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Spectral Total-Variation Local Scale Signatures
for Image Manipulation and Fusion

Ester Hait and Guy Gilboa, Member, IEEE

Abstract—We propose a unified framework for isolating, com-
paring and differentiating objects within an image. We rely
on the recently proposed total-variation transform, yielding a
continuous, multi-scale, fully edge-preserving, local descriptor,
referred to as spectral total-variation local scale signatures.
We show and analyze several useful merits of this framework.
Signatures are sensitive to size, local contrast and composition of
structures; are invariant to translation, rotation, flip and linear
illumination changes; and texture signatures are robust to the
underlying structures. We prove exact conditions in the 1D case.

We propose several applications for this framework: saliency
map extraction for fusion of thermal and optical images or for
medical imaging, clustering of vein-like features and size-based
image manipulation.

Index Terms—Spectral Total-Variation, Image Fusion, Image
Segmentation, Edge Detection, Size Differentiation, Clustering,
Saliency, Thermal Imagery, Medical Imagery.

I. INTRODUCTION

D IFFERENTIATING objects within an image by contrast,
size or structure is a fundamental image processing task.

It is highly useful for various image modalities and applica-
tions, such as image clustering, enhancement and fusion. A key
feature in many modalities (natural images, medical, thermal,
depth etc.) are edges, or discontinuities in the data.

For this purpose, the spectral total variation transform
(spectral TV) has been recently introduced as a useful edge-
preserving, multi-scale decomposition tool. However, previous
spectral TV-based approaches [1],[2],[3],[4] are better suited
for texture-structure decomposition than for object differentia-
tion. Other TV or spectral TV-based approaches can differen-
tiate objects, but only by their size [5],[6],[7]. Using spectral
TV for images of different modalities is challenging, due to
their complex nature, multi-scaled and occluded content.

In this paper, we present a novel, unified framework for
object differentiation by contrast, size or structure, including
complex multi-scaled objects. We capture salient objects by
exploiting the comprehensive scale and location information
extracted from spectral TV, referred to as Spectral TV Local
Scale Signatures (Fig. 1). Stemming from an edge preserving,
sparse spectral transform, signatures of significant objects are
sparse and strong; their locality allows good differentiation
within an image. We show and analyze the essential proper-
ties of the signatures: sensitivity to size, local contrast and
composition of structures; invariance to rotation, translation,
flip and linear illumination change; and invariance of texture
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ing, Technion - Israel Institue of Technology, Haifa, Israel, e-mail: ety-
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Figure 1: Spectral TV Local Scale Signatures, φ(x, y, t):
a multi-scale spectral TV per-pixel description, sensitive to
size, local contrast and composition of structures, invariant
to translation, rotation, flip and linear illumination change,
with texture invariance to underlying structure. Objects with
common features (seeds) have similar signatures, distinct from
those of different objects.

to structure.
Though relying merely on a few simple cornerstones, our
algorithm is applicable to various tasks (Fig. 2): fusion of
thermal and visible images, or of medical images of different
modalities; and clustering of vein-like repetitive structures
(segmentation / edge detection) and size differentiation.
The rest of the paper is organized as follows. Sec. II briefly
surveys previous image descriptors. Sec. III introduces spec-
tral TV (Sec. III-A), and reviews and analyzes previous
approaches. Sec. IV presents the novel concept of spectral
TV signatures and their properties. Sec. V includes a the-
oretical analysis. Sec. VI presents a unified framework for
object differentiation, demonstrated for synthetic images, and
applied for image manipulation (VI-C) and fusion (VI-D). Sec.
VII presents experimental results and comparisons to other
methods . Sec. VIII concludes our work. In the Appendix we
provide further analysis and suggest new visualization methods
for fusion.

II. RELATED WORK

In the past decades, high-level image understanding and
processing has considerably relied on feature descriptors of
different types. For example, sparse descriptors, describing
characteristics of interest points only (e.g. corners) [8], [9].

Our focus here, however, is on dense descriptors, describ-
ing every image pixel using properties of the pixel and its
surrounding. Various algorithms [6], [10], [11], [12] rely on
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(a) Thermal input
image

(b) Corresponding
visible image

(c) Repetitive input
image

(d) Map of salient
structures

(e) Repetitive input
image

(f) Size
differentiation

(g) Thermal
Saliency map

(h) Thermal / visible
fusion

(i) Image
manipulation

(j) Image
manipulation

(k) Size
differentiation

(l) Size
differentiation

Figure 2: Image fusion (a-b,g-h) and image manipulation (c-f,i-l) using spectral TV local scale signatures.

fundamental properties, such as intensity and color, gradient
magnitude and orientation, textures and patterns. Some of
these algorithms use features for learning [13], [14]. Among
these descriptors, those based on histograms of patterns [15]
or of oriented gradients [16] are rotation-variant, thus suitable
for texture applications. Other approaches include multi-scale
decompositions using image transforms [17] or diffusion [18];
or using as features the response to a set of predefined
linear filters [19], [20], [21]. Recently, convolutional neural
networks (CNN) have emerged as a highly successful data-
driven tool [22], [23], [24]. However, this feature learning
approach is not generic and lacks solid theoretical background.
To overcome this, recent CNN methods use sets of linear filters
in their first convolutional layers [25], [26].

In this paper, we present a novel dense, multi-scale, edge
preserving, local descriptor. Its properties are highly suited for
detecting and clustering vein- and disk-like structures and for
constructing saliency maps for fusion.

III. PRELIMINARIES

A. Spectral Total Variation

The total variation (TV) functional [27] has been widely
used as an image regularizer, e.g. for denoising and decon-
volution [27],[28],[29],[30], decomposition and texture anal-
ysis [31],[32],[33] and fusion [34],[35]. Denoting image do-
main as Ω, and the gradient (understood as the distributional
gradient) as ∇, the TV functional is defined as:

J(u) =

∫
Ω

|∇u(x)|dx. (1)

For an input image f(x), the gradient descent evolution of this
functional, known as TV flow [36], is defined as,

∂u

∂t
= div

(
∇u
|∇u|

)
in (0,∞)× Ω,

u(x, 0) = f(x) in x ∈ Ω,

(2)

with Neumann boundary conditions (note that the right-hand-
side of (2) should be understood as a negative subgradient
of J). Performing TV flow, up to a scale T , is analogous to
solving the ROF [27] optimization problem [1]:

arg min
u

{
J(u) +

1

2T
‖f − u‖22

}
. (3)

Denoting t ∈ [0,∞) as the time or scale parameter of the TV
flow (2), and utt as the second time derivative of its solution
u(x, t), the spectral TV transform [37] is defined by,

φ(x, t) = utt(x, t)t. (4)

We refer to φ(x, t) as the spectral component or band at scale
t (see Fig. 1, left for a visualization of φ at some scales). The
main properties of this nonlinear transform are as follows:

1) Reconstruction. Any zero mean, bounded varia-
tion function f can be reconstructed by f(x) =∫∞

0
φ(x, t)dt.

2) Spectral representation. We define a nonlinear eigen-
function with respect to the subdifferential of TV, ∂J(u),
as: λu ∈ ∂J(u). Examples of such eigenfunctions are
disks, or convex sets with low curvature on the boundary,
bounded by the perimeter to area ratio [36]. Then the
spectral response of an eigenfunction f with eigenvalue
λ is a Dirac delta at scale 1/λ: φ(t) = δ(t−1/λ)f . Thus,
a signal composed of spatially-separated eigenfunctions
has a highly sparse representation (analogous to Fourier
transform representation of sine functions).

3) Orthogonality. Under some conditions, such as in the
discrete 1D case, spectral components are orthogonal to
each other: 〈φ(t1), φ(t2)〉 = 0, ∀t1 6= t2 [1].

4) Filtering. Given a filter H(t), extending the reconstruc-
tion formula, fH(x) =

∫∞
0
H(t)φ(x, t)dt, allows the

design of various edge-preserving TV filters.
5) Translation and rotation invariance. The φ compo-

nents inherit the properties of the TV functional and are
translation and rotation invariant.

These properties apply to the multiscale representation φ(x0, t)
of each pixel x0. We show how this characterization of pixel
relations with its neighborhood can successfully serve as a
generic pixel descriptor.

We later use two additional definitions. First, the spectrum
Sf (t) is defined (using the original definition of [37]) as:

Sf (t) = ‖φ(x, t)‖L1 =

∫
Ω

|φ(x, t)|dx, (5)

which can be seen as the L1 amplitude of the response at each
scale t ∈ [0,∞). Second, the residual image fr(x), generated



IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. X, NO. Y, FEBRUARY 2018 3

(a) Synthetic
input image

(b) Our method:
signature clustering

(c) Time of peak
of local response

(d) Time and value of absolute
peak of local response

(e) Global spectrum,
L2-fidelity

(f) Global spectrum,
L1-fidelity [5]

(g) Synthetic
input image

(h) Our method:
signature clustering

(i) Time of peak
of local response

(j) Time and value of absolute
peak of local response

(k) Global spectrum,
L2-fidelity

(l) Global spectrum,
L1-fidelity [5]

Figure 3: Synthetic analysis and comparison of our method to previous spectral TV-based Approaches: successes vs. failures.
No spectral-TV based method but ours can differentiate objects by size and contrast, as well as a composition of
structures.

after some finite time T , is defined as:

fr(x, T ) = u(x, T )− ut(x, T ) · T. (6)

Further discussions can be found in [37].

B. Previous Spectral TV-based Approaches

Most previous spectral TV-based methods perform global
scale analysis, that is, spatially integrating spectral information
for each scale. Global spectral methods using the TV-flow
(or L2-fidelity as in (3)) have been successfully used for
texture extraction and manipulation [1], [2], [4]. However,
differentiating objects within an image is challenging, as
different types of objects may correspond similarly in the
spectrum peak (although the full signature is different).

Another successful global approach uses an L1-fidelity
term in (3) for contrast-invariant multi-scale decomposition,
differentiating objects only by their size [5]. However, we are
interested in differentiating objects both by size and contrast.
The only previous local approach, performing scale analysis
for each spatial location, was suggested for structure-texture
decomposition [3]. This method relies on the time of the
response peak of each pixel to fit a separation surface between
two bands of spectral layers: texture and structure. Despite its
success for texture-structure decomposition, it is not suited
for object differentiation. The approach of [3] is simple but
limited, as it uses only the response peak information.

Toy Examples Analysis: We analyze two key synthetic
examples to study the limitations of previous spectral TV-
based methods (Fig. 3).

Objects of various sizes and contrasts (Fig. 3a) cannot all
be differentiated using global spectral TV. Two objects (one
double the size, but half the contrast of the other) respond si-
multaneously, reflected in a mutual peak (Fig. 3e) in the global
spectrum (5). In addition, the contrast-invariant global L1-
fidelity method [5] cannot differentiate same-size, different-
contrast objects. Its global spectrum (5) shows simultaneous
responses for same-contrast objects (Fig. 3f). A local approach
using the time of peak of local response for differentiation

(following [3]) also fails, as different objects and background
regions respond simultaneously (Fig. 3c). However, we can
differentiate foreground from background and all objects from
each other (Fig. 3d) by combining the time tpeak and signed
value vpeak of the absolute peak of local response, defined as:

[v, tpeak](x) = maxt(|φ(x, t)|), vpeak(x) = φ(x, tpeak).

A synthetic composition of structures (Fig. 3g) simulates real
multi-scaled images. We first note objects’ impact on each
other’s behavior: objects first merge, then the merged object
fades. Both global methods can approximately differentiate
objects (Figs. 3k,3l), though the L1-fidelity method is about 9
times slower. However, differentiating by the time of the peak
of local response fails (Fig. 3i); and so does combining the
features of the absolute peak of local response (Fig. 3j).
In conclusion, no previous spectral-TV based method can dif-
ferentiate objects by size and contrast, as well as a composition
of structures. We thus suggest to exploit more spectral TV
information within a local framework.

IV. SPECTRAL TV LOCAL SCALE SIGNATURES

Object differentiation requires exploiting detailed, local,
multi-scale information to handle different sizes, contrasts
and complex structures. We thus introduce the concept of
spectral TV local scale signatures. We denote the signatures
of a signal f(x) as φf (x, t), where φ is defined by (4). For
each pixel there exists a well-defined, unique representation
in the scale continuum (unlike classical pyramidal multiscale
representations and wavelets), yielding a natural multi-scale
pixel descriptor.

A. Properties of Spectral TV Signatures

We now summarize the main properties of the spectral
TV signatures and illustrate them graphically by simple toy
examples. An elaborated theoretical analysis for the 1D case
is given in Sec. V.
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Property 1:

Sensitivity to Size
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Figure 4: 2D Demonstration of properties 1, 2, 3. Signatures
are distinct due to their sensitivity to size and contrast (a), and
their sensitivity to composition of structures (b). However, they
are invariant to rotation and translation (c).

Sensitivity of the Signatures:

Property 1. Sensitivity to Size and to Local Contrast

Signatures are sensitive to change in size (spatial scaling
by factor a) and change in local contrast (contrast change by
factor a) by the following relations:

φaf(x) = φf (x, t/a),

φf(ax) = aφf (ax, at).
(7)

This results from spectral TV properties [37]. This allows
differentiating objects by their distinct signatures (Fig. 4a).

Property 2. Sensitivity to Composition of Structures

Structures of comparable scales respond differently when
composed together (with spatial overlay), compared to their
individual responses. That is, in this case the non-linearity of
the TV transform applies, allowing for some signals f , g:

φf+g 6= φf + φg. (8)

Composited objects thus have distinct signatures (Fig. 4b).
An analytical solution (Appendix A, Proposition 1) and a
demonstration (Fig. 5) are given for the staircase signal. Note,
that non-linearity is marginal for structures of very different
scales or for spatially distant ones.

Invariance of the Signatures:

Property 3. Invariance to Rotation, Translation and Flip

Signatures are rotation and translation invariant in Rn:

φf(Rx) = φf (Rx, t),

φf(x−a) = φf (x− a, t),
(9)

where R(x) is a rotation matrix, and a is a spatial shift (Fig.
4c). This also results from spectral TV properties [37].
Since TV is invariant to the coordinate system (being rotation-
ally invariant and sensitive only to derivatives), signatures are
also invariant to flip w.r.t. an arbitrary coordinate system:

φf(x)(x) = φf(−x)(−x). (10)

(a) f(x): staircase
signal

(b) fr(x) after
objects merge

(c) fr(x),
running time=50

(d) K-means
clustering using

φ(x, t)

(e) φ(x, t) of top
(red), middle (blue)

and background
(green) regions

(f)
Global spectrum

Sf (t)

Figure 5: Demonstration of Property 2 for the 1D staircase
signal (a). Spectral TV signatures, generated during TV flow
of the signal (b,c), are distinct for different regions (e). Thus,
signature clustering allows differentiating the regions (d).

It is shown in Fig. 7 how these properties can be useful for
finding similar image textures, where patch-based comparison
fails.

Property 4. Invariance of Texture to Structure

Signatures of textures (patterns) are invariant to their un-
derlying structure, up to a certain scale, under very broad
conditions. This holds for fine scales (precise conditions are
given in Sec. V-C). Fig. 6 (top) shows the invariance of
signatures of objects with identical textures to their different
underlying global contrasts for fine scales. A 1D proof (Sec.
V-C, Theorem 1) and a 1D demonstration (Fig. 9, top) are
given.

Property 5. Invariance to Linear Illumination Change

Signatures are invariant to a linear change of illumination,
which holds up to a certain scale (precise conditions are
given in Sec. V-C). Fig. 6 (bottom) shows the invariance
of signatures of objects with identical textures and identical
global contrasts. A 1D proof (Sec. V-D, Theorem 2) and a 1D
demonstration (Fig. 9, bottom) are given.

B. Implications for General Images

In Fig. 8a we show some examples where the signatures are
similar and where they are distinct from each other. Comparing
the signatures of different-size, same-color objects in Fig.
8a, signatures of small white stars display stronger, earlier
responses, distinct from those of the larger white stripes (Fig.
8d). For thermal and medical images (Fig. 8b), signatures
of objects different in size or contrast are distinct (Fig. 8c).
Moreover, signatures of highly-contrasted or large objects
display stronger responses than those of weakly-contrasted or
small ones (Fig. 8e). Signature enhancement (see Sec. VI-D)
improves the distinctness of signatures of different groups (Fig.
8f). This is useful since the salient objects in these modalities
are usually highly-contrasted.
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(a)
f(x)

(b) Left circle:
zoom-in

(c) Right circle:
zoom-in

(d) φ(x, t):
fine scales

(e) φ(x, t):
fine and coarse scales

Figure 6: 2D Demonstration of properties 4,5. Signatures of objects with identical textures (patterns) are invariant to their
underlying structures - different global contrasts - for fine scales (top). Signatures of objects with identical textures and
identical global contrasts are identical - thanks to their invariance to linear illumination changes (bottom).

(a) A reference pixel (blue) and its 9
NN using spectral TV signatures

(b) Patches of reference pixel (left) and its 4 NN
using spectral TV signatures (c) Identical signatures of reference

pixel (blue) and its 4 NN

(d) A reference pixel (blue) and its 9
NN using patch intensity

(e) Patches of reference pixel (left) and its 4 NN
using patch intensity (f) Dissimilar patch intensity descriptors

of reference pixel (blue) and its 4 NN

Figure 7: 2D Demonstration of the invariance to rotation, translation and flip, and the invariance of textures to their underlying
structures. Using spectral TV signatures, the 9 NN of a reference pixel (reference marked in blue) are pixels of similar textures,
but of different global contrasts, rotations, translations or flips (top). Conversely, the patch intensity descriptor fails to find
these texturally-similar pixels (bottom).

(a) Image with
repetitive structures

(b)
Thermal image

(c) Distinct φ(x, t)
of objects in (b)

(d) Distinct φ(x, t)
of groups of objects

in (a)

(e) Non-enhanced
φ(x, t) of groups of

objects in (b)

(f) Enhanced φ(x, t)
of groups of objects
in (b) (Sec. VI-D)

Figure 8: Distinctness of signatures of groups of objects with
common features. For an image with repetitive structures (a),
groups of objects have distinct signatures (d). For a thermal
image (b), different objects have distinct signatures (c), and
so do groups of objects (e,f).

V. THEORETICAL ANALYSIS

This section presents theoretical analysis of signature prop-
erties. We formulate a sufficient condition for local patterns
to merge first; and give sufficient conditions and proofs of
the invariance to linear illumination change and of texture
to structure. Appendix A shows an analytic solution of the
separation of composited regions for the 1D staircase signal.

A. Preliminaries

Our analysis below is based on the work of Steidl et al.
[38], which gives an analytic solution for the TV-flow in the
time continuous, spatially discrete 1D case. They shows that
in a TV-flow evolution, each pixel belongs to a local constant
region (all pixels in the region are connected and have the
same value), which dictates its behavior. The region evolves at
a certain constant speed (inversely proportional to region size),
until a merging event occurs, that is, when two neighboring
regions obtain the same value. Let f ∈ RN be a discrete 1D
input signal of size N pixels. Let u ∈ RN × [0,∞) be the
space-discrete realization of the TV-flow, defined by (2). We
denote by ui(t) the value of u at pixel i at time t. Two main
properties of this dynamic are:
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(a) f(x): identical textures,
different structures

(b) φ(x, t < tmerge−in) of
left (red) and right (blue)

structures

(c) Insignificant φ(x, t)
absolute differences

(d) φ(x, t) of left (red)
and right (blue) structures

(e) K-means clustering
using φ(x, t)

(f) f(x): identical textures
and structures

(g) φ(x, t < tmerge−in) of
left (red) and right (blue)

structures

(h) Insignificant φ(x, t)
absolute differences

(i) φ(x, t) of left (red) and
right (blue) structures

(j) K-means clustering
using φ(x, t)

Figure 9: Demonstration of Property 4 (top) and Property 5 (bottom) for 1D signals. A signal with identical textures, but different
underlying structures (a) has identical fine-scale signatures - up to tmerge−in, when local patterns merge (b,c). Signatures then
become distinct (d). A signal with underlying structures of identical global contrasts (f), not only has identical signatures for
t < tmerge−in (g), but also identical signatures up to tmerge−struct, when structures merge with background simultaneously
(h,i). Thus, signature clustering allows differentiating between structures (e), or structures from background (j).

(a) signal f , discussed in
Lemma 1 (b) signal f , discussed in Proposition 1, phase I (c) signal g, discussed in Proposition 1, phase II

(d) case of slowest
evolution of ui∈Ω,

see Lemma 1

(e) case of fastest evolution
of u0<i<N−1,
see Lemma 1

(f) signal g, discussed in Theorem 1 (g) signal g, discussed in Theorem 2

Figure 10: Signals discussed in Lemma 1 (a,d,e), Theorem 1 (f), Theorem 2 (g) and Proposition 1 (b,c).

1) There exists a finite number of merging events, 0 = t0 <
t1 < ... < tn−1 < tn (Proposition 4.1 (ii) in [38]).

2) Within the time intervals between merging events, t ∈
[tj , tj+1), all pixels ui, belonging to a constant region
{ui−l+1, ..., ui+r} of size wi,tj with relation µi,tj to its
neighboring regions, evolve linearly (4.1 (iii) in [38]):

ui(t) = ui(tj) + µi,tj

2(t− tj)
wi,tj

,

µi,tj =


0, if {ui−l, ..., ui+r+1} is strictly monotonic
1, if ui is minimal in {ui−l, ..., ui+r+1}
−1, if ui is maximal in {ui−l, ..., ui+r+1}.

(11)

B. Local Patterns Merge First
This section gives a 1D proof that regions of local patterns

merge first, and only then merge with their surroundings.
Let f : {0, ..., N −1} → R be as depicted in Fig. 10a, and let
Ω1 = {0, ..., i0−1},Ω = {i0, ..., i1},Ω2 = {i1+1, ..., N−1},
where Ω1,Ω2 are constant regions (no patterns outside Ω). We
define: w1 , i0, l , i1 − i0 + 1, w2 , N − 1 − i1, and
assume, without loss of generality, that l < w2 < w1 and
f [i1 + 1] > f [i0− 1]. We define: m , min fi∈Ω is attained at
imin, M , max fi∈Ω is attained at imax, H , f [i1 + 1].
We also define the following two critical time points:
tmerge−in, the minimal merging time of Ω, and tmerge−out,
the minimal merging time of {i0, ..., N − 1}.



IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. X, NO. Y, FEBRUARY 2018 7

Lemma 1 (Local Patterns Merge First). Let f be as defined
above. If M−m

m−H ≤
w2

l , then tmerge−in < tmerge−out.

Proof. Relying on Section V-A, the TV flow dynamics of pixel
i are determined by wi, µi, regardless of ui(t = 0). The key
concept of our proof is that µi depends only on pixels at the
immediate edge of the region. Thus, pixel behavior is not
influenced by pixels ”beyond” the derivative / edge.
We first examine the slowest possible merging of Ω, that is, the
latest time of achieving equality of imin, imax. The slowest
speed of imin can be 0 (when near the boundary, case 1 of 11).
But imax must always decrease at a speed of at least 2/(l−1),
through a path of total length no more than (M −m). In this
case (Fig. 10d), tmerge−in = (M −m) · (l − 1)/2. Thus,

tmerge−in < (M −m) · l/2. (12)

We now examine the fastest possible merging of Ω with Ω2.
In this case, imin is at the edge of Ω (Fig. 10e) with zero
speed. Thus the merging speed is bounded by the speed of
Ω2, 2/w2, through a path of length of at least (m−H). Thus,

tmerge−out ≥ (m−H) · w2/2. (13)

From the assumption of the Lemma we have:
M −m
m−H

≤ w2

l
⇒ (M −m) · l ≤ (m−H) · w2. (14)

Thus, combining (12), (13) and (14): tmerge−in < tmerge−out.

C. Invariance of Texture to Structure
This section gives precise conditions for the validity of

Property 4. Let f : {0, ..., N − 1} → R admit the condition
defined in Lemma 1. Let g : {0, ..., 2N − 1} → R be a
concatenation of f and a translated, value-shifted, version of f
(see an example in Fig. 10f). We show that texture signatures
are identical for fine scales, regardless of their underlying
structures. Assuming some constants 0 < C1 < C2, we define:

g[i] =


f, 0 ≤ i < N

f + C1, N ≤ i < i0 +N, i1 +N + 1 ≤ i < 2N

f + C2, i0 +N ≤ i < i1 +N + 1.

We define the regions of identical texture (up to an additive
constant) as Ω = {i0, ..., i1}, Ω̃ = {i0 +N, ..., i1 +N}.

Theorem 1 (Invariance of Texture to Structure). Let g be as
defined above. Then there exists a time tmerge−in, such that:

φg(i ∈ Ω, t ≤ tmerge−in) = φg(i ∈ Ω̃, t ≤ tmerge−in). (15)

Proof. First, relying on Lemma 1: tmerge−in(gi∈Ω) <
tmerge−out(gi∈Ω), and tmerge−in(gi∈Ω̃) < tmerge−out(gi∈Ω̃).
Second, based on (11), the speed of u(t) at pixel i, ∂tui, is
invariant to translation and to change by an additive constant.
Since mi∈Ω = mi∈Ω̃, µi∈Ω = µi∈Ω̃, flow dynamics are
identical in Ω and in Ω̃ until the internal merge.
Therefore: tmerge−in , tmerge−in(gi∈Ω) = tmerge−in(gi∈Ω̃).
From the definition of φ (4) we deduce:

φg(i ∈ Ω, t ≤ tmerge−in) = φg(i ∈ Ω̃, t ≤ tmerge−in).

D. Invariance to Linear Illumination Change
This section gives precise conditions for the validity of

Property 5. We show that signatures of complete structures,
as well as their textures, are invariant to a linear change of
baseline, up to a scale related to the scale of the structure
(width and height), as seen in Fig. 9i. This is as opposed to
the fine scales discussed in Theorem 1, as seen in Fig. 9d.
Let f : {0, ..., N − 1} → R admit the condition defined in
Lemma 1, and l be as defined there. Let g : {0, ..., 2N−1} →
R be a concatenation of f and a translated f , with a linearly-
changing baseline, as depicted in Fig. 10g, as follows:

g[i] =

{
a · i+ b+ f [i], 0 ≤ i < N

a · i+ b+ f [i−N ], N ≤ i < 2N.

We define structure regions as: Ω = {i0, ..., i1}, Ω̃ =
{i2, ..., i3}, and define: ∆ , max gi∈Ω − min gi∈Ω, w ,
i2 − i1-1, h , g[i2 − 1]− g[i1 + 1], such that: a = h/w. For
simplicity, we assume (though this can be relaxed) structures
are of equal heights with respect to the linear slope:

g[i0]− g[i0 − 1] = g[i1]− g[i1 + 1] =

g[i2]− g[i2 − 1] = g[i3]− g[i3 + 1] , H.
(16)

We assume H is large enough and l small enough, so that
local patterns merge first, as in Lemma 1. We also require the
following condition:

h(w + 1)

2
>

(H + ∆) · l
l + 1

. (17)

Theorem 2 (Invariance to Linear Illumination Change). Let
g be as defined above. Then there exists a time tmerge−struct,
such that:

φg(i ∈ Ω, t ≤ tmerge−struct) = φg(i ∈ Ω̃, t ≤ tmerge−struct).
(18)

Proof. Following the same concept as in Theorem 1, patterns
in Ω, Ω̃ merge first and simultaneously. To determine the next
merging event, we explore the dynamics of structures Ω, Ω̃ vs.
those of the linear baseline. Using (16), we will now analyze
only the dynamics of the left structure and its neighborhood,
as both structures behave the same.
For two neighboring pixels i, j = i+ 1, which are of different
regions and of nonzero speed, the merge time according to
(11) is |g[i]−g[j]|

2/wi+2/wj
. Thus the slowest merging of the left

structure with the baseline occurs when ∂tui 6= 0 only for i =
{i0, ..., i1 + 1}, after its internal evolution made ui1 increase
by ∆. Then, an upper bound on the merging time of the left
structure is: tmerge−struct ≤ tmerge(g{i1,i1+1}) = (H+∆)·l

2(l+1) .
We now calculate the merging time of the linear baseline,
tmerge−line. The preceding evolution is a series of merg-
ing events tk of regions hk, gradually growing with speeds
vk = 2/k by one pixel at a time, such that

∑w
k=1 hk = h/w.

Thus: tmerge−line =
∑w

k=1
hk

vk
= h(1+w)

4 .
Given (17), tmerge−struct < tmerge−line. Therefore, TV flow
dynamics are identical for Ω, Ω̃ until tmerge−struct. Relying
on (4), we deduce that:

φg(i ∈ Ω, t ≤ tmerge−struct) = φg(i ∈ Ω̃, t ≤ tmerge−struct).
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Figure 11: Image manipulation and image fusion using spectral TV local scale signatures: algorithm flowchart.

VI. ALGORITHM AND APPLICATIONS

The properties of spectral TV signatures can allow grouping
together objects with shared features. To facilitate this, we
perform dimensionality reduction by clustering of signatures.
This allows to partition the image into a set of distinct groups
with common spectral TV responses, which can serve for
isolating and differentiating salient objects.

A. A Unified Framework

We present a generic unified framework with various appli-
cations for images of different modalities (Fig. 11, Algorithm
1). We first decompose the image into its TV elements, using
the TV-transform1 of (4), calculating up to the maximal scale
of relevant image structures, T . We use the gray-level version
of the input image (in this work, color information is not used).
We then perform application-dependent preprocessing on the
acquired signatures, denoted φf (x), generating more relevant
and enhanced descriptors, denoted Φf (x), to be used as the
feature vectors for clustering. A basic dimensionality reduction
is performed, using K-means clustering [39]. Last, application-
dependent postprocessing of clusters is applied when needed.

Spectral TV Feature Denoising: Since most image noise
appears in the first spectral TV bands, an optional denoising
step is inherited within the spectral TV scheme, simply by
omitting some of the first spectral TV bands.
Denoting the minimal preserved scale (determined by the ex-
pected noise variance) as td, and the maximal scale calculated
for the transform as T , we define denoising as:

Φf (x) = φf (x, [td, T ]). (19)

1See spectral TV code in http://guygilboa.eew.technion.ac.il/code/code1/

Data: Input image: natural with repetitive structures;
thermal; medical; or synthetic.

Result: Image manipulation, image fusion or object
differentiation.

Spectral TV transform
Preprocessing:

case synthetic image do
Foreground / background separation, Sec. VI-B

case repetitive image do
Spectral TV Denoising, Eq. 19 (optional)
Selecting regions of interest, Eq. 20 (optional)

case thermal or medical image do
Spectral TV Denoising, Eq. 19 (optional)
Signature enhancement, Eq. 21

Dimensionality reduction: K-means clustering
Postprocessing:

case repetitive image do
Matting or morphological operations, Sec. VI-C

(optional)
case thermal or medical image do

Matting, Sec. VI-D (optional - using residual,
Eq. 6)

Application:
case repetitive image do

Image manipulation
case thermal or medical image do

Image fusion, Appendix B
Algorithm 1: A unified framework for various modalities
and applications using spectral TV local scale signatures.

B. Synthetic Images: Object Differentiation

We first show how disk-type objects are well differentiated
in this framework. As we want to use simple unsupervised
K-means, we first perform a rough foreground/background
separation (as the background may contain several clusters).
This is done by exploiting the negativity of dominant peaks
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(a)
Synthetic

input image

(b) Different wavelet
descriptors of

same-object pixels

(c) Different PM
diffusion descriptors
of same-object pixels

(d) Different
Laplacian descriptors
of same-object pixels

(e) Different HoG
descriptors of

same-object pixels

(f) Similar spectral
TV signatures of

same-object pixels

(g)
Clustering using
patch intensity

(h) Clustering using
wavelets [17]

descriptors

(i) Clustering using
PM diffusion [18]

descriptors

(j) Clustering using
Laplacian [19]

descriptors

(k)
Clustering using

HoG [16] descriptors

(l) Our method:
clustering of spectral

TV signatures

Figure 12: Synthetic analysis and comparison of spectral TV signatures to other descriptors. Clustering (bottom row) succeeds
only when relying on spectral TV signatures, since only they are the obly descriptors (top row), which guarantee similarity
for same-object pixels but distinctness for different-object pixels.
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Figure 13: Synthetic images: object differentiation results.

of background signatures (for dark background). Figs. 3, 13
show clustering results of basic structures. Fig. 12 shows
how clustering using our method outperforms clustering using
other well-known image decompositions or K-means based
on different descriptors [17],[18],[19],[16]. These examples
illustrate the unique advantages of the proposed approach. The
signatures are very similar for same-object pixels and very
distinct compared to pixels of other object.

C. Application I: Image Manipulation

We extract a map of salient objects of desired sizes or
structures for image manipulation: enhancement, attenuation
or coloring of certain structures. We can either explore clusters
of manually predefined pixels, or choose interesting structures
after clustering. Preprocessing may include denoising (Eq. 19),
or selecting regions of interest using a map M(x):

Φf (x) = φf (x, t) ·M(x). (20)

Postprocessing may require image matting [40] or morpholog-
ical operations of relevant clusters.

D. Application II: Image Fusion

We extract a saliency map from thermal or medical (MRI-
T2) images to be fused into a corresponding different-modality

image of the same scene (visible or medical, respectively).
This relies on the high contrast of salient objects in these
modalities (hot objects, or tumors or abnormal organ struc-
tures, respectively). To improve clustering, preprocessing in-
cludes signature enhancement - ”stretching” each signature
according to its Lp norm (usually L1 norm):

Φf (x) = φ(x, t) · ||φ(x, t)||p. (21)

Signatures of salient objects ”stretch” more, thus promoting
their strength and sparsity (see Fig. 8e vs. Fig. 8f). Denoising
(19) is also optional. We cluster these enhanced, possibly
denoised signatures, Φf (x). Using more clusters allows cap-
turing smaller or narrower objects, e.g. people and lampposts.
Finally, our postprocessing includes image matting [40] to
generate the saliency map. The user chooses parameters
K1,K2, where the K1 strongest clusters (in the sense of
centroid intensity) form an initial foreground map; and the
K2 weakest clusters form an initial background map. Matting
then classifies all other pixels as foreground/background, and
the resulting foreground is the saliency map.
The relevance of highly contrasted but large image regions
is often low (depends on the application). In addition, weak
signatures may nevertheless indicate relevant objects, which
have not responded yet within a limited running time, or
objects near image boundaries. We can handle both issues by
incorporating image residual fr(x) (6) into the postprocessing
matting, requiring to select thresholds for fr(x). This gener-
ates an alternative detailed map with large or near-boundary
objects, while avoiding long running times. See examples in
Figs. 17r, 18d. See Appendix B for novel fusion visualization
methods.

VII. EXPERIMENTAL RESULTS

We show experimental results for various image modalities
and applications, such as image fusion, image segmentation /
edge detection and size differentiation, achieving comparable
or superior results compared to other techniques.
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(d)
Edge

detection [14]

(e)
Edge

detection [12]

(f) K-means
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color

(g) K-means
using HoG
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(h) CNN -
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(i)
Repetitive input
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(j)
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(k)
Edge

detection [10]

(l)
Edge
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using patch
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using HoG
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Figure 14: Results and comparisons: salient structure extraction for repetitive images.

(a)
Repetitive

input image

(b) Image
manipulation using

salient structures map

(c) Our method:
clustering of spectral

TV signatures

(d) Clustering using
wavelets [17]

descriptors

(e) Clustering using
PM diffusion [18]

descriptors

(f) Clustering using
Laplacian [19]

descriptors

Figure 15: Comparison of K-means clustering into two clus-
ters, using spectral TV signatures vs. other descriptors.

(a) Repetitive image (b) Image manipulation

Figure 16: Image manipulation using size differentiation.

A. Image Manipulation

Fig. 14 demonstrates salient repetitive structure extraction.
A comprehensive comparison clearly shows how our method
outperforms other state-of-the-art methods. Our method allows
to extract fine salient structures in challenging images: leaf
veins with varying-illumination background (b), or thin stripes
of a game-board, of the same color as other objects (j). This
is thanks to the properties discussed earlier of invariance
to rotation, translation and linear illumination. Conversely,
other methods [10],[14],[12] fail to detect well such fine
structures (c,d,e,k,l,m,n). Other methods rely on less stable
features, or features sensitive to illumination changes (f) or to
rotations [16] (g,o). In the case of learning-based methods, the
features are trained for semantic segmentation [24] (h,p).
Fig. 15 demonstrates how basic K-means clustering (with
K = 2) using spectral TV signatures (c) shows highly
meaningful clustering compared to the same procedure, based
on other well-known image decompositions or descriptors
(d,e,f) [17],[18],[19]. Fig. 15b shows an application of
signature-based stripe extraction for image manipulation.

The size sensitivity property (Property 1) allows to differen-
tiate objects of similar colors by size. Additional image mat-
ting or morphological operations may be used to reconstruct
the fine original shape-boundaries from round-shaped clusters.
Image manipulation examples based on image segmentation /
edge detection or size differentiation are given in Figs. 2, 16.

B. Image Fusion

Figs. 2, 17 demonstrate fusion results of thermal and
visible images. Our method can better process fine details,
compared to state-of-the-art fusion methods [42], [43]. In
addition, our saliency extraction outperforms salient thermal
detail extraction, using a well established generic saliency
extraction method [41]. Note that as opposed to our work,
previous thermal saliency extraction work is usually specifi-
cally designed for human detection [44]. We also demonstrate
our two novel fusion visualization methods (Appendix B), as
well as incorporating image residual into the postprocessing
to extract a more elaborated saliency map.
Fig. 18 shows (left) a challenging thermal/visible image fusion
example. We successfully extract only the salient details from
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(a) Thermal input
image

(b) Comparison:
saliency map [41]

(c) Our method:
saliency map

(d) Corresponding
visible input image

(e) Thermal input
image

(f) Corresponding
visible input image

(g) Comparison:
HMSD-GF
fusion [42]

(h) Comparison:
Hybrid MSD
fusion [43]

(i) Our method:
fusion using spectral

TV signatures

(j) Corresponding
visible input image,
enhanced using [42]

(k) Our method:
reduced thermal /

visible fusion

(l) Our method:
detailed thermal /

visible fusion

(m)
Comparison [42]:

zoom-in

(n)
Comparison [43]:

zoom-in

(o)
Our fusion method:

zoom-in

(p) Comparison:
context-aware
saliency [41]

(q) Our method:
reduced thermal

saliency map

(r) Our method:
detailed thermal

saliency map

Figure 17: Thermal / visible fusion results and comparisons. A saliency map (c) extracted from a thermal image (a) is fused
(i,o) using salient feature injection (Appendix B) into the corresponding visible image, enhanced using [42] (j). Our fusion
result outperforms state-of-the-art methods (g,h,m,n). We also show how a reduced saliency map (q) extracted from a thermal
image (e) is fused (k) using temperature gradient coloring (Appendix B, using g(S) = exp(S)) into the corresponding visible
image (f). Alternatively, incorporating image residual into the postprocessing matting generates a detailed saliency map (r) for
fusion (l). Our algorithm also outperforms extracting salient thermal details using a state-of-the-art generic saliency method [41]
(b,p).

(a) Thermal input
image

(b) Corresponding
visible input image

(c) Reduced thermal
saliency map

(d) Detailed thermal
saliency map

(e) MRI-T2 input
image

(f) MRI-T2 saliency
map

(g) HMSD-GF
fusion [42]

(h) Hybrid MSD
fusion [43]

(i) Reduced thermal
/ visible fusion

(j) Detailed thermal
/ visible fusion

(k) Corresponding
MRI-T1 input image

(l) MRI-T2 /
MRI-T1 fusion

Figure 18: Thermal / visible and medical examples of fusion visualization using temperature gradient coloring (Appendix B
using g(S) = exp(S)). A reduced saliency map (c), extracted from a challenging, nearly piecewise constant thermal image
(a), is fused (i) into the corresponding visible image (b). Alternatively, incorporating image residual into the postprocessing
matting generates a detailed saliency map (d) for fusion (j). Our results outperform state-of-the-art methods (g,h). Our medical
example shows how a saliency map (f) extracted from an MRI-T2 image (e) is fused (l) into the corresponding MRI-T1 image
(k).
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a nearly piecewise constant thermal image, outperforming
other methods [42], [43]. We also demonstrate (right) medical
image fusion, fusing regions of tumor and brain structure
extracted from an MRI-T2 image into an MRI-T1 image.

VIII. CONCLUSION

We design an algorithm to isolate and differentiate ob-
jects of different contrasts, sizes and structures. We use the
comprehensive scale and space information generated by the
spectral TV transform, referred to as spectral TV local scale
signatures. Given their high dimensionality and redundancy,
we reduce their dimensionality to partition an image into
meaningful groups. We prove some useful merits of our local
framework: sensitivity to size, local contrast and composition
of structures, as well as invariance to rotation, translation, flip
and linear illumination change. We also provide conditions for
the invariance of texture to structure. This enables to construct
a unified generic framework which can serve for many image-
processing tasks. We show the applicability of our approach
for various cases of multi-scaled images and for different
modalities.

APPENDIX

A. Differentiating Composited Regions by Distinct Signatures

We present an analytic solution for the 1D staircase signal
behavior to demonstrate Property 2. It is shown that within
each region the signatures of all pixels are identical, and dis-
tinct with respect to each other (thus can be easily clustered).
Let f : {0, ..., N − 1} → R be as depicted in Fig. 10b, and
let 0 < i0 < i1 < i2 < i3 < N − 1. We denote signal regions
as Ω1 , {i1, ..., i2}, Ω2 , {i0, ..., i1 − 1} ∪ {i2 + 1, ..., i3},
Ω3 , {0, ..., i0 − 1} ∪ {i3 + 1, ..., N − 1}, and their sizes as
m1 , i2−i1 +1, m2 , i1−i0 +i3−i2, m3 , i0 +N−1−i3,
respectively. Let fi∈Ω1

> fi∈Ω2
> fi∈Ω3

. Without loss of
generality, we assume that m3 > m1.

Proposition 1 (Sensitivity to Composition of Structures). Let
f be as defined above. Then:

φf (i ∈ Ωk, t) = ϕk(t), k = 1, 2, 3, (22)

such that ϕk(t) 6= ϕl(t), ∀k 6= l, k, l ∈ {1, 2, 3}. Note: region
signatures are identical ∀i ∈ Ωk. even for the disjoint Ω2.

Proof. Relying on Section V-A, we analyze the TV flow of f .
1) Phase I: t ∈ [0, t1) (Fig. 10b): following (11):

u(i, t) =


u(i, 0) + 2t

m1
· (−1), i ∈ Ω1

u(i, 0) + 2t
m2
· 0, i ∈ Ω2

u(i, 0) + 2t
m2
· 1, i ∈ Ω3.

m3 > m1 → ut(i ∈ Ω3) < ut(i ∈ Ω1). Thus, at t1
regions Ω1, Ω2 merge to form a new region Ω1,2 of size
m1,2 = m1 +m2.

2) Phase II: t ∈ [t1, t2) (Fig. 10c): following (11):

u(i, t) =

{
u(i, t1) + 2t

m1,2
· (−1), i ∈ Ω1,2

u(i, t1) + 2t
m3
· 1, i ∈ Ω3.

Thus, regions Ω1,2, Ω3 merge at t2: u(i, t > t2) = C.
Differentiating the TV flow of different regions twice in time:

utt(i, t) =


2( 1

m1
− 1

m1,2
)δ(t− t1) + 2

m1,2
δ(t− t2), i ∈ Ω1

2
m1,2

(
− δ(t− t1) + δ(t− t2)

)
, i ∈ Ω2

− 2
m3
δ(t− t2), i ∈ Ω3.

From (4) we obtain (for some A,B,C > 0):

φf (i, t) =


A · δ(t− t1) +B · δ(t− t2)), i ∈ Ω1

−B · δ(t− t1) +B · δ(t− t2)), i ∈ Ω2

−C · δ(t− t2), i ∈ Ω3.

B. Fusion Visualization Methods

Human observers, unlike computer systems, may prefer
viewing salient information when fused into a corresponding
different-modality image. We suggest two fusion visualization
methods. We denote the saliency map as S(x), a corresponding
registered image as V (x), and the fused image as F (x).
We first suggest injecting salient features directly into the
corresponding image (Fig. 17i):

F (x) = max(V (x), S(x)).

This allows introducing information which only appears in
S(x) on top of V (x). However, the typically low quality
thermal information might overlap the more detailed visible
information; and salient white objects will not be visualized as
salient. To overcome this, we suggest the temperature gradient
coloring method (Figs. 17k, 17l, 18i, 18j, 18l). F (x) is a gray-
level or RGB replicate of V (x) ({RV (x), GV (x), BV (x)})),
enhanced in locations corresponding to S(x):

F (x) = V (x) · g(S(x)),

or F (x) = {RV (x) · g(S(x)), GV (x), BV (x)},

then normalized to avoid clipping. g(S) must be:
1) Positive: ∀x, g(S(x)) > 0.
2) Monotonically increasing: ∀x, ∂g(S(x))

∂S(x) > 0.
3) Null for non-salient objects: g(S(x) = 0) = 1.

Some useful examples are g(S) = 1 +S and g(S) = exp(S).
Advantages of this method are: avoiding overlapping detailed
information with low-quality one; visualizing the gradient of
temperatures (e.g., the hotter the object - the redder it appears);
and handling salient white objects. Conversely, details which
appears only in the saliency map appear weaker in the fusion.
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