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We propose a unified framework for isolating, comparing and differentiating objects within an image. We rely on the recently proposed total-variation transform, yielding a continuous, multi-scale, fully edge-preserving, local descriptor, referred to as spectral total-variation local scale signatures. We show and analyze several useful merits of this framework. Signatures are sensitive to size, local contrast and composition of structures; are invariant to translation, rotation, flip and linear illumination changes; and texture signatures are robust to the underlying structures. We prove exact conditions in the 1D case.

We propose several applications for this framework: saliency map extraction for fusion of thermal and optical images or for medical imaging, clustering of vein-like features and size-based image manipulation.

I. INTRODUCTION

D IFFERENTIATING objects within an image by contrast, size or structure is a fundamental image processing task. It is highly useful for various image modalities and applications, such as image clustering, enhancement and fusion. A key feature in many modalities (natural images, medical, thermal, depth etc.) are edges, or discontinuities in the data.

For this purpose, the spectral total variation transform (spectral TV) has been recently introduced as a useful edgepreserving, multi-scale decomposition tool. However, previous spectral TV-based approaches [START_REF] Burger | Spectral decompositions using one-homogeneous functionals[END_REF], [START_REF] Benning | Nonlinear spectral image fusion[END_REF], [START_REF] Horesh | Separation surfaces in the spectral tv domain for texture decomposition[END_REF], [START_REF] Lu | Multisensor image fusion and enhancement in spectral total variation domain[END_REF] are better suited for texture-structure decomposition than for object differentiation. Other TV or spectral TV-based approaches can differentiate objects, but only by their size [START_REF] Zeune | Combining contrast invariant l1 data fidelities with nonlinear spectral image decomposition[END_REF], [START_REF] Brox | A tv flow based local scale measure for texture discrimination[END_REF], [START_REF] Strong | Scale recognition, regularization parameter selection, and meyer's g norm in total variation regularization[END_REF]. Using spectral TV for images of different modalities is challenging, due to their complex nature, multi-scaled and occluded content.

In this paper, we present a novel, unified framework for object differentiation by contrast, size or structure, including complex multi-scaled objects. We capture salient objects by exploiting the comprehensive scale and location information extracted from spectral TV, referred to as Spectral TV Local Scale Signatures (Fig. 1). Stemming from an edge preserving, sparse spectral transform, signatures of significant objects are sparse and strong; their locality allows good differentiation within an image. We show and analyze the essential properties of the signatures: sensitivity to size, local contrast and composition of structures; invariance to rotation, translation, flip and linear illumination change; and invariance of texture E. Hait and G. Gilboa are with the Department of Electrical Engineering, Technion -Israel Institue of Technology, Haifa, Israel, e-mail: etyhait@campus.technion.ac.il, guy.gilboa@ee.technion.ac.il to structure. Though relying merely on a few simple cornerstones, our algorithm is applicable to various tasks (Fig. 2): fusion of thermal and visible images, or of medical images of different modalities; and clustering of vein-like repetitive structures (segmentation / edge detection) and size differentiation. The rest of the paper is organized as follows. Sec. II briefly surveys previous image descriptors. Sec. III introduces spectral TV (Sec. III-A), and reviews and analyzes previous approaches. Sec. IV presents the novel concept of spectral TV signatures and their properties. Sec. V includes a theoretical analysis. Sec. VI presents a unified framework for object differentiation, demonstrated for synthetic images, and applied for image manipulation (VI-C) and fusion (VI-D). Sec. VII presents experimental results and comparisons to other methods . Sec. VIII concludes our work. In the Appendix we provide further analysis and suggest new visualization methods for fusion.

II. RELATED WORK

In the past decades, high-level image understanding and processing has considerably relied on feature descriptors of different types. For example, sparse descriptors, describing characteristics of interest points only (e.g. corners) [START_REF] Lowe | Object recognition from local scale-invariant features[END_REF], [START_REF] Bay | Speeded-up robust features (surf)[END_REF].

Our focus here, however, is on dense descriptors, describing every image pixel using properties of the pixel and its surrounding. Various algorithms [START_REF] Brox | A tv flow based local scale measure for texture discrimination[END_REF], [START_REF] Canny | A computational approach to edge detection[END_REF], [START_REF] Comaniciu | Mean shift: A robust approach toward feature space analysis[END_REF], [START_REF] Arbelaez | Contour detection and hierarchical image segmentation[END_REF] rely on fundamental properties, such as intensity and color, gradient magnitude and orientation, textures and patterns. Some of these algorithms use features for learning [START_REF] Martin | Learning to detect natural image boundaries using local brightness, color, and texture cues[END_REF], [START_REF] Dollár | Fast edge detection using structured forests[END_REF]. Among these descriptors, those based on histograms of patterns [START_REF] Ojala | A comparative study of texture measures with classification based on featured distributions[END_REF] or of oriented gradients [START_REF] Dalal | Histograms of oriented gradients for human detection[END_REF] are rotation-variant, thus suitable for texture applications. Other approaches include multi-scale decompositions using image transforms [START_REF] Antonini | Image coding using wavelet transform[END_REF] or diffusion [START_REF] Perona | Scale-space and edge detection using anisotropic diffusion[END_REF]; or using as features the response to a set of predefined linear filters [START_REF] Adelson | Pyramid methods in image processing[END_REF], [START_REF] Jain | Unsupervised texture segmentation using gabor filters[END_REF], [START_REF] Sagiv | Integrated active contours for texture segmentation[END_REF]. Recently, convolutional neural networks (CNN) have emerged as a highly successful datadriven tool [START_REF] Xie | Holistically-nested edge detection[END_REF], [START_REF] Chen | Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs[END_REF], [START_REF] Badrinarayanan | Segnet: A deep convolutional encoder-decoder architecture for image segmentation[END_REF]. However, this feature learning approach is not generic and lacks solid theoretical background. To overcome this, recent CNN methods use sets of linear filters in their first convolutional layers [START_REF] Bruna | Invariant scattering convolution networks[END_REF], [START_REF] Mallat | Understanding deep convolutional networks[END_REF].

In this paper, we present a novel dense, multi-scale, edge preserving, local descriptor. Its properties are highly suited for detecting and clustering vein-and disk-like structures and for constructing saliency maps for fusion.

III. PRELIMINARIES A. Spectral Total Variation

The total variation (TV) functional [START_REF] Rudin | Nonlinear total variation based noise removal algorithms[END_REF] has been widely used as an image regularizer, e.g. for denoising and deconvolution [START_REF] Rudin | Nonlinear total variation based noise removal algorithms[END_REF], [START_REF] Chambolle | Image recovery via total variation minimization and related problems[END_REF], [START_REF] Osher | Image decomposition and restoration using total variation minimization and the h[END_REF], [START_REF] Gilboa | Estimation of optimal pde-based denoising in the snr sense[END_REF], decomposition and texture analysis [START_REF] Aujol | Structure-texture image decompositionmodeling, algorithms, and parameter selection[END_REF], [START_REF] Vese | Modeling textures with total variation minimization and oscillating patterns in image processing[END_REF], [START_REF] Gilboa | Variational denoising of partly textured images by spatially varying constraints[END_REF] and fusion [START_REF] Kumar | A total variation-based algorithm for pixel-level image fusion[END_REF], [START_REF] Ma | Infrared and visible image fusion using total variation model[END_REF]. Denoting image domain as Ω, and the gradient (understood as the distributional gradient) as ∇, the TV functional is defined as:

J(u) = Ω |∇u(x)|dx. (1) 
For an input image f (x), the gradient descent evolution of this functional, known as TV flow [START_REF] Andreu | Minimizing total variation flow[END_REF], is defined as,

∂u ∂t = div ∇u |∇u| in (0, ∞) × Ω, u(x, 0) = f (x) in x ∈ Ω, (2) 
with Neumann boundary conditions (note that the right-handside of (2) should be understood as a negative subgradient of J). Performing TV flow, up to a scale T , is analogous to solving the ROF [START_REF] Rudin | Nonlinear total variation based noise removal algorithms[END_REF] optimization problem [START_REF] Burger | Spectral decompositions using one-homogeneous functionals[END_REF]:

arg min u J(u) + 1 2T f -u 2 2 . ( 3 
)
Denoting t ∈ [0, ∞) as the time or scale parameter of the TV flow ( 2), and u tt as the second time derivative of its solution u(x, t), the spectral TV transform [START_REF] Gilboa | A total variation spectral framework for scale and texture analysis[END_REF] is defined by,

φ(x, t) = u tt (x, t)t. (4) 
We refer to φ(x, t) as the spectral component or band at scale t (see Fig. 1, left for a visualization of φ at some scales). The main properties of this nonlinear transform are as follows: 1) Reconstruction. Any zero mean, bounded variation function f can be reconstructed by f (x) = ∞ 0 φ(x, t)dt. 2) Spectral representation. We define a nonlinear eigenfunction with respect to the subdifferential of TV, ∂J(u), as: λu ∈ ∂J(u). Examples of such eigenfunctions are disks, or convex sets with low curvature on the boundary, bounded by the perimeter to area ratio [START_REF] Andreu | Minimizing total variation flow[END_REF]. Then the spectral response of an eigenfunction f with eigenvalue λ is a Dirac delta at scale 1/λ: φ(t) = δ(t-1/λ)f . Thus, a signal composed of spatially-separated eigenfunctions has a highly sparse representation (analogous to Fourier transform representation of sine functions). 3) Orthogonality. Under some conditions, such as in the discrete 1D case, spectral components are orthogonal to each other:

φ(t 1 ), φ(t 2 ) = 0, ∀t 1 = t 2 [1]. 4) Filtering. Given a filter H(t), extending the reconstruc- tion formula, f H (x) = ∞ 0 H(t)φ(x, t
)dt, allows the design of various edge-preserving TV filters. 5) Translation and rotation invariance. The φ components inherit the properties of the TV functional and are translation and rotation invariant. These properties apply to the multiscale representation φ(x 0 , t) of each pixel x 0 . We show how this characterization of pixel relations with its neighborhood can successfully serve as a generic pixel descriptor.

We later use two additional definitions. First, the spectrum S f (t) is defined (using the original definition of [START_REF] Gilboa | A total variation spectral framework for scale and texture analysis[END_REF]) as:

S f (t) = φ(x, t) L 1 = Ω |φ(x, t)|dx, (5) 
which can be seen as the L 1 amplitude of the response at each scale t ∈ [0, ∞). Second, the residual image f r (x), generated No spectral-TV based method but ours can differentiate objects by size and contrast, as well as a composition of structures.

after some finite time T , is defined as:

f r (x, T ) = u(x, T ) -u t (x, T ) • T. (6) 
Further discussions can be found in [START_REF] Gilboa | A total variation spectral framework for scale and texture analysis[END_REF].

B. Previous Spectral TV-based Approaches

Most previous spectral TV-based methods perform global scale analysis, that is, spatially integrating spectral information for each scale. Global spectral methods using the TV-flow (or L 2 -fidelity as in (3)) have been successfully used for texture extraction and manipulation [START_REF] Burger | Spectral decompositions using one-homogeneous functionals[END_REF], [START_REF] Benning | Nonlinear spectral image fusion[END_REF], [START_REF] Lu | Multisensor image fusion and enhancement in spectral total variation domain[END_REF]. However, differentiating objects within an image is challenging, as different types of objects may correspond similarly in the spectrum peak (although the full signature is different).

Another successful global approach uses an L 1 -fidelity term in (3) for contrast-invariant multi-scale decomposition, differentiating objects only by their size [START_REF] Zeune | Combining contrast invariant l1 data fidelities with nonlinear spectral image decomposition[END_REF]. However, we are interested in differentiating objects both by size and contrast. The only previous local approach, performing scale analysis for each spatial location, was suggested for structure-texture decomposition [START_REF] Horesh | Separation surfaces in the spectral tv domain for texture decomposition[END_REF]. This method relies on the time of the response peak of each pixel to fit a separation surface between two bands of spectral layers: texture and structure. Despite its success for texture-structure decomposition, it is not suited for object differentiation. The approach of [START_REF] Horesh | Separation surfaces in the spectral tv domain for texture decomposition[END_REF] is simple but limited, as it uses only the response peak information.

Toy Examples Analysis: We analyze two key synthetic examples to study the limitations of previous spectral TVbased methods (Fig. 3).

Objects of various sizes and contrasts (Fig. 3a) cannot all be differentiated using global spectral TV. Two objects (one double the size, but half the contrast of the other) respond simultaneously, reflected in a mutual peak (Fig. 3e) in the global spectrum [START_REF] Zeune | Combining contrast invariant l1 data fidelities with nonlinear spectral image decomposition[END_REF]. In addition, the contrast-invariant global L 1fidelity method [START_REF] Zeune | Combining contrast invariant l1 data fidelities with nonlinear spectral image decomposition[END_REF] cannot differentiate same-size, differentcontrast objects. Its global spectrum [START_REF] Zeune | Combining contrast invariant l1 data fidelities with nonlinear spectral image decomposition[END_REF] shows simultaneous responses for same-contrast objects (Fig. 3f). A local approach using the time of peak of local response for differentiation (following [START_REF] Horesh | Separation surfaces in the spectral tv domain for texture decomposition[END_REF]) also fails, as different objects and background regions respond simultaneously (Fig. 3c). However, we can differentiate foreground from background and all objects from each other (Fig. 3d) by combining the time t peak and signed value v peak of the absolute peak of local response, defined as:

[v, t peak ](x) = max t (|φ(x, t)|), v peak (x) = φ(x, t peak ).
A synthetic composition of structures (Fig. 3g) simulates real multi-scaled images. We first note objects' impact on each other's behavior: objects first merge, then the merged object fades. Both global methods can approximately differentiate objects (Figs. 3k,3l), though the L 1 -fidelity method is about 9 times slower. However, differentiating by the time of the peak of local response fails (Fig. 3i); and so does combining the features of the absolute peak of local response (Fig. 3j). In conclusion, no previous spectral-TV based method can differentiate objects by size and contrast, as well as a composition of structures. We thus suggest to exploit more spectral TV information within a local framework.

IV. SPECTRAL TV LOCAL SCALE SIGNATURES

Object differentiation requires exploiting detailed, local, multi-scale information to handle different sizes, contrasts and complex structures. We thus introduce the concept of spectral TV local scale signatures. We denote the signatures of a signal f (x) as φ f (x, t), where φ is defined by (4). For each pixel there exists a well-defined, unique representation in the scale continuum (unlike classical pyramidal multiscale representations and wavelets), yielding a natural multi-scale pixel descriptor.

A. Properties of Spectral TV Signatures

We now summarize the main properties of the spectral TV signatures and illustrate them graphically by simple toy examples. An elaborated theoretical analysis for the 1D case is given in Sec. V. 

φ af (x) = φ f (x, t/a), φ f (ax) = aφ f (ax, at). (7) 
This results from spectral TV properties [START_REF] Gilboa | A total variation spectral framework for scale and texture analysis[END_REF]. This allows differentiating objects by their distinct signatures (Fig. 4a).

Property 2. Sensitivity to Composition of Structures

Structures of comparable scales respond differently when composed together (with spatial overlay), compared to their individual responses. That is, in this case the non-linearity of the TV transform applies, allowing for some signals f , g:

φ f +g = φ f + φ g . (8) 
Composited objects thus have distinct signatures (Fig. 4b).

An analytical solution (Appendix A, Proposition 1) and a demonstration (Fig. 5) are given for the staircase signal. Note, that non-linearity is marginal for structures of very different scales or for spatially distant ones.

Invariance of the Signatures: 

φ f (Rx) = φ f (Rx, t), φ f (x-a) = φ f (x -a, t), (9) 
where R(x) is a rotation matrix, and a is a spatial shift (Fig. 4c). This also results from spectral TV properties [START_REF] Gilboa | A total variation spectral framework for scale and texture analysis[END_REF].

Since TV is invariant to the coordinate system (being rotationally invariant and sensitive only to derivatives), signatures are also invariant to flip w.r.t. an arbitrary coordinate system: It is shown in Fig. 7 how these properties can be useful for finding similar image textures, where patch-based comparison fails.

φ f (x) (x) = φ f (-x) (-x). (10) 

Property 4. Invariance of Texture to Structure

Signatures of textures (patterns) are invariant to their underlying structure, up to a certain scale, under very broad conditions. This holds for fine scales (precise conditions are given in Sec. V-C). Fig. 6 (top) shows the invariance of signatures of objects with identical textures to their different underlying global contrasts for fine scales. A 1D proof (Sec. V-C, Theorem 1) and a 1D demonstration (Fig. 9, top) are given.

Property 5. Invariance to Linear Illumination Change

Signatures are invariant to a linear change of illumination, which holds up to a certain scale (precise conditions are given in Sec. V-C). Fig. 6 (bottom) shows the invariance of signatures of objects with identical textures and identical global contrasts. A 1D proof (Sec. V-D, Theorem 2) and a 1D demonstration (Fig. 9, bottom) are given.

B. Implications for General Images

In Fig. 8a we show some examples where the signatures are similar and where they are distinct from each other. Comparing the signatures of different-size, same-color objects in Fig. 8a, signatures of small white stars display stronger, earlier responses, distinct from those of the larger white stripes (Fig. 8d). For thermal and medical images (Fig. 8b), signatures of objects different in size or contrast are distinct (Fig. 8c). Moreover, signatures of highly-contrasted or large objects display stronger responses than those of weakly-contrasted or small ones (Fig. 8e). Signature enhancement (see Sec. VI-D) improves the distinctness of signatures of different groups (Fig. 8f). This is useful since the salient objects in these modalities are usually highly-contrasted. V. THEORETICAL ANALYSIS This section presents theoretical analysis of signature properties. We formulate a sufficient condition for local patterns to merge first; and give sufficient conditions and proofs of the invariance to linear illumination change and of texture to structure. Appendix A shows an analytic solution of the separation of composited regions for the 1D staircase signal.

A. Preliminaries

Our analysis below is based on the work of Steidl et al. [START_REF] Steidl | On the equivalence of soft wavelet shrinkage, total variation diffusion, total variation regularization, and sides[END_REF], which gives an analytic solution for the TV-flow in the time continuous, spatially discrete 1D case. They shows that in a TV-flow evolution, each pixel belongs to a local constant region (all pixels in the region are connected and have the same value), which dictates its behavior. The region evolves at a certain constant speed (inversely proportional to region size), until a merging event occurs, that is, when two neighboring regions obtain the same value. Let f ∈ R N be a discrete 1D input signal of size N pixels. Let u ∈ R N × [0, ∞) be the space-discrete realization of the TV-flow, defined by (2). We denote by u i (t) the value of u at pixel i at time t. Two main properties of this dynamic are: A signal with underlying structures of identical global contrasts (f), not only has identical signatures for t < t merge-in (g), but also identical signatures up to t merge-struct , when structures merge with background simultaneously (h,i). Thus, signature clustering allows differentiating between structures (e), or structures from background (j). ,c).

1) There exists a finite number of merging events, 0 = t 0 < t 1 < ... < t n-1 < t n (Proposition 4.1 (ii) in [START_REF] Steidl | On the equivalence of soft wavelet shrinkage, total variation diffusion, total variation regularization, and sides[END_REF]). 2) Within the time intervals between merging events, t ∈ [t j , t j+1 ), all pixels u i , belonging to a constant region {u i-l+1 , ..., u i+r } of size w i,tj with relation µ i,tj to its neighboring regions, evolve linearly (4.1 (iii) in [START_REF] Steidl | On the equivalence of soft wavelet shrinkage, total variation diffusion, total variation regularization, and sides[END_REF]):

u i (t) = u i (t j ) + µ i,tj 2(t -t j ) w i,tj , µ i,tj =      0, if {u i-l , ..., u i+r+1 } is strictly monotonic 1, if u i is minimal in {u i-l , ..., u i+r+1 } -1, if u i is maximal in {u i-l , ..., u i+r+1 }. (11) 

B. Local Patterns Merge First

This section gives a 1D proof that regions of local patterns merge first, and only then merge with their surroundings. Let f : {0, ..., N -1} → R be as depicted in Fig. 10a, and let

Ω 1 = {0, ..., i 0 -1}, Ω = {i 0 , ..., i 1 }, Ω 2 = {i 1 +1, ..., N -1},
where Ω 1 , Ω 2 are constant regions (no patterns outside Ω). We define:

w 1 i 0 , l i 1 -i 0 + 1, w 2 N -1 -i 1 ,
and assume, without loss of generality, that l < w 2 < w 1 and

f [i 1 + 1] > f [i 0 -1]. We define: m min f i∈Ω is attained at i min , M max f i∈Ω is attained at i max , H f [i 1 + 1].
We also define the following two critical time points: t merge-in , the minimal merging time of Ω, and t merge-out , the minimal merging time of {i 0 , ..., N -1}.

Lemma 1 (Local Patterns Merge First). Let f be as defined above. If M -m m-H ≤ w2 l , then t merge-in < t merge-out . Proof. Relying on Section V-A, the TV flow dynamics of pixel i are determined by w i , µ i , regardless of u i (t = 0). The key concept of our proof is that µ i depends only on pixels at the immediate edge of the region. Thus, pixel behavior is not influenced by pixels "beyond" the derivative / edge. We first examine the slowest possible merging of Ω, that is, the latest time of achieving equality of i min , i max . The slowest speed of i min can be 0 (when near the boundary, case 1 of 11). But i max must always decrease at a speed of at least 2/(l-1), through a path of total length no more than (M -m). In this case (Fig. 10d), t merge-in = (M -m) • (l -1)/2. Thus,

t merge-in < (M -m) • l/2. ( 12 
)
We now examine the fastest possible merging of Ω with Ω 2 .

In this case, i min is at the edge of Ω (Fig. 10e) with zero speed. Thus the merging speed is bounded by the speed of Ω 2 , 2/w 2 , through a path of length of at least (m -H). Thus,

t merge-out ≥ (m -H) • w 2 /2. ( 13 
)
From the assumption of the Lemma we have:

M -m m -H ≤ w 2 l ⇒ (M -m) • l ≤ (m -H) • w 2 . (14) 
Thus, combining ( 12), ( 13) and ( 14): t merge-in < t merge-out .

C. Invariance of Texture to Structure

This section gives precise conditions for the validity of Property 4. Let f : {0, ..., N -1} → R admit the condition defined in Lemma 1. Let g : {0, ..., 2N -1} → R be a concatenation of f and a translated, value-shifted, version of f (see an example in Fig. 10f). We show that texture signatures are identical for fine scales, regardless of their underlying structures. Assuming some constants 0 < C 1 < C 2 , we define:

g[i] =      f, 0 ≤ i < N f + C 1 , N ≤ i < i 0 + N, i 1 + N + 1 ≤ i < 2N f + C 2 , i 0 + N ≤ i < i 1 + N + 1.
We define the regions of identical texture (up to an additive constant) as Ω = {i 0 , ..., i 1 }, Ω = {i 0 + N, ..., i 1 + N }.

Theorem 1 (Invariance of Texture to Structure). Let g be as defined above. Then there exists a time t merge-in , such that:

φ g (i ∈ Ω, t ≤ t merge-in ) = φ g (i ∈ Ω, t ≤ t merge-in ). ( 15 
)
Proof. First, relying on Lemma 1: t merge-in (g i∈Ω ) < t merge-out (g i∈Ω ), and t merge-in (g i∈ Ω ) < t merge-out (g i∈ Ω ).

Second, based on [START_REF] Comaniciu | Mean shift: A robust approach toward feature space analysis[END_REF], the speed of u(t) at pixel i, ∂ t u i , is invariant to translation and to change by an additive constant. Since m i∈Ω = m i∈ Ω , µ i∈Ω = µ i∈ Ω , flow dynamics are identical in Ω and in Ω until the internal merge. Therefore: t merge-in t merge-in (g i∈Ω ) = t merge-in (g i∈ Ω ).

From the definition of φ (4) we deduce:

φ g (i ∈ Ω, t ≤ t merge-in ) = φ g (i ∈ Ω, t ≤ t merge-in ).

D. Invariance to Linear Illumination Change

This section gives precise conditions for the validity of Property 5. We show that signatures of complete structures, as well as their textures, are invariant to a linear change of baseline, up to a scale related to the scale of the structure (width and height), as seen in Fig. 9i. This is as opposed to the fine scales discussed in Theorem 1, as seen in Fig. 9d. Let f : {0, ..., N -1} → R admit the condition defined in Lemma 1, and l be as defined there. Let g : {0, ..., 2N -1} → R be a concatenation of f and a translated f , with a linearlychanging baseline, as depicted in Fig. 10g, as follows:

g[i] = a • i + b + f [i], 0 ≤ i < N a • i + b + f [i -N ], N ≤ i < 2N.
We define structure regions as: Ω = {i 0 , ..., i 1 }, Ω = {i 2 , ..., i 3 }, and define:

∆ max g i∈Ω -min g i∈Ω , w i 2 -i 1 -1, h g[i 2 -1] -g[i 1 + 1]
, such that: a = h/w. For simplicity, we assume (though this can be relaxed) structures are of equal heights with respect to the linear slope:

g[i 0 ] -g[i 0 -1] = g[i 1 ] -g[i 1 + 1] = g[i 2 ] -g[i 2 -1] = g[i 3 ] -g[i 3 + 1] H. ( 16 
)
We assume H is large enough and l small enough, so that local patterns merge first, as in Lemma 1. We also require the following condition:

h(w + 1) 2 > (H + ∆) • l l + 1 . ( 17 
)
Theorem 2 (Invariance to Linear Illumination Change). Let g be as defined above. Then there exists a time t merge-struct , such that:

φ g (i ∈ Ω, t ≤ t merge-struct ) = φ g (i ∈ Ω, t ≤ t merge-struct ). ( 18 
)
Proof. Following the same concept as in Theorem 1, patterns in Ω, Ω merge first and simultaneously. To determine the next merging event, we explore the dynamics of structures Ω, Ω vs. those of the linear baseline. Using ( 16), we will now analyze only the dynamics of the left structure and its neighborhood, as both structures behave the same.

For two neighboring pixels i, j = i + 1, which are of different regions and of nonzero speed, the merge time according to

(11) is |g[i]-g[j]
| 2/wi+2/wj . Thus the slowest merging of the left structure with the baseline occurs when ∂ t u i = 0 only for i = {i 0 , ..., i 1 + 1}, after its internal evolution made u i1 increase by ∆. Then, an upper bound on the merging time of the left structure is: t merge-struct ≤ t merge (g {i1,i1+1} ) = (H+∆)•l 2(l+1) . We now calculate the merging time of the linear baseline, t merge-line . The preceding evolution is a series of merging events t k of regions h k , gradually growing with speeds v k = 2/k by one pixel at a time, such that

w k=1 h k = h/w. Thus: t merge-line = w k=1 h k v k = h(1+w) 4 .
Given [START_REF] Antonini | Image coding using wavelet transform[END_REF], t merge-struct < t merge-line . Therefore, TV flow dynamics are identical for Ω, Ω until t merge-struct . Relying on (4), we deduce that: 

φ g (i ∈ Ω, t ≤ t merge-struct ) = φ g (i ∈ Ω, t ≤ t merge-struct ).

VI. ALGORITHM AND APPLICATIONS

The properties of spectral TV signatures can allow grouping together objects with shared features. To facilitate this, we perform dimensionality reduction by clustering of signatures. This allows to partition the image into a set of distinct groups with common spectral TV responses, which can serve for isolating and differentiating salient objects.

A. A Unified Framework

We present a generic unified framework with various applications for images of different modalities (Fig. 11, Algorithm 1). We first decompose the image into its TV elements, using the TV-transform 1 of (4), calculating up to the maximal scale of relevant image structures, T . We use the gray-level version of the input image (in this work, color information is not used). We then perform application-dependent preprocessing on the acquired signatures, denoted φ f (x), generating more relevant and enhanced descriptors, denoted Φ f (x), to be used as the feature vectors for clustering. A basic dimensionality reduction is performed, using K-means clustering [START_REF] Arthur | k-means++: The advantages of careful seeding[END_REF]. Last, applicationdependent postprocessing of clusters is applied when needed.

Spectral TV Feature Denoising: Since most image noise appears in the first spectral TV bands, an optional denoising step is inherited within the spectral TV scheme, simply by omitting some of the first spectral TV bands. Denoting the minimal preserved scale (determined by the expected noise variance) as t d , and the maximal scale calculated for the transform as T , we define denoising as: case repetitive image do Image manipulation case thermal or medical image do Image fusion, Appendix B Algorithm 1: A unified framework for various modalities and applications using spectral TV local scale signatures.

Φ f (x) = φ f (x, [t d , T ]). ( 19 
)

B. Synthetic Images: Object Differentiation

We first show how disk-type objects are well differentiated in this framework. As we want to use simple unsupervised K-means, we first perform a rough foreground/background separation (as the background may contain several clusters). This is done by exploiting the negativity of dominant peaks show clustering results of basic structures. Fig. 12 shows how clustering using our method outperforms clustering using other well-known image decompositions or K-means based on different descriptors [START_REF] Antonini | Image coding using wavelet transform[END_REF], [START_REF] Perona | Scale-space and edge detection using anisotropic diffusion[END_REF], [START_REF] Adelson | Pyramid methods in image processing[END_REF], [START_REF] Dalal | Histograms of oriented gradients for human detection[END_REF]. These examples illustrate the unique advantages of the proposed approach. The signatures are very similar for same-object pixels and very distinct compared to pixels of other object.

C. Application I: Image Manipulation

We extract a map of salient objects of desired sizes or structures for image manipulation: enhancement, attenuation or coloring of certain structures. We can either explore clusters of manually predefined pixels, or choose interesting structures after clustering. Preprocessing may include denoising (Eq. [START_REF] Adelson | Pyramid methods in image processing[END_REF], or selecting regions of interest using a map M (x):

Φ f (x) = φ f (x, t) • M (x). (20) 
Postprocessing may require image matting [START_REF] Levin | A closed-form solution to natural image matting[END_REF] or morphological operations of relevant clusters.

D. Application II: Image Fusion

We extract a saliency map from thermal or medical (MRI-T2) images to be fused into a corresponding different-modality image of the same scene (visible or medical, respectively). This relies on the high contrast of salient objects in these modalities (hot objects, or tumors or abnormal organ structures, respectively). To improve clustering, preprocessing includes signature enhancement -"stretching" each signature according to its L p norm (usually L 1 norm):

Φ f (x) = φ(x, t) • ||φ(x, t)|| p . (21) 
Signatures of salient objects "stretch" more, thus promoting their strength and sparsity (see Fig. 8e vs. Fig. 8f). Denoising ( 19) is also optional. We cluster these enhanced, possibly denoised signatures, Φ f (x). Using more clusters allows capturing smaller or narrower objects, e.g. people and lampposts. Finally, our postprocessing includes image matting [START_REF] Levin | A closed-form solution to natural image matting[END_REF] to generate the saliency map. The user chooses parameters K 1 , K 2 , where the K 1 strongest clusters (in the sense of centroid intensity) form an initial foreground map; and the K 2 weakest clusters form an initial background map. Matting then classifies all other pixels as foreground/background, and the resulting foreground is the saliency map. The relevance of highly contrasted but large image regions is often low (depends on the application). In addition, weak signatures may nevertheless indicate relevant objects, which have not responded yet within a limited running time, or objects near image boundaries. We can handle both issues by incorporating image residual f r (x) (6) into the postprocessing matting, requiring to select thresholds for f r (x). This generates an alternative detailed map with large or near-boundary objects, while avoiding long running times. See examples in Figs. 17r,18d. See Appendix B for novel fusion visualization methods.

VII. EXPERIMENTAL RESULTS

We show experimental results for various image modalities and applications, such as image fusion, image segmentation / edge detection and size differentiation, achieving comparable or superior results compared to other techniques. (d) Edge detection [START_REF] Dollár | Fast edge detection using structured forests[END_REF] (e) Edge detection [START_REF] Arbelaez | Contour detection and hierarchical image segmentation[END_REF] (f) K-means using patch color (g) K-means using HoG features [START_REF] Dalal | Histograms of oriented gradients for human detection[END_REF] (h) CNNbased Segmentation [START_REF] Badrinarayanan | Segnet: A deep convolutional encoder-decoder architecture for image segmentation[END_REF] (i) Repetitive input image (j) Our method: using signatures (k) Edge detection [START_REF] Canny | A computational approach to edge detection[END_REF] (l) Edge detection [START_REF] Dollár | Fast edge detection using structured forests[END_REF] (m) Edge detection [START_REF] Arbelaez | Contour detection and hierarchical image segmentation[END_REF] (n) K-means using patch color (o) K-means using HoG features [START_REF] Dalal | Histograms of oriented gradients for human detection[END_REF] (p) CNNbased Segmentation [START_REF] Badrinarayanan | Segnet: A deep convolutional encoder-decoder architecture for image segmentation[END_REF] Figure 14: Results and comparisons: salient structure extraction for repetitive images. 

A. Image Manipulation

Fig. 14 demonstrates salient repetitive structure extraction. A comprehensive comparison clearly shows how our method outperforms other state-of-the-art methods. Our method allows to extract fine salient structures in challenging images: leaf veins with varying-illumination background (b), or thin stripes of a game-board, of the same color as other objects (j). This is thanks to the properties discussed earlier of invariance to rotation, translation and linear illumination. Conversely, other methods [START_REF] Canny | A computational approach to edge detection[END_REF], [START_REF] Dollár | Fast edge detection using structured forests[END_REF], [START_REF] Arbelaez | Contour detection and hierarchical image segmentation[END_REF] fail to detect well such fine structures (c,d,e,k,l,m,n). Other methods rely on less stable features, or features sensitive to illumination changes (f) or to rotations [START_REF] Dalal | Histograms of oriented gradients for human detection[END_REF] (g,o). In the case of learning-based methods, the features are trained for semantic segmentation [START_REF] Badrinarayanan | Segnet: A deep convolutional encoder-decoder architecture for image segmentation[END_REF] (h,p). Fig. 15 demonstrates how basic K-means clustering (with K = 2) using spectral TV signatures (c) shows highly meaningful clustering compared to the same procedure, based on other well-known image decompositions or descriptors (d,e,f) [START_REF] Antonini | Image coding using wavelet transform[END_REF], [START_REF] Perona | Scale-space and edge detection using anisotropic diffusion[END_REF], [START_REF] Adelson | Pyramid methods in image processing[END_REF]. Fig. 15b shows an application of signature-based stripe extraction for image manipulation.

The size sensitivity property (Property 1) allows to differentiate objects of similar colors by size. Additional image matting or morphological operations may be used to reconstruct the fine original shape-boundaries from round-shaped clusters.

Image manipulation examples based on image segmentation / edge detection or size differentiation are given in Figs. 2,16.

B. Image Fusion

Figs. 2, 17 demonstrate fusion results of thermal and visible images. Our method can better process fine details, compared to state-of-the-art fusion methods [START_REF] Zhou | Fusion of infrared and visible images for night-vision context enhancement[END_REF], [START_REF] Zhou | Perceptual fusion of infrared and visible images through a hybrid multi-scale decomposition with gaussian and bilateral filters[END_REF]. In addition, our saliency extraction outperforms salient thermal detail extraction, using a well established generic saliency extraction method [START_REF] Goferman | Context-aware saliency detection[END_REF]. Note that as opposed to our work, previous thermal saliency extraction work is usually specifically designed for human detection [START_REF] Davis | Robust background-subtraction for person detection in thermal imagery[END_REF]. We also demonstrate our two novel fusion visualization methods (Appendix B), as well as incorporating image residual into the postprocessing to extract a more elaborated saliency map. Fig. 18 shows (left) a challenging thermal/visible image fusion example. We successfully extract only the salient details from (q) Our method: reduced thermal saliency map (r) Our method: detailed thermal saliency map

Figure 17: Thermal / visible fusion results and comparisons. A saliency map (c) extracted from a thermal image (a) is fused (i,o) using salient feature injection (Appendix B) into the corresponding visible image, enhanced using [START_REF] Zhou | Fusion of infrared and visible images for night-vision context enhancement[END_REF] (j). Our fusion result outperforms state-of-the-art methods (g,h,m,n). We also show how a reduced saliency map (q) extracted from a thermal image (e) is fused (k) using temperature gradient coloring (Appendix B, using g(S) = exp(S)) into the corresponding visible image (f). Alternatively, incorporating image residual into the postprocessing matting generates a detailed saliency map (r) for fusion (l). Our algorithm also outperforms extracting salient thermal details using a state-of-the-art generic saliency method [START_REF] Goferman | Context-aware saliency detection[END_REF] (b,p). a nearly piecewise constant thermal image, outperforming other methods [START_REF] Zhou | Fusion of infrared and visible images for night-vision context enhancement[END_REF], [START_REF] Zhou | Perceptual fusion of infrared and visible images through a hybrid multi-scale decomposition with gaussian and bilateral filters[END_REF]. We also demonstrate (right) medical image fusion, fusing regions of tumor and brain structure extracted from an MRI-T2 image into an MRI-T1 image.

VIII. CONCLUSION

We design an algorithm to isolate and differentiate objects of different contrasts, sizes and structures. We use the comprehensive scale and space information generated by the spectral TV transform, referred to as spectral TV local scale signatures. Given their high dimensionality and redundancy, we reduce their dimensionality to partition an image into meaningful groups. We prove some useful merits of our local framework: sensitivity to size, local contrast and composition of structures, as well as invariance to rotation, translation, flip and linear illumination change. We also provide conditions for the invariance of texture to structure. This enables to construct a unified generic framework which can serve for many imageprocessing tasks. We show the applicability of our approach for various cases of multi-scaled images and for different modalities.

APPENDIX

A. Differentiating Composited Regions by Distinct Signatures

We present an analytic solution for the 1D staircase signal behavior to demonstrate Property 2. It is shown that within each region the signatures of all pixels are identical, and distinct with respect to each other (thus can be easily clustered). Let f : {0, ..., N -1} → R be as depicted in Fig. 10b, and let 0 < i 0 < i 1 < i 2 < i 3 < N -1. We denote signal regions as Ω 1 {i 1 , ..., i 2 }, Ω 2 {i 0 , ..., i 1 -1} ∪ {i 2 + 1, ..., i 3 }, Ω 3 {0, ..., i 0 -1} ∪ {i 3 + 1, ..., N -1}, and their sizes as m 1 i 2 -i 1 +1, m 2 i 1 -i 0 +i 3 -i 2 , m 3 i 0 +N -1-i 3 , respectively. Let f i∈Ω1 > f i∈Ω2 > f i∈Ω3 . Without loss of generality, we assume that m 3 > m 1 .

Proposition 1 (Sensitivity to Composition of Structures). Let f be as defined above. Then:

φ f (i ∈ Ω k , t) = ϕ k (t), k = 1, 2, 3, (22) 
such that ϕ k (t) = ϕ l (t), ∀k = l, k, l ∈ {1, 2, 3}. Note: region signatures are identical ∀i ∈ Ω k . even for the disjoint Ω 2 .

Proof. Relying on Section V-A, we analyze the TV flow of f . 1) Phase I: t ∈ [0, t 1 ) (Fig. 10b): following [START_REF] Comaniciu | Mean shift: A robust approach toward feature space analysis[END_REF]: From (4) we obtain (for some A, B, C > 0):

u(i, t) =      u(i, 0) + 2t m1 • (-1), i ∈ Ω 1 u(i, 0) + 2t m2 • 0, i ∈ Ω 2 u(i, 0) + 2t m2 • 1, i ∈ Ω 3 . m 3 > m 1 → u t (i ∈ Ω 3 ) < u t (i ∈ Ω 1 ).
φ f (i, t) =      A • δ(t -t 1 ) + B • δ(t -t 2 )), i ∈ Ω 1 -B • δ(t -t 1 ) + B • δ(t -t 2 )), i ∈ Ω 2 -C • δ(t -t 2 ), i ∈ Ω 3 .

B. Fusion Visualization Methods

Human observers, unlike computer systems, may prefer viewing salient information when fused into a corresponding different-modality image. We suggest two fusion visualization methods. We denote the saliency map as S(x), a corresponding registered image as V (x), and the fused image as F (x). We first suggest injecting salient features directly into the corresponding image (Fig. 17i):

F (x) = max(V (x), S(x)).
This allows introducing information which only appears in S(x) on top of V (x). However, the typically low quality thermal information might overlap the more detailed visible information; and salient white objects will not be visualized as salient. To overcome this, we suggest the temperature gradient coloring method (Figs. 17k, 17l, 18i, 18j, 18l). F (x) is a graylevel or RGB replicate of V (x) ({R V (x), G V (x), B V (x)})), enhanced in locations corresponding to S(x): F (x) = V (x) • g(S(x)), or F (x) = {R V (x) • g(S(x)), G V (x), B V (x)}, then normalized to avoid clipping. g(S) must be:

1) Positive: ∀x, g(S(x)) > 0.

2) Monotonically increasing: ∀x, ∂g(S(x)) ∂S(x) > 0. 3) Null for non-salient objects: g(S(x) = 0) = 1. Some useful examples are g(S) = 1 + S and g(S) = exp(S). Advantages of this method are: avoiding overlapping detailed information with low-quality one; visualizing the gradient of temperatures (e.g., the hotter the object -the redder it appears); and handling salient white objects. Conversely, details which appears only in the saliency map appear weaker in the fusion.
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 1 Figure 1: Spectral TV Local Scale Signatures, φ(x, y, t): a multi-scale spectral TV per-pixel description, sensitive to size, local contrast and composition of structures, invariant to translation, rotation, flip and linear illumination change, with texture invariance to underlying structure. Objects with common features (seeds) have similar signatures, distinct from those of different objects.

Figure 2 :

 2 Figure 2: Image fusion (a-b,g-h) and image manipulation (c-f,i-l) using spectral TV local scale signatures.

  Time and value of absolute peak of local response (k) Global spectrum, L2-fidelity (l) Global spectrum, L1-fidelity [5]

Figure 3 :

 3 Figure 3: Synthetic analysis and comparison of our method to previous spectral TV-based Approaches: successes vs. failures. No spectral-TV based method but ours can differentiate objects by size and contrast, as well as a composition of structures.

Figure 4 :Property 1 .

 41 Figure 4: 2D Demonstration of properties 1, 2, 3. Signatures are distinct due to their sensitivity to size and contrast (a), and their sensitivity to composition of structures (b). However, they are invariant to rotation and translation (c).

Property 3 .

 3 Invariance to Rotation, Translation and FlipSignatures are rotation and translation invariant in R n :

Figure 5 :

 5 Figure 5: Demonstration of Property 2 for the 1D staircase signal (a). Spectral TV signatures, generated during TV flow of the signal (b,c), are distinct for different regions (e). Thus, signature clustering allows differentiating the regions (d).

  f (x) (b) Left circle: zoom-in (c) Right circle: zoom-in (d) φ(x, t): fine scales (e) φ(x, t): fine and coarse scales

Figure 6 :

 6 Figure 6: 2D Demonstration of properties 4,5. Signatures of objects with identical textures (patterns) are invariant to their underlying structures -different global contrasts -for fine scales (top). Signatures of objects with identical textures and identical global contrasts are identical -thanks to their invariance to linear illumination changes (bottom).

  (a) A reference pixel (blue) and its 9 NN using spectral TV signatures (b) Patches of reference pixel (left) and its 4 NN using spectral TV signatures (c) Identical signatures of reference pixel (blue) and its 4 NN (d) A reference pixel (blue) and its 9 NN using patch intensity (e) Patches of reference pixel (left) and its 4 NN using patch intensity (f) Dissimilar patch intensity descriptors of reference pixel (blue) and its 4 NN

Figure 7 :

 7 Figure 7: 2D Demonstration of the invariance to rotation, translation and flip, and the invariance of textures to their underlying structures. Using spectral TV signatures, the 9 NN of a reference pixel (reference marked in blue) are pixels of similar textures, but of different global contrasts, rotations, translations or flips (top). Conversely, the patch intensity descriptor fails to find these texturally-similar pixels (bottom).

Figure 8 :

 8 Figure 8: Distinctness of signatures of groups of objects with common features. For an image with repetitive structures (a), groups of objects have distinct signatures (d). For a thermal image (b), different objects have distinct signatures (c), and so do groups of objects (e,f).

Figure 9 :

 9 Figure 9: Demonstration of Property 4 (top) and Property 5 (bottom) for 1D signals. A signal with identical textures, but different underlying structures (a) has identical fine-scale signatures -up to t merge-in , when local patterns merge (b,c). Signatures then become distinct (d). A signal with underlying structures of identical global contrasts (f), not only has identical signatures for t < t merge-in (g), but also identical signatures up to t merge-struct , when structures merge with background simultaneously (h,i). Thus, signature clustering allows differentiating between structures (e), or structures from background (j).

Figure 10 :

 10 Figure 10: Signals discussed in Lemma 1 (a,d,e), Theorem 1 (f), Theorem 2 (g) and Proposition 1 (b,c).

Figure 11 :

 11 Figure 11: Image manipulation and image fusion using spectral TV local scale signatures: algorithm flowchart.

Figure 12 :Figure 13 :

 1213 Figure 12: Synthetic analysis and comparison of spectral TV signatures to other descriptors. Clustering (bottom row) succeeds only when relying on spectral TV signatures, since only they are the obly descriptors (top row), which guarantee similarity for same-object pixels but distinctness for different-object pixels.

Figure 15 :

 15 Figure 15: Comparison of K-means clustering into two clusters, using spectral TV signatures vs. other descriptors.

Figure 16 :

 16 Figure 16: Image manipulation using size differentiation.

Figure 18 :

 18 Figure 18: Thermal / visible and medical examples of fusion visualization using temperature gradient coloring (Appendix B using g(S) = exp(S)). A reduced saliency map (c), extracted from a challenging, nearly piecewise constant thermal image (a), is fused (i) into the corresponding visible image (b). Alternatively, incorporating image residual into the postprocessing matting generates a detailed saliency map (d) for fusion (j). Our results outperform state-of-the-art methods (g,h). Our medical example shows how a saliency map (f) extracted from an MRI-T2 image (e) is fused (l) into the corresponding MRI-T1 image (k).

  Thus, at t 1 regions Ω 1 , Ω 2 merge to form a new region Ω 1,2 of size m 1,2 = m 1 + m 2 . 2) Phase II: t ∈ [t 1 , t 2 ) (Fig.10c): following[START_REF] Comaniciu | Mean shift: A robust approach toward feature space analysis[END_REF]:Thus, regions Ω 1,2 , Ω 3 merge at t 2 : u(i, t > t 2 ) = C.Differentiating the TV flow of different regions twice in time:u tt (i, t) = )δ(t -t 1 ) + 2 m1,2 δ(t -t 2 ), i ∈ Ω 1 2 m1,2 -δ(t -t 1 ) + δ(t -t 2 ) , i ∈ Ω 2 -2 m3 δ(t -t 2 ), i ∈ Ω 3 .
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u(i, t) = u(i, t 1 ) + 2t m1,2 • (-1), i ∈ Ω 1,2 u(i, t 1 ) + 2t m3 • 1, i ∈ Ω 3 .