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PROPERTIES OF THE CHEMOSTAT MODEL WITH AGGREGATED BIOMASS1

AND DISTINCT DILUTION RATES∗2

RADHOUANE FEKIH-SALEM† AND TEWFIK SARI‡3

Abstract. Understanding and exploiting the flocculation process is a major challenge in the mathematical theory of the4
chemostat. Here, we study a model of the chemostat involving the flocculating and deflocculating dynamics of planktonic5
and attached biomass competing for a single nutrient. In our study, the mortality (or maintenance) of species is taken6
into account and not neglected as in previous studies. The model is a three-dimensional system of ordinary differential7
equations. Using general monotonic functional responses, we give a complete analysis for the existence and local stability8
of all steady states. The theoretical analysis of the model involving the mortality is a difficult problem since the model is9
not reduced to a planar system as in the case where the dilution rates of the substrate and the biomass are equal.10

With the same dilution rates, it is well known that the model can have a positive steady state which is unique and stable11
as long as it exists. Without mortality, and different dilution rates, the system may have a multiplicity of positive steady12
states that can only appear or disappear through saddle-node or transcritical bifurcations. In contrast to the case without13
mortality, under the joined effect of flocculation and mortality, the model may undergo supercritical Hopf bifurcations or14
homoclinic bifurcations, with the appearance or the disappearance of a stable periodic orbit. Therefore coexistence may15
occur around a positive steady state, and also around periodic oscillations.16
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1. Introduction. The chemostat plays an important role as a model in mathematical biology. In19

its simplest form, it is a model of a vessel where the populations compete for the available nutrient. It20

is used as the starting point for models of waste-water treatment processes. The derivation and analysis21

of a large number of chemostat-like models can be found in the monographs [30], see also [11]. We recall22

the classical chemostat model for a single species x consuming a substrate S:23

(1.1)

{
Ṡ = D(Sin − S)− f(S)xγ
ẋ = [f(S)−D]x,

24

where the dilution rate D and the input concentration Sin are the manipulated parameters, f(S) is the25

growth function and γ is the yield, which can be easily normalized to 1, using the change of variable26

x/γ → x. The growth function f(S) is a non-negative Lipschitz continuous function with f(0) = 0.27

Besides the washout steady state E0 = (Sin, 0), the system (1.1) can have a positive steady state E∗ =28

(S∗, x∗), where f(S∗) = D and x∗ = Sin − S∗. For monotonic f(S), this steady state exists as long29

as f(Sin) > D. It is unique and Locally Exponentially Stable (LES) as long as it exists. It is globally30

asymptotically stable in the quadrant S ≥ 0, x > 0. For non-monotonic growth function f(S), the31

positive steady state is in general not unique and bi-stability may occur. When the function f(S) is32

unknown and using the characterization f(S∗) = D of a positive steady state, it is possible to reconstruct33

its graph using variations on D and on-line measurements for the variable S. This problem of kinetics34

estimation in biological and biochemical models has been widely addressed in the literature, even when35

f(·) is non monotonic, see [29] and the reference therein. The theoretical identifiability of f(·) is one of36

the reasons that explain the success of the chemostat model in the mathematical study of the culture of37

microorganisms.38

When two (or more) species x and y are in competition, the model consists simply adding the39
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2 R. FEKIH-SALEM, AND T. SARI

consomption terms in the first equation:40

(1.2)


Ṡ = D(Sin − S)− f(S)x− g(S)y

ẋ = [f(S)−D]x

ẏ = [g(S)−D] y.

41

Since equations f(S) = D and g(S) = D cannot have in general a solution, the model (1.2) predicts42

that at steady state, at most one competitor population avoids extinction. However, the coexistence of43

competing populations is obvious in nature, and so in order to explain this, it seems necessary to extend44

the model (1.2). Several mechanisms of coexistence where considered in the literature, among them wall45

attachment, see [14, 15, 16, 17, 25, 31]. These models were inspired by the Freter model [7, 8] of the46

microflora in the large intestine. Another mechanism that promotes the coexistence is the flocculation47

of the species, see [3, 4, 6, 10, 11, 26, 27]. Attachment and detachment phenomena of bacteria, whether48

in biofilms on a support [13] or in the form of aggregates or flocs [32] are well known and frequently49

observed in bacterial growth.50

For both previously cited models of wall attachment or flocculation, the total biomass of a given51

species is decomposed into planktonic (or free) biomass made up of non-attached microorganisms and52

aggregate (or attached) biomass. Thus, the concentration x of the total biomass is the sum of concen-53

trations u and v of planktonic and aggregate biomass, respectively, x = u + v. This distinction permits54

to take into account different growth and death characteristics according to whether microorganisms are55

attached or not. Specific velocities A(·) of attachment of free biomass and B(·) of detachment of the56

attached biomass are introduced in the model. Hence, the general model of flocculation of one species57

considered in [4] can be written:58

(1.3)


Ṡ = D(Sin − S)− f(S)u− g(S)v

u̇ = [f(S)−Du]u−A(·)u+B(·)v
v̇ = [g(S)−Dv]v +A(·)u−B(·)v,

59

where f(S) and g(S) represent, respectively, the per-capita growth rates of planktonic and attached60

bacteria and Du and Dv represent, respectively, the disappearance rates of planktonic and attached61

bacteria. The models of flocculation for several competing species are build as in (1.2), by adding the62

consomption terms in the dynamic equation of the substrate.63

An interesting property of general model (1.3), and its extension to competing species, is that under64

the assumption that attachment and detachment velocities are fast compared to the specific growth and65

disappearance rates, using singular perturbation method, see [4, 9, 10, 26], the flocculation model can be66

reduced to a model with density-dependent growth function. It is well known that density-dependence67

of the growth functions promotes the coexistence of species [5, 12, 20, 21, 22, 23]. Therefore when68

attachment and detachment terms are large enough, coexistence is also possible.69

The models of attachment or flocculation introduced in the previously cited literature are of the form70

(1.3), with specific attachment and detachment velocities A(·) and B(·) respectively. For instance, the71

wall-attachment model of Pilyugin and Waltman [25] corresponds to constant velocities A(·) = a and72

B(·) = b, and the flocculation model of Haegeman and Rapaport [10] corresponds to A(·) = au and73

B(·) = b, where a and b are constant. For these models, coexistence occurs at positive stable steady74

state. An extension of the model [10] has been studied in [3, 6] when the growth function of isolated75

bacteria of the most efficient species presents inhibition. In this case, coexistence can also hold around a76

stable limit cycle. The reader interested in a review of the various specific attachment and detachment77

velocities used in the literature is referred to [4, 6].78

A specific model introduced in [4] corresponds to the velocities A(·) = a(u + v) and B(·) = b. This79
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PROPERTIES OF THE CHEMOSTAT MODEL 3

model, which was studied also in [3, 11, 26, 27], takes the form:80

(1.4)


Ṡ = D(Sin − S)− f(S)u− g(S)v

u̇ = [f(S)−Du]u− a(u+ v)u+ bv

v̇ = [g(S)−Dv]v + a(u+ v)u− bv
81

where a and b are positive constants. All these studies restricted to the biologically interesting case82

Dv ≤ Du ≤ D, where Du = αD and Dv = βD, α and β belong to [0, 1] and denote, respectively, the83

fraction of the planktonic and attached bacteria leaving the reactor as proposed by [1] to model a biomass84

reactor attached to the support or to decouple the residence time of solids and the hydraulic residence85

time (1/D).86

In the present work, we study the model (1.4) where Du and Dv can be modeled as in [24, 28] by:

Du = αD +mu, Dv = βD +mv

where the non-negative death (or maintenance) rate parameters mu and mv are taken into consideration.87

Therefore the study will not be restricted to the cases Dv ≤ Du ≤ D, as in [3, 4, 11, 26, 27], and the88

cases D < Du, D < Dv or Du < Dv, which are also of biological interest, will be investigated.89

When D = Du = Dv, the main result in [11] (see also [26]) was that the model can have a positive90

steady state E∗ = (S∗, u∗, v∗), which exists as long as f(Sin) > D. This steady state is unique and LES91

as long as it exists. Since f(S) > g(S) (see Hypothesis 2.2 in section 2) the condition f(Sin) > D of92

existence of the positive steady state depends only on the growth rate of planktonic bacteria. Therefore93

the operating diagram which is the bifurcation diagram that illustrates the washout and coexistence94

regions depends only on the growth rate of planktonic bacteria [27].95

It was shown in [3, 4] that, if Dv < Du ≤ D, and with monotonic growth rates f(S) and g(S), the96

model (1.4) can exhibit a bi-stability behavior, similar to the one obtained in (1.1) for non-monotonic97

kinetics. The case Dv < Du ≤ D can occur, for instance, if mu = mv = 0 and β < α, that is the residence98

time of the attached bacteria is greater than the one of planktonic bacteria.99

The main objective of this paper is to give a complete analysis of (1.4). We show that when Du ≤ Dv,100

the model has a positive steady state E∗ = (S∗, u∗, v∗), which exists as long as f(Sin) > D. This steady101

state is unique as long as it exists. If, in addition Dv ≤ D, E∗ is LES as long as it exists. Therefore, we102

extend the results on the existence and uniqueness of the positive steady state obtained in the particular103

case D = Du = Dv [11, 26] to the general case Du ≤ Dv, see Proposition 2.6. The result on the stability104

is extended to the case Du ≤ Dv ≤ D, see Proposition 3.5.105

Following [3], when Dv < Du ≤ D, we show that multiple positive steady states can appear to106

bifurcate through saddle-node bifurcations or transcritical bifurcations, see Proposition 3.6. When Dv <107

Du and D < Du, we investigate numerically the system and we see the occurrence of Hopf bifurcations108

and homoclinic bifurcation, see subsections 4.1 and 4.2. Notice that the condition D < Du or D < Dv109

can occur only when mortality (or maintenance) terms are added to the model (Du = D+mu). Therefore110

the destabilization of the positive steady state is due to the mortality of the species, and is similar to111

some results obtained in the existing literature on food webs (predator–prey model) in the chemostat112

where the addition of mortality terms of the species lead to destabilization of the system [2, 18].113

The paper is organized as follows. The next section presents general assumptions for the growth114

functions of flocculation model (1.4) and the analysis of the existence of steady states. In section 3, the115

asymptotic behavior analysis of model (1.4) was done according to the dilution rate and the disappearance116

rates of planktonic and attached bacteria. Considering growth rates of Monod-type, numerical simulations117

are presented in section 4 in order to show the emergence of limit cycles and the multiplicity of positive118

steady states when the system exhibits the bi-stability. Finally, conclusions are drawn in the last section 5.119

The proofs of some propositions and technical lemmas are reported in Appendix A.120

2. Assumptions on the model and steady states. We use the following general assumptions121

for the growth functions f(S) and g(S):122
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4 R. FEKIH-SALEM, AND T. SARI

Hypothesis 2.1. f(0) = g(0) = 0 and f ′(S) > 0 and g′(S) > 0 for all S > 0.123

Hypothesis 2.2. f(S) > g(S) for all S > 0.124

Hypothesis 2.1 means that the growth can take place if and only if the substrate is present. In addition, the125

growth rates of isolated and attached bacteria increase with the concentration of substrate. Hypothesis 2.2126

means that bacteria in flocs consume less substrate than isolated bacteria, this means that a lower specific127

growth rate. In fact, the flocs consume less substrate than isolated bacteria since they have less access128

to substrate, given that this access to substrate is proportional to the outside surface of flocs.129

In order to preserve the biological significance of our model (1.4), we will show that solutions of130

ordinary differential equations are non-negative and bounded for any non-negative time.131

Proposition 2.3. For any non-negative initial condition, the solutions of system (1.4) remain non-
negative and positively bounded. In addition, the set

Ω =

{
(S, u, v) ∈ R3

+ : S + u+ v ≤ D

Dmin
Sin

}
, where Dmin = min(D,Du, Dv),

is positively invariant and is a global attractor for the dynamics (1.4).132

The proof is given in Appendix A.1.133

The first step is to determine the steady states of (1.4). A steady state (S∗, u∗, v∗) must be a solution134

of the system135

(2.1)


0 = D(Sin − S∗)− f(S∗)u∗ − g(S∗)v∗

0 = [f(S∗)−Du]u∗ − a(u∗ + v∗)u∗ + bv∗

0 = [g(S∗)−Dv]v
∗ + a(u∗ + v∗)u∗ − bv∗.

136

To solve (2.1), we use a method similar to the concept of steady-state characteristic that is introduced
by Lobry et al. [22, 23]. This concept consists of determining the steady states of the second and third
equations of (1.4), where S is considered as an input of the system. This means that we must solve the
second and third equation of (2.1), where u∗ and v∗ are unknown and S∗ is considered as a parameter.
Assume that one obtains

u∗ = U(S∗), v∗ = V (S∗).

If we replace u∗ and v∗ by these expressions in the first equation of (2.1), we obtain an equation in the
sole variable S∗ of the form

D(Sin − S∗) = H(S∗), where H(S∗) = f(S∗)U(S∗) + g(S∗)V (S∗).

Solving this equation, we find S∗ and hence u∗ = U(S∗) and v∗ = V (S∗). In the sequel, we show how to137

determine the functions U , V and H and we give the conditions such that a solution S∗ exists.138

From Hypothesis 2.1, when equations f(S) = Du and g(S) = Dv have solutions, they are unique and
we define the usual break-even concentrations

λu = f−1(Du) and λv = g−1(Dv).

From Hypothesis 2.2, if in addition Dv ≥ Du, then λv > λu. When equations f(S) = Du or g(S) = Dv139

have no solution, we put λu =∞ or λv =∞. We define the interval I by (see Figure 1):140

(2.2) I =

{
]λu, λv[ if λu < λv

]λv,min(λu, λb)[ if λu > λv.
141

142

In the rest of the paper, we use also the following notations:143

(2.3) ϕ(S) = f(S)−Du and ψ(S) = g(S)−Dv,144
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f(S)

Du

g(S)
Dv

ϕ(S)

ψ(S)

λu

I

λv

S

f(S)

Du
g(S)

Dv

b
ψ(S)

ϕ(S)

λv

I
λu λb

S

Fig. 1. Definition of the interval I: (a) the case λu < λv; (b) the case λv < min(λu, λb).

145

(2.4) U(S) :=
ϕ(S) (ψ(S)− b)
a [ψ(S)− ϕ(S)]

and V (S) := − ϕ2(S) (ψ(S)− b)
a [ψ(S)− ϕ(S)]ψ(S)

,146

147

(2.5) H(S) := f(S)U(S) + g(S)V (S).148

We can state the following result:149

Lemma 2.4. Assume that Hypotheses 2.1 and 2.2 hold. Then system (1.4) has the following steady150

states:151

1. the washout E0 = (Sin, 0, 0), that always exists,152

2. a positive steady state, E1 = (S∗, u∗, v∗) with S∗ solution153

(2.6) D(Sin − S∗) = H(S∗)154

where H is given by (2.5) and u∗ = U(S∗) and v∗ = V (S∗), where U and V are given by (2.4).155

This positive steady state exists if and only if S∗ ∈ I where I is defined by (2.2).156

Proof. From the second equation of (2.1), if u∗ = 0, it follows that v∗ = 0. From the last equation
of (2.1), if v∗ = 0, then u∗ = 0. Hence, we cannot have a steady state of extinction only of planktonic or
attached bacteria. Therefore, besides the washout steady state

E0 = (Sin, 0, 0)

where both planktonic and attached bacteria are extinct, the system can have a positive steady state of
coexistence

E1 = (S∗, u∗, v∗)

where S∗ > 0, u∗ > 0 and v∗ > 0. Making the sum of the second and the third equation of (2.1), we157

obtain158

(2.7) ϕ(S∗)u∗ + ψ(S∗)v∗ = 0,159

where ϕ and ψ are given by (2.3). This equation admits positive solutions u∗ and v∗ if and only if ϕ(S∗)160

and ψ(S∗) have opposite signs, i.e. S∗ is between λu and λv, see Figure 1. In this case, ψ(S∗) 6= 0 and161

equation (2.7) can be rewritten as162

(2.8) v∗ = −ϕ(S∗)

ψ(S∗)
u∗.163
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6 R. FEKIH-SALEM, AND T. SARI

Replacing v∗ by its expression (2.8) in the second equation of (2.1), we obtain164

(2.9) u∗ = U(S∗),165

where U is given by (2.4). Note that u∗ defined by (2.9) is positive if and only if λu < S∗ < λv or166

λv < S∗ < min(λb, λu), that is to say S∗ ∈ I. Therefore we must seek the solutions (S∗, u∗, v∗) of (2.1)167

such that S∗ ∈ I. By replacing u∗ by (2.9) in (2.8), we obtain168

(2.10) v∗ = V (S∗),169

where V is given by (2.4). Making the sum of three equations of (2.1) and replacing u∗ and v∗ by (2.9)170

and (2.10), we obtain that S∗ is a solution of (2.6).171

Each solution of equation (2.6) belonging to the interval I give rise to a positive steady state of the172

system. Straightforward calculation yields173

(2.11) H ′(S) =
f ′(ψ − b)ψF0 + g′ϕG0

a(ψ − ϕ)2ψ2
174

where175

(2.12) F0(S) = Duψ
2 − 2Dvϕψ +Dvϕ

2 and G0(S) = bDuψ
2 + (Dv −Du)ϕψ2 + bDv(ϕ

2 − 2ϕψ).176

We have the following technical lemma:177

Lemma 2.5. If Du ≤ Dv, then λu < λv and H ′(S) > 0 on I. If Du > Dv, then the following two178

cases must be distinguished:179

• Case λu < λv: the sign of H ′(S) can be positive or negative for S ∈ I.180

• Case λu > λv: one has H ′(S) < 0 on I.181

Proof. Recall that ϕ and ψ have opposite signs on I and then F0(S) > 0 for all S ∈ I. From182

Hypothesis 2.2, if Du ≤ Dv, then λu < λv. Therefore, ϕ > 0 and ψ < 0 on I. From (2.11) and (2.12),183

it follows that H ′(S) > 0 on I. Let Du > Dv. If λu < λv, then ϕ > 0 and ψ < 0 on I. Hence, the sign184

of G0(S) can be positive or negative at S ∈ I so that H ′(S) can change sign at S ∈ I. If λu > λv, then185

ϕ < 0 and 0 < ψ < b on I. Hence, G0(S) > 0 on I and as F0(S) > 0 on I, it follows that H ′(S) < 0 on186

I.187

The following proposition exhibits the number of positive steady states of (1.4).188

Proposition 2.6.189

• When Du ≤ Dv, then the positive steady state E1 = (S∗, u∗, v∗) exists if and only if Sin > λu.190

If it exists, it is unique.191

• When Du > Dv, then there exists at least one positive steady state in the case λu < min(λv, Sin)192

or λv < min(λu, λb) < Sin. Generically, the system can have generically an odd number of193

positive steady states. When Sin < min(λu, λb) and λv < λu, then generically the system has no194

positive steady state or an even number of positive steady states.195

Proof. The positive steady states are given by the intersection of the line δ of equation y = D(Sin−S)196

and the curve of function H(·).197

In the case where Du ≤ Dv, it follows from Lemma 2.5 that λu < λv. In this case, the function198

H(·) is defined and positive on the interval I =]λu, λv[ since ϕ(S) > 0 and ψ(S) < 0 (see Figure 13(a)).199

Moreover, it vanishes at λu and tends to infinity as S tends to λv. Thus, equation (2.6) has a solution200

S∗ ∈ I if and only if Sin > λu (see Figure 13(a)). In addition, the function H(·) is increasing and then201

E1 is unique if it exists.202

In the case where Du > Dv, it follows from Lemma 2.5 that equation (2.6) may have several solutions203

whose number is generically odd in the case λu < min(λv, Sin) or λv < min(λu, λb) < Sin (see Figures 13,204

14, 16, and 17(a)) and even in the case λv < Sin < min(λu, λb) (see Figures 15 and 18(a)). Indeed,205

in the case λu > λv, the function H(·) is defined and positive on the interval I since ϕ(S) < 0 and206

0 < ψ(S) < b.207
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When model (1.4) can have multiple positive steady states, the following results show that the positive208

steady state that has less substrate can promote the planktonic and/or aggregated biomass according to209

break-even concentrations λu and λv.210

Proposition 2.7. Let E1 = (S∗, u∗, v∗) and E2 = (S∗∗, u∗∗, v∗∗) be two positive steady states of (1.4)211

such that S∗ < S∗∗.212

1. If λu < λv, then u∗ > u∗∗ and v∗ < v∗∗.213

2. If λu > λv, then u∗ > u∗∗ and v∗ > v∗∗.214

The proof is given in Appendix A.1.215

3. Stability of steady states. In this section, we focus on the study of local asymptotic stability216

of each steady state of system (1.4). Let J be the Jacobian matrix of (1.4) at (S, u, v), that is given by217

(3.1) J =

−D − f ′(S)u− g′(S)v −f(S) −g(S)
f ′(S)u ϕ(S)− a(2u+ v) −au+ b
g′(S)v a(2u+ v) ψ(S) + au− b

 .218

The stability of the washout steady state is given as follows:219

Proposition 3.1. E0 is LES if and only if Sin < λu and Sin < λb.220

Proof. At E0 = (Sin, 0, 0), the Jacobian matrix (3.1) is written as follows:221

J0 =

−D −f(Sin) −g(Sin)
0 ϕ(Sin) b
0 0 ψ(Sin)− b

 .222

The eigenvalues are −D,ϕ(Sin) and ψ(Sin)− b which are negative if and only if Sin < λu and Sin < λb.223

In what follows, we analyze the stability of positive steady states. The Jacobian matrix at E1 =224

(S∗, u∗, v∗) is given by225

J1 =

−m11 −m12 −m13

m21 −m22 a23

m31 m32 −m33

226

where227

(3.2)


m11 = D + f ′(S∗)u∗ + g′(S∗)v∗, m12 = f(S∗), m13 = g(S∗),

m21 = f ′(S∗)u∗, m22 = a(2u∗ + v∗)− ϕ(S∗), a23 = b− au∗,
m31 = g′(S∗)v∗, m32 = a(2u∗ + v∗) and m33 = b− au∗ − ψ(S∗).

228

The characteristic polynomial is given by

P (λ) = λ3 + c1λ
2 + c2λ+ c3,

where229

(3.3)

c1 = m11 +m22 +m33,

c2 = m12m21 +m13m31 −m32a23 +m11m22 +m11m33 +m22m33,

c3 = m11(m22m33 −m32a23) +m21(m12m33 +m32m13) +m31(m12a23 +m13m22).

230

According to the Routh–Hurwitz criterion, E1 is LES if and only if231

(3.4) c1 > 0, c3 > 0 and c4 = c1c2 − c3 > 0.232

We have the following result:233
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8 R. FEKIH-SALEM, AND T. SARI

Lemma 3.2. All mij are positive for all i, j = 1, . . . , 3 with (i, j) 6= (2, 3) and we have c1 > 0.234

The proof is given in Appendix A.2.235

In the next lemma, we will show that the sign of c3 is given by the position of the curve of function236

H(·) with respect to the line of equation y = D(Sin − S). More precisely, we give the link between the237

determinant of the Jacobian matrix J1 at E1 = (S∗, u∗, v∗) and D + H ′(S∗). Indeed, this result is very238

general, as we show in Appendix A.3.239

Proposition 3.3. One has c3 = −det(J1) = −ϕ(S∗)(ψ(S∗)− b)(D +H ′(S∗)).240

The proof is given in Appendix A.3.241

Since the condition c4 > 0 given by (A.10) of the Routh–Hurwitz criterion (3.4) could be unfulfilled,242

we will study the behavior of flocculation model (1.4) according to the dilution rate and the disappearance243

rates of planktonic and attached bacteria. In fact, there exist four cases that must be distinguished (see244

Figure 2):245

(3.5)
Case 1: Du ≤ Dv ≤ D, Case 2: Dv < Du ≤ D,
Case 3: Dv < Du and D < Du, Case 4: Du ≤ Dv and D < Dv.

246

Dv

Du

Dv = Du

D

D

Case 1

Case 2

Case 3

Case 4

Fig. 2. Divers regions according to D, Du and Dv when the behavior of system (1.4) is different. Yellow region for
case 1 (Du ≤ Dv ≤ D); green region for case 2 (Dv < Du ≤ D); magenta region for case 3 (Dv < Du and D < Du);
cyan region for case 4 (Du ≤ Dv and D < Dv).

247

To determine the local stability of the positive steady state in the first and second cases of (3.5), we248

will have need of the following.249

Proposition 3.4. In the cases 1 and 2 (Du ≤ D and Dv ≤ D), we have c4 > 0.250

The proof is given in Appendix A.4.251

It was shown in [11], see also [26, 27] that if Du = Dv = D (which is represented by a point in252

Figure 2) then the positive steady E1 exists and is unique and LES if and only if Sin > λu. Actually,253

this result holds in case 1.254

Proposition 3.5. In the case 1 (Du ≤ Dv ≤ D), the positive steady state E1 = (S∗, u∗, v∗) exists if255

and only if Sin > λu. If it exists, it is unique and LES.256

Proof. From Proposition 2.6, E1 exists if and only if Sin > λu. If it exists, it is unique. From257

Lemma 2.5, one has λu < λv and H ′(S) > 0 on I. From Proposition 3.3 and Proposition 3.4, it follows258

that E1 is LES as soon as it exists.259

The case 2 was solved in [3] where it was shown that the stability depends only on the relative260

position of the curve of function y = H(S) and the straight line of equation y = D(Sin − S) that is to261

say, on the sign of D +H ′(S∗), as shown in Figure 3. More precisely, we have:262

Proposition 3.6. Let E1 = (S∗, u∗, v∗) be a positive steady state. Assume that case 2 holds.263

1. If λu < λv: E1 is LES if H ′(S∗) > −D and is unstable if H ′(S∗) < −D.264
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2. If λu > λv: E1 is LES if H ′(S∗) < −D and is unstable if H ′(S∗) > −D.265

Proof. According to Lemma 3.2 and Proposition 3.4, we have c1 > 0 and c4 > 0. Therefore, the266

positive steady state is LES if an only if the remaining condition c3 > 0 in the Routh–Hurwitz criterion267

(3.4) is satisfied.268

In the case λu < λv, we have ϕ(S∗) > 0 and ψ(S∗) < 0. From Proposition 3.3, if H ′(S∗) < −D,269

it follows that c3 < 0. Therefore, the positive steady state is unstable. If H ′(S∗) > −D, it follows that270

c3 > 0 and hence the positive steady state is LES.271

In the case λu > λv, we have ϕ(S∗) < 0 and 0 < ψ(S∗) < b. From Proposition 3.3, if H ′(S∗) > −D,272

it follows that c3 < 0. Therefore, the positive steady state is unstable. If H ′(S∗) < −D, it follows that273

c3 > 0 and hence the positive steady state is LES.274

(a)

δ H(S)

E3

E2

E1

E0

Sinλu λv

I S

(b)

H(S)δ

E1

E2E0•
Sinλv λu

I S

(c)

δ
H(S)

E1

E2

E3

E0

λv

I

λu Sin

S

Fig. 3. Existence and stability of steady states in the second case of (3.5): (a) when λu < min(λv , Sin), (b) when
λv < Sin < λu < λb and (c) when Sin > min(λu, λb). In all figures, we have chosen the red color for LES steady states
and blue color for unstable steady states.

In the case 3 of (3.5), we will show that c4 can change sign by varying the control parameter Sin such
that the positive steady state E1 could change its behavior without any collision with another steady
state. Indeed, we succeeded in finding a set of parameters where E1 change stability through a Hopf
bifurcation [19], as we shall see in the next section. More precisely, we show numerically the occurrence
of limit cycles in the case 3 of (3.5) when

D < Dv ≤ Du or Dv < D ≤ Du.

In the case 4 of (3.5) we always have λu < λv and H ′(S) > 0, as shown in Lemma 2.5. Therefore, from275

Proposition 3.3, it is deduced that in the case 4 of (3.5) we always have c3 > 0. We were not able to find276

a set of parameters for which c4 < 0, as in the case 3 of (3.5) and we conjecture that in this case the277

positive steady state E1 which is unique as soon as it exists, is also LES as soon as it exists.278

In Figure 2, yellow (case 1) and cyan (case 4) colors represent the region where the system has at279

most one positive steady state with c3 > 0. Green (case 2) and magenta (case 3) colors represents the280

region where the system can have a multiplicity of positive steady state where the sign of c3 can be281

positive of negative. In yellow and green regions, c4 is positive. In magenta region, we can have c3 > 0282

and c4 < 0. In cyan region, we conjecture that c4 > 0.283

4. Numerical simulations.284

4.1. Occurrence of limit cycle: case 3 when D < Dv < Du. In order to show that the285

condition c4(S∗) > 0 evaluated at E1 = (S∗, u∗, v∗) could be unfulfilled and to detect if the positive286

steady state E1 can change stability through a Hopf bifurcation, all biological parameters were fixed such287

that D < Dv < Du. Then, the control parameter Sin was varied.288

To see the change of sign of the function S∗ 7→ c4(S∗) evaluated at E1 and to detect the occurrence289

of limit cycles, it is useful to illustrate the curve of this function. To this end, the growth rates f and g290
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are chosen for simplicity of Monod-type291

(4.1) f(S) =
m1S

k1 + S
and g(S) =

m2S

k2 + S
,292

where mi denotes the maximum growth rate and ki the half-saturation constant. Indeed, we succeeded in293

finding a set of parameters such that c4 can change its sign as Sin increases (or equivalently S∗ decreases)294

(see Figure 4). The parameter values used for the simulations are provided in Table 1.

(a)
c4

H(S)

S3 S2 S1
S

(b)

E1

E2

E0

H(S)

δ

c4
S2 S1

S

Fig. 4. (a) Change of sign of c4 and the corresponding stability of E1 on the red or blue curve of function H(·)
where S1 ≈ 3.492 (or equivalently S1

in ≈ 3.837), S2 ≈ 3.422 (or S2
in ≈ 3.842) and S3 ≈ 1.963 (or S3

in ≈ 8.179), (b) a
magnification for 3.25 < S < λu = 4.061 where Sin = 3.86.

295
The solution S1 of equation H ′(S) = −D and solutions Si, i = 2, 3, of equation c4(S) = 0 are

represented in Figure 4. In fact, S1
in is a critical value of Sin for which the curve of function H(·) is

tangent to the line δ of equation y = D(Sin − S). In addition, Siin, i = 1, 2, 3 can be computed explicitly
by

Siin =
1

D
H(Si) + Si.

According to control parameter Sin, the following changes of stability of E0 and E1 occur when the steady296

state E2 is unstable whenever it exists.297

- For Sin ∈ [0, S1
in[, there exists a unique steady state which is the washout E0 and it is LES.298

- For Sin = S1
in, two positive steady states E1 and E2 bifurcate into the positive quadrant through299

a saddle-node bifurcation.300

- For Sin ∈]S1
in, S

2
in[, (or equivalently S∗ ∈]S2, S1[), c4(S∗) > 0 and H ′(S∗) < −D (see Fig-301

ure 4(b)). It follows that E2 is unstable while E0 and E1 are LES.302

- For Sin ∈]S2
in, λu[, E0 is LES while E1 and E2 are unstable where c4 < 0 (see Figure 4(b)).303

- For Sin = λu, E2 coalesces with E0.304

- For Sin ∈]λu, S
3
in[, E2 disappears through a transcritical bifurcation and transfers instability to305

E0 while E1 still unstable.306

- For Sin ∈]S3
in,+∞[, (or equivalently S∗ < S3), c4(S∗) > 0 and H ′(S∗) < −D (see Figure 4(a)).307

It follows that E0 is unstable and E1 changes its stability and becomes LES.308

To understand and analyze these changes of local behavior of E1 in S2
in and S3

in without any bifur-309

cation with other steady states, we determine numerically the eigenvalues of the Jacobian matrix J1 of310

system (1.4) at the positive steady state E1.311

Indeed, the Jacobian matrix J1 of system (1.4) at E1 has one negative eigenvalue and one pair of
complex-conjugate eigenvalues

λj(Sin) = µ(Sin)± iν(Sin), j = 1, 2.

Increasing the control parameter Sin from S1
in, this pair crosses the imaginary axis at the critical value

Sin = S2
in from negative half plane to positive half plane (see Figure 5(a)), that is, it becomes purely
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(a)

ν(Sin)λ̄1

λ̄2

µ(Sin)
��*

HHj

(b)
µ(Sin)

S2
in S3

in

Sin

Fig. 5. Two super-critical Hopf bifurcations: (a) variation of a pair of complex-conjugate eigenvalues as Sin increases
and the corresponding real part (b) as a function of Sin.

imaginary for S2
in such that α(S2

in) = 0, with β(S2
in) 6= 0. The following inequality is checked numerically

dµ

dSin
(S2
in) > 0 .

Thus, E1 is obviously stable focus node on the red curve for Sin ∈]S1
in, S

2
in[ but becomes saddle focus on312

the blue curve for Sin > S2
in (see Figure 4(b)) undergoing a supercritical Hopf bifurcation at Sin = S2

in,313

with orbits spiralling out (see Figure 6). Indeed, the bifurcation is supercritical since a unique stable314

limit cycle bifurcates from the steady state E1 for Sin = S2
in.315

Increasing Sin further, this pair enters to the positive half plane and then returns to the negative half316

plane by crossing again the imaginary axis at Sin = S3
in (see Figure 5(a)). Similarly, E1 changes again317

their stability and returns stable focus node on the red curve for Sin > S3
in (see Figure 4(a)) due to the318

supercritical Hopf bifurcation at Sin = S3
in. Figure 5(b) shows these critical values and the real part of319

the complex-conjugate eigenvalues, as a function of Sin.

4 6 85 73.5 4.5 5.5 6.5 7.5 8.5

2

4

6

8

1

3

5

7

43.93.84 3.86 3.88 3.92 3.94 3.96 3.98 4.02 4.04 4.06 4.08

2

4

3

2.2

2.4

2.6

2.8

3.2

3.4

3.6

3.8

3.843.836 3.838 3.842 3.844 3.846 3.848

3.4

3.6

3.8

3.3

3.5

3.7

3.25

3.35

3.45

3.55

3.65

3.75

3.85

(a)
S

E0

E0

E1

Sin

(b)
S

E0

E0

E2

E1

Sin

(c)
S

E0

E2

E1 E1

Sin

Fig. 6. (a) Scilab simulation showing projections of the ω-limit set in variable S when Sin ∈ [3, 9] reveals the
emergence and the disappearance of limit cycles; (b) a magnification of two homoclinic bifurcations when Sin ∈ [3.83, 4.08[;
(c) a magnification of supercritical Hopf bifurcation when Sin ∈ [3.835, 3.85[. A green dot and a green open circle represent
a saddle-node bifurcation and transcritical bifurcation, respectively.

320

In order to illustrate the occurrence of limit cycle and to understand what happens with the limit321

cycle born via the supercritical Hopf bifurcation when Sin varied, we represent in Figure 6 the one-322

parameter bifurcation diagram for system (1.4) when all other parameters are fixed. The ω-limit set323

projected in coordinate S depending on the control parameter Sin shows that the “small” limit cycles324

born at S2
in (see Figure 6(b)). When magnified, we observe more clearly the occurrence of limit cycle325

and then the disappearance via orbits homoclinic to the saddle point E2 at Sin = Sh1
in = 3.8477 (see326

Figure 6(c)). When Sin decreases, the stable limit cycle which appears via supercritical Hopf bifurcation327

at Sin = S3
in = 8.179, will disappear via orbits homoclinic to the saddle point E2 at Sin = Sh2

in = 4.03468.328

In order to show the behavior of system according to initial conditions, we illustrate in the following329

the time course and the three-dimensional phase plot in most important cases.330
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(a) (b)

Fig. 7. Case Sin = 3.846 ∈]S2
in, S

h1
in [: bi-stability with convergence either to E0 (a) or limit cycle when the oscillations

are sustained (b).

For Sin ∈
]
S2
in, S

h1
in

[
, the bi-stability is transferred between E0 and the limit cycle instead of E0 and331

E1. To detect the limit cycle, we take an initial condition close enough to positive steady state E1 such332

that the convergence radius is small enough. Figure 7(a) shows the convergence to the washout steady333

state E0 for an initial condition in a neighborhood of the saddle focus E1 of size order ε = 2× 10−3 while334

Figure 7(b) clearly shows the trajectory starting from a neighborhood of E1 of size order ε = 10−4 is335

approaching a limit cycle as time goes where the system exhibits sustained oscillations, which implies the336

limit cycle is stable. All these facts tell us that a stable limit cycle is bifurcated from the steady state E1337

as the control parameter Sin passes through its critical value S2
in.

3

3.2

3.4

3.6

3.8

0 0.020.010.005 0.015
0

0.002

0.004

0.001

0.003

0.005

3.4

3.6

3.3

3.5

0.010.008 0.012 0.014 0.016

0.002

0.001

0.0015

0.0025

(a)

E1

E2

E0
•

(b)

E1

E2

Fig. 8. Case Sin = 3.846 ∈ I3 = [S2
in, S

h1
in [: (a) bi-stability of E0 and limit cycle; (b) a magnification of limit cycle

in the three-dimensional space (S, u, v).

338
In Figure 8, the three-dimensional phase space shows the bi-stability with convergence to E0 for two339

initial conditions in a neighborhood of E1 of size order ε = 10−3 and ε = 1.5×10−3, respectively, or limit340

cycle for the same initial condition as those in Figure 7(b). A magnification in the three-dimensional341

space shows more clearly the convergence toward the limit cycle.342

Figure 10 gives the time course and the phase portrait for Sin ∈
[
Sh2
in , λu

[
and shows that the system343

exhibits bi-stability with convergence either to washout steady state E0 for an initial condition in a344

neighborhood of E1 of size order ε = 2.1× 10−3 (a) or to the stable limit cycle for an initial condition in345

a neighborhood of E1 of size order ε = 10−4 (b). In addition, the period asymptotes to infinity at a finite346

value of the bifurcation parameter Sh2
in . The three-dimensional phase plot shows the bi-stability where347

the blue trajectory tends to E0 and the black trajectory tends to the red limit cycle (see Figure 10(c)).348

The numerical simulations can show the global convergence towards the limit cycle from any positive349

initial condition and the oscillatory coexistence with constant amplitude and frequency over the time (see350

Figure 11).351
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(a) (b)

E1

E2

E0
•

Fig. 9. Case Sin = 3.8477 ∈
[
Sh1
in , S

h2
in

[
: global convergence to E0.

(a) (b) (c)

E1

E0
•

Fig. 10. Case Sin = 4.03468 ∈
[
Sh2
in , λu

[
: bi-stability and occurrence of limit cycle with convergence either to E0 (a)

or limit cycle (b). The limit cycle in the three-dimensional space (S, u, v).

Hence the sensitivity of flocculation model behavior in mortality of species and their effect on the352

occurrence of limit cycles via supercritical bifurcation. All these features cannot occur in cases 1 and 2353

of (3.5), that is, Du ≤ D and Dv ≤ D), where there may be coexistence only around a positive steady354

state and not a limit cycle.355

4.2. Occurrence of limit cycle: case 3 when Dv < D < Du. In the previous section, we have356

shown the occurrence of limit cycles in the case where D < Dv < Du. In what follows, we show that the357

two conditions D < Du and D < Dv are not necessary and only one of these conditions is sufficient to358

destabilize the system. More precisely, we show the appearance of limit cycles in the third case of (3.5)359

when Dv < D < Du by finding a set of parameters such that c4 can change its sign. Parameter values are360

given in Table 1 where we modified only the value of Dv compared to the previous case D < Dv < Du. In361

this cas (Dv < D < Du), we have H ′(S∗) < −D for all S∗ ∈ I =]λv,min(λu, λb)[. Figure 12(a) illustrates362

the change of stability of E1 according to values of S at steady state when c4(S) changes sign at Si,363

i = 1, 2, which is solution of the equation c4(S) = 0. The numerical simulations show that the Jacobian364

matrix of system (1.4) at E1 has one negative eigenvalue and one pair of complex-conjugate eigenvalues365

that crosses the imaginary axis at S1
in from negative half plane to positive half plane by increasing the366

control parameter Sin from λb. Then, it returns to the negative half plane by crossing the imaginary367

axis at S2
in (see Figure 12(b)). Depending on the control parameter Sin, one has the following change of368

stability369

- For Sin ∈ [0, λb[, there exists a unique steady state which is the washout E0 and it is LES.370

- For Sin = λb, E1 appears stable node through a transcritical bifurcation while E0 becomes a371
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(a) (b)

E1

E0

•

Fig. 11. Case Sin = 6.2 ∈
[
λu, S3

in

[
: global convergence to limit cycle.

saddle point (see Figure 12(c)).372

- For Sin ∈]λb, S
1
in[, E1 is LES where c4(S∗) > 0 when S∗ ∈]S1, λb[ (see Figure 12(a)).373

- For Sin ∈]S1
in, S

2
in[, E1 becomes unstable where c4 < 0 when S∗ ∈]S2, S1[.374

- For Sin ∈]S2
in,+∞[, E1 changes its stability and becomes LES where c4(S∗) > 0 when S∗ ∈375

]λv, S
2[.376

The projections of the ω-limit set in variable S according to Sin reveal the appearance and disappearance377

of limit cycles through two super-critical Hopf bifurcations (see Figure 12(c)).

2 41 3 51.5 2.5 3.5 4.5

0

2

4

1

3

5

0.5

1.5

2.5

3.5

4.5

(a)
c4

H(S)

S2 S1
S

(b)
ν(Sin)

λ̄1

λ̄2

µ(Sin)
��*

HHj

(c)S

E0

E0

E1

Sin

Fig. 12. (a) Change of sign of c4 and the corresponding stability of E1 on the red or blue curve of function H(·) where
λb ≈ 2.155, S1 ≈ 1.884 (or S1

in ≈ 2.342) and S2 ≈ 1.127 (or S2
in ≈ 4.561). (b) Variation of a pair of complex-conjugate

eigenvalues as Sin increases. (c) Projection of the ω-limit set in variable S as a function of Sin. A green open circle
represents a transcritical bifurcation.

378
Thus, the condition min(Du, Dv) ≤ D does not imply c4 > 0 and for instance the condition D < Du379

is sufficient to destabilize the system. Indeed, the numerical simulations have been considered when380

mu > 0, such that Du = αD + mu > D (α ≤ 1) and mv = 0, such that Dv = βD + mv ≤ D (β ≤ 1).381

Therefore, the mortality of isolated bacteria lead to their coexistence with bacteria in flocs around a382

stable limit cycle.383

4.3. Multiplicity of positive steady states. In this section, we illustrate the bi-stability and
the multiplicity of positive steady states of flocculation model (1.4) in case 2 of (3.5). When the growth
rates are of Monod-type (4.1), the equation D(Sin − S) = H(S) is equivalent to a polynomial equation
of fifth degree. Therefore, there is at most five solutions of this equation. The positive steady states
correspond to solutions which are in the interval I. We succeeded in finding a set of parameters with 3
solutions at most in this interval. The numerical simulations illustrate the results of Proposition 2.6 and
Proposition 2.7, which are obtained for the Monod-type growth rates (4.1). All parameter values used in
this section are summarized in Table 1. Figure 13 illustrates the case λu < Sin < λv where there exists
a unique positive steady state

E1 ' (3.37, 0.98, 1.38)
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which is LES. The numerical simulation shows the global convergence to the positive steady state E1 for
any positive initial condition. Figure 14 illustrates the case λu < λv < Sin with three positive steady

(a)

H(S)

δ

E1•

E0•
Sinλu λv

I S

(b)

E1•

E0

•

v

u

S

Fig. 13. The case λu = 2 < Sin = 5 < λv = 5.4: a unique positive steady state E1 and global convergence to E1.

states

E1 ' (3.06, 12.11, 157.46), E2 ' (5.17, 8.53, 524.30) and E3 ' (8.81, 2.64, 1086.32).

The numerical simulations show the bi-stability with two basins of attraction, one toward E1 and the
other toward E3 which are stable nodes. These two basins are separated by the stable manifold of saddle
point E2. As it was proved in Proposition 2.7, the steady state E1 promotes planktonic biomass u and
E3 promotes attached biomass v. Figure 15 illustrates the case λv < Sin < λb = 2.25 < λu with two

(a)

H(S)
δ

E1

E2

E3

E0

Sinλu λv

I
S

(b)

E1•

E2•

E3•

E0

•

v

u S

Fig. 14. The case λu = 2.5 < λv = 10 < Sin = 15.8: three positive steady states and bi-stability.

positive steady states
E1 ' (1.37, 0.19, 0.62) and E2 ' (1.73, 0.07, 0.1).

The numerical simulations show the bi-stability with two basins of attraction, which are separated by the
stable manifold of saddle point E2. One basin of attraction attracts the solutions to the positive steady
state E1 and another to the washout steady state E0. Figure 16 illustrates the case Sin > λb with a
unique positive steady state

E1 ' (1.15, 0.3, 2.54).

The numerical simulations show the global convergence to the positive steady state E1 for any positive
initial condition. Figure 17 illustrates the case Sin > λu > λv with three positive steady states

E1 ' (3.31, 2.23, 27.08), E2 ' (3.98, 1.67, 4.12) and E3 ' (4.39, 0.63, 0.24).

The numerical simulations show the bi-stability with two basins of attraction, one to the positive steady384

state E1 and the other to the positive steady state E3 which are stable nodes. These two basins are385
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(a)

H(S)δ

E1

E2
E0

Sinλv λb

I

λu

S

(b)

E1

E2

E0
•

v

u

S

Fig. 15. The case λv = 1 < Sin = 1.85 < λb < λu = 3.4: two positive steady states and bi-stability.

(a)

H(S)δ

E1

E0

Sinλv λb

I

λu

S

(b)

E1•

E0

•

v

u
S

Fig. 16. The case λv = 1 < λb < Sin = 2.7 < λu = 3.4: a unique positive steady state E1 and global convergence to E1.

separated by the stable manifold of saddle point E2. As it was proved in Proposition 2.7, the steady state386

E1 promotes simultaneously two biomass u and v. Figure 18 illustrates the case λv < Sin < λu with no387

positive steady state. The numerical simulations show the global convergence toward the washout steady388

state E0.389

5. Conclusion. In this work, we have analyzed mathematically and through numerical simulations390

a model of the chemostat with three nonlinear differential equations where one species is present in two391

forms, isolated and attached with the presence of a single growth-limiting resource. The new feature was392

that maintenance terms are added to depletion or removal rates in order to give a complete analysis of393

flocculation model (1.4).394

To our knowledge, our study is the first attempt to bring out the common effects of the flocculation395

phenomenon and mortality in the coexistence around a stable limit cycle. Depending on the two control396

parameters Sin and D, the flocculation model may exhibit sustained oscillations and the occurrence of397

stable limit cycles via supercritical Hopf bifurcations.398

More precisely, when Dv < Du, we show that the system may exhibit bi-stability with multiplicity of399

coexistence steady states that can bifurcate through saddle-node bifurcations or transcritical bifurcations.400

Whereas, the bi-stability could occur in the classical chemostat model (1.1) only when the growth rate401

is non-monotonic. If, in addition Du ≤ D, the coexistence of planktonic and attached bacteria may be402

only around a positive steady state.403

Considering mortality of isolated and aggregated bacteria (D < Dv < Du), we have identified that404

the phase portraits may be very rich. More precisely, the one-parameter bifurcation diagram for model405

(1.4) shows the effect of control parameter Sin on the behavior of the system. For small enough Sin, there406

is exclusion of planktonic and attached species. Increasing Sin, system (1.4) undergoes Hopf bifurcations407

at the positive steady state E1. Furthermore, this system may exhibit bi-stability with convergence either408

to a stable limit cycle or to the washout steady state. The disappearance of stable limit cycles can be409
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Fig. 17. The case λv = 2.7 < λu = 4.5 < Sin = 4.6: existence of three positive steady states and bi-stability.
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Fig. 18. The case λv = 3 < Sin = 5.5 < λu = 6: global convergence toward E0.

either by supercritical Hopf bifurcations or homoclinic bifurcations. For large enough Sin, there is global410

convergence to the positive steady state or to a stable limit cycle. However, we have shown that the411

mortality of planktonic or attached species (for instance Dv < D < Du) suffices to ensure the coexistence412

around a stable limit cycle.413

Our findings on the destabilization by of the positive steady state are similar to those in [2, 18]. In414

[18], the steady state of a trophic chain (prey-predator) in a chemostat can be destabilized by mortality415

where stable limit cycles and multiple chaotic attractors are found. The maintenance (or decay) rate416

coefficients considered in a tri-trophic food chain model can cause destabilization of system when the417

operating diagram shows local and global bifurcations of steady states and of limit cycles [2].418

Our results show that the mortality of the species is necessary for the emergence of stable limit cycles419

in the flocculation model (1.4). This is mainly due to the joined effect of mortality and flocculation.420

However, in the model of flocculation introduced in [10], without mortality (Du = Dv = D), it has been421

shown that the model can have unstable limit cycles with a non-monotonic growth rate of planktonic422

bacteria, see [6]. It is the effect of flocculation and inhibition by the substrate on the growth that was the423

cause of the appearance of unstable limit cycles. Adding a second species to the model, where only the424

most efficient species makes flocs, the model does produce oscillations with emergence of a stable limit425

cycle. Therefore, the properties of the model depend highly on the flocculation phenomenon through426

the attachment and detachment velocities A(·) and B(·) respectively in (1.3) and should be carefully427

discussed with the biologists.428

Thereby, the flocculation models are sensitive to mortality of species which is neglected in the liter-429

ature. The behavior of the system is richer with coexistence, bi-stability, multiplicity of positive steady430

states, and emergence of stable limit cycles. This last feature cannot occur in the flocculation model431

without mortality what confirms the output sensitivity and the importance of mortality in biological432

systems. All these bifurcations enrich notably the dynamic behavior of the analyzed flocculation model433

(1.4).434
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Appendix A. Proofs.435

A.1. First proofs. In this Appendix, we give the proofs of the results given in section 2.436

Proof of Proposition 2.3. Since

S = 0 ⇒ Ṡ = DSin > 0 ,

then no trajectory can leave the positive octant R3
+ by crossing the boundary face S = 0. In addition,

whenever u = 0 with v > 0, then u̇ = bv > 0. Similarly, whenever v = 0 with u > 0, then v̇ = au2 > 0.
Hence, the vector field points inside

Θ =
{

(S, u, v) ∈ R3 : S > 0, u > 0, v > 0
}

along the whole boundary of Θ without the horizontal semi-axis

Γ = {S ≥ 0, u = v = 0} ,

which is invariant under the system (1.4) because the function

t→ (S(t), u(t), v(t)) =
(
Sin + (S(0)− Sin)e−Dt, 0, 0

)
is a solution of (1.4). By uniqueness of solutions, Γ cannot be reached in finite time by trajectories for437

which u > 0 or v > 0. Therefore, the solutions remain non-negative.438

Let z = S + u+ v. The sum of the three equations of (1.4) yields

ż(t) = DSin −DS(t)−Duu(t)−Dvv(t) ≤ Dmin

(
D

Dmin
Sin − z(t)

)
.

Using Gronwall’s Lemma, we obtain439

(A.1) z(t) ≤ D

Dmin
Sin +

(
z(0)− D

Dmin
Sin

)
e−Dmint for all t ≥ 0.440

We deduce that

z(t) ≤ max

(
z(0),

D

Dmin
Sin

)
for all t ≥ 0.

Therefore, the solutions of (1.4) are positively bounded and are defined for all t ≥ 0. From (A.1), it can441

be deduced that the set Ω is positively invariant and is a global attractor for (1.4). �442

Proof of Proposition 2.7. A straightforward calculation shows that443

(A.2) H(S) =
ϕ(S)(ψ(S)− b)[Duψ(S)−Dvϕ(S)]

a[ψ(S)− ϕ(S)]ψ(S)
.444

From (2.6) and (A.2), it follows that

ϕ(S∗)(ψ(S∗)− b)
a[ψ(S∗)− ϕ(S∗)]

=
D(Sin − S∗)ψ(S∗)

Duψ(S∗)−Dvϕ(S∗)
.

Therefore, the expressions (2.9) and (2.10) can be rewritten also as follows:445

(A.3) u∗ = U1(S∗) with U1(S) :=
D(Sin − S)ψ(S)

Duψ(S)−Dvϕ(S)
446

and447

(A.4) v∗ = V1(S∗) with V1(S) =
D(Sin − S)ϕ(S)

Dvϕ(S)−Duψ(S)
.448

We show that449
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1. If λu < λv, then U1(·) is strictly decreasing on I ∩ [0, Sin] and V (·) is strictly increasing on I.450

2. If λv < λu, then U and V are strictly decreasing on I and V1 is strictly decreasing I ∩ [0, Sin].451

From (2.9) and (A.3), a simple calculation yields that

U ′1(S) = D
−ψ (Duψ −Dvϕ)− g′Dvϕ (Sin − S) + f ′Dvψ (Sin − S)

(Duψ −Dvϕ)
2 , U ′(S) =

f ′ψ (ψ − b) + g′ϕ (b− ϕ)

a (ψ − ϕ)
2 .

Therefore, if λu < λv, then U ′1(S) is negative on I ∩ [0, Sin] and if λv < λu, then U ′(S) is negative on I.
From (2.10) and (A.4), a direct calculation shows that

V ′1(S) = D
−ϕ (Dvϕ−Duψ)− f ′Duψ (Sin − S) + g′Duϕ (Sin − S)

(Dvϕ−Duψ)
2 ,

V ′(S) =
−f ′ [ϕψ (ψ − b)] (2ψ − ϕ) + g′ϕ2 (ψ − b) (2ψ − ϕ)

a (ψ − ϕ)
2
ψ2

.

If λu < λv, then V ′(S) is positive on I and if λv < λu, then V ′1(S) is negative on I ∩ [0, Sin] and V ′(S)
is negative on I. Let S∗ < S∗∗. Therefore, if λu < λv, then

u∗ = U1(S∗) > u∗∗ = U1(S∗∗) and v∗ = V (S∗) < v∗∗ = V (S∗∗).

Furthermore, if λv < λu then

u∗ = U(S∗) > u∗∗ = U(S∗∗) and v∗ = V1(S∗) > v∗∗ = V1(S∗∗).

This completes the proof. �452

A.2. The sign of c1. In this section, we consider the sign of the coefficient c1.453

Proof of Lemma 3.2. From the second equation of (2.1), we have

ϕ(S∗)u∗ − a(u∗ + v∗)u∗ + bv∗ = ϕ(S∗)u∗ − a(2u∗ + v∗)u∗ + a(u∗)2 + bv∗ = −m22u
∗ + a(u∗)2 + bv∗ = 0.

Hence454

m22 = au∗ + b
v∗

u∗
> 0.455

From the third equation of (2.1), we have

ψ(S∗)v∗ + a(u∗ + v∗)u∗ − bv∗ = −m33v
∗ + a(u∗)2 = 0.

and therefore,

m33 = a
(u∗)2

v∗
> 0.

Thus, all mij are positive for all i, j = 1, . . . , 3 with (i, j) 6= (2, 3). Since mii > 0, i = 1, . . . , 3, then456

c1 =
∑3
i=1mii > 0. �457

458

A.3. The sign of c3. We study the sign of c3 is a more general context. Consider the following459

system of differential equations460

(A.5)


ẋ0 = f0(x0, x1, x2)

ẋ1 = f1(x0, x1, x2)

ẋ2 = f2(x0, x1, x2).

461
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Let x∗ = (x∗0, x
∗
1, x
∗
2) be a steady state, and let462

J =

 a00 a01 a02

a10 a11 a12

a20 a21 a22

463

where464

aij =
∂fi
∂xj

(x∗), i = 0, 1, 2, j = 0, 1, 2465

be the Jacobian matrix of (A.5) at x∗. The steady state x∗ = (x∗0, x
∗
1, x
∗
2) is a solution of the set of466

equations467 
0 = f0(x0, x1, x2)

0 = f1(x0, x1, x2)

0 = f2(x0, x1, x2).

468

We solve this set of equations in the following manner:469

1. We first solve the second and third equations f1(x0, x1, x2) = 0 and f2(x0, x1, x2) = 0 which are470

assumed to define x1 and x2 as functions of x0, that is to say, there exists x0 7→ (X1(x0), X2(x0))471

such that472

(A.6) f1(x0, X1(x0), X2(x0)) = 0 and f2(x0, X1(x0), X2(x0)) = 0.473

2. Then, we replace x1 by X1(x0) and x2 by X2(x0) in the first equation to obtain474

(A.7) h(x0) = 0, where h(x0) = f0(x0, X1(x0), X2(x0))475

which is assumed to have a solution x∗0.476

3. Therefore, x∗1 = X1(x∗0) and x∗2 = X2(x∗0) define the steady state x∗ = (x∗0, x
∗
1, x
∗
2).477

Lemma A.1. Assume that ∆ := a11a22 − a12a21 6= 0, then we have the following formula

det(J) = h′(x∗0)∆.

Proof. Deriving (A.6) with respect to x0 gives the following formulas478

(A.8)

{
∂f1
∂x0

+ ∂f1
∂x1

X ′1(x0) + ∂f1
∂x2

X ′2(x0) = 0
∂f2
∂x0

+ ∂f2
∂x1

X ′1(x0) + ∂f2
∂x2

X ′2(x0) = 0
479

where the partial derivatives of f1 and f2 are evaluated in (x0, X1(x0), X2(x0)). For x0 = x∗0, system
(A.8) becomes {

a10 + a11X
′
1(x∗0) + a12X

′
2(x∗0) = 0

a20 + a21X
′
1(x∗0) + a22X

′
2(x∗0) = 0.

Using ∆ 6= 0, we have

X ′1(x∗0) = −a10a22 − a20a12

∆
, X ′2(x∗0) = −a20a11 − a10a21

∆
.

The development of the determinant of J with respect to the first line gives

det(J) = a00∆− a01 (a10a22 − a20a12) + a02 (a10a21 − a20a11) .
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Thus,
det(J) = ∆ (a00 + a01X

′
1(x∗0) + a02X

′
2(x∗0)) .

By using expression (A.7) of h(x0), it follows that

h′(x0) =
∂f0

∂x0
+
∂f0

∂x1
X ′1(x0) +

∂f0

∂x2
X ′2(x0).

Hence, h′(x∗0) = a00 + a01X
′
1(x∗0) + a02X

′
2(x∗0). Therefore, det(J) = ∆h′(x∗0).480

Proof of Proposition 3.3. In the particular case of system (1.4), we have481 
f0(x0, x1, x2) = D(Sin − x0)− f(x0)x1 − g(x0)x2

f1(x0, x1, x2) = [f(x0)−Du]x1 − a(x1 + x2)x1 + bx2

f2(x0, x1, x2) = [g(x0)−Dv]x2 + a(x1 + x2)x1 − bx2.

482

Since,
h(x0) = D(Sin − x0)−H(x0), where H(x0) = f(x0)X1(x0) + g(x0)X2(x0).

it follows that
h′(x0) = −D −H ′(x0).

Substituting x∗1 and x∗2 by their expressions U(S∗) and V (S∗) given by (2.9) and (2.10), respectively, in483

the expression of ∆, a straightforward calculation shows that484

(A.9) ∆ = −ϕ(x∗0)(ψ(x∗0)− b).485

We conclude from Lemma A.1 that,

c3 = −det(J) = −ϕ(x∗0)(ψ(x∗0)− b)(D +H ′(x∗0)).

�486

A.4. The sign of c4. In this Section we consider the sign of the coefficient c4.487

Proof of Proposition 3.4. In the case 1, one has Du ≤ Dv. From Lemma Lemma 2.5, it follows that488

λu < λv. In the case 2, one has Dv < Du. From Lemma Lemma 2.5, two cases must be distinguished:489

either λu < λv or λu > λv. Straightforward calculations show that:490

(A.10) c4 = DuDf
′u∗ +Dg′au∗v∗ + f ′

ϕ(ψ − b)2

a(ψ − ϕ)2ψ
F + g′

ϕ2(ψ − b)
a[(ψ − ϕ)ψ]2

G+ P1491

where492

F = 2(D −Dv)ϕψ + (Dv −D)ϕ2 + (Du −D)ψ2 +Dϕψ,493

494

G = (D −Dv)bϕ(2ψ − ϕ) +Dψ3 + (Du −D)bψ2 −Duϕψ
2 + (Dv −D)ψ2ϕ,495

496

P1 = D2(m22m33) +D (f ′u∗ + g′v∗)m33 + (m22m33)c2.497

From (3.3), c2 can be written as follows:498

(A.11) c2 = m12m21 +m13m31 +m11 (m22 +m33) +m22m33 −m32a23.499

Since m22m33 −m32a23 = ∆, it follows from its expression (A.9) that:500

(A.12) m22m33 −m32a23 = ∆ = −ϕ(S∗) [ψ(S∗)− b] .501
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Let λu < λv. Thus, ∆ is positive and so c2 > 0. Consequently, P1 is positive. In the case 1 (Du ≤ Dv ≤ D)502

and the case 2 (Dv < Du ≤ D), it is easy to check F < 0 and G < 0 where ψ < 0 < ϕ on ]λu, λv[. Thus,503

one can conclude that c4 > 0 in the first and the second cases when λu < λv.504

Let λu > λv. Straightforward calculations show that:505

c4 = A+B + P2506

where507

A = Dm12m21 +m2
11m22 −m21m32m13, B = Dm13m31 +m2

11m33 −m31a23m12,508

509

P2 = (f ′u∗ + g′v∗)m12m21 + (f ′u∗ + g′v∗)m13m31 +m22(c2 −m13m31) +m33(c2 −m12m21).510

From (A.11) and (A.12), one has

c2 −m13m31 = m12m21 +m11 (m22 +m33) + ϕ(b− ψ) > 0,

and
c2 −m12m21 = m13m31 +m11 (m22 +m33) + ϕ(b− ψ) > 0.

Thus, P2 > 0. On the one hand, we can write m2
11 = Df ′u∗ + P3 with P3 > 0 since all the terms of m11

are positive. Thus, from expression (3.2), one has

m2
11m22 −m21m32m13 = Df ′u∗[a(2u∗ + v∗)− ϕ]− gf ′u∗a(2u∗ + v∗) + P3m22.

Then,
A = (D − g)f ′u∗a(2u∗ + v∗) +DuDf

′u∗ + P3m22.

In the case 2, our Hypothesis 2.2 implies that g(S∗) < g(λu) < f(λu) = Du ≤ D for all S∗ ∈]λv, λu[.
Therefore, A > 0. On the other hand, we can write m2

11 = Dg′v∗ + P4 with P4 > 0. From expression
(3.2) of a23 and m33, one has a23 = m33 + ψ. Therefore,

m2
11m33 −m31a23m12 = (D − f)g′v∗m33 − fg′v∗ψ + P4m33.

Since f(S∗) < f(λu) = Du ≤ D for all S∗ ∈]λv, λu[, then511

B = (D − f)g′v∗m33 + (D − f)gg′v∗ + fg′v∗Dv + P4m33 > 0.512

Thus, in the second case when λv < λu, we can conclude that c4 > 0 for all S∗ ∈]λv, λu[. �513

Appendix B. Parameters used in numerical simulations. All the values of the parameters514

values used in numerical simulations are provided in the following Table.

Table 1
Parameter values used for (1.4) when the growth rates f and g are given by (4.1).

Parameter m1 k1 m2 k2 a b D Du Dv

(h−1) (g/l) (h−1) (g/l) (l/h/g) (h−1) (h−1) (h−1) (h−1)

Figures 4 and 11

Figure 12
5 2 5 3 4 2 0.1 3.35

1.1

0.09

Figure 13 4.5 1 3 2.7 2 3 3.5 3 2

Figure 14 60 0.5 0.6 20 0.01 0.01 50 50 0.2

Figures 15 and 16 4.5 1.7 4 1.5 2 0.8 3.2 3 1.6

Figure 17 20 1.5 2 2.7 1.2 3 47 15 1

Figure 18 4 2 3 1.5 2 3 3 3 2

515
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