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PROPERTIES OF THE CHEMOSTAT MODEL WITH AGGREGATED BIOMASS
AND DISTINCT REMOVAL RATES∗

RADHOUANE FEKIH-SALEM† AND TEWFIK SARI‡

Abstract. Understanding and exploiting the flocculation process is a major challenge in the mathematical theory of the
chemostat. Here, we study a model of the chemostat involving the flocculating and deflocculating dynamics of planktonic
and attached biomass competing for a single nutrient. In our study, the mortality (or maintenance) of species is taken
into account and not neglected as in previous studies. The model is a three-dimensional system of ordinary differential
equations. Using general monotonic functional responses, we give a complete analysis for the existence and local stability
of all steady states. The theoretical analysis of the model involving the mortality is a difficult problem since the model is
not reduced to a planar system as in the case where the dilution rates of the substrate and the biomass are equal.

With the same dilution rates, it is well known that the model can have a positive steady state which is unique and stable
as long as it exists. Without mortality, and different dilution rates, the system may have a multiplicity of positive steady
states that can only appear or disappear through saddle-node or transcritical bifurcations. In contrast to the case without
mortality, under the joined effect of flocculation and mortality, the model may undergo supercritical Hopf bifurcations or
homoclinic bifurcations, with the appearance or the disappearance of a stable periodic orbit. Therefore coexistence may
occur around a positive steady state, and also around periodic oscillations.
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1. Introduction. The chemostat plays an important role as a model in mathematical biology. In
its simplest form, it is a model of a vessel where the populations compete for the available nutrient. It
is used as the starting point for models of waste-water treatment processes. The derivation and analysis
of a large number of chemostat-like models can be found in the monographs [33], see also [12]. We recall
the classical chemostat model for a single species x consuming a substrate S:

(1.1)

{
Ṡ = D(Sin − S)− f(S)

x

γ
ẋ = [f(S)−D]x,

where the dilution rate D and the input concentration Sin are the manipulated parameters, f(S) is the
growth function and γ is the yield, which can be easily normalized to 1, using the change of variable
x/γ → x. The growth function f(S) is a non-negative Lipschitz continuous function with f(0) = 0.
Besides the washout steady state E0 = (Sin, 0), the system (1.1) can have a positive steady state E∗ =
(S∗, x∗), where f(S∗) = D and x∗ = Sin − S∗. For monotonic f(S), this steady state exists as long
as f(Sin) > D. It is unique and Locally Exponentially Stable (LES) as long as it exists. It is globally
asymptotically stable in the quadrant S ≥ 0, x > 0. For non-monotonic growth function f(S), the
positive steady state is in general not unique and bi-stability may occur. When the function f(S) is
unknown and using the characterization f(S∗) = D of a positive steady state, it is possible to reconstruct
its graph using variations on D and on-line measurements for the variable S. This problem of kinetics
estimation in biological and biochemical models has been widely addressed in the literature, even when
f(·) is non monotonic, see [32] and the reference therein. The theoretical identifiability of f(·) is one of
the reasons that explain the success of the chemostat model in the mathematical study of the culture of
microorganisms.

When two (or more) species x and y are in competition, the model consists simply adding the
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consomption terms in the first equation:

(1.2)


Ṡ = D(Sin − S)− f(S)x− g(S)y

ẋ = [f(S)−D]x

ẏ = [g(S)−D] y.

Since equations f(S) = D and g(S) = D cannot have in general a solution, the model (1.2) predicts
that at steady state, at most one competitor population avoids extinction. However, the coexistence of
competing populations is obvious in nature, and so in order to explain this, it seems necessary to extend
the model (1.2). Several mechanisms of coexistence where considered in the literature, among them wall
attachment, see [15, 16, 17, 18, 26, 34]. These models were inspired by the Freter model [8, 9] of the
microflora in the large intestine. Another mechanism that promotes the coexistence is the flocculation
of the species, see [4, 5, 7, 11, 12, 27, 28]. Attachment and detachment phenomena of bacteria, whether
in biofilms on a support [14] or in the form of aggregates or flocs [35] are well known and frequently
observed in bacterial growth.

For both previously cited models of wall attachment or flocculation, the total biomass of a given
species is decomposed into planktonic (or free) biomass made up of non-attached microorganisms and
aggregate (or attached) biomass. Thus, the concentration x of the total biomass is the sum of concen-
trations u and v of planktonic and aggregate biomass, respectively, x = u + v. This distinction permits
to take into account different growth and death characteristics according to whether microorganisms are
attached or not. Specific velocities A(·) of attachment of free biomass and B(·) of detachment of the
attached biomass are introduced in the model. Hence, the general model of flocculation of one species
considered in [5] can be written:

(1.3)


Ṡ = D(Sin − S)− f(S)u− g(S)v

u̇ = [f(S)−Du]u−A(·)u+B(·)v
v̇ = [g(S)−Dv]v +A(·)u−B(·)v,

where f(S) and g(S) represent, respectively, the per-capita growth rates of planktonic and attached
bacteria and Du and Dv represent, respectively, the disappearance rates of planktonic and attached
bacteria. The models of flocculation for several competing species are build as in (1.2), by adding the
consomption terms in the dynamic equation of the substrate.

An interesting property of general model (1.3), and its extension to competing species, is that under
the assumption that attachment and detachment velocities are fast compared to the specific growth and
disappearance rates, using singular perturbation method, see [5, 10, 11, 27], the flocculation model can
be reduced to a model with density-dependent growth function. It is well known that density-dependence
of the growth functions promotes the coexistence of species [6, 13, 21, 22, 23, 24]. Therefore when
attachment and detachment terms are large enough, coexistence is also possible.

The models of attachment or flocculation introduced in the previously cited literature are of the form
(1.3), with specific attachment and detachment velocities A(·) and B(·) respectively. For instance, the
wall-attachment model of Pilyugin and Waltman [26] corresponds to constant velocities A(·) = a and
B(·) = b, and the flocculation model of Haegeman and Rapaport [11] corresponds to A(·) = au and
B(·) = b, where a and b are constant. For these models, coexistence occurs at positive stable steady
state. An extension of the model [11] has been studied in [4, 7] when the growth function of isolated
bacteria of the most efficient species presents inhibition. In this case, coexistence can also hold around a
stable limit cycle. The reader interested in a review of the various specific attachment and detachment
velocities used in the literature is referred to [5, 7]. See also [1, 17, 35] for other studies modeling the
bacteria flocculation process.

The model in [11] considers flocs of only two bacteria. This model has been extended in [10] to the
case of flocs with an arbitrary number of bacteria, by using Smoluchowski’s modeling of flocculation [35].
In this modeling, the floc interactions we consider are the aggregation of two flocs to form one bigger floc
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and the breakage of one floc into two smaller ones. Two flocs of sizes n and m (bacteria) respectively,
aggregate to form a floc of size n+m, with velocity an,munum, proportional to the densities un and um
of the small flocs. One floc of size n + m (bacteria) splits into two flocs, of sizes n and m, respectively,
with velocity bn,mun+m, proportional to the density un+m of the big floc.

In [10], the densities are expressed as the number of flocs per unit of volume. In [11] and in the
present paper, u and v are mass densities. Therefore in [11], u = u1m and v = 2u2m, where m is the
mass of bacteria. Hence, the term A(·)u = au2 in [11] corresponds to the aggregation of two planktonic
bacteria to form a floc of size 2, and the term B(·)v = bv in [11] corresponds to the breakage of one floc
into planktonic bacteria. In the present paper, we will not consider the size or the number of bacteria
in flocs. We simply distinguish the total biomass v = (2u2 + 3u3 + · · · )m in flocs and the planktonic
biomass u = u1m. Therefore, to the term A(·) = au in [11], we must add a term which is proportional
to v and which corresponds to the aggregation of flocs with planktonic bacteria to form bigger flocs. For
simplicity, we assume that the coefficient of proportionality is also equal to a and we take A(·) = a(u+v)
instead of the more general choice A(·) = auu + avv. This choice of a linear attachment term was first
proposed in [5] and was also considered in [4, 12, 27, 28]. It corresponds to the following flocculation
interactions: planktonic bacteria can stick with planktonic bacteria or flocs to form new flocs, with rate
a(u + v)u, proportional to both the density of isolated bacteria u and the total biomass density u + v.
Moreover, we assume, as in Smoluchowski’s modeling, that B(·) = b, that is to say, flocs can split and
liberate planktonic bacteria, with rate bv, proportional to their density v. The model takes the form:

(1.4)


Ṡ = D(Sin − S)− f(S)u− g(S)v

u̇ = [f(S)−Du]u− a(u+ v)u+ bv

v̇ = [g(S)−Dv]v + a(u+ v)u− bv

where a and b are positive constants. All these studies restricted to the biologically interesting case
Dv ≤ Du ≤ D, where Du = αD and Dv = βD, α and β belong to [0, 1] and denote, respectively, the
fraction of the planktonic and attached bacteria leaving the reactor as proposed by [2] to model a biomass
reactor attached to the support or to decouple the residence time of solids and the hydraulic residence
time (1/D). In the present work, we study the model (1.4) where Du and Dv can be modeled as in
[25, 31] by:

Du = αD +mu, Dv = βD +mv

where the non-negative death (or maintenance) rate parameters mu and mv are taken into consideration.
Indeed, several mathematical studies [3, 19, 29, 30, 36, 37] have attempted to understand the effects of

the mortality or the maintenance on the system behavior and the coexistence of species in the chemostat.
In [15, 16, 17], the planktonic cell death rate and adherent cell death rate are considered among the Freter
model of biofilm formation by adding an anti-microbial agent to the continuously stirred tank reactor.
Thus, a significant death rate of isolated and/or attached bacteria could increase the removal rates Du

and/or Dv up to values larger than the dilution rate D. Therefore the study will not be restricted to
the cases Dv ≤ Du ≤ D, as in [4, 5, 12, 27, 28], and the cases D < Du, D < Dv or Du < Dv, which are
also of biological interest, will be investigated.

When D = Du = Dv, the main result in [12] (see also [27]) was that the model can have a positive
steady state E∗ = (S∗, u∗, v∗), which exists as long as f(Sin) > D. This steady state is unique and LES
as long as it exists. Since f(S) > g(S) (see Hypothesis 2.2 in section 2) the condition f(Sin) > D of
existence of the positive steady state depends only on the growth rate of planktonic bacteria. Therefore
the operating diagram which is the bifurcation diagram that illustrates the washout and coexistence
regions depends only on the growth rate of planktonic bacteria [28].

It was shown in [4, 5] that, if Dv < Du ≤ D, and with monotonic growth rates f(S) and g(S), the
model (1.4) can exhibit a bi-stability behavior, similar to the one obtained in (1.1) for non-monotonic
kinetics. The case Dv < Du ≤ D can occur, for instance, if mu = mv = 0 and β < α, that is the residence
time of the attached bacteria is greater than the one of planktonic bacteria.
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The main objective of this paper is to give a complete analysis of (1.4). We show that when Du ≤ Dv,
the model has a positive steady state E∗ = (S∗, u∗, v∗), which exists as long as f(Sin) > D. This steady
state is unique as long as it exists. If, in addition Dv ≤ D, E∗ is LES as long as it exists. Therefore, we
extend the results on the existence and uniqueness of the positive steady state obtained in the particular
case D = Du = Dv [12, 27] to the general case Du ≤ Dv, see Proposition 2.6. The result on the stability
is extended to the case Du ≤ Dv ≤ D, see Proposition 3.5.

Following [4], when Dv < Du ≤ D, we show that multiple positive steady states can appear through
saddle-node bifurcations or transcritical bifurcations, see Proposition 3.6. When Dv < Du and D < Du,
we investigate numerically the system and we see the occurrence of Hopf bifurcations and homoclinic
bifurcations, see subsections 4.1 and 4.2. Notice that the condition D < Du or D < Dv can occur
only when mortality (or maintenance) terms are added to the model (Du = D + mu). Therefore the
destabilization of the positive steady state is due to the mortality of the species, and is similar to some
results obtained in the existing literature on food webs (predator–prey model) in the chemostat where
the addition of mortality terms of the species lead to destabilization of the system [3, 19].

The paper is organized as follows. The next section presents general assumptions for the growth
functions of flocculation model (1.4) and the analysis of the existence of steady states. In section 3, the
asymptotic behavior analysis of model (1.4) was done according to the dilution rate and the disappearance
rates of planktonic and attached bacteria. Considering growth rates of Monod-type, numerical simulations
are presented in section 4 in order to show the emergence of limit cycles and the multiplicity of positive
steady states when the system exhibits the bi-stability. Finally, conclusions are drawn in the last section 5.
The proofs of some propositions and technical lemmas are reported in Appendix A.

2. Assumptions on the model and steady states. We use the following general assumptions
for the growth functions f(S) and g(S):

Hypothesis 2.1. f(0) = g(0) = 0 and f ′(S) > 0 and g′(S) > 0 for all S > 0.

Hypothesis 2.2. f(S) > g(S) for all S > 0.

Hypothesis 2.1 means that the growth can take place if and only if the substrate is present. In addition, the
growth rates of isolated and attached bacteria increase with the concentration of substrate. Hypothesis 2.2
means that bacteria in flocs consume less substrate than isolated bacteria, this means that a lower specific
growth rate. In fact, the flocs consume less substrate than isolated bacteria since they have less access
to substrate, given that this access to substrate is proportional to the outside surface of flocs.

In order to preserve the biological significance of our model (1.4), we will show that solutions of
ordinary differential equations are non-negative and bounded for any non-negative time.

Proposition 2.3. For any non-negative initial condition, the solutions of system (1.4) remain non-
negative and positively bounded. In addition, the set

Ω =

{
(S, u, v) ∈ R3

+ : S + u+ v ≤ D

Dmin
Sin

}
, where Dmin = min(D,Du, Dv),

is positively invariant and is a global attractor for the dynamics (1.4).

The proof is given in Appendix A.1.
The first step is to determine the steady states of (1.4). A steady state (S∗, u∗, v∗) must be a solution

of the system

(2.1)


0 = D(Sin − S∗)− f(S∗)u∗ − g(S∗)v∗

0 = [f(S∗)−Du]u∗ − a(u∗ + v∗)u∗ + bv∗

0 = [g(S∗)−Dv]v
∗ + a(u∗ + v∗)u∗ − bv∗.

To solve (2.1), we use a method similar to the concept of steady-state characteristic that is introduced
by Lobry et al. [23, 24]. This concept consists of determining the steady states of the second and third
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equations of (1.4), where S∗ is considered as an input of the system. This means that we must solve the
second and third equation of (2.1), where u∗ and v∗ are unknown and S∗ is considered as a parameter.
Assume that one obtains

u∗ = U(S∗), v∗ = V (S∗).

If we replace u∗ and v∗ by these expressions in the first equation of (2.1), we obtain an equation in the
sole variable S∗ of the form

D(Sin − S∗) = H(S∗), where H(S∗) = f(S∗)U(S∗) + g(S∗)V (S∗).

Solving this equation, we find S∗ and hence u∗ = U(S∗) and v∗ = V (S∗). In the sequel, we show how to
determine the functions U , V and H and we give the conditions such that a solution S∗ exists.

From Hypothesis 2.1, when equations f(S) = Du, g(S) = Dv and g(S) = Dv + b have solutions, they
are unique and we define the usual break-even concentrations

λu = f−1(Du), λv = g−1(Dv) and λb = g−1(Dv + b).

From Hypothesis 2.2, if in addition Dv ≥ Du, then λv > λu. When equations f(S) = Du or g(S) = Dv

or g(S) = Dv + b have no solution, we put λu = ∞ or λv = ∞ or λb = ∞. We define the interval I by
(see Figure 1):

(2.2) I =

{
]λu, λv[ if λu < λv

]λv,min(λu, λb)[ if λu > λv

Notice that ϕ(λu) = ψ(λv) = 0 and ψ(λb) = b, where functions ϕ and ψ are defined by:

(2.3) ϕ(S) = f(S)−Du and ψ(S) = g(S)−Dv.

f(S)

Du

g(S)
Dv

ϕ(S)

ψ(S)

λu

I

λv

S

f(S)

Du
g(S)

Dv

b
ψ(S)

ϕ(S)

λv

I
λu λb

S

Fig. 1. Definition of the interval I: (a) the case λu < λv; (b) the case λv < min(λu, λb).

In the rest of the paper, we use also the following notations:

(2.4) U(S) :=
ϕ(S) (ψ(S)− b)
a [ψ(S)− ϕ(S)]

and V (S) := − ϕ2(S) (ψ(S)− b)
a [ψ(S)− ϕ(S)]ψ(S)

,

(2.5) H(S) := f(S)U(S) + g(S)V (S).

We can state the following result:

Lemma 2.4. Assume that Hypotheses 2.1 and 2.2 hold. Then system (1.4) has the following steady
states:
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1. the washout E0 = (Sin, 0, 0), that always exists,
2. a positive steady state, E1 = (S∗, u∗, v∗) with S∗ solution

(2.6) D(Sin − S∗) = H(S∗)

where H is given by (2.5) and u∗ = U(S∗) and v∗ = V (S∗), where U and V are given by (2.4).
This positive steady state exists if and only if S∗ ∈ I where I is defined by (2.2).

Proof. From the second equation of (2.1), if u∗ = 0, it follows that v∗ = 0. From the last equation
of (2.1), if v∗ = 0, then u∗ = 0. Hence, we cannot have a steady state of extinction only of planktonic or
attached bacteria. Therefore, besides the washout steady state

E0 = (Sin, 0, 0)

where both planktonic and attached bacteria are extinct, the system can have a positive steady state of
coexistence

E1 = (S∗, u∗, v∗)

where S∗ > 0, u∗ > 0 and v∗ > 0. Making the sum of the second and the third equation of (2.1), we
obtain

(2.7) ϕ(S∗)u∗ + ψ(S∗)v∗ = 0,

where ϕ and ψ are given by (2.3). This equation admits positive solutions u∗ and v∗ if and only if ϕ(S∗)
and ψ(S∗) have opposite signs, i.e. S∗ is between λu and λv, see Figure 1. In this case, ψ(S∗) 6= 0 and
equation (2.7) can be rewritten as

(2.8) v∗ = −ϕ(S∗)

ψ(S∗)
u∗.

Replacing v∗ by its expression (2.8) in the second equation of (2.1), we obtain

(2.9) u∗ = U(S∗),

where U is given by (2.4). Note that u∗ defined by (2.9) is positive if and only if λu < S∗ < λv or
λv < S∗ < min(λb, λu), that is to say S∗ ∈ I. Therefore we must seek the solutions (S∗, u∗, v∗) of (2.1)
such that S∗ ∈ I. By replacing u∗ by (2.9) in (2.8), we obtain

(2.10) v∗ = V (S∗),

where V is given by (2.4). Making the sum of three equations of (2.1) and replacing u∗ and v∗ by (2.9)
and (2.10), we obtain that S∗ is a solution of (2.6).

Each solution of equation (2.6) belonging to the interval I give rise to a positive steady state of the
system. Straightforward calculation yields

(2.11) H ′(S) =
f ′(ψ − b)ψF0 + g′ϕG0

a(ψ − ϕ)2ψ2

where

(2.12) F0(S) = Duψ
2 − 2Dvϕψ +Dvϕ

2 and G0(S) = bDuψ
2 + (Dv −Du)ϕψ2 + bDv(ϕ

2 − 2ϕψ).

We have the following technical lemma:

Lemma 2.5. If Du ≤ Dv, then λu < λv and H ′(S) > 0 on I. If Du > Dv, then the following two
cases must be distinguished:
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• Case λu < λv: the sign of H ′(S) can be positive or negative for S ∈ I.
• Case λu > λv: one has H ′(S) < 0 on I.

Proof. Recall that ϕ and ψ have opposite signs on I and then F0(S) > 0 for all S ∈ I. From
Hypothesis 2.2, if Du ≤ Dv, then λu < λv. Therefore, ϕ > 0 and ψ < 0 on I. From (2.11) and (2.12),
it follows that H ′(S) > 0 on I. Let Du > Dv. If λu < λv, then ϕ > 0 and ψ < 0 on I. Hence, the sign
of G0(S) can be positive or negative at S ∈ I so that H ′(S) can change sign at S ∈ I. If λu > λv, then
ϕ < 0 and 0 < ψ < b on I. Hence, G0(S) > 0 on I and as F0(S) > 0 on I, it follows that H ′(S) < 0 on
I.

The following proposition exhibits the number of positive steady states of (1.4).

Proposition 2.6.
• When Du ≤ Dv, then the positive steady state E1 = (S∗, u∗, v∗) exists if and only if Sin > λu.

If it exists, it is unique.
• When Du > Dv, then there exists at least one positive steady state in the case λu < min(λv, Sin)

or λv < min(λu, λb) < Sin. Generically, the system can have generically an odd number of
positive steady states. When Sin < min(λu, λb) and λv < λu, then generically the system has no
positive steady state or an even number of positive steady states.

Proof. The positive steady states are given by the intersection of the line δ of equation y = D(Sin−S)
and the curve of function H(·).

In the case where Du ≤ Dv, it follows from Lemma 2.5 that λu < λv. In this case, the function
H(·) is defined and positive on the interval I =]λu, λv[ since ϕ(S) > 0 and ψ(S) < 0 (see Figure 13(a)).
Moreover, it vanishes at λu and tends to infinity as S tends to λv. Thus, equation (2.6) has a solution
S∗ ∈ I if and only if Sin > λu (see Figure 13(a)). In addition, the function H(·) is increasing and then
E1 is unique if it exists.

In the case where Du > Dv, it follows from Lemma 2.5 that equation (2.6) may have several solutions
whose number is generically odd in the case λu < min(λv, Sin) or λv < min(λu, λb) < Sin (see Figures 13,
14, 16, and 17(a)) and even in the case λv < Sin < min(λu, λb) (see Figures 15 and 18(a)). Indeed,
in the case λu > λv, the function H(·) is defined and positive on the interval I since ϕ(S) < 0 and
0 < ψ(S) < b.

When model (1.4) can have multiple positive steady states, the following results show that the positive
steady state that has less substrate can promote the planktonic and/or aggregated biomass according to
break-even concentrations λu and λv.

Proposition 2.7. Let E1 = (S∗, u∗, v∗) and E2 = (S∗∗, u∗∗, v∗∗) be two positive steady states of (1.4)
such that S∗ < S∗∗.

1. If λu < λv, then u∗ > u∗∗ and v∗ < v∗∗.
2. If λu > λv, then u∗ > u∗∗ and v∗ > v∗∗.

The proof is given in Appendix A.1.

3. Stability of steady states. In this section, we focus on the study of local asymptotic stability
of each steady state of system (1.4). Let J be the Jacobian matrix of (1.4) at (S, u, v), that is given by

(3.1) J =

−D − f ′(S)u− g′(S)v −f(S) −g(S)
f ′(S)u ϕ(S)− a(2u+ v) −au+ b
g′(S)v a(2u+ v) ψ(S) + au− b

 .
The stability of the washout steady state is given as follows:

Proposition 3.1. E0 is LES if and only if Sin < λu and Sin < λb.
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Proof. At E0 = (Sin, 0, 0), the Jacobian matrix (3.1) is written as follows:

J0 =

−D −f(Sin) −g(Sin)
0 ϕ(Sin) b
0 0 ψ(Sin)− b

 .
The eigenvalues are −D,ϕ(Sin) and ψ(Sin)− b which are negative if and only if Sin < λu and Sin < λb.

In what follows, we analyze the stability of positive steady states. The Jacobian matrix at E1 =
(S∗, u∗, v∗) is given by

J1 =

−m11 −m12 −m13

m21 −m22 a23

m31 m32 −m33


where

(3.2)


m11 = D + f ′(S∗)u∗ + g′(S∗)v∗, m12 = f(S∗), m13 = g(S∗),

m21 = f ′(S∗)u∗, m22 = a(2u∗ + v∗)− ϕ(S∗), a23 = b− au∗,
m31 = g′(S∗)v∗, m32 = a(2u∗ + v∗) and m33 = b− au∗ − ψ(S∗).

The characteristic polynomial is given by

P (λ) = λ3 + c1λ
2 + c2λ+ c3,

where

(3.3)

c1 = m11 +m22 +m33,

c2 = m12m21 +m13m31 −m32a23 +m11m22 +m11m33 +m22m33,

c3 = m11(m22m33 −m32a23) +m21(m12m33 +m32m13) +m31(m12a23 +m13m22).

According to the Routh–Hurwitz criterion, E1 is LES if and only if

(3.4) c1 > 0, c3 > 0 and c4 = c1c2 − c3 > 0.

We have the following result:

Lemma 3.2. All mij are positive for all i, j = 1, . . . , 3 with (i, j) 6= (2, 3) and we have c1 > 0.

The proof is given in Appendix A.2.
In the next lemma, we will show that the sign of c3 is given by the position of the curve of function

H(·) with respect to the line of equation y = D(Sin − S). More precisely, we give the link between the
determinant of the Jacobian matrix J1 at E1 = (S∗, u∗, v∗) and D + H ′(S∗). Indeed, this result is very
general, as we show in Appendix A.3.

Proposition 3.3. One has c3 = −det(J1) = −ϕ(S∗)(ψ(S∗)− b)(D +H ′(S∗)).

The proof is given in Appendix A.3.
Since the condition c4 > 0 given by (A.10) of the Routh–Hurwitz criterion (3.4) could be unfulfilled,

we will study the behavior of flocculation model (1.4) according to the dilution rate and the disappearance
rates of planktonic and attached bacteria. In fact, there exist four cases that must be distinguished (see
Figure 2):

(3.5)
Case 1: Du ≤ Dv ≤ D, Case 2: Dv < Du ≤ D,
Case 3: Dv < Du and D < Du, Case 4: Du ≤ Dv and D < Dv.

To determine the local stability of the positive steady state in the first and second cases of (3.5), we
will have need of the following.
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Dv

Du

Dv = Du

D

D

Case 1

Case 2

Case 3

Case 4

Fig. 2. Divers regions according to D, Du and Dv when the behavior of system (1.4) is different. Yellow region for
case 1 (Du ≤ Dv ≤ D); green region for case 2 (Dv < Du ≤ D); magenta region for case 3 (Dv < Du and D < Du);
cyan region for case 4 (Du ≤ Dv and D < Dv).

Proposition 3.4. In the cases 1 and 2 (Du ≤ D and Dv ≤ D), we have c4 > 0.

The proof is given in Appendix A.4.
It was shown in [12], see also [27, 28] that if Du = Dv = D (which is represented by a point in

Figure 2) then the positive steady state E1 exists and is unique and LES if and only if Sin > λu.
Actually, this result holds in case 1.

Proposition 3.5. In the case 1 (Du ≤ Dv ≤ D), the positive steady state E1 = (S∗, u∗, v∗) exists if
and only if Sin > λu. If it exists, it is unique and LES.

Proof. From Proposition 2.6, E1 exists if and only if Sin > λu. If it exists, it is unique. From
Lemma 2.5, one has λu < λv and H ′(S) > 0 on I. From Proposition 3.3 and Proposition 3.4, it follows
that E1 is LES as soon as it exists.

The case 2 was solved in [4] where it was shown that the stability depends only on the relative
position of the curve of function y = H(S) and the straight line of equation y = D(Sin − S) that is to
say, on the sign of D +H ′(S∗), as shown in Figure 3. More precisely, we have:

Proposition 3.6. Let E1 = (S∗, u∗, v∗) be a positive steady state. Assume that case 2 holds.
1. If λu < λv: E1 is LES if H ′(S∗) > −D and is unstable if H ′(S∗) < −D.
2. If λu > λv: E1 is LES if H ′(S∗) < −D and is unstable if H ′(S∗) > −D.

Proof. According to Lemma 3.2 and Proposition 3.4, we have c1 > 0 and c4 > 0. Therefore, the
positive steady state is LES if and only if the remaining condition c3 > 0 in the Routh–Hurwitz criterion
(3.4) is satisfied.

In the case λu < λv, we have ϕ(S∗) > 0 and ψ(S∗) < 0. From Proposition 3.3, if H ′(S∗) < −D,
it follows that c3 < 0. Therefore, the positive steady state is unstable. If H ′(S∗) > −D, it follows that
c3 > 0 and hence the positive steady state is LES.

In the case λu > λv, we have ϕ(S∗) < 0 and 0 < ψ(S∗) < b. From Proposition 3.3, if H ′(S∗) > −D,
it follows that c3 < 0. Therefore, the positive steady state is unstable. If H ′(S∗) < −D, it follows that
c3 > 0 and hence the positive steady state is LES.

In the case 3 of (3.5), we will show that c4 can change sign by varying the control parameter Sin such
that the positive steady state E1 could change its behavior without any collision with another steady
state. Indeed, we succeeded in finding a set of parameters where E1 change stability through a Hopf
bifurcation [20], as we shall see in the next section. More precisely, we show numerically the occurrence
of limit cycles in the case 3 of (3.5) when

D < Dv ≤ Du or Dv < D ≤ Du.

In the case 4 of (3.5) we always have λu < λv and H ′(S) > 0, as shown in Lemma 2.5. Therefore, from
Proposition 3.3, it is deduced that in the case 4 of (3.5) we always have c3 > 0. We were not able to find
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(a)

δ H(S)

E3

E2

E1

E0

Sinλu λv

I S

(b)

H(S)δ

E1

E2E0•
Sinλv λu

I S

(c)

δ
H(S)

E1

E2

E3

E0

λv

I

λu Sin

S

Fig. 3. Existence and stability of steady states in the second case of (3.5): (a) when λu < min(λv , Sin), (b) when
λv < Sin < λu < λb and (c) when Sin > min(λu, λb). In all figures, we have chosen the red color for LES steady states
and blue color for unstable steady states.

a set of parameters for which c4 < 0, as in the case 3 of (3.5) and we conjecture that in this case the
positive steady state E1 which is unique as soon as it exists, is also LES as soon as it exists.

In Figure 2, yellow (case 1) and cyan (case 4) colors represent the region where the system has at
most one positive steady state with c3 > 0. Green (case 2) and magenta (case 3) colors represent the
region where the system can have a multiplicity of positive steady state where the sign of c3 can be
positive or negative. In yellow and green regions, c4 is positive. In magenta region, we can have c3 > 0
and c4 < 0. In cyan region, we conjecture that c4 > 0.

4. Numerical simulations.

4.1. Occurrence of limit cycle: case 3 when D < Dv < Du. In order to show that the
condition c4(S∗) > 0 evaluated at E1 = (S∗, u∗, v∗) could be unfulfilled and to detect if the positive
steady state E1 can change stability through a Hopf bifurcation, all biological parameters were fixed such
that D < Dv < Du. Then, the control parameter Sin was varied.

To see the change of sign of the function S∗ 7→ c4(S∗) evaluated at E1 and to detect the occurrence
of limit cycles, it is useful to illustrate the curve of this function. To this end, the growth rates f and g
are chosen for simplicity of Monod-type

(4.1) f(S) =
m1S

k1 + S
and g(S) =

m2S

k2 + S
,

where mi denotes the maximum growth rate and ki the half-saturation constant. Indeed, we succeeded in
finding a set of parameters such that c4 can change its sign as Sin increases (or equivalently S∗ decreases)
(see Figure 4). The parameter values used for the simulations are provided in Table 1.

(a)
c4

H(S)

S3 S2 S1
S

(b)

E1

E2

E0

H(S)

δ

c4
S2 S1

S

Fig. 4. (a) Change of sign of c4 and the corresponding stability of E1 on the red or blue curve of function H(·)
where S1 ≈ 3.492 (or equivalently S1

in ≈ 3.837), S2 ≈ 3.422 (or S2
in ≈ 3.842) and S3 ≈ 1.963 (or S3

in ≈ 8.179), (b) a
magnification for 3.25 < S < λu = 4.061 where Sin = 3.86.
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The solution S1 of equation H ′(S) = −D and solutions Si, i = 2, 3, of equation c4(S) = 0 are
represented in Figure 4. In fact, S1

in is a critical value of Sin for which the curve of function H(·) is
tangent to the line δ of equation y = D(Sin − S). In addition, Siin, i = 1, 2, 3 can be computed explicitly
by

Siin =
1

D
H(Si) + Si.

According to control parameter Sin, the following changes of stability of E0 and E1 occur when the steady
state E2 is unstable whenever it exists.

- For Sin ∈ [0, S1
in[, there exists a unique steady state which is the washout E0 and it is LES.

- For Sin = S1
in, two positive steady states E1 and E2 bifurcate into the positive quadrant through

a saddle-node bifurcation.
- For Sin ∈]S1

in, S
2
in[, (or equivalently S∗ ∈]S2, S1[), c4(S∗) > 0 and H ′(S∗) < −D (see Fig-

ure 4(b)). It follows that E2 is unstable while E0 and E1 are LES.
- For Sin ∈]S2

in, λu[, E0 is LES while E1 and E2 are unstable where c4 < 0 (see Figure 4(b)).
- For Sin = λu, E2 coalesces with E0.
- For Sin ∈]λu, S

3
in[, E2 disappears through a transcritical bifurcation and transfers instability to

E0 while E1 still unstable.
- For Sin ∈]S3

in,+∞[, (or equivalently S∗ < S3), c4(S∗) > 0 and H ′(S∗) < −D (see Figure 4(a)).
It follows that E0 is unstable and E1 changes its stability and becomes LES.

To understand and analyze these changes of local behavior of E1 in S2
in and S3

in without any bifur-
cation with other steady states, we determine numerically the eigenvalues of the Jacobian matrix J1 of
system (1.4) at the positive steady state E1.

(a)

ν(Sin)λ̄1

λ̄2

µ(Sin)
��*

HHj

(b)
µ(Sin)

S2
in S3

in

Sin

Fig. 5. Two supercritical Hopf bifurcations: (a) variation of a pair of complex-conjugate eigenvalues as Sin increases
and the corresponding real part (b) as a function of Sin.

Indeed, the Jacobian matrix J1 of system (1.4) at E1 has one negative eigenvalue and one pair of
complex-conjugate eigenvalues

λj(Sin) = µ(Sin)± iν(Sin), j = 1, 2.

Increasing the control parameter Sin from S1
in, this pair crosses the imaginary axis at the critical value

Sin = S2
in from negative half plane to positive half plane (see Figure 5(a)), that is, it becomes purely

imaginary for S2
in such that µ(S2

in) = 0, with ν(S2
in) 6= 0. The following inequality is checked numerically

dµ

dSin
(S2
in) > 0 .

Thus, E1 is obviously stable focus node on the red curve for Sin ∈]S1
in, S

2
in[ but becomes saddle focus

on the blue curve for Sin ∈
]
S2
in, S

3
in

[
(see Figure 4(b)) undergoing a supercritical Hopf bifurcation at

Sin = S2
in, with orbits spiralling out (see Figure 6). Indeed, the bifurcation is supercritical since a unique

stable limit cycle bifurcates from the steady state E1 for Sin = S2
in.

Increasing Sin further, this pair enters to the positive half plane and then returns to the negative half
plane by crossing again the imaginary axis at Sin = S3

in (see Figure 5(a)). Similarly, E1 changes again
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their stability and returns stable focus node on the red curve for Sin > S3
in (see Figure 4(a)) due to the

supercritical Hopf bifurcation at Sin = S3
in. Figure 5(b) shows these critical values and the real part of

the complex-conjugate eigenvalues, as a function of Sin.

4 6 85 73.5 4.5 5.5 6.5 7.5 8.5

2

4

6

8

1

3

5

7

43.93.84 3.86 3.88 3.92 3.94 3.96 3.98 4.02 4.04 4.06 4.08

2

4

3

2.2

2.4

2.6

2.8

3.2

3.4

3.6

3.8

3.843.836 3.838 3.842 3.844 3.846 3.848

3.4

3.6

3.8

3.3

3.5

3.7

3.25

3.35

3.45

3.55

3.65

3.75

3.85

(a)
S

E0

E0

E1

Sin

(b)
S

E0

E0

E2

E1

Sin

(c)
S

E0

E2

E1 E1

Sin

Fig. 6. (a) Scilab simulation showing projections of the ω-limit set in variable S when Sin ∈ [3.5, 8.5] reveals the
emergence and the disappearance of limit cycles; (b) a magnification of two homoclinic bifurcations when Sin ∈ [3.83, 4.08];
(c) a magnification of supercritical Hopf bifurcation when Sin ∈ [3.835, 3.85]. A green dot and a green open circle represent
a saddle-node bifurcation and transcritical bifurcation, respectively.

In order to illustrate the occurrence of limit cycle and to understand what happens with the limit
cycle born via the supercritical Hopf bifurcation when Sin varied, we represent in Figure 6 the one-
parameter bifurcation diagram for system (1.4) when all other parameters are fixed. The ω-limit set
projected in coordinate S depending on the control parameter Sin shows that the “small” limit cycles
born at S2

in (see Figure 6(b)). When magnified, we observe more clearly the occurrence of limit cycle
and then the disappearance via orbits homoclinic to the saddle point E2 at Sin = Sh1

in = 3.8477 (see
Figure 6(c)). When Sin decreases, the stable limit cycle which appears via supercritical Hopf bifurcation
at Sin = S3

in = 8.179, will disappear via orbits homoclinic to the saddle point E2 at Sin = Sh2
in = 4.03468.

In order to show the behavior of system according to initial conditions, we illustrate in the following
the time course and the three-dimensional phase plot in most important cases.

(a) (b)

Fig. 7. Case Sin = 3.846 ∈
]
S2
in, S

h1
in

[
: bi-stability with convergence either to E0 (a) or limit cycle when the

oscillations are sustained (b).

For Sin ∈
]
S2
in, S

h1
in

[
, the bi-stability is transferred between E0 and the limit cycle instead of E0 and

E1. To detect the limit cycle, we take an initial condition close enough to positive steady state E1 such
that the convergence radius is small enough. Figure 7(a) shows the convergence to the washout steady
state E0 for an initial condition in a neighborhood of the saddle focus E1 of size order ε = 2 × 10−3

while Figure 7(b) clearly shows the trajectory starting from a neighborhood of E1 of size order ε = 10−4

is approaching a limit cycle as time goes where the system exhibits sustained oscillations, which implies
that the limit cycle is stable. All these facts tell us that a stable limit cycle is bifurcated from the steady
state E1 as the control parameter Sin passes through its critical value S2

in.
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3

3.2

3.4

3.6

3.8

0 0.020.010.005 0.015
0

0.002

0.004

0.001

0.003

0.005

3.4

3.6

3.3

3.5

0.010.008 0.012 0.014 0.016

0.002

0.001

0.0015

0.0025

(a)

E1

E2

E0
•

(b)

E1

E2

Fig. 8. Case Sin = 3.846 ∈
]
S2
in, S

h1
in

[
: (a) bi-stability of E0 and limit cycle; (b) a magnification of limit cycle in the

three-dimensional space (S, u, v).

In Figure 8, the three-dimensional phase space shows the bi-stability with convergence to E0 for two
initial conditions in a neighborhood of E1 of size order ε = 10−3 and ε = 1.5×10−3, respectively, or limit
cycle for the same initial condition as those in Figure 7(b). A magnification in the three-dimensional

space shows more clearly the convergence toward the limit cycle. When Sin ∈
]
Sh1
in , S

h2
in

[
, the numerical

simulations can show the global convergence toward the washout steady state E0 from any positive initial
condition (see Figure 9).

E1

E2

E0
•

Fig. 9. Case Sin = 3.8477 ∈
]
Sh1
in , S

h2
in

[
: global convergence to E0.

Figure 10 gives the time course and the phase portrait for Sin ∈
]
Sh2
in , λu

[
and shows that the system

exhibits bi-stability with convergence either to washout steady state E0 for an initial condition in a
neighborhood of E1 of size order ε = 2.1× 10−3 (a) or to the stable limit cycle for an initial condition in
a neighborhood of E1 of size order ε = 10−4 (b). In addition, the period asymptotes to infinity at a finite
value of the bifurcation parameter Sh2

in . The three-dimensional phase plot shows the bi-stability where
the blue trajectory tends to E0 and the black trajectory tends to the red limit cycle (see Figure 10(c)).

The numerical simulations can show the global convergence toward the limit cycle from any positive
initial condition and the oscillatory coexistence with constant amplitude and frequency over the time (see
Figure 11).

Hence the sensitivity of flocculation model behavior in mortality of species and their effect on the
occurrence of limit cycles via supercritical bifurcation. All these features cannot occur in cases 1 and 2
of (3.5), that is, Du ≤ D and Dv ≤ D, where there may be coexistence only around a positive steady
state and not a limit cycle.
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(a) (b) (c)

E1

E0
•

Fig. 10. Case Sin = 4.03468 ∈
]
Sh2
in , λu

[
: bi-stability and occurrence of limit cycle with convergence either to E0 (a)

or limit cycle (b). The limit cycle in the three-dimensional space (S, u, v).

E1

E0

•

Fig. 11. Case Sin = 6.2 ∈
]
λu, S3

in

[
: global convergence to limit cycle.

4.2. Occurrence of limit cycle: case 3 when Dv < D < Du. In the previous section, we have
shown the occurrence of limit cycles in the case where D < Dv < Du. In what follows, we show that the
two conditions D < Du and D < Dv are not necessary and only one of these conditions is sufficient to
destabilize the system. More precisely, we show the appearance of limit cycles in the third case of (3.5)
when Dv < D < Du by finding a set of parameters such that c4 can change its sign. Parameter values are
given in Table 1 where we modified only the value of Dv compared to the previous case D < Dv < Du.
In this case (Dv < D < Du), we have H ′(S∗) < −D for all S∗ ∈ I = ]λv,min(λu, λb)[. Figure 12(a)
illustrates the change of stability of E1 according to values of S at steady state when c4(S) changes sign
at Si, i = 1, 2, which is solution of the equation c4(S) = 0. The numerical simulations show that the
Jacobian matrix of system (1.4) at E1 has one negative eigenvalue and one pair of complex-conjugate
eigenvalues that crosses the imaginary axis at S1

in from negative half plane to positive half plane by
increasing the control parameter Sin from λb. Then, it returns to the negative half plane by crossing the
imaginary axis at S2

in (see Figure 12(b)). Depending on the control parameter Sin, one has the following
change of stability:

- For Sin ∈ [0, λb[, there exists a unique steady state which is the washout E0 and it is LES.
- For Sin = λb, E1 appears stable node through a transcritical bifurcation while E0 becomes a

saddle point (see Figure 12(c)).
- For Sin ∈

]
λb, S

1
in

[
, E1 is LES where c4(S∗) > 0 when S∗ ∈

]
S1, λb

[
(see Figure 12(a)).

- For Sin ∈
]
S1
in, S

2
in

[
, E1 becomes unstable where c4 < 0 when S∗ ∈

]
S2, S1

[
.

- For Sin ∈
]
S2
in,+∞

[
, E1 changes its stability and becomes LES where c4(S∗) > 0 when S∗ ∈]

λv, S
2
[
.

The projection of the ω-limit set in variable S according to Sin reveals the appearance and disappearance
of limit cycles through two supercritical Hopf bifurcations (see Figure 12(c)).

The numerical simulations shown in Figure 12 have been obtained with Du > D and Dv < D.
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H(S)

S2 S1
S

(b)
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λ̄1

λ̄2
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Fig. 12. (a) Change of sign of c4 and the corresponding stability of E1 on the red or blue curve of function H(·) where
λb ≈ 2.155, S1 ≈ 1.884 (or S1

in ≈ 2.342) and S2 ≈ 1.127 (or S2
in ≈ 4.561). (b) Variation of a pair of complex-conjugate

eigenvalues as Sin increases. (c) Projection of the ω-limit set in variable S as a function of Sin. A green open circle
represents a transcritical bifurcation.

Therefore, the mortality of isolated bacteria, which is necessary to have Du > D, can lead to their
coexistence with bacteria in flocs around a stable limit cycle. Thus, the condition min(Du, Dv) ≤ D does
not imply c4 > 0 since, for instance the condition Dv < D < Du permits to destabilize the system.

4.3. Multiplicity of positive steady states. In this section, we illustrate the bi-stability and
the multiplicity of positive steady states of flocculation model (1.4) in case 2 of (3.5). When the growth
rates are of Monod-type (4.1), the equation D(Sin − S) = H(S) is equivalent to a polynomial equation
of fifth degree. Therefore, there is at most five solutions of this equation. The positive steady states
correspond to solutions which are in the interval I. We succeeded in finding a set of parameters with 3
solutions at most in this interval. The numerical simulations illustrate the results of Proposition 2.6 and
Proposition 2.7, which are obtained for the Monod-type growth rates (4.1). All parameter values used in
this section are summarized in Table 1. Figure 13 illustrates the case λu < Sin < λv where there exists
a unique positive steady state

E1 ' (3.37, 0.98, 1.38)

which is LES. The numerical simulation shows the global convergence to the positive steady state E1 for
any positive initial condition. Figure 14 illustrates the case λu < λv < Sin with three positive steady

(a)

H(S)

δ

E1•

E0•
Sinλu λv

I S

(b)

E1•

E0

•

v

u

S

Fig. 13. The case λu = 2 < Sin = 5 < λv = 5.4: a unique positive steady state E1 and global convergence to E1.

states

E1 ' (3.06, 12.11, 157.46), E2 ' (5.17, 8.53, 524.30) and E3 ' (8.81, 2.64, 1086.32).

The numerical simulations show the bi-stability with two basins of attraction, one toward E1 and the
other toward E3 which are stable nodes. These two basins are separated by the stable manifold of saddle
point E2. As it was proved in Proposition 2.7, the steady state E1 promotes planktonic biomass u and
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(a)

H(S)
δ

E1

E2

E3

E0

Sinλu λv

I
S

(b)

E3•

E2•

E1•

E0

•

v

u S

Fig. 14. The case λu = 2.5 < λv = 10 < Sin = 15.8: three positive steady states and bi-stability.

E3 promotes attached biomass v. Figure 15 illustrates the case λv < Sin < λb < λu with two positive
steady states

E1 ' (1.37, 0.19, 0.62) and E2 ' (1.73, 0.07, 0.1).

The numerical simulations show the bi-stability with two basins of attraction, which are separated by the
stable manifold of saddle point E2. One basin of attraction attracts the solutions to the positive steady
state E1 and another to the washout steady state E0. Figure 16 illustrates the case Sin > λb with a

(a)

H(S)δ

E1

E2
E0

Sinλv λb

I

λu

S

(b)

E1

E2

E0
•

v

u

S

Fig. 15. The case λv = 1 < Sin = 1.85 < λb = 2.25 < λu = 3.4: two positive steady states and bi-stability.

unique positive steady state
E1 ' (1.15, 0.3, 2.54).

The numerical simulations show the global convergence to the positive steady state E1 for any positive
initial condition. Figure 17 illustrates the case Sin > λu > λv with three positive steady states

(a)

H(S)δ

E1

E0

Sinλv λb

I

λu

S

(b)

E1•

E0

•

v

u
S

Fig. 16. The case λv = 1 < λb < Sin = 2.7 < λu = 3.4: a unique positive steady state E1 and global convergence to E1.
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E1 ' (3.31, 2.23, 27.08), E2 ' (3.98, 1.67, 4.12) and E3 ' (4.39, 0.63, 0.24).

The numerical simulations show the bi-stability with two basins of attraction, one to the positive steady
state E1 and the other to the positive steady state E3 which are stable nodes. These two basins are
separated by the stable manifold of saddle point E2. As it was proved in Proposition 2.7, the steady state
E1 promotes simultaneously two biomass u and v. Figure 18 illustrates the case λv < Sin < λu with no

(a)

H(S)δ

E1

E2

E3

E0

Sinλv

I

λu

S

(b)

E1

E2

E3
E0•

v

S

u

Fig. 17. The case λv = 2.7 < λu = 4.5 < Sin = 4.6: existence of three positive steady states and bi-stability.

positive steady state. The numerical simulations show the global convergence toward the washout steady
state E0.

(a)

H(S)δ

λv

I

λu

E0

Sin

S

(b)

E0

•

v

u
S

Fig. 18. The case λv = 3 < Sin = 5.5 < λu = 6: global convergence toward E0.

5. Conclusion. In this work, we have analyzed mathematically and through numerical simulations
a model of the chemostat with three nonlinear differential equations where one species is present in two
forms, isolated and attached with the presence of a single growth-limiting resource. The new feature was
that maintenance terms are added to depletion or removal rates in order to give a complete analysis of
flocculation model (1.4).

To our knowledge, our study is the first attempt to bring out the common effects of the flocculation
phenomenon and mortality in the coexistence around a stable limit cycle. Depending on the two control
parameters Sin and D, the flocculation model may exhibit sustained oscillations and the occurrence of
stable limit cycles via supercritical Hopf bifurcations.

More precisely, when Dv < Du, we show that the system may exhibit bi-stability with multiplicity of
coexistence steady states that can bifurcate through saddle-node bifurcations or transcritical bifurcations.
Whereas, the bi-stability could occur in the classical chemostat model (1.1) only when the growth rate
is non-monotonic. If, in addition Du ≤ D, the coexistence of planktonic and attached bacteria may be
only around a positive steady state.

Considering the mortality of isolated and aggregated bacteria (D < Dv < Du), we have identified
that the phase portraits may be very rich. More precisely, the one-parameter bifurcation diagram for
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model (1.4) shows the effect of control parameter Sin on the behavior of the system. For small enough
Sin, there is exclusion of planktonic and attached species. Increasing Sin, system (1.4) undergoes Hopf
bifurcations at the positive steady state E1. Furthermore, this system may exhibit bi-stability with
convergence either to a stable limit cycle or to the washout steady state. The disappearance of stable
limit cycles can be either by supercritical Hopf bifurcations or homoclinic bifurcations. For large enough
Sin, there is global convergence to the positive steady state or to a stable limit cycle. However, we have
shown that the mortality of planktonic or attached species (for instance Dv < D < Du) suffices to ensure
the coexistence around a stable limit cycle.

Our findings on the destabilization by of the positive steady state are similar to those in [3, 19]. In
[19], the steady state of a trophic chain (prey-predator) in a chemostat can be destabilized by mortality
where stable limit cycles and multiple chaotic attractors are found. The maintenance (or decay) rate
coefficients considered in a tri-trophic food chain model can cause destabilization of system when the
operating diagram shows local and global bifurcations of steady states and of limit cycles [3].

Our results show that the mortality of the species is necessary for the emergence of stable limit cycles
in the flocculation model (1.4). This is mainly due to the joined effect of mortality and flocculation.
However, in the flocculation model introduced in [11], without mortality (Du = Dv = D), it has been
shown that the model can have unstable limit cycles with a non-monotonic growth rate of planktonic
bacteria, see [7]. It is the joined effect of flocculation and inhibition by the substrate on the growth
that was the cause of the appearance of unstable limit cycles. Adding a second species to the model,
where only the most efficient species makes flocs, the model does produce oscillations with emergence of a
stable limit cycle. Therefore, the properties of the model depend highly on the flocculation phenomenon
through the attachment and detachment velocities A(·) and B(·) respectively in (1.3) and should be
carefully discussed with the biologists.

As it was noticed in the introduction, a more general choice for the specific velocityA(·) of aggregation,
which is still coherent with Smoluchowski’s modeling of flocculation [10, 35], should be A(·) = auu+ avv
with distinct coefficients au and av. The particular case av = 0 corresponds to the model in [11] and the
particular case au = av corresponds to the model in the present paper. The study of the robustness of
the model with respect to this variation, or with other terms tainted with some light non-linearity, is an
important question that deserves further attention and will be the object of a future work.

Thereby, the flocculation models are sensitive to mortality of species which is neglected in the liter-
ature. The behavior of the system is richer with coexistence, bi-stability, multiplicity of positive steady
states, and emergence of stable limit cycles. This last feature cannot occur in the flocculation model
without mortality what confirms the output sensitivity and the importance of mortality in biological
systems. All these bifurcations enrich notably the dynamic behavior of the analyzed flocculation model
(1.4).

Appendix A. Proofs.

A.1. First proofs. In this Appendix, we give the proofs of the results given in section 2.
Proof of Proposition 2.3. Since

S = 0 ⇒ Ṡ = DSin > 0 ,

then no trajectory can leave the positive octant R3
+ by crossing the boundary face S = 0. In addition,

whenever u = 0 with v > 0, then u̇ = bv > 0. Similarly, whenever v = 0 with u > 0, then v̇ = au2 > 0.
Hence, the vector field points inside

Θ =
{

(S, u, v) ∈ R3 : S > 0, u > 0, v > 0
}

along the whole boundary of Θ without the horizontal semi-axis

Γ = {S ≥ 0, u = v = 0} ,

which is invariant under the system (1.4) because the function

t→ (S(t), u(t), v(t)) =
(
Sin + (S(0)− Sin)e−Dt, 0, 0

)
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is a solution of (1.4). By uniqueness of solutions, Γ cannot be reached in finite time by trajectories for
which u > 0 or v > 0. Therefore, the solutions remain non-negative.

Let z = S + u+ v. The sum of the three equations of (1.4) yields

ż(t) = DSin −DS(t)−Duu(t)−Dvv(t) ≤ Dmin

(
D

Dmin
Sin − z(t)

)
.

Using Gronwall’s Lemma, we obtain

(A.1) z(t) ≤ D

Dmin
Sin +

(
z(0)− D

Dmin
Sin

)
e−Dmint for all t ≥ 0.

We deduce that

z(t) ≤ max

(
z(0),

D

Dmin
Sin

)
for all t ≥ 0.

Therefore, the solutions of (1.4) are positively bounded and are defined for all t ≥ 0. From (A.1), it can
be deduced that the set Ω is positively invariant and is a global attractor for (1.4). �

Proof of Proposition 2.7. A straightforward calculation shows that

(A.2) H(S) =
ϕ(S)(ψ(S)− b)[Duψ(S)−Dvϕ(S)]

a[ψ(S)− ϕ(S)]ψ(S)
.

From (2.6) and (A.2), it follows that

ϕ(S∗)(ψ(S∗)− b)
a[ψ(S∗)− ϕ(S∗)]

=
D(Sin − S∗)ψ(S∗)

Duψ(S∗)−Dvϕ(S∗)
.

Therefore, the expressions (2.9) and (2.10) can be rewritten also as follows:

(A.3) u∗ = U1(S∗) with U1(S) :=
D(Sin − S)ψ(S)

Duψ(S)−Dvϕ(S)

and

(A.4) v∗ = V1(S∗) with V1(S) =
D(Sin − S)ϕ(S)

Dvϕ(S)−Duψ(S)
.

We show that
1. If λu < λv, then U1(·) is strictly decreasing on I ∩ [0, Sin] and V (·) is strictly increasing on I.
2. If λv < λu, then U and V are strictly decreasing on I and V1 is strictly decreasing I ∩ [0, Sin].

From (2.9) and (A.3), a simple calculation yields that

U ′1(S) = D
−ψ (Duψ −Dvϕ)− g′Dvϕ (Sin − S) + f ′Dvψ (Sin − S)

(Duψ −Dvϕ)
2 , U ′(S) =

f ′ψ (ψ − b) + g′ϕ (b− ϕ)

a (ψ − ϕ)
2 .

Therefore, if λu < λv, then U ′1(S) is negative on I ∩ [0, Sin] and if λv < λu, then U ′(S) is negative on I.
From (2.10) and (A.4), a direct calculation shows that

V ′1(S) = D
−ϕ (Dvϕ−Duψ)− f ′Duψ (Sin − S) + g′Duϕ (Sin − S)

(Dvϕ−Duψ)
2 ,

V ′(S) =
−f ′ [ϕψ (ψ − b)] (2ψ − ϕ) + g′ϕ2 (ψ − b) (2ψ − ϕ)

a (ψ − ϕ)
2
ψ2

.
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If λu < λv, then V ′(S) is positive on I and if λv < λu, then V ′1(S) is negative on I ∩ [0, Sin] and V ′(S)
is negative on I. Let S∗ < S∗∗. Therefore, if λu < λv, then

u∗ = U1(S∗) > u∗∗ = U1(S∗∗) and v∗ = V (S∗) < v∗∗ = V (S∗∗).

Furthermore, if λv < λu then

u∗ = U(S∗) > u∗∗ = U(S∗∗) and v∗ = V1(S∗) > v∗∗ = V1(S∗∗).

This completes the proof. �

A.2. The sign of c1. In this section, we consider the sign of the coefficient c1.
Proof of Lemma 3.2. From the second equation of (2.1), we have

ϕ(S∗)u∗ − a(u∗ + v∗)u∗ + bv∗ = ϕ(S∗)u∗ − a(2u∗ + v∗)u∗ + a(u∗)2 + bv∗ = −m22u
∗ + a(u∗)2 + bv∗ = 0.

Hence

m22 = au∗ + b
v∗

u∗
> 0.

From the third equation of (2.1), we have

ψ(S∗)v∗ + a(u∗ + v∗)u∗ − bv∗ = −m33v
∗ + a(u∗)2 = 0.

and therefore,

m33 = a
(u∗)2

v∗
> 0.

Thus, all mij are positive for all i, j = 1, . . . , 3 with (i, j) 6= (2, 3). Since mii > 0, i = 1, . . . , 3, then

c1 =
∑3
i=1mii > 0. �

A.3. The sign of c3. We study the sign of c3 is a more general context. Consider the following
system of differential equations

(A.5)


ẋ0 = f0(x0, x1, x2)

ẋ1 = f1(x0, x1, x2)

ẋ2 = f2(x0, x1, x2).

Let x∗ = (x∗0, x
∗
1, x
∗
2) be a steady state, and let

J =

 a00 a01 a02

a10 a11 a12

a20 a21 a22


where

aij =
∂fi
∂xj

(x∗), i = 0, 1, 2, j = 0, 1, 2

be the Jacobian matrix of (A.5) at x∗. The steady state x∗ = (x∗0, x
∗
1, x
∗
2) is a solution of the set of

equations 
0 = f0(x0, x1, x2)

0 = f1(x0, x1, x2)

0 = f2(x0, x1, x2).

We solve this set of equations in the following manner:
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1. We first solve the second and third equations f1(x0, x1, x2) = 0 and f2(x0, x1, x2) = 0 which are
assumed to define x1 and x2 as functions of x0, that is to say, there exists x0 7→ (X1(x0), X2(x0))
such that

(A.6) f1(x0, X1(x0), X2(x0)) = 0 and f2(x0, X1(x0), X2(x0)) = 0.

2. Then, we replace x1 by X1(x0) and x2 by X2(x0) in the first equation to obtain

(A.7) h(x0) = 0, where h(x0) = f0(x0, X1(x0), X2(x0))

which is assumed to have a solution x∗0.
3. Therefore, x∗1 = X1(x∗0) and x∗2 = X2(x∗0) define the steady state x∗ = (x∗0, x

∗
1, x
∗
2).

Lemma A.1. Assume that ∆ := a11a22 − a12a21 6= 0, then we have the following formula

det(J) = h′(x∗0)∆.

Proof. Deriving (A.6) with respect to x0 gives the following formulas

(A.8)

{
∂f1
∂x0

+ ∂f1
∂x1

X ′1(x0) + ∂f1
∂x2

X ′2(x0) = 0
∂f2
∂x0

+ ∂f2
∂x1

X ′1(x0) + ∂f2
∂x2

X ′2(x0) = 0

where the partial derivatives of f1 and f2 are evaluated in (x0, X1(x0), X2(x0)). For x0 = x∗0, system
(A.8) becomes {

a10 + a11X
′
1(x∗0) + a12X

′
2(x∗0) = 0

a20 + a21X
′
1(x∗0) + a22X

′
2(x∗0) = 0.

Using ∆ 6= 0, we have

X ′1(x∗0) = −a10a22 − a20a12

∆
, X ′2(x∗0) = −a20a11 − a10a21

∆
.

The development of the determinant of J with respect to the first line gives

det(J) = a00∆− a01 (a10a22 − a20a12) + a02 (a10a21 − a20a11) .

Thus,
det(J) = ∆ (a00 + a01X

′
1(x∗0) + a02X

′
2(x∗0)) .

By using expression (A.7) of h(x0), it follows that

h′(x0) =
∂f0

∂x0
+
∂f0

∂x1
X ′1(x0) +

∂f0

∂x2
X ′2(x0).

Hence, h′(x∗0) = a00 + a01X
′
1(x∗0) + a02X

′
2(x∗0). Therefore, det(J) = ∆h′(x∗0).

Proof of Proposition 3.3. In the particular case of system (1.4), we have
f0(x0, x1, x2) = D(Sin − x0)− f(x0)x1 − g(x0)x2

f1(x0, x1, x2) = [f(x0)−Du]x1 − a(x1 + x2)x1 + bx2

f2(x0, x1, x2) = [g(x0)−Dv]x2 + a(x1 + x2)x1 − bx2.

Since,
h(x0) = D(Sin − x0)−H(x0), where H(x0) = f(x0)X1(x0) + g(x0)X2(x0).

it follows that
h′(x0) = −D −H ′(x0).
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Substituting x∗1 and x∗2 by their expressions U(S∗) and V (S∗) given by (2.9) and (2.10), respectively, in
the expression of ∆, a straightforward calculation shows that

(A.9) ∆ = −ϕ(x∗0)(ψ(x∗0)− b).

We conclude from Lemma A.1 that,

c3 = −det(J) = −ϕ(x∗0)(ψ(x∗0)− b)(D +H ′(x∗0)).

�

A.4. The sign of c4. In this section we consider the sign of the coefficient c4.
Proof of Proposition 3.4. In the case 1, one has Du ≤ Dv. From Lemma Lemma 2.5, it follows that
λu < λv. In the case 2, one has Dv < Du. From Lemma Lemma 2.5, two cases must be distinguished:
either λu < λv or λu > λv. Straightforward calculations show that:

(A.10) c4 = DuDf
′u∗ +Dg′au∗v∗ + f ′

ϕ(ψ − b)2

a(ψ − ϕ)2ψ
F + g′

ϕ2(ψ − b)
a[(ψ − ϕ)ψ]2

G+ P1

where

F = 2(D −Dv)ϕψ + (Dv −D)ϕ2 + (Du −D)ψ2 +Dϕψ,

G = (D −Dv)bϕ(2ψ − ϕ) +Dψ3 + (Du −D)bψ2 −Duϕψ
2 + (Dv −D)ψ2ϕ,

P1 = D2(m22m33) +D (f ′u∗ + g′v∗)m33 + (m22m33)c2.

From (3.3), c2 can be written as follows:

(A.11) c2 = m12m21 +m13m31 +m11 (m22 +m33) +m22m33 −m32a23.

Since m22m33 −m32a23 = ∆, it follows from its expression (A.9) that:

(A.12) m22m33 −m32a23 = ∆ = −ϕ(S∗) [ψ(S∗)− b] .

Let λu < λv. Thus, ∆ is positive and so c2 > 0. Consequently, P1 is positive. In the case 1 (Du ≤ Dv ≤ D)
and the case 2 (Dv < Du ≤ D), it is easy to check F < 0 and G < 0 where ψ < 0 < ϕ on ]λu, λv[. Thus,
one can conclude that c4 > 0 in the first and the second cases when λu < λv.

Let λu > λv. Straightforward calculations show that:

c4 = A+B + P2

where

A = Dm12m21 +m2
11m22 −m21m32m13, B = Dm13m31 +m2

11m33 −m31a23m12,

P2 = (f ′u∗ + g′v∗)m12m21 + (f ′u∗ + g′v∗)m13m31 +m22(c2 −m13m31) +m33(c2 −m12m21).

From (A.11) and (A.12), one has

c2 −m13m31 = m12m21 +m11 (m22 +m33) + ϕ(b− ψ) > 0,

and
c2 −m12m21 = m13m31 +m11 (m22 +m33) + ϕ(b− ψ) > 0.



PROPERTIES OF THE CHEMOSTAT MODEL 23

Thus, P2 > 0. On the one hand, we can write m2
11 = Df ′u∗ + P3 with P3 > 0 since all the terms of m11

are positive. Thus, from expression (3.2), one has

m2
11m22 −m21m32m13 = Df ′u∗[a(2u∗ + v∗)− ϕ]− gf ′u∗a(2u∗ + v∗) + P3m22.

Then,
A = (D − g)f ′u∗a(2u∗ + v∗) +DuDf

′u∗ + P3m22.

In the case 2, our Hypothesis 2.2 implies that g(S∗) < g(λu) < f(λu) = Du ≤ D for all S∗ ∈]λv, λu[.
Therefore, A > 0. On the other hand, we can write m2

11 = Dg′v∗ + P4 with P4 > 0. From expression
(3.2) of a23 and m33, one has a23 = m33 + ψ. Therefore,

m2
11m33 −m31a23m12 = (D − f)g′v∗m33 − fg′v∗ψ + P4m33.

Since f(S∗) < f(λu) = Du ≤ D for all S∗ ∈]λv, λu[, then

B = (D − f)g′v∗m33 + (D − f)gg′v∗ + fg′v∗Dv + P4m33 > 0.

Thus, in the second case when λv < λu, we can conclude that c4 > 0 for all S∗ ∈]λv, λu[. �

Appendix B. Parameters used in numerical simulations. All the values of the parameters
values used in numerical simulations are provided in the following Table.

Table 1
Parameter values used for (1.4) when the growth rates f and g are given by (4.1).

Parameter m1 k1 m2 k2 a b D Du Dv

(h−1) (g/l) (h−1) (g/l) (l/h/g) (h−1) (h−1) (h−1) (h−1)

Figures 4 to 11

Figure 12
5 2 5 3 4 2 0.1 3.35

1.1

0.09

Figure 13 4.5 1 3 2.7 2 3 3.5 3 2

Figure 14 60 0.5 0.6 20 0.01 0.01 50 50 0.2

Figures 15 and 16 4.5 1.7 4 1.5 2 0.8 3.2 3 1.6

Figure 17 20 1.5 2 2.7 1.2 3 47 15 1

Figure 18 4 2 3 1.5 2 3 3 3 2

Acknowledgments. The authors would like to thank one anonymous reviewer for interesting
comments and suggestions that improved the content of this work. We thank Jérôme Harmand for
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