
HAL Id: hal-01722543
https://hal.science/hal-01722543v1

Submitted on 8 Mar 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Network Visualization with ggplot2
Samantha C. Tyner, François Briatte, Heike Hofmann

To cite this version:
Samantha C. Tyner, François Briatte, Heike Hofmann. Network Visualization with ggplot2. The R
Journal, 2017. �hal-01722543�

https://hal.science/hal-01722543v1
https://hal.archives-ouvertes.fr

CONTRIBUTED RESEARCH ARTICLE 27

Network Visualization with ggplot2
by Sam Tyner, François Briatte and Heike Hofmann

Abstract This paper explores three different approaches to visualize networks by building on the
grammar of graphics framework implemented in the ggplot2 package. The goal of each approach is
to provide the user with the ability to apply the flexibility of ggplot2 to the visualization of network
data, including through the mapping of network attributes to specific plot aesthetics. By incorporating
networks in the ggplot2 framework, these approaches (1) allow users to enhance networks with
additional information on edges and nodes, (2) give access to the strengths of ggplot2, such as layers
and facets, and (3) convert network data objects to the more familiar data frames.

Introduction

There are many kinds of networks, and networks are extensively studied across many disciplines
(Watts, 2004). For instance, social network analysis is a longstanding and prominent sub-field of
sociology, and the study of biological networks, such as protein-protein interaction networks or
metabolic networks, is a notable sub-field of biology (Prell, 2011; Junker and Schreiber, 2008). In
addition, the ubiquity of social media platforms, like Facebook, Twitter, and LinkedIn, has brought
the concepts of networks out of academia and into the mainstream. Though these disciplines and the
many others that study networks are themselves very different and specialized, they can all benefit
from good network visualization tools.

Many R packages already exist to manipulate network objects, such as igraph by Csardi and
Nepusz (2006), sna by Butts (2014), and network by Butts et al. (2014) (Butts, 2008, see also). Each
one of these packages were developed with a focus of analyzing network data and not necessarily
for rendering visualizations of networks. Though these packages do have network visualization
capabilities, visualization was not intended as their primary purpose. This is by no means a critique
or an inherently negative aspect of these packages: they are all hugely important tools for network
analysis that we have relied on heavily in our own work. We have found, however, that visualizing
network data in these packages requires a lot of extra work if one is accustomed to working with
more common data structures such as vectors, data frames, or arrays. The visualization tools in
these packages require detailed knowledge of each one of them and their syntax in order to build
meaningful network visualizations with them. This is obviously not a problem if the user is very
familiar with network structures and has already spent time working with network data. If, however,
the user is new to network data or is more comfortable working with the aforementioned common
data structures, they could find the learning curve for these packages burdensome.

The packages described in this paper have, by contrast, have one primary purpose: to create
beautiful network visualizations by providing a wrapper of existing network layout capabilities (see
for example the statnet suite of packages by Handcock et al. (2008)) to the popular ggplot2 package
(Wickham, 2016). And so, our focus here is not on adding to the analysis of network data or to the
field of graph drawing, (cf. Tamassia, 2013) but rather it is on implementing existing graph drawing
capabilities in the ggplot2 framework, using the common data frame structure. The ggplot2 package is
hugely popular, and many other packages and tools interface with it in order to better visualize a wide
variety of data types. By creating a ggplot2 implementation, we hope to place network visualization
within a large, active community of data visualization enthusiasts, bringing new eyes and potentially
new innovations to the field of network visualization. With our approaches, we have two primary
audiences in mind. The first audience is made up of frequent users of network structures and those
who are fluent in the language of packages such as network or igraph. This audience will find that
two of our three approaches (ggnet2 and ggnetwork) directly incorporate the network structures and
functions with which they are familiar with into the less familiar visualization paradigm of ggplot2
(Briatte, 2016). The second audience, targeted by geomnet, consists of those users who are not familiar
with network structures, but are familiar with data manipulation and tidying, and who happen to find
themselves examining some data that can be expressed as a network (Tyner and Hofmann, 2016a). For
this audience, we do the heavy network lifting internally, while also relying on their familiarity with
ggplot2 externally.

The ggplot2 package was designed as an implementation of the ‘grammar of graphics’ proposed
by Wilkinson (1999), and it has become extremely popular among R users.1

1In order to give an indication of how large the user base of ggplot2 is, we looked at its usage statistics
from January 1, 2016 to December 31, 2016 (see http://cran-logs.rstudio.com/). Over this period, the ggplot2
package was downloaded over 3.2 million times from CRAN, which amounts to almost 9,000 downloads per day.
Almost 800 R packages import or depend on ggplot2.

The R Journal Vol. 9/1, June 2017 ISSN 2073-4859

https://CRAN.R-project.org/package=igraph
https://CRAN.R-project.org/package=sna
https://CRAN.R-project.org/package=network
https://CRAN.R-project.org/package=statnet
https://CRAN.R-project.org/package=ggplot2
https://CRAN.R-project.org/package=ggnetwork
https://CRAN.R-project.org/package=geomnet
http://cran-logs.rstudio.com/

CONTRIBUTED RESEARCH ARTICLE 28

Because the syntax implemented in the ggplot2 package is extendable to different kinds of vi-
sualizations, many packages have built additional functionality on top of the ggplot2 framework.
Examples include the ggmap package by Kahle and Wickham (2013) for spatial visualization, the
ggfortify package for visualizing statistical models (see Horikoshi and Tang (2016), Tang et al. (2016)),
the package GGally by Schloerke et al. (2016), which encompasses various complementary visualiza-
tion techniques to ggplot2, and the ggbio and ggtree Bioconductor packages by Yin et al. (2012) and
Yu et al. (2017), which both provide visualizations for biological data. These packages have expanded
the utility of ggplot2, likely resulting in an increase of its user base. We hope to appeal to this user
base and potentially add to it by applying the benefits of the grammar of graphics implemented in
ggplot2 to network visualization.

Our efforts rely upon recent changes to ggplot2, which allow users to more easily extend the
package through additional geometries or ‘geoms’.2

In the remainder of this paper, we present three different approaches to network visualization
through ggplot2 wrappers. The first is a function, ggnet2 from the GGally package, that acts as a
wrapper around a network object to create a ggplot2 graph. The second is a package, geomnet, that
combines all network pieces (nodes, edges, and labels) into a single geom and is intended to look the
most like other ggplot2 geoms in use. The final is another package, ggnetwork, that performs some
data manipulation and aliases other geoms in order to layer the different network aspects one on top of
the other. The section Brief introduction to networks introduces the basic terminology of networks and
illustrates their ubiquity in natural and social life. The next section Three implementations of network
visualizations then discusses the structure and capabilities of each of the three approaches that we
offer. The section Examples extends that discussion through several examples ranging from simple
to complex networks, for which we provide the code corresponding to each approach alongside its
graphical result. We follow with some considerations of runtime behavior in plotting networks in the
section Some considerations of speed before closing with a discussion.

Brief introduction to networks

In its essence, a network is simply a set of vertices connected in pairs by a set of edges (Newman,
2010). Throughout this paper, we also use the term node to refer to vertices, as well as the terms ties or
relationships to refer to edges, depending on context. The two sets of graphical objects that make up a
network visualization, points and segments between them, have been used to examine a huge variety
and quantity of information across many different fields of study. For instance, networks of scientific
collaboration, a food web of marine animals, and American college football games are all covered in a
paper on community detection in networks by Girvan and Newman (2002). Additionally, Buldyrev
et al. (2010) study node failure in interdependent networks like power grids. Social networks such as
links between television and film actors found on http://www.imdb.com/ and neural networks, like
the completely mapped neural network of the C. elegans worm are also extensively studied (Watts and
Strogatz, 1998).

These examples show that networks can vary widely in scope and complexity: the smallest
connected network is simply one edge between two vertices, while one of the most commonly used
and most complex networks, the world wide web, has billions of vertices (Web pages) and billions
of edges (hyperlinks) connecting them. Additionally, the edges in a network can be directed or
undirected: directed edges represent an ordering of vertices, like a relationship extending from one
vertex to another, where switching the direction would change the structure of the network. The World
Wide Web is an example of a directed network because hyperlinks connect one Web page to another,
but not necessarily the other way around. Undirected edges are simply connections between vertices
where order does not matter. Co-authorship networks are examples of undirected networks, where
nodes are authors and they are connected by an edge if they have written an academic publication
together.

As a reference example, we turn to a specific instance of a social network. A social network is a
network that everyone is a part of in one way or another, whether through friends, family, or other
human interactions. We do not necessarily refer here to social media like Facebook or LinkedIn, but
rather to the connections we form with other people. To demonstrate the functionality of our tools for
plotting networks, we have chosen an example of a social network from the popular television show
Mad Men. This network, which was compiled by Chang (2013) and made available in gcookbook
(Chang, 2012), consists of 52 vertices and 87 edges. Each vertex represents a character on the show,
and there is an edge between every two characters who have had a romantic relationship.

2Version 2.1.0, released 1 March 2016. See https://cran.r-project.org/web/packages/ggplot2/news.html
for the full list of changes in ggplot2 2.1.0, as well as the new package vignette, “Extending ggplot2”, which
explains how the internal ggproto system of object-oriented programming can be used to create new geoms.

The R Journal Vol. 9/1, June 2017 ISSN 2073-4859

https://CRAN.R-project.org/package=ggmap
https://CRAN.R-project.org/package=ggfortify
https://CRAN.R-project.org/package=GGally
https://www.bioconductor.org/packages/release/bioc/html/ggbio.html
https://www.bioconductor.org/packages/release/bioc/html/ggtree.html
http://www.imdb.com/
https://CRAN.R-project.org/package=gcookbook
https://cran.r-project.org/web/packages/ggplot2/news.html

CONTRIBUTED RESEARCH ARTICLE 29

Abe Drexler

Allison Bellhop in Baltimore

Bethany Van Nuys

Betty Draper

Bobbie Barrett

Brooklyn College Student

Candace

Don Draper

Doris

Duck Phillips

Faye Miller

Franklin

Greg Harris

Gudrun

Harry Crane

Henry Francis

Hildy

Ida Blankenship

Jane Siegel

Janine

Jennifer Crane

Joan Holloway

Joy

Kitty Romano

Lane Pryce

Mark

Megan Calvet

Midge Daniels

Mirabelle Ames

Mona Sterling

Peggy Olson

Pete Campbell

Playtex bra model

Rachel Menken

Random guy

Rebecca Pryce

Roger Sterling

Sal Romano

Shelly

Suzanne Farrell

Toni

Trudy Campbell
Vicky

Woman at the Clios party

Gender female male

Figure 1: Graph of the characters in the show Mad Men who are linked by a romantic relationship.

Figure 1 is a visualization of this network. In the plot, we can see one central character who has
many more relationships than any other character. This vertex represents the main character of the
show, Don Draper, who is quite the “ladies’ man." Networks like this one, no matter how simple or
complex, are everywhere, and we hope to provide the curious reader with a straightforward way to
visualize any network they choose.

Coloring the vertices or edges in a graph is a quick way to visualize grouping and helps with
pattern or cluster detection. The vertices in a network and the edges between them compose the
structure of a network, and being able to visually discover patterns among them is a key part of
network analysis. Viewing multiple layouts of the same network can also help reveal patterns or
clusters that would not be discovered when only viewing one layout or analyzing only its underlying
adjacency matrix.

Three implementations of network visualizations

We present two basic approaches to using the ggplot2 framework for network visualization. First,
we implement network visualizations by providing a wrapper function, ggnet2 for the user to vi-
sualize a network using ggplot2 elements (Schloerke et al., 2016). Second, we implement network
visualizations using layering in ggplot2. For the second approach, we have two ways of creating a
network visualization. The first, geomnet, wraps all network structures, including vertices, edges,
and vertex labels into a single geom. The second, ggnetwork, implements each of these structural
components in an independent geom and layers them to create the visualization (Briatte, 2016). In each
package, our goal is to provide users with a way to map network properties to aesthetic properties of
graphs that is familiar to them and straightforward to implement. Each package has a slightly different
approach to accomplish this goal, and we will discuss all of these approaches in this section. For each
implementation, we also provide the code necessary to create Figure 1, and describe the arguments
used. We conclude the section with a side-by-side comparison of the features available in all three
implementations in Table 1.

ggnet2

The ggnet2 function is a part of the GGally package, a suite of functions developed to extend the
plotting capabilities of ggplot2 (Schloerke et al., 2016). A detailed description of the ggnet2 function is
available from within the package as a vignette. Some example code to recreate Figure 1 using ggnet2
is presented below.

The R Journal Vol. 9/1, June 2017 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 30

library(GGally)
library(network)
make the data available
data(madmen, package = 'geomnet')
data step for both ggnet2 and ggnetwork
create undirected network
mm.net <- network(madmen$edges[, 1:2], directed = FALSE)
mm.net # glance at network object
Network attributes:
vertices = 45
directed = FALSE
hyper = FALSE
loops = FALSE
multiple = FALSE
bipartite = FALSE
total edges= 39
missing edges= 0
non-missing edges= 39
##
Vertex attribute names:
vertex.names
##
No edge attributes
create node attribute (gender)
rownames(madmen$vertices) <- madmen$vertices$label
mm.net %v% "gender" <- as.character(
madmen$vertices[network.vertex.names(mm.net), "Gender"]

)
gender color palette
mm.col <- c("female" = "#ff69b4", "male" = "#0099ff")
create plot for ggnet2
set.seed(10052016)
ggnet2(mm.net, color = mm.col[mm.net %v% "gender"],

labelon = TRUE, label.color = mm.col[mm.net %v% "gender"],
size = 2, vjust = -0.6, mode = "kamadakawai", label.size = 3)

The ggnet2 function offers a large range of network visualization functionality in a single function
call. Although its result is a ggplot2 object that can be further styled with ggplot2 scales and themes,
the syntax of the ggnet2 function is designed to be easily understood by the users, who may not be
familiar with ggplot2 objects. The aesthetics relating to the nodes are controlled by arguments such as
node.alpha or node.color, while those relating to the edges are controlled by arguments starting with
‘edge’. Additionally, as seen in the code above, the usual ggplot2 arguments like color can be used
without the prefix to map node attributes to aesthetic values. The arguments with the node. prefix
are aliased versions for readability of the code. Thus, while ggnet2 applies the grammar of graphics
to network objects, the function itself still works very much like the plotting functions of the igraph
and network packages: a long series of arguments is used to control every possible aspect of how the
network should be visualized.

The ggnet2 function takes a single network object as input. This initial object might be an object of
class "network" from the network package (with the exception of hypergraphs or multiplex graphs),
or any data structure that can be coerced to an object of that class via functions in the network package,
such as an incidence matrix, an adjacency matrix, or an edge list. Additionally, if the intergraph
package (Bojanowski, 2015) is installed, the function also accepts a network object of class "igraph".
Internally, the function converts the network object to two data frames: one for edges and another
one for nodes. It then passes them to ggplot2. Each of the two data frames contain the information
required by ggplot2 to plot segments and points respectively, such as a shape for the points (nodes)
and a line type for the segments (edges). The final result returned to the user is a plot with a minimum
of two layers, or more if there are edge and/or node labels.

The mode argument of ggnet2 controls how the nodes of the network are to be positioned in
the plot returned by the function. This argument can take any of the layout values supported by
the gplot.layout function of the sna package, and defaults to ‘fruchtermanreingold’, which places
the nodes through the force-directed layout algorithm by Fruchterman and Reingold (1991). In the
example presented above, the Kamada-Kawai layout is used by adding ‘mode = "kamadakawai"’ to the

The R Journal Vol. 9/1, June 2017 ISSN 2073-4859

https://CRAN.R-project.org/package=intergraph

CONTRIBUTED RESEARCH ARTICLE 31

function call. Many other possible layouts and their parameters can also be passed to ggnet2 through
the layout.par argument. For a list of possible layouts and their arguments, see ?sna::gplot.layout.

Other arguments passed to the ggnet2 function offer extensive control over the aesthetics of the
plot that it returns, including the addition of edge and/or node labels and their respective aesthetics.
Arguments such as node.shape or edge.lty, which control the shape of the nodes and the line type of
the edges, respectively, can take a single global value, a vector of global values, or the name of an edge
or vertex attribute to be used as an aesthetic mapping. This feature is used to change the size of the
nodes and the node labels by including ‘size = 2’ and ‘label.size = 3’ in the function call.

This last functionality builds on one of the strengths of the "network" class, which can store
information on network edges and nodes as attributes that are then accessible to the user through
the %e% and %v% operators respectively.3 Usage examples of these operators can be seen above. The
attribute of gender is assigned to nodes, which in turn is accessed to color the nodes and node labels
by gender. If the ggnet2 function is given the node.alpha = "importance" argument, it will interpret
it as an attempt to map the vertex attribute called ‘importance’ to the transparency level of the nodes.
This works exactly like the command net %v% "importance", which returns the vertex attribute
‘importance’ of the "network" object net. This functionality allows the ggnet2 function to work in a
similar fashion to ggplot2 mappings of aesthetics within the aes operator.

The ggnet2 function also provides a few network-specific options, such as sizing the nodes as a
function of their unweighted degree, or using the primary and secondary modes of a bipartite network
as an aesthetic mapping for the nodes.

All in all, the ggnet2 function combines two different kinds of processes: it translates a network
object into a data frame suitable for plotting with ggplot2, and it applies network-related aesthetic
operations to that data frame, such as coloring the edges in function of the color of the nodes that they
connect.

geomnet

also loads ggplot2
library(geomnet)

data step: join the edge and node data with a fortify call
MMnet <- fortify(as.edgedf(madmen$edges), madmen$vertices)
create plot
set.seed(10052016)
ggplot(data = MMnet, aes(from_id = from_id, to_id = to_id)) +
geom_net(aes(colour = Gender), layout.alg = "kamadakawai",

size = 2, labelon = TRUE, vjust = -0.6, ecolour = "grey60",
directed =FALSE, fontsize = 3, ealpha = 0.5) +

scale_colour_manual(values = c("#FF69B4", "#0099ff")) +
xlim(c(-0.05, 1.05)) +
theme_net() +
theme(legend.position = "bottom")

Data structure

The package geomnet implements network visualization in a single ggplot2 layer. A stable version is
available on CRAN, with a development version available at https://github.com/sctyner/geomnet.
The package has two main functions: stat_net, which performs all of the calculations, and geom_net,
which renders the plot. It also contains the secondary functions geom_circle and theme_net, which
assist, respectively, in drawing self-referencing edges and removing axes and other background
elements from the plots. The approach in geomnet is similar to the implementation of other, native
ggplot2 geoms, such as geom_smooth. When using geom_smooth, the user does not need to know about
any of the internals of the loess function, and similarly, when using geomnet, the user is not expected
to know about the internals of the layout algorithm, just the name of the algorithm they’d like to use.
On the other hand, if users are comfortable with network analysis, the entire body of layout methods
provided by the sna package is available to them through the parameters layout.alg and layout.par.

In network analysis there are usually two sources of information: one data set consisting of a
description of the nodes, represented as the vertices in the network and vertex attributes, and another
data set detailing the relationship between these nodes, i.e. it consists of the edge list and any additional
edge attributes. The minimum amount of information needed is a vector of all vertex labels and

3See Butts et al. (2014, p. 22-24). The equivalent operators in the igraph package are called E and V.

The R Journal Vol. 9/1, June 2017 ISSN 2073-4859

https://github.com/sctyner/geomnet

CONTRIBUTED RESEARCH ARTICLE 32

a two column data frame that encodes the edge list of the network. In order for this geometry to
work, these two data sets need to be combined into a single data frame. For this, we implemented
several new fortify methods for producing the correct data structure from different S3 objects that
encode network information. Supported classes are "network" from the sna and network packages,
"igraph" from the igraph package, "adjmat", and "edgedf". The last two are new classes introduced
in geomnet that are identical to the "matrix" and "data.frame" classes, respectively. We created
these new classes and the functions as.adjmat() and as.edgedf() so that network data in adjacency
matrix and edgelist (data frame) formats can have their own fortify functions, separate from the very
generic "matrix" and "data.frame" classes. These fortify functions combine the edge and the node
information using a full join. A full join is used because generally, there will be some vertices that
are sinks in the network because they only show up in the ‘to’ column, and so we accommodate
for these by adding artificial edges in the data set that have missing information for the ‘to’ column.
The user may also pass two data frames to the function, e.g. ‘data = edge_data’ and ‘vertices =
vertex_data’, but we recommend using the fortify methods whenever possible.

A usage example of the fortify.edgedf method is presented in the code above with the creation
of the MMnet data set. Two dataframes, madmen$edges and madmen$vertices are joined to create the
required data. The first few rows of these data sets and their merged result are below.

head(as.edgedf(madmen$edges), 3)
from_id to_id
1 Betty Draper Henry Francis
2 Betty Draper Random guy
3 Don Draper Allison
head(madmen$vertices, 3)
label Gender
Betty Draper Betty Draper female
Don Draper Don Draper male
Harry Crane Harry Crane male
head(fortify(as.edgedf(madmen$edges), madmen$vertices), 3)
from_id to_id Gender
1 Betty Draper Henry Francis female
2 Betty Draper Random guy female
3 Don Draper Allison male

The formal requirements of stat_net are two columns, called from_id and to_id. During this
routine, columns x,y and xend,yend are calculated and used as a required input for geom_net.

Other variables may also be included for each edge, such as the edge weight, in-degree, out-degree
or grouping variable.

Parameters and aesthetics

Parameters that are currently implemented in geom_net are:

• layout: the layout.alg parameter takes a character value corresponding to the possible network
layouts in the sna package that are available within the gplot.layout.*() family of functions.
The default layout algorithm used is the Kamada-Kawai layout, a force-directed layout for
undirected networks (Kamada and Kawai, 1989).
In sna, for each layout there is a corresponding set of possible layout parameters, layout.par,
which can be passed as a list to geom_net. If the user wishes to create small multiples using
ggplot2 facets, they can use fiteach, a logical value specifying whether the same layout
should be used for all panels (default) or each panel’s data should be fit separately. Finally, the
singletons parameter is a logical value that dictates whether or not to include nodes with zero
indegree and zero outdegree in the visualization. The default is set to TRUE, and if set to FALSE
nodes will only appear in panels where they have indegree or outdegree of at least one.

• vertices: any of ggplot2’s aesthetics relating to points: colour, size, shape, alpha, x, and y
are available and used for specifying the appearance of nodes in the network. For example
‘aes(colour = Gender)’ is used above to color the nodes and node labels according to the
gender of each character.

• edges: for edges we distinguish between two different sets of aesthetics: aesthetics that only
relate to line attributes, such as linewidth and linetype, and aesthetics that are also used by
the point geom. The former can be used in the same way as they are used in geom_segment, while

The R Journal Vol. 9/1, June 2017 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 33

the latter, like alpha or colour, for instance, are used for vertices unless separately specified.
Instead, use the parameters ecolour or ealpha, which are only applied to the edges. If the group
variable is specified, a new variable, called samegroup is added during the layout process. This
variable is TRUE, if an edge is between two vertices of the same group, and FALSE otherwise. If
samegroup is TRUE, the corresponding edge will be colored using the same color as the vertices it
connects. If the edge is between vertices of a different group, the default grey shade is used for
the edge.
The parameter curvature is set to zero by default, but if specified, leads to curved edges using
the newly implemented ggplot2 geom geom_curve instead of the regular geom_segment. Note
that the edge specific aesthetics that overwrite node aesthetics are currently considered as ‘as.is’
values: they do not get a legend and are not scaled within the ggplot2 framework. This is done
to avoid any clashes between node and edge scales.
self-referencing vertices: some networks contain self references, i.e. an edge has the same
vertex id in its from and to columns. If the parameter selfloops is set to TRUE, a circle is drawn
using the new geom_circle next to the vertex to represent this self reference.

• arrow: whenever the parameter directed is set from its default state to TRUE, arrows are drawn
from the ‘from’ to the ‘to’ node, with tips pointing towards the ‘to’ node. By default, arrows have
an absolute size of 10 points. The entire structure of the arrow can be changed by passing an
arrow object from the grid package to the arrow argument. If the user doesn’t wish to change the
whole arrow object, the parameters arrowsize and arrowgap are also available. The arrowsize
argument is of a positive numeric value that is used as a multiple of the original arrow size, i.e.
arrowsize = 2 shows arrow tips at twice their original size. The parameter arrowgap can be
used to avoid overplotting of the arrow tips by the nodes, arrowgap specifies a proportion by
which the edge should be shrunk with default of 0.05. A value of 0.5 will result in edges drawn
only half way from the ‘from’ node to the ‘to’ node.

• labels: the labelon argument is a logical parameter, which when set to TRUE will label the
nodes with their IDs, as is in Figure 1. The aes option label can also be used to label nodes,
in which case the nodes are labeled with the value corresponding to their respective values
of the provided variable. If colour is specified for the nodes, the same values are used for
the labels, unless labelcolour is specified. If fontsize is specified, it changes the label size
to that value in points. Other parameter values, such as vjust and hjust help in adjusting
labels relative to the nodes. The parameters work in the same fashion as in native ggplot2
geoms. Additionally, the label can be drawn by using geom_text (the default) or using the
new geom_label in ggplot2 by adding ‘labelgeom = "label"’ to the arguments in geom_net.
Finally, with the help of the package ggrepel by Slowikowski (2016) we have implemented
the logical repel argument, which when true, uses geom_text_repel or geom_label_repel to
plot the labels instead of geom_text or geom_label, respectively. Using repel can be extremely
useful when the networks are dense or the labels are long, as in Figure 1, helping to solve a
common problem with many network visualizations.

ggnetwork

ggnetwork is a small R package that mimics the behavior of geomnet by defining several geoms to
achieve similar results.

create plot for ggnetwork. uses same data created for ggnet2 function
library(ggnetwork)
set.seed(10052016)
ggplot(data = ggnetwork(mm.net, layout = "kamadakawai"),

aes(x, y, xend = xend, yend = yend)) +
geom_edges(color = "grey50") + # draw edge layer
geom_nodes(aes(colour = gender), size = 2) + # draw node layer
geom_nodetext(aes(colour = gender, label = vertex.names),

size = 3, vjust = -0.6) + # draw node label layer
scale_colour_manual(values = mm.col) +
xlim(c(-0.05, 1.05)) +
theme_blank() +
theme(legend.position = "bottom")

The approach taken by the ggnetwork package is to alias some of the native geoms of the ggplot2
package. An aliased geom is simply a variant of an already existing one. The ggplot2 package contains

The R Journal Vol. 9/1, June 2017 ISSN 2073-4859

https://CRAN.R-project.org/package=grid
https://CRAN.R-project.org/package=ggrepel

CONTRIBUTED RESEARCH ARTICLE 34

several examples of aliased geoms, such as geom_histogram, which is a variant of geom_bar see (see
Wickham, 2016, p. 67, Table 4.6).

Following that logic, the ggnetwork package adds four aliased geometries to ggplot2:

• geom_nodes, an alias to geom_point;

• geom_edges, an alias to either geom_segment or geom_curve;

• geom_nodetext, an alias to geom_text; and

• geom_edgetext, an alias to geom_label.

The four geoms are used to plot nodes, edges, node labels and edge labels, respectively. Two of
the geoms that they alias, geom_curve and geom_label, are part of the new geometries introduced in
ggplot2 version 2.1.0. All four geoms behave exactly like those that they alias, and take exactly the
same arguments. The only exception to that rule is the special case of geom_edges, which accepts both
the arguments of geom_segment and those of geom_curve; if its curvature argument is set to anything
but 0 (the default), then geom_edges behaves exactly like geom_curve; otherwise, it behaves exactly
like geom_segment. Three of the four availble aliased geoms are used above to create the visualization
of the Mad Men relationship network.

Just like the ggnet2 function, the ggnetwork package takes a single network object as input. This
can be an object of class "network", some data structure coercible to that class, or an object of class
"igraph" when the intergraph package is installed. This object is passed to the ‘workhorse’ function
of the package, which is also called ggnetwork to create a data frame, and then to the data argument
of ggplot().

Internally, the ggnetwork function starts by computing the x and y coordinates of all nodes in the
network with respect to its layout argument, which defaults to the Fruchterman-Reingold layout
algorithm (Fruchterman and Reingold, 1991). It then extracts the edge list of the network, to which it
adds the coordinates of the sender and receiver nodes as well as all edge-level attributes. The result is
a data frame with as many rows as there are edges in the network, and where the x, y, xend and yend
hold the coordinates of the network edges.

At that stage, the ggnetwork function, like the geomnet package, performs a left-join of that
augmented edge list with the vertex-level attributes of the ‘from’ nodes. It also adds one self-loop per
node, in order to ensure that every node is plotted even when their degree is zero—that is, even if the
node is not connected to any other node of the network, and is therefore absent from the edge list. The
data frame created by this process contains one row per edge as well as one additional row per node,
and features all edge-level and vertex-level attributes initially present in the network.4

The ggnetwork function also accepts the arguments arrow.gap and by. Like in geomnet, arrow.gap
slightly shortens the edges of directed networks in order to avoid overplotting edge arrows and nodes.
The argument by is intended for use with plot facets. Passing an edge attribute as a grouping variable
to the by argument will cause ggnetwork to return a data frame in which each node appears as many
times as there are unique values of that edge attribute, using the same coordinates for all occurrences.
When that same edge attribute is also passed to either facet_wrap or facet_grid, each edge of the
network will show in only one panel of the plot, and all nodes will appear in each of the panels at
the same position. This makes the panels of the plot comparable to each other, and allows the user to
visualize the network structure as a function of a specific edge attribute, like a temporal attribute.

Examples

In this section, we demonstrate some of the current capabilities of ggnet2, geomnet, and ggnetwork
in a series of side by side examples. While the output is nearly identical for each method of network
visualization, the code and implementations differ across the three methods. For each of these
examples, we present the code necessary to produce the network visualization in each of the three
packages, and discuss each application in detail.

For the following examples we will be loading all three packages under comparison. In practice,
only one of these packages would be needed to visualize a network in the ggplot2 framework:

library(ggplot2)
library(GGally)

4One limitation of this process is that it requires some reserved variable names (x, y, xend and yend), which
should not also be present as edge-level or vertex-level attributes (otherwise the function will simply break).
Similarly, if an edge attribute and a vertex attribute have the same name, like ‘na’, which the network package
defines as an attribute for both edges and vertices in order to flag missing data, ggnetwork will rename them to
‘na.x’ (for the edge-level attribute) and ‘na.y’ (for the vertex-level attribute).

The R Journal Vol. 9/1, June 2017 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 35

ggnet2 geom_net geom_nodes,
geom_edges, etc

Functionality (GGally) (geomnet) (ggnetwork)

Data object of class
"network" or object
easily converted to

that class (i.e.
incidence or

adjacency matrices,
edge list) or object
of class "igraph"

a fortified
"network",
"igraph",

"edgedf", or
"adjmat" object OR

one edge data
frame and one node

data frame to be
merged internally

same as ggnet2

Naming
conventions

node._, edge._,
label._,

edge.label._ for
alpha, color, etc.

arguments identical
to ggplot2 with

exception of ecolor,
ealpha

same as ggplot2

Layout package &
default

sna, Fruchterman-
Reingold

sna,
Kamada-Kawai

sna, Fruchterman-
Reingold

Aesthetic mappings
to variables

all alpha, color,
shape, size for

nodes, edges, labels

colour, size, shape,
x, y, linetype,

linewidth, label,
group, fontsize

same as ggplot2

Arrows directed = TRUE,
arrow.size, gap

arrowsize, gap,
arrow = arrow()

like ggplot2

specify arrows in
geom_edge like in

code-
geom_segment,

arrow.gap

Theme or palette
changes

done in the function
with arguments like

_.legend,
_.palette, etc. and

adding ggplot2
elements

adding ggplot2
elements

adding ggplot2
elements

Creating small
multiples

created separately,
use grid.arrange

from gridExtra

add group
argument to

fortify() and use
facet_*() from

ggplot2

use by argument in
ggnetwork() and
facet_*() from

ggplot2

Edge labelling? Yes No Yes

Draw self-loops? No Yes No

Table 1: Comparing the three different package side-by-side.

The R Journal Vol. 9/1, June 2017 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 36

library(geomnet)
library(ggnetwork)

Blood donation

We begin with a very simple example that most should be familiar with: blood donation. In this
directed network, there are eight vertices and 27 edges. The vertices represent the eight different
blood types in humans that are most important for donation: the ABO blood types A, B, AB, and O,
combined with the RhD positive (+) and negative (-) types. The edges are directed: a person whose
blood type is that of a from vertex can to donate blood to a person whose blood type is that of a
corresponding to vertex. This network is shown in Figure 2. The code to produce each one of the
networks is shown above Figure 2. We take advantage of each approach’s ability to assign identity
values to the aesthetic values. The color is changed to a dark red, the size of the nodes is changed
to be large enough to accomodate the blood type label, which we also change the color of, and we
use the directed and arrow arguments of each implementation to show the precise blood donation
relationships. Additionally, we change the node layout to circle, and the placement of the labels with
the hjust and vjust options.

make data accessible
data(blood, package = "geomnet")

plot with ggnet2 (Figure 5a)
set.seed(12252016)
ggnet2(network(blood$edges[, 1:2], directed=TRUE),

mode = "circle", size = 15, label = TRUE,
arrow.size = 10, arrow.gap = 0.05, vjust = 0.5,
node.color = "darkred", label.color = "grey80")

head(blood$edges,3) # glance at the data
from to group_to
1 AB- AB+ same
2 AB- AB- same
3 AB+ AB+ same
plot with geomnet (Figure 5b)
set.seed(12252016)
ggplot(data = blood$edges, aes(from_id = from, to_id = to)) +
geom_net(colour = "darkred", layout.alg = "circle", labelon = TRUE, size = 15,

directed = TRUE, vjust = 0.5, labelcolour = "grey80",
arrowsize = 1.5, linewidth = 0.5, arrowgap = 0.05,
selfloops = TRUE, ecolour = "grey40") +

theme_net()

plot with ggnetwork (Figure 5c)
set.seed(12252016)
ggplot(ggnetwork(network(blood$edges[, 1:2]),

layout = "circle", arrow.gap = 0.05),
aes(x, y, xend = xend, yend = yend)) +

geom_edges(color = "grey50",
arrow = arrow(length = unit(10, "pt"), type = "closed")) +

geom_nodes(size = 15, color = "darkred") +
geom_nodetext(aes(label = vertex.names), color = "grey80") +
theme_blank()

In this example every vertex has a self-reference, as blood between two people of matching ABO and
RhD type can always be exchanged. The geomnet approach shows these self-references as circles
looping back to the vertex, which is controlled by using the parameter setting selfloops = TRUE.

The R Journal Vol. 9/1, June 2017 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 37

(a) ggnet2

A−

A+

AB−

AB+

B−

B+

O−

O+

(b) geomnet

A−

A+

AB−

AB+

B−

B+

O−

O+

(c) ggnetwork

A−

A+

AB−

AB+

B−

B+

O−

O+

Figure 2: Network of blood donation possibilities in humans by ABO and RhD blood types.

colour and size aesthetics in Figure 2 are set to identity values to change the size and color of all
vertices. We have also used the layout and label arguments to change the default Kamada-Kawai
layout to a circle layout and to print labels for each of the blood types. The circle layout places blood
types of the same ABO type next to each other and spreads the vertices out far enough to distinguish
between the various “in" and “out" types. We can tell clearly from this plot that the O-type is the
universal donor: it has an out-degree of seven and an in-degree of zero. Additionally, we can see that
the AB+ type is the universal recipient, with an in-degree of seven and an out-degree of zero. Anyone
looking at this plot can quickly determine which type(s) of blood they can receive and which type(s)
can receive their blood.

Email network

The email network comes from the 2014 VAST Challenge (Cook et al., 2014). It is a directed network
of emails between company employees with 55 vertices and 9,063 edges. Each vertex represents an
employee of the company, and each edge represents an email sent from one employee to another. The
arrow of the directed edge points to the recipient of the email. If an email has multiple recipients,
multiple edges, one for each recipient, are included in the network. The network contains two
business weeks of emails across the entire company. In order to better visualize the structure of the
communication network between employees, emails that were sent out to all employees are removed.
A glimpse of the data objects used is below.

em.net # ggnet2 and ggnetwork
Network attributes:
vertices = 55
directed = TRUE
hyper = FALSE
loops = FALSE
multiple = FALSE
bipartite = FALSE
total edges= 4743
missing edges= 0
non-missing edges= 4743
##
Vertex attribute names:
curr_empl_type vertex.names
##
Edge attribute names not shown
emailnet[1,c(1:2,7,21)] # geomnet
from_id
1 Ada.Campo-Corrente@gastech.com.kronos
to_id day
1 Ingrid.Barranco@gastech.com.kronos 10
CurrentEmploymentType
1 Executive

Emails taken by themselves form an event network, i.e. edges do not have any temporal duration.

The R Journal Vol. 9/1, June 2017 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 38

(a) ggnet2

make data accessible
data(email, package = 'geomnet')

create node attribute data
em.cet <- as.character(
email$nodes$CurrentEmploymentType)

names(em.cet) = email$nodes$label

remove the emails sent to all employees
edges <- subset(email$edges, nrecipients < 54)
create network
em.net <- edges[, c("From", "to")]
em.net <- network(em.net, directed = TRUE)
create employee type node attribute
em.net %v% "curr_empl_type" <-
em.cet[network.vertex.names(em.net)]

set.seed(10312016)
ggnet2(em.net, color = "curr_empl_type",

size = 4, palette = "Set1", arrow.gap = 0.02,
arrow.size = 5, edge.alpha = 0.25,
mode = "fruchtermanreingold",
edge.color = c("color", "grey50"),
color.legend = "Employment Type") +

theme(legend.position = "bottom")}

Employment Type
Administration

Engineering

Executive

Facilities

Information Technology

Security

(b) geomnet

data step for the geomnet plot
email$edges <- email$edges[, c(1,5,2:4,6:9)]
emailnet <- fortify(
as.edgedf(subset(email$edges, nrecipients < 54)),
email$nodes)

set.seed(10312016)
ggplot(data = emailnet,

aes(from_id = from_id, to_id = to_id)) +
geom_net(layout.alg = "fruchtermanreingold",
aes(colour = CurrentEmploymentType,

group = CurrentEmploymentType,
linewidth = 3 * (...samegroup.. / 8 + .125)),

ealpha = 0.25, size = 4, curvature = 0.05,
directed = TRUE, arrowsize = 0.5) +

scale_colour_brewer("Employment Type", palette = "Set1") +
theme_net() +
theme(legend.position = "bottom")

Employment Type
Administration

Engineering

Executive

Facilities

Information Technology

Security

(c) ggnetwork

use em.net created in ggnet2step
set.seed(10312016)
ggplot(ggnetwork(em.net, arrow.gap = 0.02,

layout = "fruchtermanreingold"),
aes(x, y, xend = xend, yend = yend)) +

geom_edges(
aes(color = curr_empl_type),
alpha = 0.25,
arrow = arrow(length = unit(5, "pt"),

type = "closed"),
curvature = 0.05) +

geom_nodes(aes(color = curr_empl_type),
size = 4) +

scale_color_brewer("Employment Type",
palette = "Set1") +

theme_blank() +
theme(legend.position = "bottom")

Employment Type
Administration

Engineering

Executive

Facilities

Information Technology

Security

Figure 3: Email network within a company over a two week period.

The R Journal Vol. 9/1, June 2017 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 39

Here, however, we can think of emails as observable expressions of the underlying, unobservable,
relationship between employees. We can think of this network as a dynamic temporal network, i.e.
this network has the potential to change over time. The ndtv package by Bender-deMoll (2016) allows
the analysis of such networks and provides impressive animations of the underlying dynamics. Here,
we are using two static approaches to visualize the network: first, we aggregate emails across the
whole time frame (shown in Figure 3), then we aggregate emails by day and use small multiples to
allow a comparison of day-to-day behavior (shown in Figure 4).

For all of the email examples, we have colored the vertices by the variable CurrentEmploymentType,
which contains the department in the company of which each employee is a part of. There are six
distinct clusters in this network which almost perfectly correspond to the six different types of
employees in this company: administration, engineering, executive, facilities, information technology,
and security. Other features in the code include using alpha arguments to change the transparency of
the edges, curvature argumnets to show mutual communication as two edges instead of one edge
with two arrowheads, and the addition of ggplot2 functions like scale_colour_brewer and theme to
customize the colors of the nodes and their corresponding legend.

In Figure 3 we can clearly see the varying densities of communications within departments and the
more sparse communication between employees in different departments. We also see that one of the
executives only communicates with employees in Facilities, while one of the IT employees frequently
communicates with security employees.

A comparison of the results of ggnet, geomnet and ggnetwork reveals some of the more subtle
differences between the implementations:

• In the ggnet2 implementation, the opacity of the edges between employees in the same cluster
is higher than it is for the edges between employees in different clusters. This is due to the fact
that the email network does not make use of edge weights: instead, every email between two
employees is represented by an edge, resulting in edge overplotting. The edge.alpha argument
has been set to a value smaller than one, therefore multiple emails between two employees
create more opaque edges between them. Multiple emails are also taken into account in the
geomnet package. When there is more than one edge connecting two vertices, the stat_net
function adds a weight variable to the edge list, which is passed automatically to the layout
algorithms and taken into account during layout. This is thanks to the sna package, which
supports the use of weights in its edge list. In addition to taking weights into account in the
layout, we can also make use of them in the visualization. geomnet allows to access all of the
internal variables created in the visualization process, such as coordinates ..x..,..y.. and
edge weights ..weight... Note the use of the ggplot2 notation .. for internal variables.

• In the first two layouts of Figure 3, edges between employees who share the same employment
type are given the color of that employment type, while edges between employees belonging to
different types are plotted in grey. This feature is particularly useful to visualize the amount
of within-group connectedness in a network. By contrast, in the last layout, edges are colored
according to the sender’s employment type, because the ggnetwork package does not support
coloring edges as a function of node-level attributes.

• Finally, in the last two layouts of Figure 3, the curvature argument has been set to 0.05, resulting
in slightly curved edges in both plots. This feature, which takes advantage of the geom_curve
geometry released in ggplot2 2.1.0, makes it possible to visualize which edges correspond to
reciprocal connections; in an email communication network, as one might expect, most edges
fall into that category.

To give some insight into how the relations between employees change over time, we facet the
network by day: each panel in Figure 4 shows email networks associated with each day of the work
week. The code for these visualizations is below. The different approaches create small multiples
in different ways. The ggnet2 approach requires that the network be separated, each plot created
individually, then placed together using the grid.arrange function from the gridExtra package
(Auguie, 2016). The geomnet approach uses the facet_* family of functions just as they are used in
ggplot2, and the ggnetwork approach uses the by argument in the ggnetwork function in combination
with the facet_* functions. We present the full code for each of these approaches below.

First, the code for the ggnet2 approach, which results in Figure 4(a):

data preparation. first, remove emails sent to all employees
em.day <- subset(email$edges, nrecipients < 54)[, c("From", "to", "day")]
for small multiples by day, create one element in a list per day
(10 days, 10 elements in the list em.day)
em.day <- lapply(unique(em.day$day),

function(x) subset(em.day, day == x)[, 1:2])

The R Journal Vol. 9/1, June 2017 ISSN 2073-4859

https://CRAN.R-project.org/package=ndtv
https://CRAN.R-project.org/package=gridExtra

CONTRIBUTED RESEARCH ARTICLE 40

(a) ggnet2

Day 6 Day 7 Day 8 Day 9 Day 10

Day 13 Day 14 Day 15 Day 16 Day 17

(b) geomnet

day: 13 day: 14 day: 15 day: 16 day: 17

day: 6 day: 7 day: 8 day: 9 day: 10

Employment Type
Administration

Engineering

Executive

Facilities

Information Technology

Security

(c) ggnetwork

day: 13 day: 14 day: 15 day: 16 day: 17

day: 6 day: 7 day: 8 day: 9 day: 10

Employment Type
Administration

Engineering

Executive

Facilities

Information Technology

Security

Figure 4: The same email network as in Figure 3 faceted by day of the week.

The R Journal Vol. 9/1, June 2017 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 41

make the list of edgelists a list of network objects for plotting with ggnet2
em.day <- lapply(em.day, network, directed = TRUE)
create vertex (employee type) and network (day) attributes for each element in list
for (i in 1:length(em.day)) {
em.day[[i]] %v% "curr_empl_type" <-
em.cet[network.vertex.names(em.day[[i]])]

em.day[[i]] %n% "day" <- unique(email$edges$day)[i]
}

plot ggnet2
first, make an empty list containing slots for the 10 days (one plot per day)
g <- list(length(em.day))
set.seed(7042016)
create a ggnet2 plot for each element in the list of networks
for (i in 1:length(em.day)) {
g[[i]] <- ggnet2(em.day[[i]], size = 2,

color = "curr_empl_type",
palette = "Set1", arrow.size = 0,
arrow.gap = 0.01, edge.alpha = 0.1,
legend.position = "none",
mode = "kamadakawai") +

ggtitle(paste("Day", em.day[[i]] %n% "day")) +
theme(panel.border = element_rect(color = "grey50", fill = NA),

aspect.ratio = 1)
}
arrange all of the network plots into one plot window
gridExtra::grid.arrange(grobs = g, nrow = 2)

Second, the code for the geomnet approach, which results in Figure 4(b):

data step: use the fortify.edgedf group argument to
combine the edge and node data and allow all nodes to
show up on all days. Also, remove emails sent to all
employees
emailnet <- fortify(as.edgedf(subset(email$edges, nrecipients < 54)), email$nodes, group = "day")

creating the plot
set.seed(7042016)
ggplot(data = emailnet, aes(from_id = from, to_id = to_id)) +
geom_net(layout.alg = "kamadakawai", singletons = FALSE,
aes(colour = CurrentEmploymentType,

group = CurrentEmploymentType,
linewidth = 2 * (...samegroup.. / 8 + .125)),
arrowsize = .5,
directed = TRUE, fiteach = TRUE, ealpha = 0.5, size = 1.5, na.rm = FALSE) +

scale_colour_brewer("Employment Type", palette = "Set1") +
theme_net() +
facet_wrap(~day, nrow = 2, labeller = "label_both") +
theme(legend.position = "bottom",

panel.border = element_rect(fill = NA, colour = "grey60"),
plot.margin = unit(c(0, 0, 0, 0), "mm"))

Finally, the code for the ggnetwork approach, which results in Figure 4(c):

create the network and aesthetics
first, remove emails sent to all employees
edges <- subset(email$edges, nrecipients < 54)
edges <- edges[, c("From", "to", "day")]
Create network class object for plotting with ggnetwork
em.net <- network(edges[, 1:2])
assign edge attributes (day)
set.edge.attribute(em.net, "day", edges[, 3])

The R Journal Vol. 9/1, June 2017 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 42

assign vertex attributes (employee type)
em.net %v% "curr_empl_type" <- em.cet[network.vertex.names(em.net)]

create the plot
set.seed(7042016)
ggplot(ggnetwork(em.net, arrow.gap = 0.02, by = "day",

layout = "kamadakawai"),
aes(x, y, xend = xend, yend = yend)) +

geom_edges(
aes(color = curr_empl_type),
alpha = 0.25,
arrow = arrow(length = unit(5, "pt"), type = "closed")) +

geom_nodes(aes(color = curr_empl_type), size = 1.5) +
scale_color_brewer("Employment Type", palette = "Set1") +
facet_wrap(~day, nrow = 2, labeller = "label_both") +
theme_facet(legend.position = "bottom")

Note the two key differences in the visualizations of Figure 4: whether singletons (isolated nodes)
are plotted (as in the ggnetwork method), and whether one layout is used across all panels (as for the
ggnetwork example) or whether individual layouts are fit to each of the subsets (as for the ggnet2 and
the geomnet examples). Plotting isolated nodes in geomnet is possible by setting singletons = TRUE,
and it would be possible in ggnet2 by including all nodes in the creation of the list of networks. Using
the same layout for plotting small multiples in geomnet is controlled by the argument fiteach. By
default, fiteach = TRUE, but fiteach = FALSE results in all panels sharing the same layout. Having
the same layout in each panel makes seeing specific differences in ties between nodes easier, while
having a different layout in each panel emphasizes the overall structural differences between the
sub-networks. It would be interesting to be able to have a hybrid of these two approaches, but at the
moment this is beyond the capability of any of the methods. Through the faceting it becomes obvious
that there are several days where one or more of the departments does not communicate with any of
the other departments. There are only two days, day 13 and day 15, without any isolated department
communications. Faceting is one of the major benefits of implementing tools for network visualization
in ggplot2. Faceting allows the user to quickly separate dense networks into smaller sub-networks for
easy visual comparison and analyses, a feature that the other network visualization tools do not have.

ggplot2 theme elements

This example comes from the theme() help page in the ggplot2 documentation (Wickham, 2016). It is
a directed network which shows the structure of the inheritance of theme options in the construction
of a ggplot2 plot. There are 53 vertices and 36 edges in this network. Each vertex represents one
possible theme option. There is an arrow from one theme option to another if the element represented
by the ‘to’ vertex inherits its values from the ‘from’ vertex. For example, the axis.ticks.x option
inherits its value from the axis.ticks value, which in turn inherits its value from the line option.
Thus, setting the line option to a value such as element_blank() sets the entire inheritance tree to
element_blank(), and no lines appear anywhere on the plot background.

Code and plots of the inheritance structure are shown in Figure 5. A glimpse of the data is below.

te.net
Network attributes:
vertices = 53
directed = TRUE
hyper = FALSE
loops = FALSE
multiple = FALSE
bipartite = FALSE
total edges= 48
missing edges= 0
non-missing edges= 48
##
Vertex attribute names:
size vertex.names
##
No edge attributes

The R Journal Vol. 9/1, June 2017 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 43

(a) ggnet2

make data accessible
data(theme_elements, package = "geomnet")

create network object
te.net <- network(theme_elements$edges)
assign node attribut (size based on node degree)
te.net %v% "size" <-
sqrt(10 * (sna::degree(te.net) + 1))

set.seed(3272016)
ggnet2(te.net, label = TRUE, color = "white",

label.size = "size", layout.exp = 0.15,
mode = "fruchtermanreingold") aspect.ratio

axis.line
axis.line.x

axis.line.y

axis.text

axis.text.x

axis.text.y

axis.ticks

axis.ticks.length

axis.ticks.margin

axis.ticks.x
axis.ticks.y

axis.title

axis.title.x

axis.title.y

legend.background

legend.box

legend.box.just

legend.direction

legend.justification

legend.key

legend.key.heightlegend.key.size
legend.key.width

legend.margin

legend.position

legend.text

legend.text.align

legend.title

legend.title.align

line

panel.background
panel.border

panel.grid

panel.grid.major

panel.grid.major.x

panel.grid.major.y

panel.grid.minor
panel.grid.minor.x

panel.grid.minor.y

panel.margin
panel.margin.x

panel.margin.y

plot.background

plot.margin

plot.title

rect

strip.background

strip.text
strip.text.x

strip.text.y

text
title

(b) geomnet

data step: merge nodes and edges and
introduce a degree-out variable
data step: merge nodes and edges and
introduce a degree-out variable
TEnet <- fortify(
as.edgedf(theme_elements$edges[,c(2,1)]),

theme_elements$vertices)
TEnet <- TEnet %>%
group_by(from_id) %>%
mutate(degree = sqrt(10 * n() + 1))

create plot:
set.seed(3272016)
ggplot(data = TEnet,

aes(from_id = from_id, to_id = to_id)) +
geom_net(layout.alg = "fruchtermanreingold",
aes(fontsize = degree), directed = TRUE,
labelon = TRUE, size = 1, labelcolour = 'black',
ecolour = "grey70", arrowsize = 0.5,
linewidth = 0.5, repel = TRUE) +

theme_net() +
xlim(c(-0.05, 1.05))

aspect.ratio

axis.line

axis.line.x

axis.line.y

axis.text
axis.text.x

axis.text.y

axis.ticks
axis.ticks.length

axis.ticks.margin

axis.ticks.x
axis.ticks.y

axis.title

axis.title.x

axis.title.y

legend.background

legend.box

legend.box.just legend.direction

legend.justification

legend.key

legend.key.height

legend.key.size
legend.key.width

legend.margin

legend.position

legend.text

legend.text.align

legend.title

legend.title.align

line

panel.background

panel.border

panel.grid

panel.grid.major

panel.grid.major.x

panel.grid.major.y

panel.grid.minor

panel.grid.minor.x

panel.grid.minor.y

panel.margin

panel.margin.x
panel.margin.y

plot.background

plot.margin

plot.title

rect
strip.background

strip.text

strip.text.x

strip.text.y

text

title

Figure 5: Inheritance structure of ggplot2 theme elements. This is a recreation of the graph found at
http://docs.ggplot2.org/current/theme.html.

The R Journal Vol. 9/1, June 2017 ISSN 2073-4859

http://docs.ggplot2.org/current/theme.html

CONTRIBUTED RESEARCH ARTICLE 44

(c) ggnetwork

set.seed(3272016)
use network created in ggnet2 data step
ggplot(ggnetwork(te.net,

layout = "fruchtermanreingold"),
aes(x, y, xend = xend, yend = yend)) +

geom_edges() +
geom_nodes(size = 12, color = "white") +
geom_nodetext(
aes(size = size, label = vertex.names)) +

scale_size_continuous(range = c(4, 8)) +
guides(size = FALSE) +
theme_blank()

aspect.ratio

axis.line
axis.line.xaxis.line.y

axis.text
axis.text.x

axis.text.y

axis.ticks

axis.ticks.length

axis.ticks.margin

axis.ticks.x

axis.ticks.y

axis.title

axis.title.x

axis.title.y

legend.background

legend.box

legend.box.just
legend.direction

legend.justification

legend.key

legend.key.height

legend.key.size
legend.key.width

legend.margin

legend.position

legend.text

legend.text.align

legend.title

legend.title.align

line

panel.background

panel.border

panel.grid

panel.grid.major
panel.grid.major.x

panel.grid.major.y

panel.grid.minor

panel.grid.minor.x

panel.grid.minor.y

panel.margin
panel.margin.xpanel.margin.y

plot.background plot.margin

plot.title

rect

strip.background

strip.text
strip.text.x

strip.text.y
texttitle

Figure 5: (continued) Inheritance structure of ggplot2 theme elements. This is a recreation of the
graph found at http://docs.ggplot2.org/current/theme.html.

head(TEnet)
Source: local data frame [6 x 3]
Groups: from_id [2]
##
from_id to_id degree
<fctr> <fctr> <dbl>
1 text title 6.403124
2 text legend.text 6.403124
3 text axis.text 6.403124
4 text strip.text 6.403124
5 line axis.line 5.567764
6 line axis.ticks 5.567764

Note the various ways the packages adjust the side of the labels to correspond to the outdegree of
the nodes, including the use of the scale_size_continuous function in Figure 5(c). In each of these
plots, it is easy to quickly determine parent-child relationships, and to assess which theme elements
are unrelated to all others. Nodes with the most children are the rect, text, and line elements, so
we made their labels larger in order to emphasize their importance. In each case, the label size is a
function of the out degree of the vertices.

College football

This next example comes from M.E.J. Newman’s network data web page (Girvan and Newman, 2002).
It is an undirected network consisting of all regular season college football games played between
Division I schools in Fall of 2000. There are 115 vertices and 613 edges: each vertex represents a school,
and an edge represents a game played between two schools. There is an additional variable in the
vertex data frame corresponding to the conference each team belongs to, and there is an additional
variable in the edge data frame that is equal to one if the game occurred between teams in the same
conference or zero if the game occurred between teams in different conferences. We take a look at the
data used in the plots below.

fb.net
Network attributes:
vertices = 115
directed = TRUE
hyper = FALSE
loops = FALSE
multiple = FALSE

The R Journal Vol. 9/1, June 2017 ISSN 2073-4859

http://docs.ggplot2.org/current/theme.html

CONTRIBUTED RESEARCH ARTICLE 45

bipartite = FALSE
total edges= 613
missing edges= 0
non-missing edges= 613
##
Vertex attribute names:
conf vertex.names
##
Edge attribute names:
same.conf
head(ftnet)
from_id to_id same.conf value
1 AirForce NevadaLasVegas 1 Mountain West
2 Akron MiamiOhio 1 Mid-American
3 Akron VirginiaTech 0 Mid-American
4 Akron Buffalo 1 Mid-American
5 Akron BowlingGreenState 1 Mid-American
6 Akron Kent 1 Mid-American
schools
1
2
3
4
5
6

The network of football games is given in Figure 6. Here, the linetype aesthetic corresponds to
games that occur between teams in the same conference or different conferences.

(a) ggnet2#make data accessible
data(football, package = 'geomnet')
rownames(football$vertices) <-
football$vertices$label

create network
fb.net <- network(football$edges[, 1:2],

directed = TRUE)
create node attribute
(what conference is team in?)
fb.net %v% "conf" <-
football$vertices[
network.vertex.names(fb.net), "value"
]

create edge attribute
(between teams in same conference?)
set.edge.attribute(
fb.net, "same.conf",
football$edges$same.conf)

set.seed(5232011)
ggnet2(fb.net, mode = "fruchtermanreingold",

color = "conf", palette = "Paired",
color.legend = "Conference",
edge.color = c("color", "grey75"))

Conference

Atlantic Coast

Big East

Big Ten

Big Twelve

Conference USA

Independents

Mid−American

Mountain West

Pacific Ten

Southeastern

Sun Belt

Western Athletic

These lines are dotted and solid, respectively. We have also assigned a different color to each conference,
so that the vertices and their labels are colored according to their conference. Additionally, in the first
two implementations, the edges between two teams in the same conference share that conference
color, while edges between teams in different conferences are a default gray color. This coloring and
changing of the line types make the structure of the game network easier to view. Additionally, we
use the label aesthetic in Figure 6(b) to label only a few schools that are of interest to us. This is the
conference consisting of Navy, Notre Dame, Utah State, Central Florida, and Connecticut, which is
spread out, whereas most other conferences’ teams are all very close to each other because they play
within conference much more than they play out of conference. At the time, these five schools were all
independents and did not have a home conference. Without the coloring capability, we would not
have been able to pick out that difference as easily.

The R Journal Vol. 9/1, June 2017 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 46

(b) geomnet

data step: merge vertices and edges
data step: merge vertices and edges
ftnet <- fortify(as.edgedf(football$edges),

football$vertices)

create new label variable for independent schools
ftnet$schools <- ifelse(
ftnet$value == "Independents", ftnet$from_id, "")

create data plot
set.seed(5232011)
ggplot(data = ftnet,

aes(from_id = from_id, to_id = to_id)) +
geom_net(layout.alg = 'fruchtermanreingold',

aes(colour = value, group = value,
linetype = factor(same.conf != 1),
label = schools),

linewidth = 0.5,
size = 5, vjust = -0.75, alpha = 0.3) +

theme_net() +
theme(legend.position = "bottom") +
scale_colour_brewer("Conference", palette = "Paired") +
guides(linetype = FALSE)

CentralFlorida

Connecticut

Navy

NotreDame

UtahState

Conference

Atlantic Coast

Big East

Big Ten

Big Twelve

Conference USA

Independents

Mid−American

Mountain West

Pacific Ten

Southeastern

Sun Belt

Western Athletic

(c) ggnetwork

use network from ggnet2 step
set.seed(5232011)
ggplot(
ggnetwork(
fb.net,
layout = "fruchtermanreingold"),

aes(x, y, xend = xend, yend = yend)) +
geom_edges(
aes(linetype = as.factor(same.conf)),
color = "grey50") +

geom_nodes(aes(color = conf), size = 4) +
scale_color_brewer("Conference",

palette = "Paired") +
scale_linetype_manual(values = c(2,1)) +
guides(linetype = FALSE) +
theme_blank()

Conference
Atlantic Coast

Big East

Big Ten

Big Twelve

Conference USA

Independents

Mid−American

Mountain West

Pacific Ten

Southeastern

Sun Belt

Western Athletic

Figure 6: (continued) The network of regular season Division I college football games in the season of
fall 2000. The vertices and their labels are colored by conference.

The R Journal Vol. 9/1, June 2017 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 47

Southern women

Bipartite (or ‘two-mode’) networks are networks with two different kinds of nodes and where all
ties are formed between these two kinds. Affiliation networks, which represent the ties between
individuals and the groups to which they belong, are examples of such networks (see Newman, 2010,
p. 53-54 and p. 123-127).

One of the classic examples for a two-mode network is the network of 18 Southern women
attending 14 social events as collected by Davis et al. (1941) and published e.g. as part of the tnet
package (Opsahl, 2009). In this data, a woman is linked by an edge to an event if she attended it. One
of the questions for these type of networks is gain insight in the interplay between the two different
sets of nodes.

The data for the example of the Southern women is reported as edge list in form of ‘lady X
attending event Y’. With a bit of data preparation as detailed below, we can visualize the graph as
shown in Figure 7. In creating the plots, we use the shape and colour aesthetics to map the two
different modes to two different shapes and colours.

access the data and rename it for convenience
library(tnet)

data(tnet)
elist <- data.frame(Davis.Southern.women.2mode)
names(elist) <- c("Lady", "Event")

The edge list for the Southern women’s data consists of women attending events:

head(elist,4)
Lady Event
1 1 1
2 1 2
3 1 3
4 1 4

In order to distinguish between nodes from different types, we have to add an additional identifier
element, so that we can tell the ‘first’ woman L1 apart from the first event, E1.

elist$Lady <- paste("L", elist$Lady, sep="")
elist$Event <- paste("E", elist$Event, sep="")

davis <- elist
names(davis) <- c("from", "to")
davis <- rbind(davis, data.frame(from=davis$to, to=davis$from))
davis$type <- factor(c(rep("Lady", nrow(elist)), rep("Event", nrow(elist))))

The two different types of nodes are shown by different shapes and colors. We see the familiar
relationship between events and groups of women attending these events. Women attending the
same events then form a tighter knit subset, while events are also thought of as more similar, if they
are attended by the same women. This defines the cluster of events E1 through E5, which are only
attended by women 1 through 9, while events E6 through E9 are attended by (almost) everybody
making them the core group of events.

Bike sharing in Washington D.C.

The data shows trips taken with bikes from the bike share company Capital Bikeshare5 during the
second quarter of 2015. While this bike sharing company is located in the heart of Washington D.C. the
company offers a set of bike stations just outside of Washington in Rockville, MD and north of it. Each
station is shown as a vertex, and edges between stations indicate that at least five trips were taken
between these two stations; the wider the line, the more trips have been taken between stations. In
order to reflect distance between stations, we use as an additional restriction that the fastest trip was at
most ten minutes long. Figure 8 shows four renderings of this data. The first is a geographically true

5https://secure.capitalbikeshare.com/

The R Journal Vol. 9/1, June 2017 ISSN 2073-4859

https://CRAN.R-project.org/package=tnet
https://secure.capitalbikeshare.com/

CONTRIBUTED RESEARCH ARTICLE 48

representation of the area overlaid by lines between bike stations, the other three are networks drawn
with geomnet, ggnet2, and ggnetwork, respectively. The code for these renderings is shown below:

make data accessible
data(bikes, package = 'geomnet')
data step for geomnet
tripnet <- fortify(as.edgedf(bikes$trips), bikes$stations[,c(2,1,3:5)])
create variable to identify Metro Stations
tripnet$Metro = FALSE
idx <- grep("Metro", tripnet$from_id)
tripnet$Metro[idx] <- TRUE

plot the bike sharing network shown in Figure 7b
set.seed(1232016)
ggplot(aes(from_id = from_id, to_id = to_id), data = tripnet) +
geom_net(aes(linewidth = n / 15, colour = Metro),

labelon = TRUE, repel = TRUE) +
theme_net() +
xlim(c(-0.1, 1.1)) +
scale_colour_manual("Metro Station", values = c("grey40", "darkorange")) +
theme(legend.position = "bottom")

data preparation for ggnet2 and ggnetwork
bikes.net <- network(bikes$trips[, 1:2], directed = FALSE)
create edge attribute (number of trips)
network::set.edge.attribute(bikes.net, "n", bikes$trips[, 3] / 15)
create vertex attribute for Metro Station
bikes.net %v% "station" <- grepl("Metro", network.vertex.names(bikes.net))
bikes.net %v% "station" <- 1 + as.integer(bikes.net %v% "station")
rownames(bikes$stations) <- bikes$stations$name
create node attributes (coordinates)
bikes.net %v% "lon" <-
bikes$stations[network.vertex.names(bikes.net), "long"]

bikes.net %v% "lat" <-
bikes$stations[network.vertex.names(bikes.net), "lat"]

bikes.col <- c("grey40", "darkorange")

Non-geographic placement
set.seed(1232016)
ggnet2(bikes.net, mode = "fruchtermanreingold", size = 4, label = TRUE,

vjust = -0.5, edge.size = "n", layout.exp = 1.1,
color = bikes.col[bikes.net %v% "station"],
label.color = bikes.col[bikes.net %v% "station"])

Non-geographic placement. Use data from ggnet2 step.
set.seed(1232016)
ggplot(data = ggnetwork(bikes.net, layout = "fruchtermanreingold"),

aes(x, y, xend = xend, yend = yend)) +
geom_edges(aes(size = n), color = "grey40") +
geom_nodes(aes(color = factor(station)), size = 4) +
geom_nodetext(aes(label = vertex.names, color = factor(station)),

vjust = -0.5) +
scale_size_continuous("Trips", breaks = c(2, 4, 6), labels = c(30, 60, 90)) +
scale_colour_manual("Metro station", labels = c("FALSE", "TRUE"),

values = c("grey40", "darkorange")) +
theme_blank() +
theme(legend.position = "bottom", legend.box = "horizontal")

The R Journal Vol. 9/1, June 2017 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 49

To plot the geographically correct bike network layout in geomnet, we use the ‘layout.alg = NULL’
option and provide the latitude and longitude coordinates of the bike stations from the company’s
data. A glance of the data that we used in the examples is shown below.

bikes.net
Network attributes:
vertices = 20
directed = FALSE
hyper = FALSE
loops = FALSE
multiple = FALSE
bipartite = FALSE
total edges= 53
missing edges= 0
non-missing edges= 53
##
Vertex attribute names:
lat lon station vertex.names
##
Edge attribute names:
n
head(tripnet[,-c(4:5,8)])
from_id
1 Broschart & Blackwell Rd
2 Crabbs Branch Way & Calhoun Pl
3 Crabbs Branch Way & Calhoun Pl
4 Crabbs Branch Way & Calhoun Pl
5 Crabbs Branch Way & Calhoun Pl
6 Crabbs Branch Way & Calhoun Pl
to_id n lat long
1 <NA> NA 39.10210 -77.20032
2 Crabbs Branch Way & Redland Rd 11 39.10771 -77.15207
3 Needwood Rd & Eagles Head Ct 14 39.10771 -77.15207
4 Rockville Metro East 51 39.10771 -77.15207
5 Rockville Metro West 8 39.10771 -77.15207
6 Shady Grove Metro West 36 39.10771 -77.15207
Metro
1 FALSE
2 FALSE
3 FALSE
4 FALSE
5 FALSE
6 FALSE

Because all three approaches result in the same picture, we only show one of these in Figure 8a. The
code for creating the map is given here:

library(ggmap)
metro_map <- get_map(location = c(left = -77.22257, bottom = 39.05721,

right = -77.11271, top = 39.14247))

geomnet: overlay bike sharing network on geographic map
ggmap(metro_map) +
geom_net(data = tripnet, layout.alg = NULL, labelon = TRUE,

vjust = -0.5, ealpha = 0.5,
aes(from_id = from_id,

to_id = to_id,
x = long, y = lat,
linewidth = n / 15,

The R Journal Vol. 9/1, June 2017 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 50

colour = Metro)) +
scale_colour_manual("Metro Station", values = c("grey40", "darkorange")) +
theme_net() %+replace% theme(aspect.ratio=NULL, legend.position = "bottom") +
coord_map()

We can also make use of the option ‘layout.alg = NULL’ whenever we do not want to use an
in-built layout algorithm but make use of a user-defined custom layout. In this case, the coordinates of
the layout have to be created outside of the visualization and x and y coordinates have to be made
available instead.

Some considerations of speed

In our examples thus far, we have focused on rather small social or relationship networks and one
larger communication network. Now we present an example of a biological network, which comes
from Jeong et al. (2001). It is the complete protein-protein interaction network in the yeast species S.
cerevisiae. There are 2,113 proteins that make up the vertices of this network, with a total of 4480 edges
between them. These edges represent “direct physical interactions" between any two proteins (Jeong
et al., 2001, p. 42), resulting in a relatively large network. When these interactions and their associated
proteins are plotted using the Fruchterman-Reingold layout algorithm, the runtime is extremely long,
about 9.5 minutes for 50,000 iterations through the algorithm. The resulting layout is shown in Figure 9.
When testing the three approaches with the larger network, we decided to use a random layout to
save time. Despite its size, each one of the approaches in the ggplot2 framework can be drawn in a
few hundred milliseconds.

Another benefit that emerges from using ggplot2 for network visualization is the speed at which it
can plot fairly large networks. In order to assess the speed gain procured by our three approaches, we
ran two separate tests, both of which designate ggplot2-based approaches as faster than the plotting
functionality offered in the network package. They also show the ggplot2 approaches to be largely
on par with the speed provided by the igraph package. We first investigate average random layout
plotting time of the protein network

shown in Figure 9, and then consider average plotting times of increasingly larger random
networks. Note that in all tests, default package settings were used. The code to create benchmark
results for both of these situations is provided in the vignette of the package ggCompNet (Tyner
and Hofmann, 2016b). See the Supplementary Material section at the end of this paper for more
information.

We plotted the protein interaction network of Figure 9 100 times using the network and igraph
packages, and compared their run times to 100 runs each of the three visualization approaches
introduced in this paper. The results are shown in Figure 10. We can see that on average, the ggplot2
framework provides a two to three-fold increase in speed over the network package, and that geomnet
and ggnetwork are faster than package igraph. The three ggplot2 approaches also have considerably
less variability in time than the network package. Despite the large number of vertices, the protein
interaction network has a relatively small number of edges (4480 out of over 2.2 million theoretically
possible connections resulting in an edge probability of just over 0.0020). Next, we examine networks
with a higher edge probability.

The second test relies on random undirected networks in which the probability of an edge between
two nodes was set to p = 0.2. We generated 100 of these networks at network sizes from 25 to 250
nodes, using increments of 25.

Figure 11 summarizes the results of these benchmarks using a convenience sample of machines
accessible to the authors, including authors’ hardware and additional results from friends’ and
colleagues’ machines. Network sizes are plotted horizontally, execution times of 100 runs under each
visualization approach are plotted on the y-axis. Each panel shows a different machine as indicated
by the facet label. Note that each panel is scaled separately to account for differences in the overall
speed of these machines. What these plots indicate is that we have surprisingly large variability in
relative run times across different machines. However, the results support some general findings.
The network plotting routine is by far the slowest across all machines, while the igraph plotting is
generally among the fastest. Our three approaches generally feature in between igraph and network
with ggnet2 being as fast or faster than igraph plotting, followed by ggnetwork and geomnet, which
is generally the slowest among the three. These differences become more pronounced as the size of
the network increases.

Although speed was not the main rationale for our inquiry into ggplot2-based approaches to
network visualization, a speed-based comparison shows a clear advantage of these approaches over

The R Journal Vol. 9/1, June 2017 ISSN 2073-4859

https://CRAN.R-project.org/package=ggCompNet

CONTRIBUTED RESEARCH ARTICLE 51

the plotting function included in the network package, which very quickly becomes much slower as
network size increases.

Summary and discussion

At first glance, the three visualization approaches may seem nearly identical. However, each one
brings unique strengths to the visualization of networks. Out of our three approaches, ggnetwork is
most flexible and allows for a re-ordering of layers to emphasize one over the other. The flexibility is
useful but does require the user to specify every single part of the network visualization. The geomnet
implementation most closely aligns with the existing ggplot2 paradigm because it provides a single
layer that can be added to other ggplot2 layers. ggnet2 requires the user to know the least about the
ggplot2 framework, while resulting in a valid and extensible ggplot2 object. Many features of the
packages would not have been possible, or would have at least been difficult to implement, in prior
versions of ggplot2. The increased flexibility of the current development version as well as the added
geoms geom_curve and geom_label provided us with a strong, yet flexible, foundation for network
visualization. Our approaches also benefit from the speed of ggplot2, making network visualization
more efficient than the existing framework of network for a lot of the benchmark examples.

All three approaches rely on the package sna for layouts. This allows the user to access the many
layout algorithms available for networks, and in the event that new layouts are implemented in sna,
our packages will accommodate them seamlessly. A larger range of layouts is available through
igraph, and can be implemented into our packages by setting the respective layout arguments to NULL
and passing x,y coordinates calculated from igraph. There are some notable differences between
the packages, such as in the parameters used for specific layout algorithms, e.g. igraph allows the
use of weights for Fruchterman-Reingold placement, even though it is unclear from the original
article how these are supposed to affect the layout. In all three approaches, it is feasible to tap
into igraph’s functionality in a future version so that the user does not need to calculate the layout
separately. Additional future work will explore the implementation of other network data structures,
such as the networkDynamic class from statnet, which would benefit from the faceting capabilities
of our implementations. This work will likely incorporate the fortify approach of ggnetwork and
geomnet::fortify.network() for converting network data structures to a ggplot2-friendly format.

We have found that none of our approaches is unequivocally the best. We can, however, provide
some guidance as to which approach is best for which type of user. The main differences between the
three methods are in the way that network information is passed into the functions. For ggnet2 and
ggnetwork, data management and attribute handling is done through network operators on nodes
and edges, while the geomnet approach does not require any knowledge of networks or existing
network analysis packages from the user. This likely affects the user base of each package. We think
that users who are well-versed with networks will find ggnet2 and ggnetwork more intuitive to use
than geomnet. These users might be looking to ggplot2 as another avenue to create high-quality
visualizations that tap into ggplot2 advantages such as facetting and, for ggnetwork, layering. Users
who are already familiar with ggplot2 and some of the other tidyverse packages (see Wickham (2017)),
and who find themselves dealing with network data will likely be more attracted to the geomnet
implementation of network plotting. The data management skills needed for using geomnet are basic:
some familiarity with the split-apply-combine paradigm, in the form of familiarity with plyr or dplyr,
would be sufficient in order to make full use of the features of geom_net (Wickham, 2011). All in all,
the three approaches we have presented here provide a wealth of resources to users of all skill sets
who are looking to create beautiful network visualizations.

On a personal level we discovered that the collaboration on this paper has helped us to improve
upon our initial versions of each of these packages. For instance, the edge coloring in the ggnet2
function was designed so that edges between two vertices in the same group were colored with that
group’s vertex color. This inspired an implementation of it in geomnet through the traditional ggplot2
group operator. During the process of writing the paper the authors collaborated on a solution for the
problem of nodes being plotted on top of arrow tips. This solution was implemented in the geomnet
arrow.gap parameter, which allows to re-track the tip of an arrow on a directed edge, and was also
added to ggnetwork. In addition, the implementation of a ggplot2 geom for networks within geomnet
inspired the creation of the aliased geoms of the ggnetwork package.

Finally, curious users may be interested in how these three packages can fit together and replicate
each other, since they are in fact so similar. Thanks to the flexibility inherent to ggnetwork, it is
possible to write wrapper functions around ggnetwork functions in order to recreate the behavior and
functionality of ggnet2 and geomnet. Simple examples of such wrapper functions, called ggnetwork2
and geom_network, respecively are shown below.

library(ggnetwork)

The R Journal Vol. 9/1, June 2017 ISSN 2073-4859

https://CRAN.R-project.org/package=tidyverse
https://CRAN.R-project.org/package=plyr
https://CRAN.R-project.org/package=dplyr

CONTRIBUTED RESEARCH ARTICLE 52

mimics geom_net behavior
geom_network <- function(edge.param, node.param) {

edge_ly <- do.call(geom_edges, edge.param)
node_ly <- do.call(geom_nodes, node.param)
list(edge_ly, node_ly)

}
mimics ggnet2 behavoir
ggnetwork2 <- function() { ggplot() + geom_network() }

Similarly, geomnet can mimic the the behavior of ggnet2, as shown below.

library(geomnet)
geomnet2 <- function(net) {
ggplot(data = fortify(net),

aes(from_id = from_id, to_id = to_id)) +
geom_net()

}

Mimicking ggnetwork with geomnet requires a little bit more work because the native data input
for geomnet is a "data.frame" object fortified with geomnet methods, not a "network" object. Instead,
the internal ggplot2 function ggplot_build allows a plot created with geomnet function calls to be
recreated with ggnetwork-like syntax. An example of using a geomnet plot to create a similar plot in
the style of ggnetwork follows to reproduce Figure 2(c).

library(geomnet)
library(ggnetwork)
library(dplyr)
a ggnetwork-like creation using a geomnet plot
data("blood")
first, create the geomnet plot to access the data later
geomnetplot <- ggplot(data = blood$edges, aes(from_id = from, to_id =

to)) +
geom_net(layout.alg = "circle", selfloops = TRUE) +

theme_net()
get the data
dat <- ggplot_build(geomnetplot)$data[[1]]
ggnetwork-like construction for re-creating network shown in Figure 5
ggplot(data = dat, aes(x = x, y = y, xend = xend, yend = yend)) +
geom_segment(arrow = arrow(type = 'closed'), colour = 'grey40') +
geom_point(size = 10, colour = 'darkred') +
geom_text(aes(label = from), colour = 'grey80', size = 4) +
geom_circle() +
theme_blank() + theme(aspect.ratio = 1)

Supplementary Material

Software: ggnetwork 0.5.1 and geomnet 0.2.0 were used to create the visualizations. ggnet2 is part
of GGally 1.3.0.

Reproducibility: All the code used in the examples is available as a vignette in the CRAN package
ggCompNet. There are two vignettes: one for the speed comparisons and one for the visu-
alizations provided in the Examples section. The package also provide our speed test data
for creating Figure 11. We created this package to accompany this paper with the hope that
interested users will compare these methods on their own systems and against their own code.
Finally, all of the data we use in the examples, with the exception of the bipartite network
example, is included as a part of the geomnet package.

Acknowledgements

The authors would like to thank the reviewers for their thoughtful input to and thorough reviews
of our manuscript. We would also like to thank the editor of The R Journal for his enduring patience.

The R Journal Vol. 9/1, June 2017 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 53

Bibliography

B. Auguie. gridExtra: Miscellaneous Functions for "Grid" Graphics, 2016. URL https://CRAN.R-project.
org/package=gridExtra. R package version 2.2.1. [p39]

S. Bender-deMoll. Ndtv: Network Dynamic Temporal Visualizations, 2016. URL https://CRAN.R-project.
org/package=ndtv. R package version 0.10.0. [p39]

M. Bojanowski. Intergraph: Coercion Routines for Network Data Objects, 2015. URL http://mbojan.
github.io/intergraph. R package version 2.0-2. [p30]

F. Briatte. Ggnetwork: Geometries to Plot Networks with ’ggplot2’, 2016. URL https://github.com/
briatte/ggnetwork. R package version 0.5.1. [p27, 29]

S. V. Buldyrev, R. Parshani, G. Paul, H. E. Stanley, and S. Havlin. Catastrophic cascade of failures in
interdependent networks. Nature, 464(7291):1025–1028, 2010. [p28]

C. T. Butts. network: a Package for Managing Relational Data in R. Journal of Statistical Software, 24(2),
2008. [p27]

C. T. Butts. Sna: Tools for Social Network Analysis, 2014. URL http://CRAN.R-project.org/package=sna.
R package version 2.3-2. [p27]

C. T. Butts, M. S. Handcock, and D. R. Hunter. Network: Classes for Relational Data. Irvine, CA, 2014.
URL http://statnet.org/. R package version 1.10.2. [p27, 31]

W. Chang. Gcookbook: Data for “R Graphics Cookbook", 2012. URL https://CRAN.R-project.org/
package=gcookbook. R package version 1.0. [p28]

W. Chang. R Graphics Cookbook. O’Reilly, Sebastopol, CA, 2013. ISBN 978-1449316952. [p28]

K. Cook, G. Grinstein, and M. Whiting. VAST Challenge 2014. http://hcil2.cs.umd.edu/
newvarepository/benchmarks.php, 2014. [p37]

G. Csardi and T. Nepusz. The igraph software package for complex network research. InterJournal,
Complex Systems:1695, 2006. URL http://igraph.org. [p27]

A. Davis, B. B. Gardner, and M. R. Gardner. Deep South: A Social Anthropological Study of Caste and Class.
The University of Chicago Press, Chicago, IL, 1941. [p47]

T. M. J. Fruchterman and E. M. Reingold. Graph drawing by force-directed placement. Software:
Practice and Experience, 21(11):1129–1164, 1991. [p30, 34]

M. Girvan and M. E. J. Newman. Community structure in social and biological networks. Proc. Natl.
Acad. Sci. USA, 99(12):7821–7826, 2002. [p28, 44]

M. S. Handcock, D. R. Hunter, C. T. Butts, S. M. Goodreau, and M. Morris. Statnet: Software tools
for the representation, visualization, analysis and simulation of network data. Journal of Statistical
Software, 24(1):1–11, 2008. URL http://www.jstatsoft.org/v24/i01. [p27]

M. Horikoshi and Y. Tang. Ggfortify: Data Visualization Tools for Statistical Analysis Results, 2016. URL
http://CRAN.R-project.org/package=ggfortify. R package version 0.4.1. [p28]

H. Jeong, S. P. M. A.-L. Barabási, and Z. N. Oltvai. Lethality and centrality in protein networks. Nature,
411:41–42, 2001. [p50]

B. H. Junker and F. Schreiber. Analysis of Biological Networks. Wiley Series in Bioinformatics. John Wiley
& Sons, 2008. ISBN 9780470253465. URL https://books.google.com/books?id=2DloLXaXSNgC.
[p27]

D. Kahle and H. Wickham. Ggmap: Spatial Visualization with ggplot2. The R Journal, 5(1):144–161,
2013. URL http://journal.r-project.org/archive/2013-1/kahle-wickham.pdf. [p28]

T. Kamada and S. Kawai. An Algorithm for Drawing General Undirected Graphs. Information Processing
Letters, 31(1):7–15, 1989. [p32]

M. E. J. Newman. Networks : An Introduction. Oxford University Press, Oxford New York, 2010. ISBN
978-0199206650. [p28, 47]

T. Opsahl. Structure and Evolution of Weighted Networks. University of London (Queen Mary College),
London, UK, 2009. URL http://toreopsahl.com/publications/thesis/. [p47]

The R Journal Vol. 9/1, June 2017 ISSN 2073-4859

https://CRAN.R-project.org/package=gridExtra
https://CRAN.R-project.org/package=gridExtra
https://CRAN.R-project.org/package=ndtv
https://CRAN.R-project.org/package=ndtv
http://mbojan.github.io/intergraph
http://mbojan.github.io/intergraph
https://github.com/briatte/ggnetwork
https://github.com/briatte/ggnetwork
http://CRAN.R-project.org/package=sna
http://statnet.org/
https://CRAN.R-project.org/package=gcookbook
https://CRAN.R-project.org/package=gcookbook
http://hcil2.cs.umd.edu/newvarepository/benchmarks.php
http://hcil2.cs.umd.edu/newvarepository/benchmarks.php
http://igraph.org
http://www.jstatsoft.org/v24/i01
http://CRAN.R-project.org/package=ggfortify
https://books.google.com/books?id=2DloLXaXSNgC
http://journal.r-project.org/archive/2013-1/kahle-wickham.pdf
http://toreopsahl.com/publications/thesis/

CONTRIBUTED RESEARCH ARTICLE 54

C. Prell. Social Network Analysis: History, Theory and Methodology. SAGE Publications, 2011. ISBN
9781446290132. URL https://books.google.com/books?id=wZYQAgAAQBAJ. [p27]

B. Schloerke, J. Crowley, D. Cook, H. Hofmann, H. Wickham, F. Briatte, M. Marbach, and E. Thoen.
GGally: Extension to Ggplot2., 2016. R package version 1.3.0. [p28, 29]

K. Slowikowski. Ggrepel: Repulsive Text and Label Geoms for ’ggplot2’, 2016. URL https://CRAN.R-
project.org/package=ggrepel. R package version 0.5. [p33]

R. Tamassia, editor. Handbook of Graph Drawing and Visualization. CRC Press, 2013. [p27]

Y. Tang, M. Horikoshi, and W. Li. Ggfortify: Unified interface to visualize statistical result of popular r
packages. The R Journal, 2016. URL http://CRAN.R-project.org/package=ggfortify. [p28]

S. Tyner and H. Hofmann. Geomnet: Network Visualization in the ’ggplot2’ Framework, 2016a. URL
http://github.com/sctyner/geomnet. R package version 0.2.0. [p27]

S. Tyner and H. Hofmann. ggCompNet: Compare Timing of Network Visualizations, 2016b. URL https:
//CRAN.R-project.org/package=ggCompNet. R package version 0.1.0. [p50]

D. Watts and S. Strogatz. Collective dynamics of ’small-world’ networks. Nature, 393(6684):440–442,
1998. [p28]

D. J. Watts. The “New” Science of Networks. Annual Review of Sociology, 30:243–270, 2004. [p27]

H. Wickham. The Split-Apply-Combine Strategy for Data Analysis. Journal of Statistical Software, 40(1):
1–29, 2011. URL http://www.jstatsoft.org/v40/i01/. [p51]

H. Wickham. Ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag, 2016. ISBN 978-3-319-24277-4.
URL http://ggplot2.org. [p27, 34, 42]

H. Wickham. Tidyverse: Easily Install and Load ’tidyverse’ Packages, 2017. URL https://CRAN.R-project.
org/package=tidyverse. R package version 1.1.1. [p51]

L. Wilkinson. The Grammar of Graphics. Springer-Verlag, New York, 1999. [p27]

T. Yin, D. Cook, and M. Lawrence. Ggbio: An R package for extending the grammar of graphics for
genomic data. Genome Biology, 13(8):R77, 2012. [p28]

G. Yu, D. K. Smith, H. Zhu, Y. Guan, and T. T.-Y. Lam. Ggtree: An R package for visualization and
annotation of phylogenetic trees with their covariates and other associated data. Methods in Ecology
and Evolution, 8(1):28–36, 2017. ISSN 2041-210X. URL https://doi.org/10.1111/2041-210x.12628.
[p28]

Samantha Tyner
Department of Statistics and Statistical Laboratory
Iowa State University
United States
sctyner@mail.iastate.edu

François Briatte
European School of Political Sciences
Catholic University of Lille
France
francois.briatte@univ-catholille.fr

Heike Hofmann
Department of Statistics and Statistical Laboratory
Iowa State University
United States
hofmann@mail.iastate.edu

The R Journal Vol. 9/1, June 2017 ISSN 2073-4859

https://books.google.com/books?id=wZYQAgAAQBAJ
https://CRAN.R-project.org/package=ggrepel
https://CRAN.R-project.org/package=ggrepel
http://CRAN.R-project.org/package=ggfortify
http://github.com/sctyner/geomnet
https://CRAN.R-project.org/package=ggCompNet
https://CRAN.R-project.org/package=ggCompNet
http://www.jstatsoft.org/v40/i01/
http://ggplot2.org
https://CRAN.R-project.org/package=tidyverse
https://CRAN.R-project.org/package=tidyverse
https://doi.org/10.1111/2041-210x.12628
mailto:sctyner@mail.iastate.edu
mailto:francois.briatte@univ-catholille.fr
mailto:hofmann@mail.iastate.edu

CONTRIBUTED RESEARCH ARTICLE 55

(a) ggnet2

Southern women network in ggnet2
create affiliation matrix
bip = xtabs(~Event+Lady, data=elist)

weighted bipartite network
bip = network(bip,

matrix.type = "bipartite",
ignore.eval = FALSE,
names.eval = "weights")

detect and color the mode
set.seed(8262013)
ggnet2(bip, color = "mode", palette = "Set2",

shape = "mode", mode = "kamadakawai",
size = 15, label = TRUE) +

theme(legend.position="bottom")
E1

E10

E11

E12

E13

E14

E2

E3

E4

E5

E6

E7

E8
E9

L1

L10

L11

L12
L13

L14

L15

L16

L17

L18

L2

L3
L4

L5

L6

L7

L8

L9

actor event

Figure 7: Graph of the Southern women data. Women are represented as orange triangles, events as
green circles.

The R Journal Vol. 9/1, June 2017 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 56

(b) geomnet

Southern women network in geomnet
change labelcolour
davis$lcolour <-
c("white", "black")[as.numeric(davis$type)]

set.seed(8262013)
ggplot(data = davis) +
geom_net(layout.alg = "kamadakawai",
aes(from_id = from, to_id = to,

colour = type, shape = type),
size = 15, labelon = TRUE, ealpha = 0.25,
vjust = 0.5, hjust = 0.5,
labelcolour = davis$lcolour) +

theme_net() +
scale_colour_brewer("Type of node", palette = "Set2") +
scale_shape("Type of node") +
theme(legend.position = "bottom")

E1

E10

E11

E12

E13

E14

E2

E3

E4

E5

E6

E7

E8
E9

L1

L10

L11

L12
L13

L14

L15

L16

L17

L18

L2

L3
L4

L5

L6

L7

L8

L9

Type of node Event Lady

(c) ggnetwork

Southern women network in ggnetwork. Use data from ggnet2 step
assign vertex attributes (Node type and label)
set.vertex.attribute(bip, "mode",
c(rep("event", 14), rep("woman", 18)))

set.seed(8262013)
ggplot(data = ggnetwork(bip,

layout = "kamadakawai"),
aes(x = x, y = y, xend = xend, yend = yend)) +

geom_edges(colour = "grey80") +
geom_nodes(aes(colour = mode, shape = mode),

size = 15) +
geom_nodetext(aes(label = vertex.names)) +
scale_colour_brewer(palette = "Set2") +
theme_blank() +
theme(legend.position = "bottom") E1

E10

E11

E12

E13

E14

E2

E3

E4

E5

E6

E7

E8
E9

L1

L10

L11

L12
L13

L14

L15

L16

L17

L18

L2

L3
L4

L5

L6

L7

L8

L9

mode event woman

Figure 7: Graph of the Southern women data. Women are represented as orange triangles, events as
green circles.

The R Journal Vol. 9/1, June 2017 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 57

(a) geographic map

Broschart & Blackwell Rd

Crabbs Branch Way & Calhoun Pl

Crabbs Branch Way & Redland Rd

E Montgomery Ave & Maryland Ave

Fallsgrove Blvd & Fallsgrove Dr
Fallsgrove Dr & W Montgomery Ave

Fleet St & Ritchie Pkwy

Frederick Ave & Horners Ln

King Farm Blvd & Piccard Dr

King Farm Blvd & Pleasant Dr

Medical Center Dr & Key West Ave

Monroe St & Monroe Pl

Montgomery College/W Campus Dr & Mannakee St

Needwood Rd & Eagles Head Ct

Piccard & W Gude Dr

Rockville Metro EastRockville Metro West

Shady Grove Metro West

Taft St & E Gude DrTraville Gateway Dr & Gudelsky Dr

Metro Station FALSE TRUE

(b) geomnet

Broschart & Blackwell Rd

Crabbs Branch Way & Calhoun Pl

Crabbs Branch Way & Redland Rd

E Montgomery Ave & Maryland Ave
Fallsgrove Blvd & Fallsgrove Dr

Fallsgrove Dr & W Montgomery Ave

Fleet St & Ritchie Pkwy

Frederick Ave & Horners Ln
King Farm Blvd & Piccard Dr

King Farm Blvd & Pleasant Dr

Medical Center Dr & Key West Ave

Monroe St & Monroe Pl

Montgomery College/W Campus Dr & Mannakee St

Needwood Rd & Eagles Head Ct

Piccard & W Gude Dr

Rockville Metro East

Rockville Metro West

Shady Grove Metro West

Taft St & E Gude Dr

Traville Gateway Dr & Gudelsky Dr

Metro Station FALSE TRUE

(c) ggnet2

Broschart & Blackwell Rd

Crabbs Branch Way & Calhoun Pl

Crabbs Branch Way & Redland Rd

E Montgomery Ave & Maryland Ave

Fallsgrove Blvd & Fallsgrove Dr

Fallsgrove Dr & W Montgomery Ave

Fleet St & Ritchie Pkwy

Frederick Ave & Horners Ln

King Farm Blvd & Piccard DrKing Farm Blvd & Pleasant Dr

Medical Center Dr & Key West Ave

Monroe St & Monroe Pl

Montgomery College/W Campus Dr & Mannakee St

Needwood Rd & Eagles Head Ct

Piccard & W Gude Dr

Rockville Metro East

Rockville Metro West

Shady Grove Metro West

Taft St & E Gude Dr

Traville Gateway Dr & Gudelsky Dr

(d) ggnetwork

Broschart & Blackwell Rd

Crabbs Branch Way & Calhoun Pl

Crabbs Branch Way & Redland Rd

E Montgomery Ave & Maryland Ave

Fallsgrove Blvd & Fallsgrove Dr

Fallsgrove Dr & W Montgomery Ave

Fleet St & Ritchie Pkwy

Frederick Ave & Horners Ln

King Farm Blvd & Piccard Dr

King Farm Blvd & Pleasant Dr

Medical Center Dr & Key West Ave

Monroe St & Monroe Pl

Montgomery College/W Campus Dr & Mannakee St

Needwood Rd & Eagles Head Ct

Piccard & W Gude Dr

Rockville Metro East

Rockville Metro West

Shady Grove Metro West

Taft St & E Gude Dr

Traville Gateway Dr & Gudelsky Dr

Trips 30 60 90 Metro station a aFALSE TRUE

Figure 8: Network of bike trips using a geographically true representation(top left) overlaid on a
satellite map, a Kamada-Kawai layout in geomnet (top right), a Fruchterman-Reingold layout in
ggnet2 (bottom left) and ggnetwork (bottom right). Metro stations are shown in orange. In both
the Kamada-Kawai and the Fruchterman-Reingold layouts, metro stations take a much more central
position than in the geographically true representation.

The R Journal Vol. 9/1, June 2017 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 58

Figure 9: Protein-protein interaction network in S. cerevisiae. A Fruchterman-Reingold algorithm
allowed to run for 50,000 iterations produced the coordinates for the nodes.

ggnetwork

geomnet

igraph

ggnet2

network

0 1 2 3

Average plotting time (seconds)

V
is

ua
lis

at
io

n
ap

pr
oa

ch

Figure 10: Comparison of the times needed for calculating and rendering the previously discussed
protein interaction network in the three ggplot2 approaches and the standard plotting routines of the
network and igraph packages based on 100 evaluations each.

The R Journal Vol. 9/1, June 2017 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 59

Ubuntu14 x86_64−Fedora22

MBAir15 MBPro13 MBPro14 MBPro15

AMD Opteron 6328 i686 Xubuntu14 MBAir12 MBAir13

50 100 150 200 250 50 100 150 200 250

50 100 150 200 250 50 100 150 200 250

0

5

10

15

0

2

4

6

8

0

5

10

15

0.0

2.5

5.0

7.5

0

5

10

15

0

5

10

15

0

10

20

30

40

0

3

6

9

0

10

20

0

5

10

15

Network size (edge probability p = 0.2)

T
im

e
(in

 s
ec

on
ds

)

Visualization approach geomnet ggnet2 ggnetwork igraph network

Figure 11: Plotting times of random undirected networks of different sizes under each of the available
visualization approaches using their default settings. Note that each panel is scaled independently to
highlight relative differences in the visualization approaches rather than speed of different hardware.

The R Journal Vol. 9/1, June 2017 ISSN 2073-4859

	Network Visualization with ggplot2
	Introduction
	Brief introduction to networks
	Three implementations of network visualizations
	ggnet2
	geomnet
	ggnetwork

	Examples
	Blood donation
	Email network
	ggplot2 theme elements
	College football
	Southern women
	Bike sharing in Washington D.C.

	Some considerations of speed
	Summary and discussion

