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Observability singularity of batch bioreactors: a solution based on high order
sliding mode differentiator approach.

I. Haidar, J-P Barbot, A. Rapaport and M. Ghanes∗

Abstract

Thispaperdeals with the observability singularity
problem of batchbioreactorson the positive Orthant.
This singularity is overcame by the dedicated approach
basedon the well-known high order sliding mode dif-
ferentiator proposed by Arie Levant and the resolution
of simple second order equation. Nevertheless, it is dif-
ficult to distinguish between both solutions, butthe sec-
ond differentiation of the outputgives an appropriate
test procedure for choice between both solutions. Some
simulation results highlight the well-founded of the pro-
posed method.
keywords: Nonlinear observer, Observability singularity,
High order sliding mode, batch bioreactor.

1. Introduction

An important class of bioprocesses is thebatch
bioreactor[7]. This type of bioprocess is mainly used
in food and pharmaceutical industry [2]. It permits the
cultivation of a microbial biomass on a substrate in a
controlled (Ph, temperature) medium. The batch culture
is characterized by the fact that after the initial charge
of the substrate in the bioreactor and biomass innocula-
tion, there is no inflow or outflow of the medium. The
typical model characterizing the substrate biodegrada-
tion, in this case, is given by the following equations

ḃ = µ(s)b
ṡ = −µ(s)b (1)

wheres is the substrate concentration,b is the biomass
concentration andµ(·) is the microbial growth rate
function. We have assumed here, without any loss of
generality, that the units in which the concentrationss
and b are considered have been chosen such that the
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yield coefficient is equal to 1.Several models of micro-
bial growth have been discussed in the literature. The
Haldane’s model isapopularonethat describes the dy-
namics of the growth of a biomass which is inhibited by
high substrate concentration[1]. This is given by the
following

µ(s) =
µ̄s

Ks+ s+ s2

Ki

(2)

whereµ̄ , Ks andKi are positive parameters.
Several works in the literature aim to reconstruct the
substrate concentration from (1) when only the biomass
b is measured (see, e. g., [5, 9, 10]). Let us under-
line that in [5, 9], a continuous-culture bioreactor was
considered instead of a batch one. This observability
problem becomes more difficult when dealing with non-
monotonic microbial growth function (of type (2) for
example) (see, e.g., [10]). The difficulty derives from
the fact that system (1) becomes unobservable. In fact,
due to the non-monotonicity ofµ the rank condition for
local observability [6] is not everywhere satisfied.
Here, we overcame the observability problem of sys-
tem (1)–(2). Using a second order sliding mode dif-
ferentiator [8], we construct a convergent observer al-
lowing to compute (in finite time) ˙y andÿ, the first and
second derivative of the output

y = log(b).

Knowing that it is a finite time convergence, the com-
parison of ˙y and ÿ with the original system permits to
build a test procedure allowing the exact construction
of the substrate concentration by considering the orig-
inal parameters system known. Note that this result is
still true for a general class of Lipschitz continuous non-
monotonic positive functionµ presenting an increasing
decreasing branches.

2. Problem Statement

As system (1) is a positive system thenb is positive
for all t ≥ 0 as soon asb(0) is positive. Thus, log(b)
is considered as the output and the following change of
coordinate is used(y,s)→ (log(b),s). By consequence,



system (1) becomes

ẏ = µ(s)
ṡ = −µ(s)ey

. (3)

The observability matrix at the order 2 of system (3),
given by [6]

dO2 =

(

1 0

0 ∂ µ(s)
∂s

)

, (4)

with
∂ µ(s)

∂s
=

µ̄
Ki

KsKi − s2

(

Ks+ s+ s2

Ki

)2 (5)

shows that the system has aobservability singularity
set (see [4])

SO2 = {(b,s)\ s=
√

KiKs}. (6)

Note that the solutions=−
√

KiKs is not a possible so-
lution with respect to a biological purpose. In order
to overcome this singularity problem, one can increase
the dimension of system (3) by considering the second
derivative of the output. The observability matrix in this
case is given by

dO3 =









1 0

0 ∂ µ(s)
∂s

∂ ÿ
∂y

∂ ÿ
∂s









(7)

with
∂ ÿ
∂s

=−ey
[

(
∂ µ
∂s

)2+
∂ 2µ
∂s2 µ(s)

]

(8)

and
∂ 2µ(.)

∂s2 =
−2µ̄(KsKi +4Kss+ s2)

Ki(Ks+ s+ s2

Ki
)3

. (9)

Then, whens=
√

KsKi (i.e. ∂ ẏ
∂s = 0), ∂ ÿ

∂s can be also
equal to zero only ifb= 0 (i.e.y= log(b) =−∞). This
solution is impossible in finite time with respect to the
model (1). Consequently, we conclude that considering
dO3, the set of singularity is:

SO3 = /0.

From the previous arguments, we conclude that the
system is locally weakly observable every where in
R
+ \ {0}×R

+.
Recall that our problem is to estimates from the mea-
surement ofy (or equivalentlyb, remembering that
y= log(b)) and this for all(b,s) ∈ R

+ \ {0}×R
+. For

this, we will use an observer. But as some information
came from the second derivative ofy we will use an ob-
server of third dimension.

3. High order sliding mode observer

The following high order sliding mode differentia-
tor is considered in order to computey, ẏ, ÿ (see [8])

ż1 = z2−K1L
1
3 |z1− y| 2

3 sign(z1− y)

ż2 = z3−K2L
1
2 |z1− y| 1

3 sign(z1− y) (10)

ż3 = −K3Lsign(z1− y)

which gives the following dynamic of the observation
error

ė1 = e2−K1L
1
3 |e1|

2
3 sign(e1)

ė2 = e3−K2L
1
2 |e1|

1
3 sign(e1) (11)

ė3 = −K3Lsign(e1)

Where e1 = z1 − y, e2 = z2 − ẏ and e3 = z3 − ÿ,
then the vector(z1,z2,z3)

T converges in finite time to
(y, ẏ, ÿ)T because the solutions of the original system are
bounded. The solution and the convergence proof of the
discontinuous system (11) is in a sense of Filippov [3].

4. Reconstruction of the substrate

Considering that the finite time observer (10) has
converged (and more particularly thatz2 = ẏ), equation
(2) gives the following quadratic equation:

z2s2+(z2Ki − µ̄Ki)s+ z2KsKi = 0 (12)

whichhastwo real solutions


























S1 =
−(z2Ki − µ̄Ki)+

√

(z2Ki − µ̄Ki)2−4z2
2KsKi

2z2
,

S2 =
−(z2Ki − µ̄Ki)−

√

(z2Ki − µ̄Ki)2−4z2
2KsKi

2z2
.

The singularity in ˙y= 0 for S1 andS2 is not a real sin-
gularity because this correspond toµ(s) = 0 and then
s= 0, so in this cases is known.
Now in order to determine betweenS1 andS2 which is
the solution of (3), it is enough to use the information
given byÿ. For that, using the fact that after a finite time
ÿ= z3, it is enough to determine if it isS1 or S2 which
verifies the following equality:

ÿ= z3 =−∂ µ
∂s

µey
.

From (2) and (5) we obtain:

ÿ= z3 =−µ̄2
(

Ks−
s2

Ki

)

eys

(Ks+ s+ s2

Ki
)3
. (13)
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Figure 1. The substrat s in red, and its estimate
in blue.

This gives the following test procedure, defining the
functionTest

Test= z3+ µ̄2(Ks−
s2

Ki
)

sey

(Ks+ s+ s2

Ki
)3

(14)

and we chose the solutionS1 if for s= S1 the function
Test= 0 (or if it is the closest to zero) and we chose the
solutionS2 if for s= S2 the functionTest= 0 (or if it is
the closest to zero).
Remark 1 It is convenient to verify that our observer
recover the singularitȳs=

√
KsKi . This consist to verify

that when s= s̄, we have well S1 = S2 = s̄. A straight-
forward computation leads to this end.

5. Simulation results

The simulation was performed on Matlab, the com-
putation step wash= 10−7 h and a simple Euler scheme
was used. The initial conditions for the system are
s(0) = 2, y(0) = 0.7 and the initial condition for the dif-
ferentiator arez1(0) = y(0), z2(0) = 0.3,z3(0) = 0. The
parameters for the systemareµ̄ = Ki = Ks = 1 and for
the differentiatorareL = 90, K1 = 6, K2 = 12,K3 = 8.
Figure 1 shows that the substrate was well estimated
after less than 0.1 (h). Moreover, the figure 1 shows
that the observability singularity point (i.e.s=

√
KiKS)

was passed without difficulty because of the finite time
convergence of the derivatives. This was emphasized in
figure 2 where at this particular point which correspond
to double solutions of equation (12), the test function
’hesitates’ between two very closes solutions, which is
only due to precision error and not the convergence of
the derivatives.

6. Conclusion

This paper has highlighted, first the efficiency of
the High Order Sliding mode observer and second the
possibility to overcome an observabilitysingularityof
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Figure 2. Zoom around the singularity of the
substrat s in red, and its estimate in blue.

batch bioreactorsby the mean ofa simple algebraic test
thanks to the finite time convergence of the derivatives
of the measurement signal. Our future works will be
devoted to taking into account the fact that the biomass
measurement is sampled.The confrontation of our ob-
server with experimental data ofy, ẏ andÿ is one of the
main ends of future works.
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