaces, s
N Greedy,en
N (µ): we present

max
µ∈Ξ

|sN (µ)− sNN,int(µ)|
sN (µ)

(80)

and

max
µ∈Ξ

|sN (µ)− s
N Greedy,en
N (µ)|

sN (µ)
(81)

for a suitably fine test sample Ξ . We observe that the Cheby-
shev output interpolant is in fact more accurate than the
RB output, and certainly more efficient—evaluation µ →
sNN,int(µ) requires O(N2) operations whereas (Online) eval-

uation µ→ s
N Greedy,en
N (µ) requires O(N3) operations.

However, in higher parameter dimensions (P > 1), it will
not be possible to develop an efficient output interpolant.
First, the obvious tensor product sample point distributions
are very inefficient, and optimal scattered data alternatives
are difficult to find. Even for P = 1, we must be astute or
at least awake in first effecting the lnµ transform before ap-
pealing to the Chebyshev distribution; in contrast, the greedy
algorithm automatically uncovers the good choice. Second,
the generation of good interpolation procedures for general
data in RP is not a simple task; in contrast, the Galerkin
projection automatically chooses the best combination of
retained snapshots, at least in the energy norm. Third, and
finally, we note that it is rather difficult to obtain rigorous
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Fig. 22 Schematic of the RB approximation process

and sharp a posteriori bounds for the output interpolant er-
ror |sN (µ)− sNN,int(µ)|; in contrast, as we shall describe in
Sect. 9, we can readily develop rigorous and sharp bounds
for the RB output error, |sN (µ)− sNN (µ)|.

8.2 Convergence: P > 1

As already highlighted in the previous section, the key to
RB convergence in higher parameter dimensions is the role
of the PDE and field variable in determining appropriate
sample points and combinations of (retained) snapshots.
We illustrate the process schematically in Fig. 22: the RB
field approximation, via the PDE residual, yields the error
bound; the error bound, in turn, facilitates the greedy se-
lection of good sample points; the Galerkin projection then
provides the optimal combination of retained snapshots; fi-
nally, the RB output approximation—application of the out-
put functional—inherits the good properties of the RB field
variable, (66). As we shall observe shortly, the Greedy sam-
ple points are quite non-intuitive and very far from the ob-
vious (and inefficient) tensor-product recipes. (In general,
however, we do observe clustering near the boundaries of D,
as we might expect from classical approximation theory.)

The computational success of the (implicit) complicated
process described by Fig. 22 is in fact also responsible for
the failure, at present, to provide any general a priori con-
vergence theory: we can not construct a best-fit surrogate
since a priori we can neither predict an efficient sample nor
construct an effective parametric interpolant.

We can anticipate that for a good set of points (and
from Galerkin a good combination of retained snapshots),
we should obtain rapid convergence: as already identified
in Opportunity I of Sect. 2, uN (µ) ∈ XN —the field we
wish to approximate by the RB method—perforce resides on
the parametrically induced low-dimensional, smooth mani-
fold MN = {uN (µ) | µ ∈ D}8; the essential role of para-
metric smoothness—already exploited in Sect. 8.1 for the

8As regards smoothness, we note that for Θq ∈ C∞(D), 1 ≤ q ≤ Q,
it can be shown under our coercivity, continuity, and affine hypotheses
of Sect. 4 that ‖DσuN (µ)‖X is bounded by a constant C|σ | (indepen-
dent of N ) for all µ ∈ D; here DσuN (µ) refers to the σ multi-index
derivative of uN with respect to µ.

Fig. 23 Thermal Block problem for B1 = B2 = 3: (upper bound for
the) L∞(Ξtrain) relative energy error, (82), as a function of N

single-parameter case—was identified in the first theoret-
ical (typically asymptotic) analyses of Taylor RB spaces
[47] and subsequently Lagrange RB spaces [119]. How-
ever, it is not obvious that a good set of points (and hence
a good Lagrange RB space) must exist, and even less ob-
vious that the greedy algorithm will identify this good set
(or even a slightly less good set) of points. At present, we
have only empirical evidence for particular examples, as
we now describe. Note in all cases we consider RB ap-
proximations uNN = u

N Greedy,en
N associated with the spaces

WN
N = W

N Greedy,en
N .

8.2.1 Thermal Block: B1 = B2 = 3

We first consider the Thermal Block problem introduced in
Sect. 6.1.1 and (for B1 = B2 = 3) depicted in Fig. 11; note
that now there are P = 8 parameters. For problems in one
parameter, it is simple to choose “sufficiently rich” test and
train samples; in the current situation, with P = 8 para-
meters, it is very difficult to afford—even with the greedy
algorithm—a sufficiently rich test/train sample. We choose
for Ξtrain a log-uniform random sample of size ntrain =
5000; note that, in any event, we always have recourse to
our a posteriori error bounds for any new µ ∈D visited On-
line.

We present in Fig. 23 the error measure

max
µ∈Ξtrain

(
∆en

N (µ)

|||uNN (µ)|||µ

)
(82)

as a function of N ; note that ∆en
N (µ) is an upper bound for

|||uN (µ) − uNN (µ)|||µ and |||uNN (µ)|||µ is a lower bound for
|||uN (µ)|||µ, and hence ∆en

N (µ)/|||uNN (µ)|||µ is in fact an up-
per bound for the relative error in the energy norm. (We note
that, implicitly, Ξtrain serves both as train and, in Fig. 23, test
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Fig. 24 Thermal Block problem for B1 = B2 = 3: (upper bound
for the) L∞(Ξtrain) relative energy error, (82), as a function of N ;
N = 137 (dotted), N = 453 (dashed), and N = 661, 1737, 2545, 6808
(all quite similar)

sample; since ntrain 5 N , this statistical crime will have lit-
tle sensible effect on our assessment.)

We observe in Fig. 23 that, despite the rather large pa-
rameter dimension, and extensive parameter domain, the
RB approximation still converges very rapidly with N . We
achieve an accuracy of 1E−2 in the relative energy error
(and hence an accuracy of 1E−4 in the relative output error)
with only N ≈ 40 degrees of freedom. Clearly, if we com-
pare Fig. 23 for P = 8 to Fig. 18 for P = 1, there is an effect,
even a significant effect, due to the increased parameter di-
mension. However, the decrease in convergence rate with the
increase in P , at least for this particular—admittedly rather
simple—problem is rather modest. This example is proof of
concept that the reduced basis method can in fact treat prob-
lems with “many” parameters.

This problem can also serve to verify the weak effect of
XN . The results of Fig. 23 are obtained for a rather modest
FE discretization corresponding to N = 661 degrees of free-
dom. We now repeat in Fig. 24 the calculations of Fig. 23
but for several different N from N = 137 to N = 6808.
We note that for this particular problem the dimension of
span{MN } is in fact Const×

√
N—only the boundaries of

the blocks “count”—with Const ≈ 7. We observe, as ex-
pected, that if N approaches the dimension of span{MN },
then the RB error will “artificially” plummet to zero. How-
ever, for any fixed N , the RB convergence rate is largely in-
sensitive to N as N →∞. It follows that the reduced basis
can replicate an arbitrarily rich finite element approxima-
tion to any desired accuracy for N independent of N .

8.2.2 Inviscid Flow: Added Mass

We next consider the inviscid flow added mass example of
Sect. 6.1.2. For this problem, with only P = 3 parameters,
we can now visualize the greedy-predicted sample. We show
in Fig. 25 the sample SNmax obtained by application of the
(energy version of the) greedy algorithm of Sect. 7.2.2 for

Fig. 25 Inviscid flow example: greedy (energy version) sample SNmax ;
note the value of µ2 (0.5 ≤ µ2 ≤ 1.5) is proportional to the radius of
the circle

Fig. 26 Inviscid flow example: maxµ∈Ξ train(∆
en
N (µ)/|||uN

N (µ)|||µ) as
a function of N for the Lagrange RB approximations associated with
the sample of Fig. 25; here Ξtrain is a log-uniform random sample of
size ntrain = 3000

Ξtrain a log-uniform random sample of size ntrain = 3000.
Clearly, the point distribution is very far from tensor-product
in form: there is some clustering near the boundaries of the
parameter domain, however the interior of the domain is
very sparsely populated. We also note that the sample SNmax

reflects the particular problem of interest, as would be ex-
pected from the “adaptive” greedy procedure: the densest
clustering of points is near µ1 = 1.5 and for µ3 = ±0.35,
corresponding to regions of D in which the parametric sen-
sitivity is largest.

We plot in Fig. 26 maxµ∈Ξ train(∆
en
N (µ)/|||uNN (µ)|||µ) for

the Lagrange RB approximations associated with the sample
of Fig. 25. We again observe very rapid, exponential conver-
gence.

8.2.3 Elastic Crack

We next consider the two dimensional elasticity crack prob-
lem described in Sect. 6.2.2. We recall that this problem is
characterized by P = 2 parameters, in which the first pa-
rameter µ1 corresponds to the length of the crack. As de-
scribed in Sect. 6.2.2, the (now FE) Energy Release Rate
(ERR) GN (µ) can be calculated from the compliant output

30



sN (µ) as GN (µ) =−(∂sN (µ)/∂µ1); we consider a finite-
difference approximation ĜN (µ) to GN (µ) given by

ĜN (µ) = sN (µ)− sN (µ + δµ1)

δµ1
(83)

for some given (small) δµ1. For our purposes here, we shall
take ĜN (µ) as “equivalent” to GN (µ).9

We next define our reduced basis ERR approximation as

ĜN
N (µ) = sNN (µ)− sNN (µ + δµ1)

δµ1
, (84)

where sNN (µ) is our usual RB compliant output. We then
define

∆Ĝ
N(µ) = ∆s

N(µ) +∆s
N(µ + δµ1)

δµ1
, (85)

where ∆s
N(µ) is the RB compliant output error bound de-

fined in Sect. 9. It readily follows that ∆Ĝ
N(µ) is a rigorous

bound for the RB ERR prediction: |ĜN (µ) − ĜN
N (µ)| ≤

∆Ĝ
N(µ). We note that the choice of our virtual crack dis-

placement value δµ1 is not arbitrary. It is clear that δµ1
must to be chosen as small as possible to provide an accu-
rate finite-difference approximation—to ensure that ĜN

N is
indeed sufficiently close to GN

N ; however, if the value δµ1
is too small, our ERR error bound (85) will suffer due to
amplification of the RB contribution.

We first construct a reduced basis approximation to the
compliant output s(µ). We choose for Ξtrain a log-uniform
random sample of size ntrain = 3000. We again observe rapid
convergence: we achieve a relative (compliant) output error
of 1E−5 for N ≈ 70; note that in this example our parameter
range represents a relatively large geometric variation. We
next choose δµ1 = 0.01 for our ERR prediction ĜN (µ) of
(83), and hence RB ERR prediction ĜN

N (µ) of (84).10

We plot in Fig. 27 ĜN
N (µ) and the error bar interval

[ĜN
N (µ)−∆Ĝ

N(µ), ĜN
N (µ) +∆Ĝ

N(µ)] for µ1 ∈ [0.1,0.45],
µ2 = 0.25, and N = 15. It is clear that our error bound
∆Ĝ

N(µ) is too large, mostly due to the relatively small value
of δµ1 compared to the errors in the associated RB com-
pliant output. We next plot, in Fig. 28, ĜN

N (µ) and the er-

ror bar interval [ĜN
N (µ) − ∆Ĝ

N(µ), ĜN
N (µ) + ∆Ĝ

N(µ)] for

9We note that a completely rigorous formulation of the exact and sub-
sequently FE and RB crack problems—a construction that eliminates
the nuisance, error, and uncertainty associated with δµ1—is described
in detail in [61]. This formulation is, however, non-coercive (and also
rather complicated) and hence beyond of the scope of the current paper.
10We compare our results with reference data [91] available for sev-
eral µ: our ERR results are in very good agreement with the reference
results; for this particular δµ1 value, the maximum relative error com-
pared to the reference results is only 2%. This confirms that our choice
of δµ1 is adequately small.

Fig. 27 Elastic Crack problem: ĜN
N (µ) and the error bar interval

[ĜN
N (µ)−∆Ĝ

N(µ), ĜN
N (µ)+∆Ĝ

N(µ)] for µ1 ∈ [0.1,0.45], µ2 = 0.25,
and N = 15

Fig. 28 Elastic Crack problem: ĜN
N (µ) and the error bar interval

[ĜN
N (µ)−∆Ĝ

N(µ), ĜN
N (µ)+∆Ĝ

N(µ)] for µ1 ∈ [0.1,0.45], µ2 = 0.25,
and N = 30

µ1 ∈ [0.1,0.45], µ2 = 0.25, and N = 30; it is now observed
that the estimated error is significantly improved—thanks to
a better reduced basis approximation that compensates for
the small value of δµ1. This example demonstrates how, in
practice, the error bounds serve in the Online stage to con-
firm and, if necessary improve, the RB accuracy. We empha-
size that ĜN (µ) ∈ [ĜN

N (µ) − ∆Ĝ
N(µ), ĜN

N (µ) + ∆Ĝ
N(µ)]

for all µ ∈D and all N ∈ {1, . . . ,Nmax}: the high-fidelity FE
ERR prediction must lie within the error bounds provided.

8.2.4 Elastic Block

We now consider the three-dimensional elasticity problem
described in Sect. 6.2.1; we recall that this problem is char-
acterized by P = 4 parameters, three of which are geometric
in nature. We choose for Ξtrain a log-uniform random sample
of size ntrain = 4000. We focus in this (three-dimensional)
example on computational performance.
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Fig. 29 Elastic Block problem: (upper bound for the) L∞(Ξtrain) rel-
ative output error, (86), as a function of N

We first present in Fig. 29 the error measure

max
µ∈Ξtrain

∆s
N(µ)

sNN (µ)
; (86)

note that ∆s
N(µ) is an upper bound for |sN (µ) − sNN (µ)|

and sNN (µ) is a lower bound for sN (µ), and therefore
∆s

N(µ)/sNN (µ) is in fact an upper bound for the relative er-
ror in the output. We observe that we again achieve rapid
convergence: to obtain a relative output error of 1E−4, we
require only N ≈ 30 points.

The spatial dimensionality plays little role in RB con-
vergence: it follows that the relative efficiency of the RB
approach—relative to direct FE evaluation—increases with
increasing spatial dimension. We consider three different FE
approximations: XNvf (very fine) corresponding to Nvf =
106,754; XNf (fine) corresponding to Nf = 26,952; and
XNc (coarse) corresponding to Nc = 6,315. We shall take
the “very fine” approximation as “exact”: we then conclude
(admittedly from a very coarse parameter test sample—
since evaluation of uNvf(µ) is very expensive) that the rela-
tive output error on the “fine” mesh is roughly 0.01 and on
the “coarse” mesh roughly 0.09.

We now invoke the (energy version of the) greedy al-
gorithm of Sect. 7.2.2 to construct two RB approximations
spaces: W

Nf Greedy,en
N , 1 ≤ N ≤ Nmax f, such that

max
µ∈Ξtrain

∆s
Nmax f

(µ)

s
Nf Greedy,en
Nmax f

(µ)
= 1

4
× 0.09

and W
Nc Greedy,en
N , 1 ≤N ≤Nmax c, such that

max
µ∈Ξtrain

∆s
Nmax c

(µ)

s
Nc Greedy,en
Nmax c

(µ)
= 1

4
× 0.1,

where in both cases Ξtrain is our random uniform train
sample of size ntrain = 4000; we obtain Nmax f = 22 and

Nmax c = 15. In essence, the RB output approximation as-
sociated with W

Nf Greedy,en
Nmax f

replicates the “fine” FE approx-
imation to roughly the accuracy of the “fine” FE approxima-
tion (relative to the exact result), and the RB output approxi-
mation associated with W

Nc Greedy,en
Nmax c

replicates the “coarse”
FE approximation to roughly the accuracy of the “coarse”
FE approximation (relative to the exact result). We thus can
evaluate the efficiency of RB prediction relative to FE pre-
diction at fixed accuracy.

We first consider the coarse case. We find that Online RB
evaluation µ → s

Nc
Nmax c

(µ), ∆s
Nmax c

(µ) is roughly 50 times
faster than direct FE evaluation µ → sNc(µ): a consider-
able speed-up. Proceeding now to the fine case, the Online
RB evaluation µ → s

Nf
Nmax f

(µ), ∆s
Nmax f

(µ) is now roughly
500 times faster than direct FE evaluation µ → sNf(µ): as
our (linear element) FE approximation converges only al-
gebraically, and the RB approximation converges exponen-
tially, the RB advantage increases as the error tolerance de-
creases. (In the fine case, the RB output error bound calcula-
tion ∆s

Nmax f
(µ) consumes roughly 70% of the Online time;

we describe the Online error bound procedure in detail in
Sect. 9.4.) Finally, we observe that for the fine case, the Of-
fline effort is roughly 54 times more expensive that a single
FE evaluation µ → sNf(µ); equivalently, the many-query
“break-even” point at which the RB approximation is first
computationally “interesting” is a rather modest 54 evalua-
tions.11

Finally, we note that our comparison is skewed a bit to-
wards the reduced basis—and hence the savings of 500 are
probably too optimistic. First, we consider here only linear
finite elements; at least quadratic finite elements should be
considered. Second, we apply (minimum fill-in) Cholesky
factorization to solve the FE systems [125]; certainly, at least
for the finer FE meshes, preconditioned conjugate gradients
or other efficient iterative solvers must be pursued. (How-
ever, the Cholesky factorization does have some benefits as
regards the FE pseudo-solutions related to a posteriori error
estimation: one factorization serves many right-hand sides,
as we shall see in the next section.)

9 A Posteriori Error Estimation

9.1 Role

Effective a posteriori error bounds for the quantity of
interest—our output—are crucial both for the efficiency and
the reliability of RB approximations. As regards efficiency

11Note the Offline operation count depends on N (the FE solutions
and FE “pseudo”-solutions related to a posteriori error estimation) but
also ntrain (the greedy error bound maximization); ideally, the computa-
tional time associated with these two components should be in balance.
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(related to the concept of “adaptivity” within the FE con-
text), error bounds play a role in both the Offline and Online
stages. In the greedy algorithms of Sect. 7.2.2, the appli-
cation of error bounds (as surrogates for the actual error)
permits significantly larger training samples Ξtrain ⊂ D at
greatly reduced Offline computational cost. These more ex-
tensive training samples in turn engender RB approxima-
tions which provide high accuracy at greatly reduced Online
computational cost. The error bounds also serve directly in
the Online stage—to find the smallest RB dimension N that
achieves the requisite accuracy—to further optimize Online
performance. In short, a posteriori error estimation permits
us to (inexpensively) control the error which in turn permits
us to minimize the computational effort.

As regards reliability, it is clear that our Offline sam-
pling procedures can not be exhaustive: for larger parame-
ter dimensions P there will be large “parts” of the para-
meter set D that remain unexplored—the output error un-
characterized; we must admit that we will only encounter
most parameter values in D Online. Our a posteriori estima-
tion procedures ensure that we can rigorously and efficiently
bound the output error in the Online (deployed/application)
stage. We can thus be sure that constraints are satisfied, fea-
sibility (and safety/failure) conditions are verified, and prog-
noses are valid: real-time or design decisions are endowed
with the full assurances of the high-fidelity FE solution. In
short, a posteriori error bounds permit us to confidently—
with certainty—exploit the rapid predictive power of the RB
approximation.

We should emphasize that a posteriori output error
bounds are particularly important for RB approximations.
First, RB approximations are ad hoc: each problem is dif-
ferent as regards discretization. Second, RB approxima-
tions are typically pre-asymptotic: we will choose N quite
small—before any “tail” in the convergence rate. Third, the
RB basis functions can not be directly related to any spatial
or temporal scales: physical intuition is of little value. And
fourth and finally, the RB approach is typically applied in
the real-time context: there is no time for Offline verifica-
tion; errors are immediately manifested and often in delete-
rious ways. There is, thus, even greater need for a posteriori
error estimation in the RB context than in the much more
studied FE context [2, 3, 11–13, 23].

Our motivations for error estimation in turn place require-
ments on our error bounds. First, the error bounds must be
rigorous—valid for all N and for all parameter values in
the parameter domain D: non-rigorous error “indicators”
may suffice for adaptivity, but not for reliability. Second,
the bounds must be reasonably sharp: an overly conserva-
tive error bound can yield inefficient approximations (N too
large) or suboptimal engineering results (unnecessary safety
margins); design should be dictated by the output and not the
output error. And third, the bounds must be very efficient: the

Online operation count and storage to compute the RB error
bounds—the marginal or asymptotic average cost—must be
independent of N (and hopefully commensurate with the
cost associated with the RB output prediction). We do re-
emphasize here that our RB error bounds are defined rela-
tive to the underlying “truth” FE approximation; however,
we also recall that the RB Online cost is independent of N ,
and hence the truth approximation can and should be chosen
conservatively.

9.2 Preliminaries

The central equation in a posteriori theory is the error resid-
ual relationship. In particular, it follows from the problem
statements for uN (µ), (3), and uNN (µ), (64), that the error
(eN (µ) ≡) e(µ) ≡ uN (µ)− uNN (µ) ∈ XN satisfies

a(e(µ), v;µ) = r(v;µ), ∀v ∈ XN . (87)

Here r(v;µ) ∈ (XN )′ (the dual space to XN ) is the residual,

r(v;µ) ≡ f (v;µ)− a(uNN (µ), v;µ), ∀v ∈XN . (88)

(Indeed, (87) directly follows from the definition (88),
f (v;µ) = a(uN (µ), v;µ), ∀v ∈ XN , bilinearity of a, and
the definition of e(µ).)

It shall prove convenient to introduce the Riesz represen-
tation of r(v;µ): ê(µ) ∈XN [112] satisfies

(ê(µ), v)X = r(v;µ), ∀v ∈ XN . (89)

We can thus also write the error residual equation (87) as

a(e(µ), v;µ) = (ê(µ), v)X, ∀v ∈XN . (90)

It also follows that

‖r(·;µ)‖(XN )′ ≡ sup
v∈XN

r(v;µ)

‖v‖X
= ‖ê(µ)‖X; (91)

the evaluation of the dual norm of the residual through the
Riesz representation is central to the Offline-Online proce-
dures developed in Sect. 9.4 below.

We recall the definition of the exact and FE coercivity
constants, (7) and (8), respectively. We shall require a lower
bound to the coercivity constant αN (µ), αNLB: D→ R, such
that (i) 0 < αNLB(µ) ≤ αN (µ), ∀µ ∈ D, and (ii) the Online
computational time to evaluate µ → αNLB(µ) is independent
of N . In Sect. 10 we provide a methodology [64] to con-
struct the requisite lower bound.

9.3 Error Bounds

We define error estimators for the energy norm and output
as

∆en
N (µ) ≡ ‖ê(µ)‖X/(αNLB(µ))1/2,
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and

∆s
N(µ) ≡ ‖ê(µ)‖2

X/αNLB(µ),

respectively. We next introduce the effectivities associated
with these error estimators as

ηen
N (µ)≡∆en

N (µ)/|||uN (µ)− uNN (µ)|||µ,

and

ηs
N(µ)≡∆s

N(µ)/(sN (µ)− sNN (µ)),

respectively.
Clearly, the effectivities are a measure of the quality of

the proposed estimator: for rigor, we shall insist upon effec-
tivities ≥ 1; for sharpness, we desire effectivities as close to
unity as possible. We can prove

Proposition 2 For any N = 1, . . . ,Nmax, the effectivities
satisfy

1 ≤ ηen
N (µ) ≤

√
γ e(µ)

αNLB(µ)
, ∀µ ∈D, (92)

1 ≤ ηs
N(µ) ≤ γ e(µ)

αNLB(µ)
, ∀µ ∈D. (93)

Proof It follows directly from (90) for v = e(µ) and the
Cauchy-Schwarz inequality that

|||e(µ)|||2µ ≤ ‖ê(µ)‖X‖e(µ)‖X. (94)

But (αN (µ))
1
2 ‖e(µ)‖X ≤ a

1
2 (e(µ), e(µ);µ) ≡ |||e(µ)|||µ,

and hence from (94) we obtain |||e(µ)|||µ ≤ ∆en
N (µ) or

ηen
N (µ) ≥ 1. We now again consider (90)—but now for

v = ê(µ)—and the Cauchy-Schwarz inequality to obtain

‖ê(µ)‖2
X ≤ |||ê(µ)|||µ|||e(µ)|||µ. (95)

But from continuity |||ê(µ)|||µ ≤ (γ e(µ))
1
2 ‖ê(µ)‖X , and

hence from (95) ∆en
N (µ) ≡ (αNLB(µ))−

1
2 ‖ê(µ)‖X ≤

(αNLB(µ))−
1
2 (γ e(µ))

1
2 |||e(µ)|||µ, or ηen

N (µ)≤
√

γ e(µ)

αNLB(µ)
.

Next, we know from (66) that sN (µ) − sNN (µ) =
|||e(µ)|||2µ, and hence since ∆s

N(µ) = (∆en
N (µ))2

ηs
N(µ)≡ ∆s

N(µ)

sN (µ)− sNN (µ)
= (∆en

N (µ))2

|||e(µ)|||2µ
= (ηen

N (µ))2; (96)

(93) directly follows from (92) and (96). "

Similar results can be obtained for ∆N(µ), the a posteri-
ori error bound in the X norm.

It is important to observe that our effectivity upper
bounds, (92) and (93), are independent of N , and hence sta-
ble with respect to RB refinement. Furthermore, it is some-
times possible (see Sect. 10) to provide a rigorous lower
bound for αNLB(µ) that depends only on µ: in this case we
obtain an upper bound for the effectivity which is (not only
independent of N but also) independent of N , and hence
stable with respect to FE refinement; the latter reflects our
proper choice of (H 1(Ω)-equivalent) inner product/norm.
More generally, our construction for αNLB(µ) (see Sect. 10)
is designed to ensure that αN (µ)/αNLB(µ) will be bounded
by a constant—typically 4 for our choice of tolerances—for
most µ in D; since (say, for the output effectivity)

ηs
N(µ)≤ γ e(µ)

αNLB(µ)
≤ αN (µ)

αNLB(µ)

γ e(µ)

αe(µ)
, ∀µ ∈D, (97)

we again obtain stability with respect to FE refinement.

9.4 Offline-Online: ‖ê(µ)‖X

The error bounds of the previous section are of no utility
without an accompanying Offline-Online computational ap-
proach.

9.4.1 Ingredients

The computationally crucial component of all the error
bounds of the previous section is ‖ê(µ)‖X , the dual norm
of the residual. (Offline-Online treatment of αNLB(µ) is ad-
dressed in Sect. 10.)

To develop an Offline-Online procedure for the dual
norm of the residual we first expand the residual (88) ac-
cording to (67) and (2):

r(v;µ) ≡ f (v)− a(uNN (µ), v;µ)

= f (v)− a

(
N∑

n=1

uNNn(µ)ζNn , v;µ
)

= f (v)−
N∑

n=1

uNNn(µ)a(ζNn , v;µ)

= f (v)−
N∑

n=1

uNNn(µ)

Q∑

q=1

Θq(µ)aq(ζNn , v). (98)

If we insert (98) in (89) and apply linear superposition, we
obtain

(ê(µ), v)X = f (v)−
Q∑

q=1

N∑

n=1

Θq(µ)uNNn(µ)aq(ζNn , v),
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or

ê(µ) = C +
Q∑

q=1

N∑

n=1

Θq(µ)uNNn(µ)Lq
n,

where (C, v)X = f (v), ∀v ∈ XN , and (Lq
n, v)X =−aq(ζNn ,

v), ∀v ∈ XN , 1 ≤ n ≤ N , 1 ≤ q ≤ Q. We denote the C,
Lq

n , 1 ≤ n ≤ N , 1 ≤ q ≤ Q, as FE “pseudo”-solutions—
solutions of “associated” FE Poisson problems.

We thus obtain

‖ê(µ)‖2
X

=
(

C +
Q∑

q=1

N∑

n=1

Θq(µ)uNNn(µ)Lq
n,•

)

X

= (C,C)X +
Q∑

q=1

N∑

n=1

Θq(µ)uNNn(µ)

×
{

2(C,Lq
n)X +

Q∑

q ′=1

N∑

n′=1

Θq ′(µ)uNNn′(µ)(Lq
n,Lq ′

n′ )X

}

,

(99)

from which we can directly calculate the requisite dual norm
of the residual through (91).

9.4.2 Computational Procedure

The Offline-Online decomposition is now clear. In the
Offline stage we form the parameter-independent quanti-
ties. In particular, we compute the FE “pseudo”-solutions
C,Lq

n , 1 ≤ n ≤ Nmax, 1 ≤ q ≤ Q, and form/store (C,C)X ,
(C,Lq

n)X , (Lq
n,Lq ′

n′ )X , 1 ≤ n,n′ ≤ Nmax, 1 ≤ q, q ′ ≤ Q.
(Note that, in the direct context, a single factorization suf-
fices to obtain all 1 + QNmax FE pseudo-solutions.) The
Offline operation count depends on Nmax, Q, and N .

In the Online stage, given any “new” value of µ—and
Θq(µ), 1 ≤ q ≤ Q, uNNn(µ), 1 ≤ n ≤ N—we simply re-

trieve the stored quantities (C,C)X , (C,Lq
n)X , (Lq

n,Lq ′
n′ )X ,

1 ≤ n,n′ ≤ N , 1 ≤ q, q ′ ≤ Q, and then evaluate the sum
(99). The Online operation count, and hence also the mar-
ginal cost and asymptotic average cost, is O(Q2N2)—and
independent of N .12 (Note again the advantage of the hi-
erarchical spaces: the necessary quantities for any N ∈
{1, . . . ,Nmax} can be simply extracted from the correspond-
ing quantities for N = Nmax.)

12It thus follows that the a posteriori error estimation contribution to
the cost of the greedy algorithm of Sect. 7.2.2 is O(QNmaxN ·) +
O(Q2N2

maxN ) + O(ntrainQ
2N3

max): we may thus choose N and ntrain
independently (and large).

9.5 Numerical Results

In fact, in Sect. 8 we have already presented several numeri-
cal examples illustrating the relevance, (Offline and Online)
application, and computational efficiency of the a posteriori
error bounds. In the current section (and again in Sect. 11.3
for the non-compliant case) we restrict attention to a brief
study of sharpness as measured by the effectivity.

We consider here the Thermal Block problem of
Sect. 6.1.1 with B1 = 3, B2 = 3, and hence P = 8. Here
1/µmin

i = µmax
i = √

µr (= 10), 1 ≤ i ≤ P , and hence
µmax

i /µmin
i = µr (= 100), 1 ≤ i ≤ P ; we choose µi = 1,

1 ≤ i ≤ P , and τ = 0 in our inner product, (6). For the truth
discretization, we take N = 661: we confirm, per the the-
ory, that the effectivities are insensitive to N for sufficiently
large N . (For the construction of αNLB(µ) for this particular
problem, see Sect. 10.2.)

We then define, for a given (fine) test sample Ξ ,

∆s
N,max = max

µ∈Ξ
∆s

N(µ),

ηs
N,max = max

µ∈Ξ
ηs

N(µ),

and

ηs
N,ave = 1

|Ξ |
∑

µ∈Ξ
ηs

N(µ).

We shall shortly provide numerical results for these effec-
tivity metrics. However, we first briefly derive a theoretical
result for the particular problem of interest.

To wit, we note from (59) that

|a(w,v;µ)| =
∣∣∣∣∣

P∑

i=1

µi

∫

Ri

∇w · ∇v +
∫

RP+1

∇w · ∇v

∣∣∣∣∣

≤ max(1,µ1, . . . ,µP )

P+1∑

i=1

∫

Ri

|∇w||∇v|.

However, for our choice of norm,

P+1∑

i=1

∫

Ri

|∇w||∇v| ≤
P+1∑

i=1

(∫

Ri

|∇w|2
) 1

2
(∫

Ri

|∇v|2
) 1

2

≤ ‖w‖X‖v‖X

by repeated repeated application of the Cauchy-Schwarz in-
equality. We conclude that γ e(µ) ≤ max(1,µ1, . . . ,µP ).
We shall further demonstrate in Sect. 10.2 that αNLB(µ) ≥
min(1,µ1, . . . ,µP ). Hence,

ηs
N,max ≤ max

µ∈D
γ e(µ)

αNLB(µ)
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Table 1 Thermal Block problem for B1 = B2 = 3: Output error bound
and effectivity metrics as a function of N

N ∆s
N,max ηs

N,max ηs
N,ave

10 2.2036E+00 31.2850 6.7067

20 2.0020E−01 37.3024 7.5587

30 1.5100E−02 62.2537 12.1138

40 1.2000E−03 73.1151 14.4598

50 1.0000E−04 57.5113 10.2566

≤ max
µ∈D

max(1,µ1, . . . ,µP )

min(1,µ1, . . . ,µP )

≤ µr, (100)

since we can readily find a µ ∈D such that max(1,µ1, . . . ,

µP ) =√
µr and min(1,µ1, . . . ,µP ) = 1/

√
µr .

We now turn to the numerical results. We present in Ta-
ble 1 ∆s

N,max, ηs
N,max, and ηs

N,ave as a function of N . The
effectivities are of course greater than unity: our error es-
timates are rigorous upper bounds. We further observe that
ηs

N,max ≤ µr = 100: unfortunately, the theoretical estimate
(100) is reasonably accurate, and hence ηs

N,max can be quite
large; however, on “average,” the effectivities are quite mod-
erate even for this rather extensive parameter variation. Fi-
nally, we note that the effect of error over-estimation on (de-
creased) efficiency—due to choice of an unnecessarily large
N—will be modest given the rapid convergence of the RB
approximation [112].

10 Lower Bounds for the Coercivity Constant

As introduced in Sect. 9, our a posteriori error analysis of
reduced basis approximations to (affinely) parametrized par-
tial differential equations requires a lower bound for the co-
ercivity constant.

In essence, the discrete coercivity constant (8) is a gen-
eralized minimum eigenvalue [112]. There are many clas-
sical techniques for the estimation of minimum eigenval-
ues or minimum singular values. One class of methods is
based on Gershgorin’s theorem and variants [110]. Within
our particular context, these approaches are not optimal:
generalized eigenvalue and singular value problems are dif-
ficult to treat; the operation count will scale with N ; and
finally, the Gershgorin-like bounds are often not useful for
elliptic PDEs. A second class of methods is based on eigen-
function/eigenvalue (e.g., Rayleigh Ritz) approximation and
subsequent residual evaluation [65, 71]. Unfortunately, the
lower bounds are not truly rigorous: we obtain lower bounds
not for the smallest eigenvalue, but rather for the eigenvalue
closest to the proposed approximate eigenvalue.

In this section we shall describe the Successive Con-
straint Method (SCM), an approach to the construction of

lower bounds for coercivity (and, in the non-coercive case,
inf-sup stability) constants [64]. The method—based on an
Offline-Online strategy relevant in the many-query and real-
time context—reduces the Online (real-time/deployed) cal-
culation to a small Linear Program for which the operation
count is independent of N . The SCM is more efficient and
general than earlier proposals [97, 121, 142]; also the SCM
is much more easily implemented [64].

10.1 Successive Constraint Method (SCM)

10.1.1 Preliminaries

We start by recalling the definition of our FE coercivity con-
stant of Sect. 4,

αN (µ) = inf
w∈XN

a(w,w;µ)

‖w‖2
X

, ∀µ ∈D. (101)

We assume that a is coercive, αN (µ) > 0,∀µ ∈D, and con-
tinuous; we also recall that a is “affine” in the parameter µ,
(2), and symmetric. All of these properties shall be exploited
in our development here. However, we note that the SCM
can be readily extended to non-symmetric coercive opera-
tors (see Sect. 11) as well as general non-coercive operators
[61, 64, 141].

We first introduce an objective function J obj : D ×
RQ → R given by

J obj(µ;y) =
Q∑

q=1

Θq(µ)yq, (102)

where y = (y1, . . . , yQ). We may then express our coercivity
constant as

αN (µ) = inf
y∈Y

J obj(µ;y), (103)

where the set Y ⊂ RQ is defined by

Y =
{
y ∈ RQ | ∃wy ∈XN

s.t. yq = aq(wy,wy)

‖wy‖2
X

, 1 ≤ q ≤ Q

}
. (104)

The equivalence between (101) and (103), (104) is readily
confirmed: (2) is the crucial ingredient.

We next introduce the “continuity constraint” box

B =
Q∏

q=1

[
inf

w∈XN

aq(w,w)

‖w‖2
X

, sup
w∈XN

aq(w,w)

‖w‖2
X

]
; (105)

from our continuity hypothesis, B is bounded. We then de-
fine our “coercivity constraint” sample,

CJ = {µ1
SCM ∈D, . . . ,µJ

SCM ∈D}. (106)

36



We denote by CM,µ
J the set of M (≥ 1) points in CJ closest

(in the usual Euclidian norm) to a given µ ∈D. (Note that if
M > J , then we set CM,µ

J = CJ .)

10.1.2 Lower Bound

Now for given CJ , M ∈ N ≡ {1,2, . . .}, and any µ ∈D, we
define the “lower bound” set YLB(µ;CJ ,M)⊂ RQ as

YLB(µ;CJ ,M)

≡
{

y ∈ RQ | y ∈ B;
Q∑

q=1

Θq(µ′)yq ≥ αN (µ′),

∀µ′ ∈ CM,µ
J

}

. (107)

We then demonstrate

Lemma 1 Given CJ ⊂D and M ∈ N,

Y ⊂ YLB(µ;CJ ,M), ∀µ ∈D. (108)

Proof For any y ∈ Y , ∃wy ∈ XN such that yq = aq(wy,wy)

‖wy‖2
X

,

1 ≤ q ≤ Q. Then, since

inf
w∈XN

aq(w,w)

‖w‖2
X

≤ aq(wy,wy)

‖wy‖2
X︸ ︷︷ ︸

yq

≤ sup
w∈XN

aq(w,w)

‖w‖2
X

, (109)

and also

Q∑

q=1

Θq(µ)
aq(wy,wy)

‖wy‖2
X

= a(wy,wy;µ)

‖wy‖2
X

≥ αN (µ), ∀µ ∈D, (110)

it follows that every member y of Y is also a member of
YLB(µ;CJ ,M). This concludes the proof. "

We then define our lower bound

αNLB(µ;CJ ,M) = min
y∈YLB(µ;CJ ,M)

J obj(µ;y). (111)

We may then obtain

Proposition 3 For given CJ ⊂D, M ∈ N,

αNLB(µ) ≤ αN (µ), ∀µ ∈D. (112)

Proof It readily follows that, given CJ ⊂D, M ∈ N,

αNLB(µ) = min
y∈YLB(µ;CJ ,M)

J obj(µ;y)

≤ min
y∈Y

J obj(µ;y)

= αN (µ), ∀µ ∈D; (113)

here we invoke the definition of αNLB(µ), (111), Lemma 1,
and then (103). "

We note that our lower bound (111) is in fact a lin-
ear optimization problem (or Linear Program (LP)); indeed,
(111) resembles a discretized linear semi-infinite program
[51]. We observe that our LP (111) contains Q design vari-
ables and 2Q + M (one-sided) inequality constraints. The
crucial observation is that the operation count to evaluate
µ → αNLB(µ), given B and the set {αN (µ′) | µ′ ∈ CJ }, is
independent of N . We return to this point in Sect. 10.1.5.

We pause here and make an observation for the case in
which the coercive bilinear form a is parametrically co-
ercive. We say that a is parametrically coercive [112] if
Θq(µ) > 0, ∀µ ∈D, and aq(w,w) ≥ 0, ∀w ∈ Xe, 1 ≤ q ≤
Q. In this case, for any µ ∈ D, any µ′ ∈ CM,µ

J , and any
y ∈ YLB(µ;CJ ,M),

J obj(µ;y) =
Q∑

q=1

Θq(µ)yq =
Q∑

q=1

Θq(µ)

Θq(µ′)
Θq(µ′)yq

≥ min
q∈[1,...,Q]

Θq(µ)

Θq(µ′)

Q∑

q=1

Θq(µ′)yq

≥ min
q∈[1,...,Q]

Θq(µ)

Θq(µ′)
αN (µ′)

since B ⊂ RQ
+ in the parametrically coercive case. (Here RQ

+
is the set {y ∈ RQ | yq ≥ 0, 1 ≤ q ≤ Q}.) It is observed
that, for this particular case, the SCM will provide a positive
lower bound even for J = 1; indeed for J ≥ 1,

αNLB(µ;CJ ,M)≥ max
µ′∈C

M,µ
J

(
min

q∈[1,...,Q]
Θq(µ)

Θq(µ′)
αN (µ′)

)
.

(114)

The result (114) will not in general be true for problems that
are not parametrically coercive.

10.1.3 Upper Bound

As we shall see, we also require an upper bound for
the coercivity constant for the (effective) construction of
a good “coercivity constraint” sample CJ . For given CJ ,
M ∈ N, and any µ ∈ D, we introduce our “upper bound”
set YUB(µ;CJ ,M) ∈ RQ as

YUB(µ;CJ ,M) =
{
y∗(µ′) | µ′ ∈ CM,µ

J

}
, (115)

where

y∗(µ) = arg inf
y∈Y

J obj(µ;y)
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(in the event of non-uniqueness, any minimizer suffices). We
can then define our upper bound as

αNUB(µ;CJ ,M) = min
y∈YUB(µ;CJ ,M)

J obj(µ;y). (116)

It directly follows from (115) that YUB(µ;CJ ,M) ⊂ Y and
hence, for given CJ , M ∈ N, αNUB(µ;CJ ,M) ≥ αN (µ),
∀µ ∈D.

We note that the upper bound (116) is a simple enumer-
ation; the operation count for the Online stage to evaluate
µ → αNUB(µ), given the set {y∗(µ′) | µ′ ∈ CJ }, is indepen-
dent of N .

10.1.4 Greedy Selection of CJ

In some cases, in particular for parametrically coercive prob-
lems, we can often specify our lower bound construction “by
hand”: we prescribe J , CJ , and M ; the lower bound (111)
then directly follows. We shall give an example in Sect. 10.2.
However, more generally, we must appeal to a greedy algo-
rithm.

We now present the construction of the set CJ by an Of-
fline greedy algorithm. We shall require a “train” sample
Ξtrain,SCM = {µ1

train,SCM, . . . ,µ
ntrain,SCM
train,SCM} ⊂ D of ntrain,SCM

parameter points. We also require a tolerance εSCM ∈ (0,1)

which shall control the error in the lower bound prediction.
We first set J = 1 and choose C1 = {µ1

SCM} arbitrarily. We
then perform

While max
µ∈Ξtrain,SCM

[
αN

UB(µ;CJ ,M)− αN
LB(µ;CJ ,M)

αN
UB(µ;CJ ,M)

]
> εSCM:

µJ+1
SCM = arg max

µ∈Ξtrain,SCM

[
αN

UB(µ;CJ ,M)− αN
LB(µ;CJ ,M)

αN
UB(µ;CJ ,M)

]
;

CJ+1 = CJ ∪µJ+1
SCM;

J ← J + 1;
end.

Set Jmax = J.

Note that Jmax = Jmax(εSCM) refers to the particular lower
bound construction which satisfies the specified error toler-
ance.

In essence, at each iteration of the greedy procedure, we
add to our “coercivity constraint” sample that point in D
for which (roughly) the current lower bound approximation
is least accurate; we may anticipate that the “gap” between
αNLB(µ;CJ ,M) and αNUB(µ;CJ ,M) will be reduced at each
iteration. In fact, since αNUB(µ;CJ ,M) = αNLB(µ;CJ ,M),
∀µ ∈ CJ , it follows from continuity considerations that,
for sufficiently large J (= Jmax(εSCM)), our error tolerance
εSCM will be honored. In practice, Jmax(εSCM) will be rea-
sonably small, as we discuss further in Sect. 10.2.

We note that we choose αNUB(µ;CJ ,M), not αNLB(µ;
CJ ,M), in the denominator of our selection criterion since
αNLB(µ;CJ ,M) may be negative or zero. Furthermore, our
choice of stopping criterion permits us to bound

αN (µ)

αNLB(µ;CJmax ,M)

= αN (µ)

αNUB(µ;CJmax ,M)− (αNUB(µ;CJmax ,M)− αNLB(µ;CJmax ,M))

≤ αN (µ)

αNUB(µ;CJmax ,M)

1
1 − εSCM

≤ 1
1 − εSCM

, ∀µ ∈Ξtrain,SCM.

We may then replace our output effectivity upper bounds
(97)—though rigorously now only for µ ∈Ξtrain,SCM—with
γ e(µ)/

(
(1 − εSCM)αe(µ)

)
(independent of N and N ). We

conclude that even a rather crude lower bound—we often
choose εSCM = 0.75—will have relatively little deleterious
effect on our error bounds.

10.1.5 Offline-Online Procedure

We conclude our development of the SCM by summarizing
the cost of the Offline and Online computations.

In the Offline stage, the notable computations are (i) 2Q

(respectively, Jmax) eigenproblems over XN to form B
(respectively, to form {αN (µ′) | µ′ ∈ CJmax}), (ii) JmaxQ

inner products over XN to subsequently form {y∗(µ′) |
µ′ ∈ CJmax}, and (iii) ntrain,SCMJmax lower bound LP’s of
“size” 2Q + M (as well as associated upper bound enu-
merations) to perform the “arg max”. The total compu-
tation cost thus roughly scales as O(N ·(2Q + Jmax)) +
O(NQJmax)+O(ntrain,SCMJmaxQM), which of course de-
pends on N ; however, we note that there is no “cross-term”
O(ntrain,SCMN ), and thus in practice we can choose both
ntrain,SCM and N very large. (There is a clear analogy with
our RB greedy algorithm of Sect. 7.2.2: by replacing the
true error with a surrogate, we can perform a more efficient
and/or thorough search.)

The eigenproblems associated with the calculation of the
αN (µ′), µ′ ∈ CJ , can be treated very efficiently by the
Lanczos method [44, 149]. In particular, it follows from the
Rayleigh quotient (8) that αN (µ′) is the minimum eigen-
value of a generalized eigenproblem: find (χ,λ) ∈ XN ×
R+ such that

a(χ, v;µ) = λ(χ, v)X, ∀v ∈ XN . (117)

For the (parameter-independent) choice

τ = inf
w∈XN

a(w,w;µ)

(w,w)L2(Ω)

(118)
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in (6), it can be shown that λmin = λ1 of (117) is “well-
separated” from λ2; the latter, in turn, ensures rapid con-
vergence of the Lanczos procedure. As indicated earlier, the
choice of norm (6) will not affect the RB output predic-
tion (except indirectly through the greedy process), but will
affect the quality and cost of the a posteriori output error
bound; we now further understand that the choice of µ af-
fects the effectivity (see Sect. 9) while the choice of τ affects
Offline (eigenvalue) efficiency.

In the Online stage, for each evaluation µ → αNLB(µ;
CJ ,M), (i) we first perform a sort of the Jmax points in
CJmax to determine the set CM,µ

Jmax
—the operation count is at

most O(MJmax), (ii) we must next effect (M + 1)Q eval-
uations µ′ → Θq(µ′), 1 ≤ q ≤ Q—the operation count is
O((M +1)Q), (iii) we then extract the selected M members
of the pre-computed set {αN (µ′) | µ′ ∈ CJ } and solve the re-
sulting LP to obtain αNLB(µ;CJ ,M)—a variety of standard
procedures of both the simplex and interior point variety can
be applied to this LP of rather modest size. In closing, and
most importantly, we note that the operation count for the
Online evaluation of αNLB(µ;CJ ,M) does not depend on N
and hence we can retain rapid response in the many-query
and real-time contexts.

10.2 Numerical Results

We shall next present some numerical results. We first
consider the Thermal Block (B1 = B2 = 3) example of
Sects. 6.1.1, 8.2.1, and 9.5. For this problem we choose (µ =
(1 1 . . . 1)) and τ = 0: this choice for τ—corresponding
to the numerical results of Sect. 9.5—admits very simple
analysis. It is readily observed from (59) that the Thermal
Block problem is parametrically coercive: we may thus con-
struct a lower bound “by hand”; we can also expect rapid
convergence of the automated greedy procedure.

We first construct a lower bound by hand: we choose J =
1, CJ = {µ} = {(1 1 . . . 1)}, M = 1; the earlier numerical
results reported in Sects. 8.2.1 and 9.5 correspond to this
simple lower bound. It follows directly from (114) that

αNLB(µ;CJ ,M) ≥ min(1,µ1, . . . ,µP )αN (µ)

= min(1,µ1, . . . ,µP ) (119)

since a(w,v;µ) = (w,v)X for τ = 0 and hence
αN (µ) = 1.13 We have already taken advantage of this esti-
mate in Sect. 9 to derive a simple effectivity upper bound.

In practice, even for parametrically coercive problems,
the greedy procedure will improve upon any “by hand”

13In fact, the numerical results of Sects. 8.2.1 and 9.5 correspond to
a coercivity lower bound min(1,µ1, . . . ,µP ) which is, from (119), a
simple analytical (positive) conservative estimate for the SCM predic-
tion αN

LB(µ;CJ ,M) [112].

proposal—ensuring closer adherence of αNLB(µ;CJ ,M) to
αN (µ) and hence, from Proposition 2, better effectivi-
ties. We now apply our Offline SCM Greedy algorithm
of Sect. 10.1.4 to the Thermal Block problem: we choose
µ1

SCM = µ, a random sample Ξtrain,SCM of size ntrain,SCM =
500, εSCM = 0.75, and M = 64. We obtain Jmax = 12
(which effectively “resets” M to 12 since Cµ,64

Jmax
= Cµ,12

Jmax
=

CJmax ); we expect that αN (µ)/αNLB(µ;CJmax ,M) ≈ 4 for
most µ ∈D. As expected, the greedy converges very quickly
for this parametrically coercive problem despite the large
number of parameters.14 (In fact, ntrain,SCM = 500 is rather
small for P = 8 parameters; however, for parametrically co-
ercive problems, smaller samples typically suffice.)

None of our remaining examples—inviscid flow of
Sect. 6.1.2, center crack of Sect. 6.2.2, or elastic block
of Sect. 6.2.1—is parametrically coercive, and hence the
greedy SCM construction is indispensable; in all the numer-
ical results presented in Sect. 8, the coercivity lower bound
is provided by the greedy SCM result αNLB(µ;CJmax ,M). We
present numerical evidence here for the inviscid flow added
mass example: we choose (as in all our examples except
Thermal Block) µ = µref and τ according to (118); the lat-
ter ensures rapid convergence of the requisite Offline eigen-
problems.

We consider a random sample Ξtrain,SCM of size ntrain,SCM
= 500, εSCM = 0.75, and M = 8. We obtain Jmax = 63: as
expected for this non-parametrically coercive problem, we
require at least a few “coercivity constraint” sample points in
each parameter direction in order to ensure compliance with
our error tolerance. However, the Offline effort is still not
excessive: thanks to our choice of τ , the number of Lanczos
iterations “per αN (µ′)” is quite modest, typically ≈ 10 to
achieve a relative accuracy of 10−2. Furthermore, the Online
effort is very insensitive to Jmax, since the size of the LP is
dictated solely by Q and M .

We close with several general comments. First, for prob-
lems with many parameters that are not parametrically co-
ercive, we must choose Ξtrain,SCM quite large—larger than
ntrain,SCM = 500—to obtain a lower bound αNLB(µ) that is
viable (positive) for all µ in D. Second, as already noted,
we do not need high accuracy for αNLB: an increase in εSCM
from ≈ 0 to 0.75 will only increase our output bound effec-
tivities by a factor of roughly four. Third, we note that M

can be chosen to balance Offline and Online effort: M very
large will economize Offline performance (reduce Jmax) but
degrade Online performance, while M very small will in-
crease Offline cost (increase Jmax) but improve Online re-
sponse; typically, M should be chosen such that CM,µ

J “cov-
ers” variations in all the parametric coordinates.

14However, our choice τ = 0, though theoretically convenient, yields
poor Lanczos convergence; in practice (see below), we choose τ ac-
cording to (118).
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Finally, we note that we must anticipate that Jmax, unlike
Nmax, will increase exponentially with P —at least for prob-
lems that are not parametrically coercive. This will certainly
limit the number of parameters that may be considered; in
the non-coercive case [64] the effect will be even more pro-
nounced. However, the “constants” appear to be quite favor-
able, at least for coercive problems; for all of our working
examples in this paper, Jmax < 100.

11 Extension to Noncompliant Problems

11.1 General Primal-Dual Approximation Framework

We now consider the more general non-compliant problem:
given µ ∈D, find

s(µ) = !(ue(µ)), (120)

where ue(µ) ∈ Xe satisfies

a(ue(µ), v;µ) = f (v), ∀v ∈Xe. (121)

We assume that a is coercive and continuous (and affine, (2))
but not necessarily symmetric. We further assume that both
! and f are bounded functionals but we no longer require
! = f .15 We shall also need the dual problem associated to
!: find ψe(µ) ∈Xe such that

a(v,ψe(µ);µ) =−!(v), ∀v ∈Xe;

ψe is denoted the “adjoint” or “dual” field.
Our FE approximation is then given by

sN (µ) = !(uN (µ)),

where

a(uN (µ), v;µ) = f (v), ∀v ∈XN ,

and

a(v,ψN (µ);µ) = −!(v), ∀v ∈ XN .

For our purposes here a single FE space suffices for both the
primal and dual. In actual FE practice—in which the dual
approximation serves to improve output accuracy [117] or
develop output error bounds [23, 108]—the FE primal and
dual spaces may be different.

By way of motivation, we first consider approximation
of the primal problem given by (120), (121) under the stated

15Typical output functionals correspond to the “integral” of the field
u(µ) over an area or line (in particular, boundary segment) in Ω . How-
ever, by appropriate lifting techniques [1, 56], “integrals” of the flux
over boundary segments can also be considered.

hypotheses on !,f , and a. We shall require two approxi-
mation subspaces X̃

pr
1 ⊂ XN and X̃

pr
2 (µ) ⊂ XN (possibly

parameter dependent) and a given function Φ: D → XN .
Ultimately X̃

pr
1 and X̃

pr
2 shall be interpreted as RB spaces;

however, at present the particular nature of these approxi-
mation subspaces is not crucial.

We then introduce a general Petrov-Galerkin approxima-
tion: Given µ ∈D, find ũN (µ) ∈ X̃

pr
1 such that

a(ũN (µ), v;µ) = f (v), ∀v ∈ X̃
pr
2 (µ), (122)

and evaluate the output as

s̃N (µ) = !(ũN (µ))− r̃pr(Φ(µ);µ), (123)

where

r̃pr(v;µ) ≡ f (v)− a(ũN (µ), v;µ), ∀v ∈ Xe, (124)

is the primal residual. Ultimately, ũN (µ) and s̃N (µ) shall
be interpreted as our RB approximations to the field uN (µ)

and output sN (µ), respectively.
We note that for coercive problems it shall suffice

to consider standard Galerkin RB approximation—X̃
pr
2

(parameter-independent) = X̃
pr
1 . (For non-coercive prob-

lems, consideration of Petrov-Galerkin RB approximations
is much more interesting [86, 134].) However, the differ-
ent roles of the “trial” and “test” spaces is best illuminated
in the full Petrov-Galerkin context; we hence consider the
more general framework for the purposes of this conceptual
discussion.

We define the discrete coercivity, inf-sup, and continuity
constants associated with our spaces as

α̃(µ) = inf
w∈X̃

pr
1

a(w,w;µ)

‖w‖2
X

, (125)

β̃(µ) = inf
w∈X̃

pr
1

sup
v∈X̃

pr
2 (µ)

a(w,v;µ)

‖w‖X‖v‖X
, (126)

and

γ̃ (µ) = sup
w∈X̃

pr
1

sup
v∈X̃

pr
2 (µ)

a(w,v;µ)

‖w‖X‖v‖X
, (127)

respectively. Our norm ‖ ·‖ X is defined, as before, by (6) of
Sect. 4.

We can then prove (under the assumption that a is coer-
cive and continuous)

Proposition 4 For ũN (µ) and s̃N (µ) given by (122) and
(123), respectively,

‖uN (µ)− ũN (µ)‖X

≤
(

1 + γ e(µ)

β̃(µ)

)
inf

w̃∈X̃
pr
1

‖uN (µ)− w̃‖X, (128)
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and

|sN (µ)− s̃N (µ)|
≤ γ e(µ)‖uN (µ)− ũN (µ)‖X

× inf
ṽ∈X̃

pr
2 (µ)

‖ψN (µ)−Φ(µ)− ṽ‖X. (129)

Here Φ: D→ XN is a (any) given function.

The proof is standard.
We observe that X̃

pr
2 (µ) in fact plays two roles. First,

(for given X̃
pr
1 chosen based on approximation considera-

tions) X̃
pr
2 (µ) determines, through β̃(µ), the stability of our

approximation—both as regards convergence and also alge-
braic conditioning. (For coercive problems we can ensure
stability simply through the Galerkin recipe, X̃

pr
2 (µ) = X̃

pr
1 ;

for non-coercive problems, alternative non-Galerkin choices
for X̃

pr
2 (µ) can be advantageous.) Note that stability is a sig-

nificant concern in the RB context since the RB spaces do
not have general approximation properties. Second, X̃

pr
2 (µ)

can improve the accuracy of the output prediction: if mem-
bers of X̃

pr
2 (µ) approximate well the adjoint ψN (µ), then

the second term in (129) will be small—quite independent
of the primal approximation properties of X̃

pr
1 as reflected in

(128) and the first term in (129).
This double role of the test space informs the choice of

X̃
pr
2 (µ) and the introduction/selection of Φ(µ). In particu-

lar, if we choose X̃
pr
2 (µ) solely based on stability considera-

tions, we forego the approximation advantages associated
with the second term in (129). Conversely, if we choose
X̃

pr
2 (µ) solely based on adjoint approximation considera-

tions, we shall have no guarantee of stability. It is the ad-
ditional “degree of freedom” afforded by Φ(µ) that can re-
solve the dilemma: we will typically select X̃

pr
2 (µ) to con-

trol stability—for coercive problems, by the simple Galerkin
recipe X̃

pr
2 (µ) = X̃

pr
1 —and select Φ(µ) to control better the

second term in (129).
The choice of Φ(µ) will in most cases take the form

of a Petrov-Galerkin (Galerkin for coercive problems) ap-
proximation to the dual problem: Given µ ∈ D, ψ̃N (µ)

(≡Φ(µ)) ∈ X̃du
1 satisfies

a(v, ψ̃N (µ);µ) = −!(v), ∀v ∈ X̃du
2 (µ). (130)

Here the space X̃du
1 ⊂ XN is chosen to provide good ap-

proximation of ψN (µ), and the space X̃du
2 (µ) (possibly

parameter-dependent) is chosen to provide good stability of
the discrete dual problem. As regards the former, we em-
phasize that in the ad hoc RB context, even more so than
in the “generic” FE context, the dual and primal approxima-
tion spaces may be fundamentally different—with very little
shared approximation properties. As regards the latter, we
again observe that, in the coercive case, the Galerkin recipe
X̃du

2 = X̃du
1 is certainly a viable approach.

11.2 The Reduced Basis Context

At this stage we can now motivate (roughly) the computa-
tional motivation for, and benefit of, the adjoint.

11.2.1 Approximation

We choose the primal and dual approximation spaces ac-
cording to the (greedy) Lagrange RB prescription: X̃

pr
1 =

W
pr
Npr —the span of Npr snapshots of uN (µ), µ ∈D; X̃du

1 =
W du

Ndu —the span of Ndu snapshots of ψN (µ), µ ∈ D. We
choose the corresponding primal and dual test spaces (per-
force stably) according to the Galerkin recipe: X̃

pr
2 = W

pr
Npr ;

X̃du
2 = W du

Ndu .
The resulting RB primal approximation—ũN (µ) of

(122) for our particular RB primal spaces—will be de-
noted uNNpr(µ); the resulting RB dual approximation—ψ̃N

of (130) for our particular RB dual spaces—will be denoted
ψN

Ndu(µ). (We shall adopt the convention that Npr = 0 and
Ndu = 0 corresponds to uNNpr = 0 and ψN

Npr = 0, respec-
tively.) Finally, the associated RB output approximation—
s̃N of (123) for Φ(µ) =ψN

Ndu(µ)—will take the form

sN
Npr,Ndu(µ) = !(uNNpr(µ))− rpr(ψN

Ndu(µ);µ). (131)

Recall that rpr is the RB primal residual as defined in (88).
Next, and solely for the purposes of our arguments here,

we suppose that

‖uN (µ)− uNNpr(µ)‖X = ‖uN (µ)‖Xgerr(N
pr), (132)

and

‖ψN (µ)−ψN
Ndu(µ)‖X = ‖ψN (µ)‖Xgerr(N

du). (133)

Here gerr: N0 → R is a presumed monotonically decreasing
“convergence” function with associated inverse g−1

err (such
that g−1

err (gerr(N)) = N ); note it follows from our conven-
tions for Npr = 0 and Ndu = 0 that g(0) = 1. (Implicitly in
(132), (133) we presume—given our single primal/dual con-
vergence function—that the primal and dual problems are of
similar regularity or “difficulty”; we shall return to this point
below.) Finally, we shall suppose—as motivated by the re-
sult (129)—that

|sN (µ)− sN
Npr,Ndu(µ)|

= Cs‖uN (µ)‖X‖ψN (µ)‖Xgerr(N
pr)gerr(N

du), (134)

where Cs is a constant that reflects the non-zero angle be-
tween the primal and dual errors.

It then follows from our assumptions that, at fixed output
error |sN (µ)− sN

Npr,Ndu(µ)| = Cs‖uN (µ)‖X‖ψN (µ)‖Xε,

Online Cost of sNN (µ) WITH ADJOINT

Online Cost of sNN (µ) WITHOUT ADJOINT
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= 2
(

g−1
err (

√
ε)

g−1
err (ε)

)3

; (135)

here “WITH ADJOINT” refers to the optimal—given (132),
(133)—choice Npr = Ndu, and “WITHOUT ADJOINT” refers
to the choice Npr 9= 0, Ndu = 0 (and hence, according to our
convention, ψN

Npr = 0). The cube in (135) arises from the as-
sumed dominant LU decomposition of the (dense) RB stiff-
ness matrices as described in Sect. 7. Even in the “worst”
case, in which gerr(N) is exponential—gerr(N) = e−ωN for
given positive real ω—the ratio in (135) is 1

4 : by “nor-
mal” standards, a reduction in effort of 75% is very large.
Furthermore, if convergence is only algebraic—gerr(N) =
(N + 1)−ω—the ratio (135) is approximately 2ε3/(2ω), and
hence the reduction in effort is even more significant (in par-
ticular for smaller ε).

In actual practice the best (most efficient) decomposi-
tion between primal and dual degrees of freedom will be
strongly problem dependent. In particular, we must in gen-
eral replace gerr by g

pr
err in (132) and by gdu

err in (133); the
optimal choice of Npr,Ndu—the choice that minimizes On-
line effort—will in general depend on the ratio between g

pr
err

and gdu
err. For example, if g

pr
err 3 gdu

err then we should choose
Npr 9= 0, Ndu = 0; conversely, if gdu

err 3 g
pr
acc, then we should

choose Npr = 0, Ndu 9= 0. We further note that these argu-
ments will be influenced by the number of outputs: clearly
for many outputs the adjoint becomes a good idea that we
can no longer afford, largely independent of the relative con-
vergence rates of the primal and dual RB approximations.

11.2.2 A Posteriori Error Estimation

Finally, we briefly discuss a posteriori error estimation in or-
der to provide yet another motivation for the adjoint. We first
consider the case “without adjoint,” Ndu = 0, corresponding
to ψN

Ndu = 0 in (131) and hence sN
Npr,Ndu(µ) = !(uNNpr(µ))

and

|sN (µ)− sN
Npr,Ndu(µ)| = |!(uNNpr(µ)− uN (µ))|. (136)

Our a posteriori error bound in this case shall (must) in gen-
eral take the form

∆s
N(µ) = ‖!‖(XN )′∆N(µ), (137)

where ∆N(µ) is the error bound for ‖uN (µ)− uNNpr(µ)‖X .
It is clear that (137) is indeed a rigorous bound for the error
in the output.

However, we can demonstrate that the bound (137)
can, in some situations, be very poor. In particular, we
consider the (compliant) case ! = f : since from (66)
|sN (µ) − sN

Npr,Ndu(µ)| ≤ γ e(µ)‖uN (µ) − uNNpr(µ)‖2
X , and

from Proposition 3 (extended to the X norm [112]) ∆N(µ) ≥
‖uN (µ)− uNNpr(µ)‖X , we obtain

∆s
N(µ)

|sN (µ)− sN
Npr,Ndu(µ)|

≥
‖!‖(XN )′

γ e(µ)‖uN (µ)− uNNpr(µ)‖X

;

(138)

hence the effectivity of the output error bound (137) tends
to infinity as (N →∞ and) uNNpr(µ) → uN (µ). We expect
similar behavior for any ! “close” to f : the failing is that
(137) does not reflect the contribution of the test space to
the convergence of the output.

The introduction of the RB adjoint approximation will
largely cure this problem—and ensure a stable limit N →
∞. In particular, in the non-compliant case, the output error
bound takes the form

∆s
N(µ) ≡

‖rpr(·;µ)‖(XN )′

(αNLB(µ))1/2

‖rdu(·;µ)‖(XN )′

(αNLB(µ))1/2
, (139)

where

rdu(v;µ) ≡−!(v) + a(v,ψN
Ndu(µ);µ), ∀v ∈ Xe, (140)

is the dual residual. In effect, (139) is the product of pri-
mal and dual errors (with the coercivity constant detributed
“symmetrically” for the purposes of the separate primal and
dual greedy algorithms).

The effect of the test space, “through” Φ =ψN
Ndu , is now

reflected in our error bound (139): we recover, in the com-
pliant case, our earlier (N -independent) effectivity bound
of Proposition 2. Unfortunately, even with the adjoint, the
effectivities—though bounded—may be quite large, in par-
ticular in the very non-compliant limit in which the primal
and dual errors can be very uncorrelated.

11.3 An Advection-Diffusion Problem

We consider an advection-diffusion example in a rectan-
gular domain Ωo(µ) = ]0,L[ ×] 0,1[ representing a chan-
nel. The governing equation for the passive-scalar field (say,
temperature) is the advection-diffusion equation with im-
posed Couette velocity (xo2,0). Neumann (flux) boundary
conditions are imposed on the bottom wall Γo,bot; homo-
geneous Dirichlet conditions are imposed on the top wall
Γo,top and on the “inflow” left boundary Γo,in; and homoge-
neous (zero flux) Neumann conditions are imposed on the
“outflow” right boundary Γo,out. The output of interest is the
integral of the temperature over the heated (bottom) surface
Γo,bot. This example is a simplified version of a Couette-
Graetz problem [140].

We consider two parameters: the length of the chan-
nel, L, and the Peclet number, Pe [57]. Hence P = 2 and
µ = (µ1,µ2): µ1 is the channel length L, and µ2 is the
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Peclet number Pe; the parameter domain is given by D =
[1,10] ×[ 0.1,100]. We now choose µref = (1,1), which in
turn defines the reference domain Ω =Ωo(µref).

In terms of the original domain, we identify Xe
o(µ) ≡

{v ∈ H 1(Ωo(µ))|v|Γo,top∪Γo,in = 0}, which imposes the
Dirichlet conditions;

ao(w,v;µ) =
∫

Ωo(L)
xo2

∂w

∂x1
v + 1

Pe

∫

Ωo(L)
∇w · ∇v, (141)

which represents the advection (non-symmetric) and diffu-
sion (symmetric) contributions as well as the homogeneous
Neumann conditions; and

fo(v) = !o(v)≡
∫

Γo,bot(L)
v, (142)

which reflects the inhomogeneous Neumann conditions and
bottom-wall temperature output functional.

In this case we effect the simple dilation-in-xo1 affine
mapping—(x1, x2) = (xo1/L,xo2)—“by hand”: we directly
obtain the reference domain abstraction (120), (121) for
Xe ≡ {v ∈H 1(Ω)|v|Γtop∪Γin = 0},

a(w,v,µ) ≡
∫

Ω
x2

∂w

∂x1
v + 1

µ1µ2

∫

Ω

∂w

∂x1

∂v

∂x1

+ µ1

µ2

∫

Ω

∂w

∂x2

∂v

∂x2
(143)

and

f (v;µ) = !(v;µ) ≡ µ1

∫

Γbot

v.

(We observe that ! and f depend affinely on µ; as in the
compliant case, this extension is straightforward.) Note that
although ! = f this problem is not compliant since a is not
symmetric and hence ue(µ) 9= ψe(µ): we must invoke the
full primal-dual technology described in the previous two
sections.

We construct the primal and dual hierarchical RB approx-
imations by (two separate) greedy procedures analogous to
the method described in Sect. 7.2.2 for the (primal only)
compliant case. We consider for Ξtrain a random sample
of size ntrain = 2000. We plot in Fig. 30 the maximum of
the a posteriori output error bound over Ξtrain as a func-
tion of N = Npr = Ndu. (In actual practice, in the Offline
stage we can form “look-up” tables of cost-optimal Npr,Ndu
discretization pairs as a function of maximum output error
(bound) over D; in the Online stage we then search this ta-
ble to select an RB primal-dual discretization pair Npr,Ndu
appropriate for the desired accuracy [44].) We observe that
the output converges quite rapidly despite the rather large
parametric variations in the channel length and in particular
the Peclet number.

Fig. 30 Advection-Diffusion problem: maxµ∈Ξtrain ∆
s
N(µ) as a func-

tion of N ; note |sN (µ)− sNN (µ)| ≤∆s
N(µ)

Fig. 31 Advection-Diffusion problem: αN
UB(µ) (upper curve, solid)

and αN
LB(µ) (lower curve, dotted) as a function of µ′ ∈Ξtrain,SCM after

Jmax = 4 iterations of the SCM greedy algorithm; here the abscissa
represents the index of the point µk

train,SCM in Ξtrain,SCM

We next consider a posteriori error estimation for the out-
put. In fact, our procedures of Sects. 9 and 10 for the sym-
metric case require very little modification. Our output error
bound in the noncompliant case is given by (139): we now
must perform two dual norm calculations—one for the pri-
mal residual, (88), and one for the dual residual, (140); how-
ever, the fundamental Offline-Online procedure described in
Sect. 9.4 requires no modification. Similarly, our SCM pro-
cedure is little changed: to construct a lower bound for the
coercivity constant of a non-symmetric bilinear form a, we
simply apply the SCM procedure of Sect. 10.1 but now to
the symmetric part of a. For a random sample Ξtrain,SCM
of size ntrain,SCM = 1000, εSCM = 0.75, and M = 4 we ob-
tain Jmax = 4; the symmetric part of a is parametrically
coercive—hence the rapid convergence. We plot in Fig. 31
the SCM lower and upper bounds for the coercivity constant.

We present in Table 2 the output error bound (139) and
associated effectivity measures (see Sect. 9.5) as a function
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Table 2 Advection-Diffusion problem: Output error bound and effec-
tivity metrics as a function of N

N ∆s
N,max ηs

N,max ηs
N,ave

10 1.9E−01 63.1 7.9

15 5.3E−02 46.78 9.3

25 4.0E−03 48.5 5.9

33 1.0E−03 94.3 8.2

40 2.5E−04 81.4 17.8

of N = Npr = Ndu for a random test sample Ξ of size 2000.
We note that in the non-compliant case (without further as-
sumptions on the output convergence) we can no longer ob-
tain an upper bound for the output error bound effectivity,
and hence we anticipate that the effectivities might be larger
and also perhaps more erratic than in the compliant case; this
expectation is (unfortunately) realized in Table 2, though
in fact at least the average effectivities remain quite well-
behaved. (We note that the higher values of the effectivity
obtain for the higher Peclet values—for which the continu-
ity/coercivity ratio is larger and furthermore the primal and
dual solutions are less correlated.)

In other studies, the time-dependent advection-diffusion
(parabolic) equation is considered [52]. Future work must
also address RB approximation of stabilized FE approxima-
tions (for high Peclet number) [43, 124].
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