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Formulation and well-posedness of
the dynamics of rigid-body systems
with perfect unilateral constraints

By Patrick Ballard
Laboratoire de Mécanique des Solides, Ecole Polytechnique,

91128 Palaiseau Cédex, France (ballard@lms.polytechnique.fr)

The classical theory of rigid-body systems dynamics with perfect bilateral constraints
is extended in order to take perfect unilateral constraints into account. A systematic
formulation of the dynamics is derived and the most general admissible form of the
impact-constitutive equation is obtained. Well-posedness of the evolution problem is
proved under the assumption that the data are analytic.
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1. Introduction

Rigid-body systems dynamics with perfect bilateral constraints has been well estab-
lished on firm mathematical foundations for a long time. In this paper, we aim at
giving such a status to the dynamics of rigid-body systems with perfect unilateral
constraints.

Any mechanical theory relies on a geometric description of the system under study.
This is always a schematization. As a consequence, most of the time, the equation of
motion has to be completed with some constitutive equation. A constitutive equation
conveys the physical information that has been removed by the over-schematization
of the geometric description. In fact, the well-posedness of the dynamics generally
serves implicitly as a guideline to the identification of the general form of the con-
stitutive law, although thermodynamic considerations can also play an important
part.

The dynamics of rigid-body systems with perfect unilateral constraints necessarily
involves an impact-constitutive equation. We shall try to identify the most general
form of the impact-constitutive equation that is compatible with the well-posedness
of the dynamics. Thus, we shall build the theory step by step, justifying the necessity
of each hypothesis by a counter-example. These hypotheses will be classified into two
categories. Those which convey a physical assumption will be called ‘constitutive’
hypotheses and the others, whose aim is to prevent mathematical pathologies, will be
called ‘regularity’ hypotheses. Since one aim is to obtain general forms of constitutive
laws, one has to make sure that the constitutive laws do not depend on any particular
parametrization of the system. For this reason, we are going to try to obtain intrinsic
formulations of dynamics, that is, formulations which do not rely on a particular
choice for the parametrization of the system. This necessarily requires the use of
the language of differential geometry. However, only the most elementary level of
differential geometry is needed.
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2. The dynamics of rigid-body systems

(a) The geometric assumption: rigidity

Classical mechanics postulates the existence of a three-dimensional oriented affine
Euclidean space E , sometimes called the (Galilean) real world, and an absolute
chronology represented (after the choice of an origin) by a real number, generally
denoted by t. The vector space associated with E will be denoted by E.

A solid is represented by its real world reference configuration, which is nothing but
a possible geometric locus of all the material points of the solid in E . The geometric
assumption of rigidity can be stated as follows: the only real-world configuration of
that solid which can be observed are obtained from the real-world reference configu-
ration by direct isometries. Therefore, once the real-world reference configuration has
been fixed, any real-world configuration of the solid is represented by a direct isom-
etry q. Since any direct isometry on E can be split into a translation and a rotation,
the set of all direct isometries can be identified with E × SO3 (where SO3 denotes
the set of all direct orthogonal endomorphisms on E, endowed with its standard
manifold structure). It is said that E × SO3 is the (abstract) configuration manifold
of the rigid solid. Since its dimension is 6, we say that the rigid solid has six degrees
of freedom (DOF).

Other idealizations of rigid solids can appear: the infinitely thin rigid bar whose
configuration manifold is E × S2 (S2 denotes the two-dimensional sphere equipped
with its standard manifold structure) and the punctual particle whose configuration
manifold is simply E.

A motion of a rigid solid is a curve on its configuration manifold Q (a mapping from
a time-interval I into Q). The derivative of the motion at instant t is denoted by q̇(t).
This is called the abstract (or, sometimes, generalized) velocity and is an element
of the tangent bundle TQ of the configuration manifold. One often encounters the
name ‘state space’ for TQ, in which case q̇(t) is also called a state of the system.

The mass distribution in the rigid solid is a bounded positive measure on the real-
world reference configuration. It allows, classically, the association of any state of the
system with its kinetic energy K(q, q̇). It defines a positive-definite quadratic form
on each tangent space of Q, endowing the configuration manifold with a Riemannian
structure. This Riemannian metric is naturally called the kinetic metric. From now
on, whenever we speak of a configuration manifold, it will always be supposed to be
equipped with its Riemannian structure.

A rigid-body system is a finite collection of rigid bodies. The configuration manifold
of a rigid-body system is the cross-product Q1 × Q2 × · · · × Qn of the individual
configuration manifold Qi of each rigid body of the system.

Notation. For Q being a smooth Riemannian manifold of dimension d, we shall
denote by

(i) TQ and T ∗Q, the tangent and cotangent bundles;

(ii) ΠQ and Π∗
Q, the natural projection mappings of TQ and T ∗Q;

(iii) 〈·, ·〉q, the local duality product between tangent space TqQ and cotangent
space T ∗

q Q;
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(iv) (·, ·)q and ‖·‖q, the local scalar product and norm on TqQ (a ∗ will be added
when referring to the scalar product and norm on T ∗Q);

(v) � (and � = �−1, its inverse), the isomorphism of vector bundles from TQ onto
T ∗Q naturally associated with the Riemannian metric of Q.

The abstract velocity q̇(t) ∈ TQ of a motion q(t) will alternatively be denoted
by (q(t), q̇(t)). This is clearly a redundant notation since the base-point q = ΠQ(q̇)
is contained in the derivative, but I believe that this notation will be an aid to
understanding. More generally, an element v of TQ will also be denoted by (q, v)
with q being the base-point of v.

Any (local) chart ψ on the configuration manifold is called a (local) parametriza-
tion. For an abstract configuration q ∈ Q, ψ(q) is an element of R

d that we denote by
(q1, q2, . . . , qd). Each time a given parametrization will be under consideration, we
shall write q = (q1, q2, . . . , qd). The natural basis of TqQ (respectively, T ∗

q Q) natu-
rally associated with the chart ψ is denoted by (e1(q), e2(q), . . . , ed(q)) (respectively,
(e1(q), e2(q), . . . , ed(q))). For (q, v) belonging to TQ, we denote by vi (i = 1, 2, . . . , d)
its components in the natural basis and we shall write

v = viei(q).

Einstein’s summation convention will always apply, unless explicitly stated otherwise.
As usual, gij(q) will be the covariant components of the metric in the considered chart
and gij(q) its contravariant components; Γ i

jk(q) will be the associated Christoffel
symbols:

Γ i
jk(q) = 1

2gih(q)
(

∂ghk

∂qj
(q) +

∂gjh

∂qk
(q) − ∂gjk

∂qh
(q)

)
.

For q(t) being a curve on Q and v being a vector field on that curve, the covariant
derivative of v along q(t) is denoted by

D
dt

v(t) =
(

d
dt

vi(t) + Γ i
jk(q(t))vj(t)q̇k(t)

)
ei(q(t)).

(b) Formulation of the dynamics

Consider a rigid-body system of configuration manifold Q and a motion q(t) of that
system. The power of inertial forces at instant t is, by definition, the time derivative
at t of the kinetic energy:

d
dt

K(q, q̇) =
1
2

d
dt

(q̇(t), q̇(t))q(t) =
(

D
dt

q̇(t), q̇(t)
)
q(t)

=
〈

�
D
dt

q̇(t), q̇(t)
〉
q(t)

.

Hence, it is seen that the power of inertial forces at time t defines the cotangent
vector �Dq̇(t)/dt ∈ T ∗

q(t)Q. An arbitrary element TqQ is often called a virtual velocity
of the system in the configuration q. Then, the linear form �Dq̇(t)/dt is called the
virtual power of inertial forces.

The analysis of the dynamics has to take into account external and internal efforts.
They define a linear form f ∈ T ∗

q Q on each tangent space of the configuration
manifold, which is classically named the virtual power of external and internal efforts.
The reason for such a modelling of efforts by duality is that it ensures the consistency
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of the modelling of the efforts with the geometric description of the system. The linear
form f(q, q̇; t) ∈ T ∗

q Q is allowed to depend not only on time but also on the current
state of the system.

The fundamental principle of classical mechanics asserts that the virtual power of
inertial forces should equal at every instant the virtual power of external and internal
efforts:

∀t, �
D
dt

q̇(t) = f(q(t), q̇(t), t). (2.1)

Equation (2.1) is referred to as the equation of motion. It is a second-order differential
equation on the configuration manifold. To express it in a particular parametrization
of the system, the following is useful.

Proposition 2.1 (Lagrange). Let ψ be a local chart and q(t) a C2 motion on
Q. One has

�
D
dt

q̇(t) =
(

d
dt

∂

∂q̇i
K(q(t), q̇(t)) − ∂

∂qi
K(q(t), q̇(t))

)
ei(q(t)).

We are given an initial instant t0 and an initial state (q0, v0) ∈ TQ. Then, the
evolution problem associated with the dynamics of a rigid-body system is the Cauchy
problem, as follows.

Problem I. Find T > t0 and q ∈ C2([t0, T [;Q) such that

(i) (q(t0), q̇(t0)) = (q0, v0),

(ii) ∀t ∈ [t0, T [, �
D
dt

q̇(t) = f(q(t), q̇(t), t).

(c) Well-posedness of the dynamics

To study the well-posedness (existence and uniqueness of solution) of problem I,
we have to specify regularity assumptions on Q and f .

Counter-example 1. Consider the evolution equation

d2

dt2
q(t) = 6|q(t)|1/3 (q ∈ R)

with initial condition (q(0), q̇(0)) = (0, 0). It is readily checked that the two motions
defined on R

+ q(t) = 0 and q(t) = t3 provide two distinct solutions.

To get well-posedness, we are led to make further hypotheses. Throughout this
paper, we shall distinguish two classes of hypotheses: the constitutive hypotheses
and the regularity hypotheses. A constitutive hypothesis is one which conveys phys-
ical meaning. A regularity hypothesis conveys no physical meaning and is stated to
eliminate mathematical pathologies. The following regularity hypothesis is slightly
stronger than necessary.

Regularity hypothesis. The Riemannian configuration manifold is of class C2

and the mapping f : TQ × R → T ∗Q is of class C1.
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It should be pointed out that the first part of this hypothesis is actually no hypoth-
esis at all. The configuration manifold of the three-dimensional rigid solid, of the
infinitely thin rigid bar or of the punctual particle, with arbitrary mass distribution
is C∞ (or, even more, analytic) Riemannian manifolds. The configuration manifold
of a rigid-body system (with no constraints), being a cross-product of such manifolds,
can be assumed to have arbitrary regularity. This is not a restriction either on the
geometry nor on the mass distribution of the system, but on the class of admissible
parametrizations.

Under this regularity assumption, we have the following well-posedness result.

Theorem 2.2 (Cauchy). There exists a unique maximal solution for problem I.

More precisely, theorem 2.2 states that there exists Tm > t0 (Tm ∈ R ∪ {+∞})
and qm ∈ C2([t0, Tm[, Q), being a solution of problem I such that any other solution
of problem I is a restriction of qm. Of course, we expect that Tm = +∞, in which
case the dynamics is said to be eternal. This situation cannot be taken for granted,
in general.

Counter-example 2. Consider the evolution equation

d2

dt2
q(t) = (q̇(t))2

(q ∈ R) with initial condition (q(0), q̇(0)) = (0, 1). It is readily checked that the
maximal solution is defined on the interval [0, 1[.

In the usual cases encountered in mechanics, eternal dynamics is ensured by the
following general sufficient condition.

Theorem 2.3. The configuration manifold Q is assumed to be a complete Rie-
mannian manifold (this is no hypothesis in the case of rigid-body system with no
constraints). The mapping f is supposed to admit the following estimate,

‖f(q, v; t)‖∗
q � l(t)(1 + d(q, q0) + ‖v‖q),

for all (q, v) ∈ TQ and almost all t ∈ [t0, +∞[, where d(·, ·) is the Riemannian
distance and l(t) is a (necessarily non-negative) function of L1

loc(R; R). Then, the
dynamics is eternal: Tm = +∞.

The proof of theorem 2.3 relies on Gronwall’s lemma.

3. Perfect bilateral constraints

A constraint describes a type of effort which is not taken into account by the efforts
mapping f . Indeed, it is possible to specify (partly) some efforts by their kinemat-
ical effects. In general, these kinematical effects leave the associated efforts partly
undetermined and we have to add phenomenological assumptions about how the
constraint acts through a constitutive law of the constraint.

(a) The geometric description

A (holonomic) bilateral constraint is a restriction on the admissible motions of
the system which is expressed by means of a finite number n of smooth real-valued
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functions ϕi on the configuration manifold Q, defining a set S of admissible config-

urations:
S = {q ∈ Q;∀i ∈ {1, 2, . . . , n}, ϕi(q) = 0}. (3.1)

The following hypothesis is usual in this framework.

Regularity hypothesis I. The functions ϕi are functionally independent, that
is, for all q ∈ S, the dϕi(q) (i ∈ {1, 2, . . . , n}) are linearly independent in T ∗Q.

A straightforward consequence of this hypothesis is that S is a submanifold of Q
of dimension d − n. As a result, S inherits a Riemannian structure from Q. We shall
say that S is the configuration manifold of the constrained system.

(b) Formulation of the dynamics

The realization of the constraint (3.1) necessarily involves a modification of the
equation of motion (2.1). This is done by adding to the virtual power of efforts
f(q, q̇; t) a corrective unknown term R called the virtual power of reaction efforts:

∀t, �
D
dt

q̇(t) = f(q(t), q̇(t), t) + R(t).

We might expect R to be determined by the geometric constraint (3.1), but, in
general, this does not work. We have to add phenomenological assumptions on the
way the constraint acts. This is the constitutive law of the constraint.

Constitutive hypothesis II. The bilateral constraint (3.1) is supposed to be
perfect (one also says synonymously ideal), that is, the virtual power of the reaction
efforts R vanishes in any virtual velocity compatible with the bilateral constraint:

∀v ∈ {v ∈ TqQ;∀i ∈ {1, 2, . . . , n}, 〈dϕi(q), v〉q = 0} 
 TS, 〈R, v〉q = 0.

Thanks to hypotheses I and II, we can write

R(t) =
n∑

i=1

λi(t) dϕi(q),

for some real-valued functions λi.
Now, we formulate the evolution problem associated with the dynamics of rigid-

body systems with perfect bilateral constraints. The initial condition is assumed to
be compatible with the realization of the constraint (q0, v0) ∈ TS.

Problem II. Find T > t0, q ∈ C2([t0, T [;Q) and n functions λi ∈ C0([t0, T [; R)
such that

(i) (q(t0), q̇(t0)) = (q0, v0),

(ii) ∀t ∈ [t0, T [, q(t) ∈ S,

(iii) ∀t ∈ [t0, T [, �
DQ

dt
q̇(t) = f(q(t), q̇(t), t) +

n∑
i=1

λi(t) dϕi(q(t)).

Here, we used the notation DQ/dt for the covariant derivative to underline the fact
that the covariant derivative is understood with respect to the Riemannian structure
of Q (and not to that of S).
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Let q be a point of Q, v a vector in TqQ, and E a subspace of TqQ. The orthogonal
projection of v on E for the scalar product of TqQ, induced by the Riemannian struc-
ture of Q, is denoted by Projq[v;E]. Similarly, Proj∗q [v

∗; E∗] denotes the orthogonal
projection of the cotangent vector v∗ on the subspace E∗ of T ∗

q Q. If q(t) is a curve
on the Riemannian submanifold S of Q and v a vector field on that curve, then we
have (see Chavel 1993, p. 54)

DSv

dt
= Projq

[
DQv

dt
; TqS

]
.

Therefore, any solution of problem II is seen to be a solution of the following problem.

Problem II′. Find T > t0 and q ∈ C2([t0, T [;S) such that

(i) (q(t0), q̇(t0)) = (q0, v0),

(ii) ∀t ∈ [t0, T [, �
DS

dt
q̇(t) = Proj∗q(t)[f(q(t), q̇(t); t);T ∗

q(t)S].

Reciprocally, any solution of problem II′ is readily seen to generate a solution of
problem II: the two evolution problems are equivalent.

The linear form (cotangent vector) Proj∗q [f(q, q̇; t);T ∗
q S] equals the restriction of

the linear form f(q, q̇; t) on the space TqS of virtual velocities compatible with the
bilateral constraint. Therefore, it is the virtual power of external and internal efforts
in any virtual velocity compatible with the constraint.

(c) Well-posedness of the dynamics

Problem II′ has formally the same structure of problem I. Since problems II′ and II
are equivalent, the results of § 2 c give the well-posedness of the dynamics of rigid-
body systems with perfect bilateral constraints.

Regularity hypothesis III. The configuration manifold Q and the functions ϕi

are of class C2 and the mapping f : TQ × R → T ∗Q is of class C1.

Proposition 3.1. Problems II and II′ have a unique maximal solution qm.

The analysis of the eternity of the dynamics is provided by theorem 2.3.
Regularity hypothesis I could seem very restrictive. However, dropping it would

lead to difficulties.

Counter-example 3. Consider a rigid homogeneous bar of length l. The two
extremities of the bar are constrained to remain on a fixed circle of diameter l. The
two corresponding bilateral constraints are supposed to be perfect. This is a simple
occurrence of a bilateral constraint, which does not satisfy regularity hypothesis I.
At the initial instant, the bar is at rest. A constant force is applied at the middle
point of the bar. This force is directed in the plane of the circle but not along the bar.
The reader will be convinced that the corresponding evolution problem II admits no
solution.

Since the modelling of a rigid-body system with no constraint or with perfect
bilateral constraint leads to the construction of mathematical structures of the same
type, we state the following definition.
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Definition 3.2. A simple discrete mechanical system is a pair (Q, f), where

(i) Q is a finite-dimensional smooth Riemannian manifold called the configuration
manifold.

(ii) f : TQ × R → T ∗Q is a smooth mapping satisfying

∀(q, v) ∈ TQ, ∀t ∈ R, Π∗
Q(f(q, v; t)) = q,

called the efforts mapping.

4. Perfect unilateral constraints

The consideration of elementary examples shows that the dynamics of rigid-body
systems can lead to some prediction of the motion where some bodies of the sys-
tem overlap in the real world. Of course, this should not be allowed. Hence, very
often, one has to add the statement of non-penetration conditions to a simple dis-
crete mechanical system. This is a simple occurrence of unilateral constraint. In this
section, we shall discuss the consideration of perfect unilateral constraints in simple
discrete mechanical systems.

(a) The geometric description

Consider a simple discrete mechanical system with configuration manifold Q. A
unilateral constraint is a restriction on the admissible motions of the system, which
is expressed by means of a finite number n of smooth real-valued functions ϕi on the
configuration manifold Q, so that the set of all admissible configurations A is given
by

A = {q ∈ Q;∀i ∈ {1, 2, . . . , n}, ϕi(q) � 0}. (4.1)

The set of all active constraints in the admissible configuration q ∈ A is defined by

J(q) = {i ∈ {1, 2, . . . , n}; ϕi(q) = 0}.

The following hypothesis should be compared with regularity hypothesis I of § 3 a.

Regularity hypothesis I. The functions ϕi are functionally independent in the
sense that, for all q ∈ A, the dϕi(q) (i ∈ J(q)) are linearly independent in T ∗Q.

Consider a motion q(t) in A and assume that a right velocity q̇+(t) ∈ Tq(t)Q exists
at instant t; then q̇+(t) necessarily belongs to the closed convex cone V (q(t)) of
Tq(t)Q defined by

V (q(t)) = {v ∈ Tq(t)Q;∀i ∈ J(q(t)), 〈dϕi(q(t)), v〉q(t) � 0}.

V (q) is called the cone of admissible right velocities at the configuration q. In par-
ticular,

q ∈ Å (i.e. J(q) = ∅) =⇒ V (q) = TqQ.

Similarly, if a left velocity q̇− ∈ TqQ exists, then q̇− ∈ −V (q).

(b) Formulation of the dynamics

The formulation of the dynamics follows Moreau (1983).
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(i) Equation of motion

As for bilateral constraints, the realization of the constraints induces some reaction
effort R. The following hypotheses are made.

Constitutive hypothesis II. The unilateral constraints are of type contact with-
out adhesion:

∀v ∈ V (q), 〈R, v〉q � 0.

Constitutive hypothesis III. The unilateral constraints are perfect:

∀v ∈ {v ∈ TqQ;∀i ∈ J(q), 〈dϕi(q), v〉q = 0}, 〈R, v〉q = 0.

As an easy consequence of constitutive hypotheses II and III, we get

∃(λi)i=1,2,...,n ∈ R
n, R =

n∑
i=1

λi dϕi(q), and
∣∣∣∣ i ∈ J(q) ⇒ λi � 0,

i �∈ J(q) ⇒ λi = 0.

Thus, the reaction effort R ∈ T ∗Q must be such that

−R ∈ N∗(q) def=
{ n∑

i=1

λi dϕi(q);∀i ∈ J(q), λi � 0, ∀i �∈ J(q), λi = 0
}

. (4.2)

N∗(q) is a closed convex cone of T ∗
q Q and it is the polar cone of V (q) in the dual-

ity (TqQ, T ∗
q Q), the polar cone of V (q) for the Euclidean structure of TqQ being

N(q) = �(N∗(q)).
Now, consider a motion q(t) starting at q0 ∈ Å at time t0 with velocity v0. Assumed

to be continuous, q(t) remains in Å on a right neighbourhood of t0. By formula (4.2),
the reaction effort R vanishes as long as q(t) is in Å and the motion is governed by
the following ordinary differential equation.

(q(t0), q̇(t0)) = (q0, v0),

�
Dq̇

dt
= f(q, q̇; t).

Suppose that the solution of this Cauchy problem meets ∂A at some instant greater
than t0. Denote by T the smallest of these instants. The motion admits a left velocity
vector v−

T at time T . Of course, the following may happen: v−
T �∈ V (q(T )). In this

case, no differentiable extension of the motion can exist in A for t greater than T .
The requirement of differentiability has to be dropped. An instant such as T is called
an instant of impact.

However, we are still going to require the existence of a right velocity vector q̇+(t) ∈
V (q(t)) at every instant t. The right velocity need not be a continuous function of
time and the equation of motion,

�
Dq̇+

dt
= f(q, q̇+; t) + R,

should be understood in the sense of Schwartz’s distribution. Actually, we require R
to be a vector-valued measure rather than a general distribution.

We denote by MMA(I;Q) (motions with measure acceleration) the set of all abso-
lutely continuous motions q(t) from a real interval I to Q admitting a right velocity
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q̇+(t) at every instant t of I and such that the function q̇+(t) has locally bounded
variation over I. Naturally, bounded variation is classically defined only for func-
tions taking values in a normed vector space. However, for any absolutely continuous
curve q(t) on a Riemannian manifold, parallel translation along q(t) classically pro-
vides intrinsic identification of the tangent spaces at different points of the curve
and, therefore, the definitions can easily be carried over to this case (for the precise
mathematical setting, see Ballard (2000)). Any motion q ∈ MMA(I; Q) admits a
left and a right velocity, q̇− and q̇+, in the classical sense at any instant. Moreover,
the covariant Stieltjes measure Dq̇+ of its right velocity q̇+ is intrinsically associated
with any motion q ∈ MMA(I;Q). The equation of motion takes the form,

�Dq̇+ = f(q, q̇+; t) dt + R,

where dt denotes the Lebesgue measure. We have to give a precise meaning to con-
dition (4.2) with R being a vector-valued measure.

Convention. We shall write

R ∈ −N∗(q(t))

to mean that there exist n non-positive real measures λi such that

R =
n∑

i=1

λi dϕi(q(t)) and ∀i ∈ {1, 2, . . . , n}, Suppλi ⊂ {t; ϕi(q(t)) = 0}. (4.3)

Using this convention, the final form of the equation of motion is

R = �Dq̇+ − f(q(t), q̇+(t); t) dt ∈ −N∗(q(t)). (4.4)

A straightforward consequence of the equation of motion is that an impact (that
is, a discontinuity of the right velocity q̇+) can only occur at an instant t such that
J(q(t)) �= ∅. This fact is a justification for the following definition.

Definition 4.1. An impact occurring at time t is said to be simple if J(q(t))
contains exactly one element. If J(q(t)) contains at least two elements, the impact
is said to be multiple.

(ii) The impact-constitutive equation

We begin this section with an example. Consider the one-degree-of-freedom mech-
anical system whose configuration space is R equipped with its canonical Euclidean
structure. The efforts mapping f vanishes identically and the unilateral constraint
is represented by the single function ϕ1(q) = q so that the admissible configuration
set A is R

−. At initial time t0 = 0, we consider an initial state (q0, v0) such that
q0 < 0 and v0 > 0. It is readily seen from the equation of motion (4.4) that an impact
necessarily occurs at time t = −q0/v0. At this time, the left velocity is v0. But, the
right velocity can take any negative value and whatever it is, it is compatible with
the equation of motion.

The reason for this indetermination lies in the phenomenological nature of the
interaction of the system with the obstacle. This missing information has to be
added.
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Constitutive hypothesis IV. The interaction of the system with the obstacle at
time t is completely determined by the current configuration q(t) and the current left
velocity q̇−(t). In other terms, we postulate the existence of a mapping F : TQ → TQ
describing the interaction of the system with the obstacle during an impact:

∀t, q̇+(t) = F(q(t), q̇−(t)). (4.5)

To ensure compatibility with the equation of motion (4.4), the mapping F should
satisfy

∀q ∈ A, ∀v− ∈ −V (q),
F(q, v−) ∈ V (q),
F(q, v−) − v− ∈ −N(q). (4.6)

Moreover, we add the assumption that the kinetic energy of the system cannot
increase during an impact.

∀q ∈ A, ∀v− ∈ −V (q), ‖F(q, v−)‖q � ‖v−‖q. (4.7)

Let us comment on hypothesis IV. When two solids hit, their bouncing is actually
governed by the propagation of deformation waves in each of the two solids. But,
from the very beginning, we have adopted the simple framework in which each solid
is supposed to be rigid, that is, for the sake of simplicity, we have chosen not to take
into consideration any phenomena relying on the deformation of the solids. Thus, we
cannot expect the theory to be able to predict the outcome of an impact experiment.
The aim of constitutive hypothesis IV is to introduce the missing information into the
theory. Of course, in practical situations, we have to identify the unknown mapping
F . This can be done either by means of experiments or by use of a refined theory.
For example, the theory of elastodynamics could be used to predict the outcome
of an impact in every impact configuration. The result would be an identification
of the mapping F . In any case, there is a very large amount of work in precisely
identifying F . This is the price we have to pay for describing sophisticated physical
phenomena in a very simple framework. Actually, this issue is faced in any mechanical
theory (for example, the theory of elasticity). Naturally, in each mechanical theory,
the question arises as to what amount of missing constitutive information should
be introduced. Most of the time, well-posedness of the resulting evolution problem
serves as a guideline to stating the constitutive hypotheses.

Definition 4.2. Equation (4.5), with mapping F satisfying requirements (4.6)
and (4.7) is called the impact-constitutive equation. An impact-constitutive equation
which ensures the conservation of kinetic energy during an impact,

∀q ∈ A, ∀v− ∈ −V (q), ‖F(q, v−)‖q = ‖v−‖q,

is called elastic.

There always exist many mappings F satisfying requirements (4.6) and (4.7).

Example 4.3. Let e : TQ → [0, 1] be an arbitrary function. The mapping F
defined by

F(q, v−) = Projq[v
−;V (q)] − e(q, v−) Projq[v

−; N(q)], (4.8)

is easily seen to satisfy requirements (4.6) and (4.7). The associated impact-constitu-
tive equation is often called the canonical impact-constitutive equation. It is elastic
if and only if e ≡ 1. The function e is classically called the restitution coefficient.

11



(a) (b) (c)

Figure 1. Newton’s cradle.

The reason why the canonical impact-constitutive equation is distinguished is that,
in situations where only simple impacts can occur (for example, if the unilateral con-
straint is represented by a single function ϕ1), then the impact-constitutive equation
must be the canonical one (this is a simple consequence of requirements (4.6) and
(4.7)). However, in the case of multiple impacts, the canonical impact-constitutive
equation has no specific physical relevance. A simple occurrence of a multiple impact
is provided by Newton’s cradle. The principle of the experiment is sketched in fig-
ure 1a. Its outcome is sketched in figure 1b. It should be compared with the prediction
of the canonical elastic impact-constitutive equation, which is sketched in figure 1c.

The following proposition is a straightforward and useful consequence of require-
ments (4.6) and (4.7).

Proposition 4.4. Let F be a constitutive mapping satisfying requirements (4.6)
and (4.7). Then, we have

∀q ∈ A, ∀v− ∈ V (q) ∩ (−V (q)), F(q, v−) = v−.

We conclude this section by a comment on requirement (4.7). At first glance, it
could seem to be unnecessary. The following counter-example proves that if it were
omitted, then uniqueness of solution for the resulting evolution problem would surely
not hold.

Counter-example 4. Consider the one-degree-of-freedom discrete mechanical
system whose configuration space is R equipped with its canonical Euclidean struc-
ture. The efforts mapping is supposed to be constant: f(q, q̇; t) ≡ 2. To this simple
discrete mechanical system we add the unilateral constraint described by the single
function ϕ1(q) = q. Thus, A = R

−. The impact-constitutive equation is given by
formula (4.8), where the restitution coefficient is supposed to be the constant 1/2:
e(q, q̇−) ≡ 1/2. This mechanical system is a formal description of the physical occur-
rence of a single particle subjected to gravity and bouncing on the floor. Consider
the initial instant t0 = 0 and the initial state (q0, v0) = (−1, 0). It is readily seen
that the function q : R

+ → R
− defined by

∀t ∈ [0, 1], q(t) = t2 − 1,

∀t ∈
[
3 − 1

2n−1 , 3 − 1
2n

]
, q(t) = t2 +

(
−6 +

3
2n

)
t +

(
3 − 1

2n−1

)(
3 − 1

2n

)
,

∀t ∈ [3,+∞[, q(t) = 0,

(n ∈ N) belongs to MMA(R+; R−) and satisfies

(i) the initial condition,

12



f

3
t

q 
(t

)

Figure 2. Motion of a punctual particle subjected to gravity and bouncing on the floor.

(ii) the equation of motion (4.4) (with f(q, q̇; t) ≡ 2),

(iii) the impact-constitutive equation (4.8) (with e(q, q̇) ≡ 1/2).

This motion is pictured in figure 2. Note, by the way, that it exhibits an infinite
number of impacts on a compact time subinterval. It could easily be proved that no
motion, defined on [0,+∞[, with finite number of impacts on every compact interval
can exist.

Now, we are going to analyse what happens when the flow of time is reversed.
Define q′ by

q′
{

[0, 4] → R
−

t �→ q(4 − t).

Considering the initial state (q0, v0) = (0, 0) at t0 = 0, it is easily seen that q′ satisfies

(i) that initial condition,

(ii) the equation of motion (4.4) (with f(q, q̇; t) ≡ 2),

(iii) the impact-constitutive equation (4.8) (with e(q, q̇) ≡ 2).

However, q′′ ≡ 0 is also seen to satisfy the same initial condition, equation of
motion and impact-constitutive equation. This example demonstrates that we cannot
expect uniqueness of solution when adopting the canonical impact-constitutive equa-
tion (4.8) with restitution coefficient e ≡ 2 (or any real number strictly greater than
1). However, the canonical impact-constitutive equation with a restitution coefficient
strictly greater than 1 violates requirement (4.7).

(iii) The evolution problem I

Now, we formulate the evolution problem associated with the dynamics of rigid-
body systems with perfect bilateral and unilateral constraints. The initial condition
is assumed to be compatible with the realization of the constraint v0 ∈ V (q0).

Problem III. Find T > t0 and q ∈ MMA([t0, T [;Q) such that

(i) (q(t0), q̇+(t0)) = (q0, v0),
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(ii) ∀t ∈ [t0, T [, q(t) ∈ A,

(ii) R
def= �Dq̇+ − f(q(t), q̇+(t); t) dt ∈ −N∗(q(t)),

(iv) ∀t ∈ ]t0, T ], q̇+(t) = F(q(t), q̇−(t)).

The equation of motion is understood in the sense of convention (4.3) and the impact-
constitutive equation is supposed to fulfil requirements (4.6) and (4.7).

No regularity assumption has yet been made on the mapping f . This will be done
in the next section, where the well-posedness of problem III is studied. However, we
can infer from § 2 c that f will be assumed to be at least of class C1. We can state
an elementary property of any solution (if there are any) of problem III.

Proposition 4.5 (Energy inequality). Any solution (T, q) of problem III sat-
isfies

∀t1, t2 ∈ [t0, T [, t1 � t2,

K(q(t2), q̇+(t2)) − K(q(t1), q̇+(t1)) = 1
2‖q̇+(t2)‖2

q(t2) − 1
2‖q̇+(t1)‖2

q(t1)

�
∫ t2

t1

〈f(q(s), q̇+(s); s), q̇+(s)〉q(s) ds.

Proof . Since

1
2‖q̇+(t2)‖2

q(t2) − 1
2‖q̇+(t1)‖2

q(t1) =∫ t2

t1

〈q̇+(t), f(q(t), q̇+(t); t)〉q(t) dt +
∫

]t1,t2]

〈
q̇+ + q̇−

2
, R

〉
q

,

we have only to prove that the last integral is non-positive. Set

D = {t ∈]t1, t2]; q̇−(t) �= q̇+(t)}.

D is (at most) countable and, therefore, Lebesgue-negligible. On the one hand, we
have ∫

]t1,t2]\D

〈
q̇+ + q̇−

2
, R

〉
q

=
∫

]t1,t2]\D

〈q̇+, R〉q =
∫

]t1,t2]\D

〈q̇−, R〉q,

where the second integral is non-negative by convention (4.3), whereas the third
integral is non-positive. As a consequence, the three integrals vanish. On the other
hand, ∫

D

〈
q̇+(t) + q̇−(t)

2
, R

〉
q(t)

=
∫

D

(
q̇+(t) + q̇−(t)

2
, Dq̇+

)
q(t)

= 1
2

∑
t∈D

(‖q̇+(t)‖2
q(t) − ‖q̇−(t)‖2

q(t)),

which is non-positive by virtue of requirement (4.7). �
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(c) Well-posedness of the dynamics

To study the well-posedness of problem III, we need to state regularity assumptions
on the data. Looking at those of § 3 c, we could expect to be able to prove the well-
posedness of problem III under the assumption that the functions ϕi and the mapping
f are of class C2 and C1, respectively. The following counter-example originally due
to Bressan (1960) and Schatzman (1978) shows that uniqueness does not hold in
general even if the data are supposed to be of class C∞.

Counter-example 5. Consider a simple discrete mechanical system whose con-
figuration space is R, equipped with its canonical Euclidean structure. This is the
configuration space of a particle with unit mass constrained to move along a line. A
fixed obstacle at the origin is taken into consideration. It gives rise to a unilateral
constraint described by the single function:

ϕ1(q) = q.

Therefore, the admissible configuration set is A = R
−. The impact-constitutive equa-

tion is supposed to be elastic. Here, the geometry is so poor that this statement
determines completely the impact-constitutive equation. It is necessarily the canon-
ical one with restitution coefficient e ≡ 1. The efforts mapping f is supposed not to
depend on the state but only on time. It will be denoted by f(t). The initial instant
is t0 = 0 and the initial state is (q0, v0) = (0, 0). The corresponding problem III
admits here the following simple formulation.

Find T > 0 and q ∈ MMA([0, T [; R) such that

(i) (q(0), q̇+(0)) = (0, 0),

(ii) ∀t ∈ [0, T [, q(t) � 0,

(iii) R
def= dq̇+ − f(t) dt is a non-positive real measure such that

SuppR ⊂ {t ∈ [0, T [; q(t) = 0},

(iv) ∀t ∈ ]0, T [,

{
q(t) �= 0 ⇒ q̇+(t) = q̇−(t),

q(t) = 0 ⇒ q̇+(t) = −q̇−(t).

Here dq̇+ is merely the classical Stieltjes measure associated with the function
with locally bounded variation q̇+. We investigate uniqueness under the assumption
that f is of class C∞ and non-negative:

∀t ∈ R
+, f(t) � 0.

Then, it is readily seen that the null function q̃ ≡ 0 on R
+ is a solution of that

problem, whatever is the non-negative C∞ function f . Now, we are going to construct
an explicit example of such a function f in such a way that the associated evolution
problem III admits another solution, distinct from the identically vanishing one.

First, define a Massin function ρ by

ρ

⎧⎪⎨
⎪⎩

R → R

x �→
∣∣∣∣∣
{

0 if x ∈ ] − ∞, 0] ∪ [1,+∞[,

Ce1/x(x−1) if x ∈ ]0, 1[, 
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where C is a real constant which is chosen to get
∫ +∞

−∞ ρ(x) dx = 1. Define

T =
∞∑

n=0

(n + 5)2

(n + 1)(n + 2)(n + 3)(n + 4)
,

and, for every n ∈ N,

an =
∞∑

i=n

(i + 5)2

(i + 1)(i + 2)(i + 3)(i + 4)
,

δn =
n + 5

(n + 1)(n + 2)(n + 4)

(
i.e. δn =

n + 3
n + 5

(an − an+1) < an − an+1

)
,

fn =
1
n!

,

vn = − 1
(n + 3)!

.

Now, the functions f(t) and v(t), from [0, T [ to R, are defined by

f(0) = 0,

f(t) =

⎧⎨
⎩

0, if t ∈ [an+1, an+1 + δn[,
1
2fnρ

(
t − an+1 − δn

an − an+1 − δn

)
, if t ∈ [an+1 + δn, an[,

and

v(0) = 0,

v(t) =

⎧⎪⎨
⎪⎩

vn+1, if t ∈ [an+1, an+1 + δn[,

vn+1 + 1
2fn

∫ t

an+1+δn

ρ

(
s − an+1 − δn

an − an+1 − δn

)
ds, if t ∈ [an+1 + δn, an[.

Finally, the function q : [0, T [→ R is defined by

q(t) =
∫ t

0
v(s) ds.

The graph of the functions f(t) and q(t) is sketched in figure 3. The reader will easily
check that

(i) f(t) is a C∞ non-negative function on [0, T [,

(ii) (T, q) is a solution of the considered evolution problem,

(iii) the only instants at which q(t) = 0 are 0 and the an.

Therefore, q and q̃ provide two solutions of the evolution problem. These two solutions
do not coincide on any open subinterval of [0, T [. Therefore, uniqueness of solution for
problem III cannot be asserted, even in the case where the data are supposed to be of
class C∞. Percivale (1985) was the first to notice that, in the above example, if f(t) is
supposed to be analytic, then uniqueness of solution does hold. Recently, a complete
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Figure 3. Bressan–Schatzman counter-example.

discussion of the one-degree-of freedom problem was obtained by Schatzman (1998).
The general case is treated in Ballard (2000) and is now recalled. Let us just mention
that prior existence results had been obtained, but they were limited to the case
where the unilateral constraint is represented by a single function (see Schatzman
1978; Monteiro Marques 1993).

Regularity hypothesis V. The Riemannian configuration manifold, the func-
tions ϕi and the mapping f : TQ × R → T ∗Q are analytic.

The proof of the following proposition can be found in Ballard (2000). An earlier
proof can also be found in Lötstedt (1982).

Proposition 4.6. Let q0 ∈ A and v0 ∈ V (q0). Then, there exist Ta > t0, an
analytic curve qa : [t0, Ta[ → Q and n analytic functions λai : [t0, Ta[ → R such that

(i) (qa(0), q̇+
a (0)) = (q0, v0),

(ii) ∀t ∈ [t0, Ta[, �
D
dt

q̇a(t) = f(qa(t), q̇a(t); t) +
n∑

i=1

λai(t) dϕi(qa(t)),

(iii) ∀t ∈ [t0, Ta[, ∀i = 1, 2, . . . , n, λai(t) � 0, ϕi(qa(t)) � 0, λai(t)ϕi(qa(t)) = 0.

Moreover, the solution of this evolution problem is unique in the sense that any
other analytic solution (T, q, λ1, . . . , λn) is either a restriction or analytic extension
of (Ta, qa, λa1, . . . , λan).

Corollary 4.7. There exists an analytic solution (Ta, qa) for problem III.

Proof . Consider the motion qa furnished by proposition 4.6. It obviously satisfies
the initial condition, the unilateral constraint and the equation of motion. The only
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thing which remains to be proven is that it satisfies the impact-constitutive equation.
Since qa is analytic and satisfies the unilateral constraint, we have

∀t ∈ ]t0, Ta[, q̇−
a (t) = q̇+

a (t) ∈ V (qa(t)) ∩ (−V (qa(t))),

and, therefore,

∀t ∈ ]t0, Ta[, q̇+
a (t) = q̇−

a (t) = F(qa(t), q̇−
a (t)),

by proposition 4.4. �
Naturally, the analytic solution furnished by corollary 4.7 will cease to exist at

the first instant of impact. This is the reason why we have considered the wider
class MMA, which contains motions that are not differentiable in the classical sense.
Considering motions in MMA will allow us to extend the solution beyond the first
instant of impact. But we must make sure that admitting the wider class of solutions
MMA will not introduce parasitic solutions. This is the aim of the following theorem.

Theorem 4.8. Let (Ta, qa) be the solution for problem III furnished by corol-
lary 4.7, and (T, q) be an arbitrary solution for problem III. Then, there exists a real
number T0 (t0 < T0 � min{Ta, T}) such that

q|[t0,T0[ ≡ qa|[t0,T0[.

In other words, there is local uniqueness for problem III.

Local uniqueness is the difficult part in the study of the well-posedness of prob-
lem III. A detailed proof of the local uniqueness theorem 4.8 can be found in Ballard
(2000). It is written in the framework of the canonical impact-constitutive equa-
tion (4.8), but careful examination of the proof shows that the canonical impact-
constitutive equation is only used through the energy inequality (proposition 4.5).
Since the energy inequality holds for any impact-constitutive equation satisfying
requirements (4.6) and (4.7), so does local uniqueness.

Corollary 4.9. There exists a unique maximal solution for problem III.

It was noticed above that the analytical solution for problem III furnished by
corollary 4.7 stops existing at the first instant of impact. To overcome this fact,
we have proved that local uniqueness still holds in the wider class of motion MMA
which allows impacts. But this does not guarantee that the maximal solution for
problem III is not going to stop to exist at finite time for unphysical reasons. In
other terms, we still do not know if the class MMA is wide enough. Actually, it
is wide enough as shown by the following theorem which should be brought aside
theorem 2.3.

Theorem 4.10. The configuration manifold Q is assumed to be a complete Rie-
mannian manifold and the mapping f is supposed to admit the following estimate,

‖f(q, v; t)‖∗
q � l(t)(1 + d(q, q0) + ‖v‖q),

for all (q, v) ∈ TQ and almost all t ∈ [t0, +∞[, where d(·, ·) is the Riemannian
distance and l(t), a (necessarily non-negative) function of L1

loc(R; R).
Then, the dynamics is eternal, that is, the maximal solution for problem III is

defined on [t0,+∞[.

For detailed proof the reader is referred to Ballard (2000). Here also, the impact-
constitutive equation is only used through the energy inequality.
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(d) Comments

It is readily seen that the function q displayed in counter-example 4 is the unique
maximal solution of problem III corresponding to the situation under consideration.
This solution exhibits an accumulation of impacts on the left side of instant t = 3.
However, as predicted by corollary 4.7, for each instant t ∈ R

+, there exists a right
neighbourhood [t, t + η[ of t, such that the restriction of q to [t, t + η[ is analytic. A
straightforward and general consequence of this is the following.

Proposition 4.11. Let q be the maximal solution of problem III furnished by
corollary 4.9. Although infinitely many impacts can accumulate at the left of a given
instant, such an accumulation of impacts can never occur at the right of any instant.
Moreover, in the particular case where the impact-constitutive equation is elastic,
the instants of impact are isolated and therefore in finite number in any compact
interval of time.

Proof . Since for each instant t ∈ [t0, T [, there exists a right neighbourhood [t, t+η[
of t, such that the restriction of q to [t, t + η[ is analytic, we get the first part of
the proposition. For the second part, let τ be an arbitrary instant in ]t0, T [ and
consider the problem III associated with the initial condition (q(τ),−q̇−(τ)), the
elastic constitutive impact equation and the effort mapping g(q, v; t) defined by

g(q, v; t) = f(q, −v; τ − t),

which is analytic. By theorem 4.8, there exists an analytic function qa : [0, Ta[ → Q
which is a solution of this problem III. Any other solution of problem III coin-
cides with qa on a right neighbourhood of t = 0. Actually, as seen in the proof
of local uniqueness (theorem 4.8), a little bit more is proved: any function q′ ∈
MMA([0, T [;Q) satisfying the initial condition, the unilateral constraint, the equa-
tion of motion (4.4) and the energy inequality (proposition 4.5) has to coincide with
qa on a right neighbourhood of t = 0. But, it is readily seen that the function defined
by

q′(t) = q(τ − t), t ∈ [0, τ − t0[,

fulfil these requirements. Thus, q′ cannot have right accumulation of impacts at t = τ
and, therefore, q cannot have left accumulation of impacts at t = τ and the instants
of impact are isolated. Of course, if q is the maximal solution defined on [t0, T [,
impacts can still accumulate at the left of T , as seen in simple examples. �

The fact that infinitely many impacts can accumulate at the left of a given instant
but not at the right is a specific feature of the analytical setting that is lost in
the C∞ setting as seen in counter-example 5. Actually, this counter-example shows
that pathologies of non-uniqueness in the C∞ setting are intimately connected to
the possibility of right accumulations of impacts. The fact that the analytical set-
ting prevents such right accumulations is the fundamental reason why we can prove
uniqueness in this case.
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