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PROPERTIES OF THE CHEMOSTAT MODEL WITH AGGREGATED BIOMASS
AND DISTINCT DILUTION RATES*

RADHOUANE FEKIH-SALEM' AND TEWFIK SARI*

Abstract. Understanding and exploiting the flocculation process is a major challenge in the mathematical theory of the
chemostat. Here, we study a model of the chemostat involving the flocculating and deflocculating dynamics of planktonic
and attached biomass competing for a single nutrient. In our study, the mortality (or maintenance) of species is taken
into account and not neglected as in previous studies. The model is a three-dimensional system of ordinary differential
equations. Using general monotonic functional responses, we give a complete analysis for the existence and local stability
of all steady states. The theoretical analysis of the model involving the mortality is a difficult problem since the model is
not reduced to a planar system as in the case where the dilution rates of the substrate and the biomass are equal.

With the same dilution rates, it is well known that the model can have a positive steady state which is unique and stable
as long as it exists. Without mortality, and different dilution rates, the system may have a multiplicity of positive steady
states that can only appear or disappear through saddle-node or transcritical bifurcations. In contrast to the case without
mortality, under the joined effect of flocculation and mortality, the model may undergo supercritical Hopf bifurcations or
homoclinic bifurcations, with the appearance or the disappearance of a stable periodic orbit. Therefore coexistence may
occur around a positive steady state, and also around periodic oscillations.

Key words. Bi-stability, Chemostat, Flocculation, Limit cycles, Supercritical Hopf bifurcation

AMS subject classifications. 92B05, 34D20

1. Introduction. The chemostat plays an important role as a model in mathematical biology. In
its simplest form, it is a model of a vessel where the populations compete for the available nutrient. It
is used as the starting point for models of waste-water treatment processes. The derivation and analysis
of a large number of chemostat-like models can be found in the monographs [30], see also [11]. We recall
the classical chemostat model for a single species x consuming a substrate S:

S = D(Sin—S8)— f(S)
i = [f(S)- D]z,

z
o

(1.1)

where the dilution rate D and the input concentration S;, are the manipulated parameters, f(.5) is the
growth function and ~ is the yield, which can be easily normalized to 1, using the change of variable
x/y — x. The growth function f(S) is a non-negative Lipschitz continuous function with f(0) = 0.
Besides the washout steady state Ey = (Sin,0), the system (1.1) can have a positive steady state E* =
(S*,x*), where f(S*) = D and z* = S;,, — S*. For monotonic f(5), this steady state exists as long
as f(Sin) > D. Tt is unique and Locally Exponentially Stable (LES) as long as it exists. It is globally
asymptotically stable in the quadrant S > 0, x > 0. For non-monotonic growth function f(S), the
positive steady state is in general not unique and bi-stability may occur. When the function f(S) is
unknown and using the characterization f(S*) = D of a positive steady state, it is possible to reconstruct
its graph using variations on D and on-line measurements for the variable S. This problem of kinetics
estimation in biological and biochemical models has been widely addressed in the literature, even when
f(+) is non monotonic, see [29] and the reference therein. The theoretical identifiability of f(-) is one of
the reasons that explain the success of the chemostat model in the mathematical study of the culture of
microorganisms.

When two (or more) species  and y are in competition, the model consists simply adding the
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2 R. FEKIH-SALEM, AND T. SARI

consomption terms in the first equation:

= D(Sin—S) — f(S)z — g(S)y
(1.2) T [f(S) - D] z
g = [g9(5) - Dly.

Since equations f(S) = D and g(S) = D cannot have in general a solution, the model (1.2) predicts
that at steady state, at most one competitor population avoids extinction. However, the coexistence of
competing populations is obvious in nature, and so in order to explain this, it seems necessary to extend
the model (1.2). Several mechanisms of coexistence where considered in the literature, among them wall
attachment, see [14, 15, 16, 17, 25, 31]. These models were inspired by the Freter model [7, 8] of the
microflora in the large intestine. Another mechanism that promotes the coexistence is the flocculation
of the species, see [3, 4, 6, 10, 11, 26, 27]. Attachment and detachment phenomena of bacteria, whether
in biofilms on a support [13] or in the form of aggregates or flocs [32] are well known and frequently
observed in bacterial growth.

For both previously cited models of wall attachment or flocculation, the total biomass of a given
species is decomposed into planktonic (or free) biomass made up of non-attached microorganisms and
aggregate (or attached) biomass. Thus, the concentration x of the total biomass is the sum of concen-
trations v and v of planktonic and aggregate biomass, respectively, © = uw + v. This distinction permits
to take into account different growth and death characteristics according to whether microorganisms are
attached or not. Specific velocities A(-) of attachment of free biomass and B(-) of detachment of the
attached biomass are introduced in the model. Hence, the general model of flocculation of one species
considered in [4] can be written:

D(Sin = 8) = f(S)u = g(S)v
(1.3) W = [f(S)— Dulu— A()u+ B(-)
[9(S) = DuJvo+ A()u = B(-)v,

where f(S) and ¢(S) represent, respectively, the per-capita growth rates of planktonic and attached
bacteria and D, and D, represent, respectively, the disappearance rates of planktonic and attached
bacteria. The models of flocculation for several competing species are build as in (1.2), by adding the
consomption terms in the dynamic equation of the substrate.

An interesting property of general model (1.3), and its extension to competing species, is that under
the assumption that attachment and detachment velocities are fast compared to the specific growth and
disappearance rates, using singular perturbation method, see [4, 9, 10, 26], the flocculation model can be
reduced to a model with density-dependent growth function. It is well known that density-dependence
of the growth functions promotes the coexistence of species [5, 12, 20, 21, 22, 23]. Therefore when
attachment and detachment terms are large enough, coexistence is also possible.

The models of attachment or flocculation introduced in the previously cited literature are of the form
(1.3), with specific attachment and detachment velocities A(-) and B(-) respectively. For instance, the
wall-attachment model of Pilyugin and Waltman [25] corresponds to constant velocities A(-) = a and
B(:) = b, and the flocculation model of Haegeman and Rapaport [10] corresponds to A(-) = au and
B(-) = b, where a and b are constant. For these models, coexistence occurs at positive stable steady
state. An extension of the model [10] has been studied in [3, 6] when the growth function of isolated
bacteria of the most efficient species presents inhibition. In this case, coexistence can also hold around a
stable limit cycle. The reader interested in a review of the various specific attachment and detachment
velocities used in the literature is referred to [4, 6].

A specific model introduced in [4] corresponds to the velocities A(-) = a(u + v) and B(-) = b. This
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PROPERTIES OF THE CHEMOSTAT MODEL 3

model, which was studied also in [3, 11, 26, 27], takes the form:

§ = D(Simn—5)~ f(S)u—g(S)
(1.4) @ = [f(S)— DyJu—alu+v)u+bv
v = [g(S) = DyJv+ a(u+ v)u —bv
where a and b are positive constants. All these studies restricted to the biologically interesting case
D, < D, < D, where D,, = aD and D, = D, « and § belong to [0,1] and denote, respectively, the
fraction of the planktonic and attached bacteria leaving the reactor as proposed by [1] to model a biomass
reactor attached to the support or to decouple the residence time of solids and the hydraulic residence
time (1/D).
In the present work, we study the model (1.4) where D,, and D, can be modeled as in [24, 28] by:

D,=aD+m,, D,=pD+m,

where the non-negative death (or maintenance) rate parameters m,, and m,, are taken into consideration.
Therefore the study will not be restricted to the cases D, < D, < D, as in [3, 4, 11, 26, 27], and the
cases D < D,,, D < D, or D, < D,,, which are also of biological interest, will be investigated.

When D = D, = D,, the main result in [11] (see also [26]) was that the model can have a positive
steady state E* = (S*,u*,v*), which exists as long as f(S;,) > D. This steady state is unique and LES
as long as it exists. Since f(S) > ¢g(S) (see Hypothesis 2.2 in section 2) the condition f(S;,) > D of
existence of the positive steady state depends only on the growth rate of planktonic bacteria. Therefore
the operating diagram which is the bifurcation diagram that illustrates the washout and coexistence
regions depends only on the growth rate of planktonic bacteria [27].

It was shown in [3, 4] that, if D, < D, < D, and with monotonic growth rates f(S) and g(S5), the
model (1.4) can exhibit a bi-stability behavior, similar to the one obtained in (1.1) for non-monotonic
kinetics. The case D, < D, < D can occur, for instance, if m,, = m, = 0 and 8 < «, that is the residence
time of the attached bacteria is greater than the one of planktonic bacteria.

The main objective of this paper is to give a complete analysis of (1.4). We show that when D,, < D,,
the model has a positive steady state E* = (S*, u*,v*), which exists as long as f(S;,) > D. This steady
state is unique as long as it exists. If, in addition D, < D, E* is LES as long as it exists. Therefore, we
extend the results on the existence and uniqueness of the positive steady state obtained in the particular
case D = D,, = D, [11, 26] to the general case D,, < D, see Proposition 2.6. The result on the stability
is extended to the case D, < D, < D, see Proposition 3.5.

Following [3], when D, < D, < D, we show that multiple positive steady states can appear to
bifurcate through saddle-node bifurcations or transcritical bifurcations, see Proposition 3.6. When D,, <
D, and D < D,,, we investigate numerically the system and we see the occurrence of Hopf bifurcations
and homoclinic bifurcation, see subsections 4.1 and 4.2. Notice that the condition D < D,, or D < D,
can occur only when mortality (or maintenance) terms are added to the model (D,, = D+m,,). Therefore
the destabilization of the positive steady state is due to the mortality of the species, and is similar to
some results obtained in the existing literature on food webs (predator—prey model) in the chemostat
where the addition of mortality terms of the species lead to destabilization of the system [2, 18].

The paper is organized as follows. The next section presents general assumptions for the growth
functions of flocculation model (1.4) and the analysis of the existence of steady states. In section 3, the
asymptotic behavior analysis of model (1.4) was done according to the dilution rate and the disappearance
rates of planktonic and attached bacteria. Considering growth rates of Monod-type, numerical simulations
are presented in section 4 in order to show the emergence of limit cycles and the multiplicity of positive
steady states when the system exhibits the bi-stability. Finally, conclusions are drawn in the last section 5.
The proofs of some propositions and technical lemmas are reported in Appendix A.

2. Assumptions on the model and steady states. We use the following general assumptions
for the growth functions f(S) and g(5):

This manuscript is for review purposes only.
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4 R. FEKIH-SALEM, AND T. SARI

Hypothesis 2.1. f(0) = g(0) =0 and f'(S) > 0 and ¢'(S) > 0 for all S > 0.
Hypothesis 2.2. f(S) > g(S) for all § > 0.

Hypothesis 2.1 means that the growth can take place if and only if the substrate is present. In addition, the
growth rates of isolated and attached bacteria increase with the concentration of substrate. Hypothesis 2.2
means that bacteria in flocs consume less substrate than isolated bacteria, this means that a lower specific
growth rate. In fact, the flocs consume less substrate than isolated bacteria since they have less access
to substrate, given that this access to substrate is proportional to the outside surface of flocs.

In order to preserve the biological significance of our model (1.4), we will show that solutions of
ordinary differential equations are non-negative and bounded for any non-negative time.

Proposition 2.3. For any non-negative initial condition, the solutions of system (1.4) remain non-
negative and positively bounded. In addition, the set

min

D
Q= {(S,u,v) € R‘j_ S+ut+v<< —8; } ,  where Dy, = min(D, D, D,),

is positively invariant and is a global attractor for the dynamics (1.4).

The proof is given in Appendix A.1.
The first step is to determine the steady states of (1.4). A steady state (S*, u*, v*) must be a solution
of the system

D(Sin, — S*) — f(S*)u* — g(S*)v*
[f(S*) = DyJu* — a(u* + v*)u* 4 bv*
[9(S*) = DyJv* + a(u* + v*)u* — bv*.

0
(2.1) 0
0

To solve (2.1), we use a method similar to the concept of steady-state characteristic that is introduced
by Lobry et al. [22, 23]. This concept consists of determining the steady states of the second and third
equations of (1.4), where S is considered as an input of the system. This means that we must solve the
second and third equation of (2.1), where u* and v* are unknown and S* is considered as a parameter.
Assume that one obtains

u* =U(S"), v* =V (S").

If we replace u* and v* by these expressions in the first equation of (2.1), we obtain an equation in the
sole variable S* of the form

D(Si, — S*) = H(S"), where H(S*) = f(S")U(S*) + g(S*)V(S™).

Solving this equation, we find S* and hence v* = U(S*) and v* = V(S*). In the sequel, we show how to
determine the functions U, V and H and we give the conditions such that a solution S* exists.

From Hypothesis 2.1, when equations f(S) = D,, and g(S) = D, have solutions, they are unique and
we define the usual break-even concentrations

A= fHDy) and A\, =g 1(D,).

From Hypothesis 2.2, if in addition D, > D,, then A, > \,. When equations f(S) = D, or g(S) = D,
have no solution, we put A, = 0o or A, = co. We define the interval I by (see Figure 1):

2.2) I 1A Ao it Ay < Ay
' ] P, min(, )[BT Ay > Ay

In the rest of the paper, we use also the following notations:

(2.3) @(S) = f(5) = Du and  (S) = g(5) — D,

This manuscript is for review purposes only.
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f(S)
D,
Du \
| 9(5) I
v f v
‘ | #(5) b
‘/,”’T/zb(ls)s
Au A
F1G. 1. Definition of the interval I: (a) the case Ay < Ay; (b) the case Ay < min(Ay, Ap).
©(S) (¥(S) —b) ¢*(S) (¥(S) —b)
2.4 uis)=—-———->-—-= d V(§):=- ,
24 Y ) R ) L (1 R ) )
(2.5) H(S) := f(S)U(S) + g(S)V (S).

We can state the following result:

Lemma 2.4. Assume that Hypotheses 2.1 and 2.2 hold. Then system (1.4) has the following steady
states:
1. the washout Ey = (S;y,0,0), that always exists,
2. a positive steady state, B4 = (S*,u*,v*) with S* solution

(2.6) D(Sin — 57) = H(S")
where H is given by (2.5) and u* = U(S*) and v* = V(S*), where U and V are given by (2.4).
This positive steady state exists if and only if S* € I where I is defined by (2.2).

Proof. From the second equation of (2.1), if u* = 0, it follows that v* = 0. From the last equation
of (2.1), if v* = 0, then u* = 0. Hence, we cannot have a steady state of extinction only of planktonic or
attached bacteria. Therefore, besides the washout steady state

EO = (Sln; 07 O)

where both planktonic and attached bacteria are extinct, the system can have a positive steady state of
coexistence

E; = (S*,u*,v")
where S* > 0, v* > 0 and v* > 0. Making the sum of the second and the third equation of (2.1), we
obtain

(2.7) (S + (S )" = 0,

where ¢ and 1) are given by (2.3). This equation admits positive solutions u* and v* if and only if p(S*)
and ¥ (S*) have opposite signs, i.e. S* is between A\, and \,, see Figure 1. In this case, ¥(S*) # 0 and
equation (2.7) can be rewritten as

(2.8) vt =— u*.

This manuscript is for review purposes only.



6 R. FEKIH-SALEM, AND T. SARI

Replacing v* by its expression (2.8) in the second equation of (2.1), we obtain
(2.9) u* =U(S%),

where U is given by (2.4). Note that u* defined by (2.9) is positive if and only if A\, < S* < A, or
Ay < S§* < min(Ap, Ay), that is to say S* € I. Therefore we must seek the solutions (S*,u*,v*) of (2.1)
such that S* € I. By replacing v* by (2.9) in (2.8), we obtain

(2.10) v* =V(S%),
where V' is given by (2.4). Making the sum of three equations of (2.1) and replacing u* and v* by (2.9)
and (2.10), we obtain that S* is a solution of (2.6). O

Each solution of equation (2.6) belonging to the interval I give rise to a positive steady state of the
system. Straightforward calculation yields

(W = b)wFy + ¢'¢Go

(2.11) HI(S) = = = opae

where
(2.12)  Fo(S) = Dutp® — 2Dyp + Dy®  and  Go(S) = bDp® + (D, — Dy)gp® + bD, (9* — 2¢0).

We have the following technical lemma:

Lemma 2.5. If D, < D, then A\, < A\, and H'(S) > 0 on I. If D, > D,, then the following two
cases must be distinguished:
e Case A, < A,: the sign of H'(S) can be positive or negative for S € I.
e Case A\, > \,: one has H'(S) <0 on I.

Proof. Recall that ¢ and ¥ have opposite signs on I and then Fy(S) > 0 for all S € I. From
Hypothesis 2.2, if D,, < D,, then A, < A,. Therefore, ¢ > 0 and ) < 0 on I. From (2.11) and (2.12),
it follows that H’(S) > 0 on I. Let D, > D,. If A, < Ay, then ¢ > 0 and ¢ < 0 on I. Hence, the sign
of G(S) can be positive or negative at S € I so that H'(S) can change sign at S € I. If A\, > A,, then
¢ <0and 0 <t < bon I. Hence, Go(S) > 0on I and as Fy(S) > 0 on I, it follows that H'(S) < 0 on
I O

The following proposition exhibits the number of positive steady states of (1.4).

Proposition 2.6.

e When D, < D, then the positive steady state £y = (S*,u*,v*) exists if and only if S;, > Ay.
If it exists, it is unique.

e When D, > D,, then there exists at least one positive steady state in the case A, < min(\,, Si»)
or A\, < min(Ay,\y) < Sin. Generically, the system can have generically an odd number of
positive steady states. When S;,, < min(\,, Ay) and A, < Ay, then generically the system has no
positive steady state or an even number of positive steady states.

Proof. The positive steady states are given by the intersection of the line § of equation y = D(S;, —.5)
and the curve of function H(-).

In the case where D, < D,, it follows from Lemma 2.5 that A, < A\,. In this case, the function
H(-) is defined and positive on the interval I =|A,, A\,[ since ¢(S) > 0 and 9(S) < 0 (see Figure 13(a)).
Moreover, it vanishes at A\, and tends to infinity as S tends to A,. Thus, equation (2.6) has a solution
S* € I if and only if S;, > Ay, (see Figure 13(a)). In addition, the function H(-) is increasing and then
FE is unique if it exists.

In the case where D,, > D,, it follows from Lemma 2.5 that equation (2.6) may have several solutions
whose number is generically odd in the case A, < min(\,, S;,) or A, < min(Ay, Ap) < Sip, (see Figures 13,
14, 16, and 17(a)) and even in the case A\, < S;p, < min(A,, Ap) (see Figures 15 and 18(a)). Indeed,
in the case A, > A,, the function H(-) is defined and positive on the interval I since ¢(S) < 0 and
0 <¥(S) <b. o

This manuscript is for review purposes only.
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PROPERTIES OF THE CHEMOSTAT MODEL 7

When model (1.4) can have multiple positive steady states, the following results show that the positive
steady state that has less substrate can promote the planktonic and/or aggregated biomass according to
break-even concentrations A, and \,.

Proposition 2.7. Let E; = (S*,u*,v*) and Fy = (S**,u™*, v*™*) be two positive steady states of (1.4)
such that §* < S**.

1. If Ay < Ay, then u* > u™* and v* < v**.
2. If Ay > Ay, then v* > v** and v* > v**.

The proof is given in Appendix A.1.

3. Stability of steady states. In this section, we focus on the study of local asymptotic stability
of each steady state of system (1.4). Let J be the Jacobian matrix of (1.4) at (S, u,v), that is given by

=D — f'(S)u —g'(S)v —f(9) —9(5)
(3.1) J = F(Su ©(S) —a(2u + v) —au+b
g (S)v a(2u +v) P(S) +au—>

The stability of the washout steady state is given as follows:
Proposition 3.1. Ey is LES if and only if S;, < Ay, and S;, < Ap.
Proof. At Eg = (Sin,0,0), the Jacobian matrix (3.1) is written as follows:
=D —f(Si)  —9(Sin)

Jo=1 0 o(Sm) b
0 0 Y(Sin) — b

The eigenvalues are —D, ¢(S;;,) and 1(S;,) — b which are negative if and only if S;,, < A, and S;, < A0

In what follows, we analyze the stability of positive steady states. The Jacobian matrix at E; =
(8*,u*,v*) is given by

—mi1 —Mmi2 —Mi3
Ji= | ma1 —ma2 as3
mgy M3z  —mM33

mi = D+ f/(S*)u* +¢'(S*)v*,  mia = f(S*), miz = g(5*),
(32> ma1 = f/(S*)U*, mo2 = a(2u* + IU*) - @(S*)v a23 = b— Q’U*a
msz; = ¢'(S*)v*, mge =a(2u* +v*) and mz3 =b— au* — P(S*).

The characteristic polynomial is given by

P(/\) =3 + (21/\2 + oA + c3,

€1 = mi1 + Ma2 + Ma3s,
(3.3) C2 = M12M21 + M13M31 — M32a23 + M11Mo2 + M11M33 + M22M33,

c3 = m11(Maamaz — Ma2ag3) + ma1 (Mi2Mmas + Mmaamiz) + mai(Mmi2a23 + Mmizmaz).
According to the Routh—Hurwitz criterion, E; is LES if and only if
(3.4) c1 >0, ¢3>0 and ¢4 =cico—c3 > 0.

We have the following result:

This manuscript is for review purposes only.
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8 R. FEKIH-SALEM, AND T. SARI

Lemma 3.2. All m;; are positive for all 4, j =1,...,3 with (¢, j) # (2,3) and we have ¢; > 0.

The proof is given in Appendix A.2.

In the next lemma, we will show that the sign of c3 is given by the position of the curve of function
H(-) with respect to the line of equation y = D(S;, — S). More precisely, we give the link between the
determinant of the Jacobian matrix J; at By = (S*,u*,v*) and D + H'(S*). Indeed, this result is very
general, as we show in Appendix A.3.

Proposition 3.3. One has c3 = —det(J1) = —(S*)(¢(S*) — b)(D + H'(S*)).
The proof is given in Appendix A.3.

Since the condition ¢4 > 0 given by (A.10) of the Routh-Hurwitz criterion (3.4) could be unfulfilled,
we will study the behavior of flocculation model (1.4) according to the dilution rate and the disappearance

rates of planktonic and attached bacteria. In fact, there exist four cases that must be distinguished (see
Figure 2):

(3.5) Case 1: D,<D,<D, Case 2: D, <D, <D,
’ Case 3: D, <D, and D < D,, Case 4: D, <D,and D < D,.
D,

D, = D,

D,

D

Fic. 2. Divers regions according to D, D, and D, when the behavior of system (1.4) is different. Yellow region for
case 1 (Dy < Dy < D); green region for case 2 (Dy < Dy < D); magenta region for case 8 (Dy < Dy and D < Dy);
cyan region for case 4 (Dy < Dy and D < Dy).

To determine the local stability of the positive steady state in the first and second cases of (3.5), we
will have need of the following.

Proposition 3.4. In the cases 1 and 2 (D, < D and D, < D), we have ¢4 > 0.

The proof is given in Appendix A.4.

It was shown in [11], see also [26, 27] that if D, = D, = D (which is represented by a point in
Figure 2) then the positive steady E; exists and is unique and LES if and only if S;, > A,. Actually,
this result holds in case 1.

Proposition 3.5. In the case 1 (D, < D, < D), the positive steady state F; = (S*,u*,v*) exists if
and only if Sy, > A,. If it exists, it is unique and LES.

Proof. From Proposition 2.6, F exists if and only if S;, > A,. If it exists, it is unique. From
Lemma 2.5, one has A, < A, and H'(S) > 0 on I. From Proposition 3.3 and Proposition 3.4, it follows
that E; is LES as soon as it exists. O

The case 2 was solved in [3] where it was shown that the stability depends only on the relative
position of the curve of function y = H(S) and the straight line of equation y = D(S;, — S) that is to
say, on the sign of D + H'(S*), as shown in Figure 3. More precisely, we have:

Proposition 3.6. Let By = (5%, u*,v*) be a positive steady state. Assume that case 2 holds.
1. If Ay < Ayt By is LES if H'(S*) > —D and is unstable if H'(S*) < —D.
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2. If Ay > Ayt Eq is LES if H'(S*) < —D and is unstable if H'(S*) > —D.

Proof. According to Lemma 3.2 and Proposition 3.4, we have ¢; > 0 and ¢4 > 0. Therefore, the
positive steady state is LES if an only if the remaining condition ¢z > 0 in the Routh—Hurwitz criterion
(3.4) is satisfied.

In the case A, < A,, we have ¢(5*) > 0 and ¥(S*) < 0. From Proposition 3.3, if H'(5*) < —D,
it follows that ¢z < 0. Therefore, the positive steady state is unstable. If H'(S*) > —D, it follows that
c3 > 0 and hence the positive steady state is LES.

In the case A, > Ay, we have ¢(S*) < 0 and 0 < ¥(S*) < b. From Proposition 3.3, if H'(S*) > —D,
it follows that c3 < 0. Therefore, the positive steady state is unstable. If H'(S*) < —D, it follows that
c3 > 0 and hence the positive steady state is LES. a

Ao X Sin

Fi1G. 3. Existence and stability of steady states in the second case of (3.5): (a) when Ay < min(\y, Sin), (b) when
Ao < Sin < Au < Ap and (¢) when Sy, > min(Ay, Ap). In all figures, we have chosen the red color for LES steady states
and blue color for unstable steady states.

In the case 3 of (3.5), we will show that ¢4 can change sign by varying the control parameter S;,, such
that the positive steady state E; could change its behavior without any collision with another steady
state. Indeed, we succeeded in finding a set of parameters where E; change stability through a Hopf
bifurcation [19], as we shall see in the next section. More precisely, we show numerically the occurrence
of limit cycles in the case 3 of (3.5) when

D<D,<D, or D,<D<D,.

In the case 4 of (3.5) we always have A, < A\, and H'(S) > 0, as shown in Lemma 2.5. Therefore, from
Proposition 3.3, it is deduced that in the case 4 of (3.5) we always have ¢z > 0. We were not able to find
a set of parameters for which ¢4 < 0, as in the case 3 of (3.5) and we conjecture that in this case the
positive steady state F7 which is unique as soon as it exists, is also LES as soon as it exists.

In Figure 2, yellow (case 1) and cyan (case 4) colors represent the region where the system has at
most one positive steady state with c3 > 0. Green (case 2) and magenta (case 3) colors represents the
region where the system can have a multiplicity of positive steady state where the sign of ¢3 can be
positive of negative. In yellow and green regions, c4 is positive. In magenta region, we can have c3 > 0
and ¢4 < 0. In cyan region, we conjecture that ¢4 > 0.

4. Numerical simulations.

4.1. Occurrence of limit cycle: case 3 when D < D, < D,. In order to show that the
condition ¢4(S*) > 0 evaluated at E; = (S*,u*,v*) could be unfulfilled and to detect if the positive
steady state E7 can change stability through a Hopf bifurcation, all biological parameters were fixed such
that D < D, < D,. Then, the control parameter .S;,, was varied.

To see the change of sign of the function S* — ¢4(5*) evaluated at E; and to detect the occurrence
of limit cycles, it is useful to illustrate the curve of this function. To this end, the growth rates f and g
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are chosen for simplicity of Monod-type

m1S maS
d S) =
andg(8) = 2.

(1) £(8) = 47

where m; denotes the maximum growth rate and k; the half-saturation constant. Indeed, we succeeded in
finding a set of parameters such that ¢4 can change its sign as S;,, increases (or equivalently S* decreases)
(see Figure 4). The parameter values used for the simulations are provided in Table 1.

19 0,06
Cq

0,8+ 0,05+

0.6 0.04

0,03+

0.4+

0,02+
0.24

0,01+
0+ . . ~S

o

-0.24

-0,01+

~0.4
Fic. 4. (a) Change of sign of ca and the corresponding stability of E1 on the red or blue curve of function H(-)

where S & 3.492 (or equivalently S} = 3.837), S? ~ 3.422 (or S2, ~ 3.842) and S® ~ 1.963 (or S3 =~ 8.179), (b) a
magnification for 3.25 < S < Ay = 4.061 where S;;, = 3.86.

The solution S* of equation H'(S) = —D and solutions S, i = 2,3, of equation c4(S) = 0 are
represented in Figure 4. In fact, S}, is a critical value of S;;, for which the curve of function H(-) is
tangent to the line § of equation y = D(S;, — S). In addition, S¢_, i = 1,2,3 can be computed explicitly
by

i 1 i i
Si, = DH(S)+S.
According to control parameter Sy, the following changes of stability of Fy and F; occur when the steady
state F is unstable whenever it exists.
- For S;, € [0, Siln[, there exists a unique steady state which is the washout Ey and it is LES.
- For S;, = S}, two positive steady states E; and E; bifurcate into the positive quadrant through
a saddle-node bifurcation.
- For S, €]S1,,52,[, (or equivalently S* €]S?, St), ¢4s(S*) > 0 and H'(S*) < —D (see Fig-
ure 4(b)). It follows that Fs is unstable while Fy and E; are LES.
- For Sy, €]S2,, \u], Eo is LES while E; and Es are unstable where ¢4 < 0 (see Figure 4(b)).
- For S;,, = Ay, Es coalesces with Ej.
- For Sin €]\, S3,[, F2 disappears through a transcritical bifurcation and transfers instability to
Ey while E; still unstable.
- For S, €]53,,+c, (or equivalently S* < S3), ¢4(S*) > 0 and H'(S*) < —D (see Figure 4(a)).
It follows that Ej is unstable and F; changes its stability and becomes LES.

To understand and analyze these changes of local behavior of E; in S?, and S3, without any bifur-
cation with other steady states, we determine numerically the eigenvalues of the Jacobian matrix J; of
system (1.4) at the positive steady state F.

Indeed, the Jacobian matrix J; of system (1.4) at E; has one negative eigenvalue and one pair of
complex-conjugate eigenvalues

/\j(Si ) = [I,(Sm) + iV(Sm), ] = 1,2.

Increasing the control parameter S;,, from S} , this pair crosses the imaginary axis at the critical value

Sin = S%, from negative half plane to positive half plane (see Figure 5(a)), that is, it becomes purely
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(@) (b)
X1 I/(Sin) 0,04 ,U'(Sin)

0,03+

0,02

H(Sin)

-0,10 0,05 0,10

0,01+

° I 3 p 7 3 ;}S
F1G. 5. Two super-critical Hopf bifurcations: (a) variation of a pair of complez-conjugate eigenvalues as S;n increases
and the corresponding real part (b) as a function of Sin.

imaginary for S?, such that «(S2,) = 0, with 3(S2,) # 0. The following inequality is checked numerically

dp o

1,52 [ but becomes saddle focus on
the blue curve for S, > S2, (see Figure 4(b)) undergoing a supercritical Hopf bifurcation at Sy, = S,
with orbits spiralling out (see Figure 6). Indeed, the bifurcation is supercritical since a unique stable
limit cycle bifurcates from the steady state F; for S;, = an.

Increasing S, further, this pair enters to the positive half plane and then returns to the negative half
plane by crossing again the imaginary axis at S;,, = S3 (see Figure 5(a)). Similarly, F; changes again
their stability and returns stable focus node on the red curve for S;,, > S, (see Figure 4(a)) due to the
supercritical Hopf bifurcation at S;, = S3,. Figure 5(b) shows these critical values and the real part of

the complex-conjugate eigenvalues, as a function of S;,.
(a) (b)

Thus, E; is obviously stable focus node on the red curve for S;,, €]S}

(¢)

S S 5 E S
= 4
o 0
o
/ 384 Ey
38 o
. Es o
56
5
6 34 365
N 5 By Es
3 355
“ 284 s
a5 |
5 261
|I| 5] E E,
4 244
24 I_._' Ey 335 4
|IIII "
334
1 .
325
T T T T T T T T ' Sin T T T T T T T T T T T ' Sin T Sin
7

T T T T T T T
35 45 5 55 6 65 75 8 85 384 386 388 39 392 394 39 398 4 402 404 406 408 3836 2838 £ 3842 3844 3846 3848

Fic. 6. (a) Scilab simulation showing projections of the w-limit set in variable S when S;n € [3,9] reveals the
emergence and the disappearance of limit cycles; (b) a magnification of two homoclinic bifurcations when S;, € [3.83,4.08];
(¢) a magnification of supercritical Hopf bifurcation when S;, € [3.835,3.85[. A green dot and a green open circle represent
a saddle-node bifurcation and transcritical bifurcation, respectively.

In order to illustrate the occurrence of limit cycle and to understand what happens with the limit
cycle born via the supercritical Hopf bifurcation when S, varied, we represent in Figure 6 the one-
parameter bifurcation diagram for system (1.4) when all other parameters are fixed. The w-limit set
projected in coordinate S depending on the control parameter S;, shows that the “small” limit cycles
born at S2, (see Figure 6(b)). When magnified, we observe more clearly the occurrence of limit cycle
and then the disappearance via orbits homoclinic to the saddle point Ey at Si, = S™ = 3.8477 (see
Figure 6(c)). When S;,, decreases, the stable limit cycle which appears via supercritical Hopf bifurcation
at S;, = Sf’n = 8.179, will disappear via orbits homoclinic to the saddle point Ey at S;, = Sﬁf = 4.03468.

In order to show the behavior of system according to initial conditions, we illustrate in the following
the time course and the three-dimensional phase plot in most important cases.
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(a) ()

aq 0.03 - 365 - 0.02 — u(t)
e o)

35 S0 0.018
- 0.025 o)
255 0.016

0.014 -
0.02 o 3.5

0.012 o

o T T T 1 o T T T 1 3.2 T T 1 o T T 1

Time Time Time Time

Fic. 7. Case Sin = 3.846 €]52 , Szhn1 [: bi-stability with convergence either to Eg (a) or limit cycle when the oscillations
are sustained (b).

For S;,, € ]52

n Sl
Fq. To detect the limit cycle, we take an initial condition close enough to positive steady state E; such
that the convergence radius is small enough. Figure 7(a) shows the convergence to the washout steady
state Fy for an initial condition in a neighborhood of the saddle focus F; of size order € = 2 x 10~2 while
Figure 7(b) clearly shows the trajectory starting from a neighborhood of E; of size order e = 10~ is
approaching a limit cycle as time goes where the system exhibits sustained oscillations, which implies the
limit cycle is stable. All these facts tell us that a stable limit cycle is bifurcated from the steady state E

as the control parameter S;, passes through its critical value S,.

[, the bi-stability is transferred between Ey and the limit cycle instead of Ey and

1
n

(a) (b)

0.005

[ 0.0025

3 - - 0.004
Ey

32 [-0.003

[-0.002

"
3.4 4
- 0.002
S or, s
- 0.001 35
a8 o Eo

E() 3 o 36 T T T T T
0.005 0.01 0.015 0.02 0.008 0.01 0.012 0.014 0.016

I-0.0015

[-0.001

w ”
Fic. 8. Case S, = 3.846 € I3 = [S?

S Si: (a) bi-stability of Eo and limit cycle; (b) a magnification of limit cycle
in the three-dimensional space (S, u,v).

In Figure 8, the three-dimensional phase space shows the bi-stability with convergence to Ey for two
initial conditions in a neighborhood of E; of size order ¢ = 1072 and ¢ = 1.5 x 1073, respectively, or limit
cycle for the same initial condition as those in Figure 7(b). A magnification in the three-dimensional
space shows more clearly the convergence toward the limit cycle.

Figure 10 gives the time course and the phase portrait for S;,, € [Szh,f ) Ay [ and shows that the system
exhibits bi-stability with convergence either to washout steady state Ey for an initial condition in a
neighborhood of E; of size order ¢ = 2.1 x 1072 (a) or to the stable limit cycle for an initial condition in
a neighborhood of E; of size order ¢ = 10=* (b). In addition, the period asymptotes to infinity at a finite
value of the bifurcation parameter S2. The three-dimensional phase plot shows the bi-stability where
the blue trajectory tends to Fy and the black trajectory tends to the red limit cycle (see Figure 10(c)).

The numerical simulations can show the global convergence towards the limit cycle from any positive
initial condition and the oscillatory coexistence with constant amplitude and frequency over the time (see

Figure 11).
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Fi1G. 9. Case S;, = 3.8477 € [Shl Slhi [: global convergence to Eq.

in?
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by
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/lf.()@ 0.08
Fic. 10. Case S;n = 4.03468 € [S.h? Au [ bi-stability and occurrence of limit cycle with convergence either to Eg (a)

mn’

or limit cycle (b). The limit cycle in the three-dimensional space (S, u,v).

Hence the sensitivity of flocculation model behavior in mortality of species and their effect on the
occurrence of limit cycles via supercritical bifurcation. All these features cannot occur in cases 1 and 2
of (3.5), that is, D,, < D and D, < D), where there may be coexistence only around a positive steady
state and not a limit cycle.

4.2. Occurrence of limit cycle: case 3 when D, < D < D,. In the previous section, we have
shown the occurrence of limit cycles in the case where D < D,, < D,,. In what follows, we show that the
two conditions D < D,, and D < D,, are not necessary and only one of these conditions is sufficient to
destabilize the system. More precisely, we show the appearance of limit cycles in the third case of (3.5)
when D, < D < D, by finding a set of parameters such that ¢4 can change its sign. Parameter values are
given in Table 1 where we modified only the value of D,, compared to the previous case D < D,, < D,,. In
this cas (D, < D < D,,), we have H'(5*) < —D for all $* € I =]\, min(A\,, A\p)[. Figure 12(a) illustrates
the change of stability of E; according to values of S at steady state when c4(S) changes sign at S¢,
1 = 1,2, which is solution of the equation ¢4(S) = 0. The numerical simulations show that the Jacobian
matrix of system (1.4) at E7 has one negative eigenvalue and one pair of complex-conjugate eigenvalues
that crosses the imaginary axis at S} from negative half plane to positive half plane by increasing the
control parameter S;, from A,. Then, it returns to the negative half plane by crossing the imaginary
axis at S2, (see Figure 12(b)). Depending on the control parameter S;,, one has the following change of
stability

- For S;,, € [0, A\p[, there exists a unique steady state which is the washout Ej and it is LES.
- For S;, = Ay, F7 appears stable node through a transcritical bifurcation while Ey becomes a
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Fic. 11. Case S;, = 6.2 € [)\ S3

w, S5, [: global convergence to limit cycle.

saddle point (see Figure 12(c)).
- For Si, €]X\s, SE,[, E1 is LES where ¢4(S*) > 0 when S* €]S, \y[ (see Figure 12(a)).
- For S;,, €]S},,52 [, E1 becomes unstable where ¢4 < 0 when S* €]52, S1[.
- For S;,, €]S2,,+00[, E1 changes its stability and becomes LES where c4(S*) > 0 when S* €
Ao, S2[.
The projections of the w-limit set in variable S according to S;;, reveal the appearance and disappearance
of limit cycles through two super-critical Hopf bifurcations (see Figure 12(c)).

a b 5. c
il ( ) ( ) 0.6 V(S'Ln) ( )

Ey

0,6
0.4

0,24

DI#(Sin)
. Eo

Iy

0,24

o T T T T T T T 1 Sin

—04- 1 15 2 25 3 35 4 45 5

Fic. 12. (a) Change of sign of ca and the corresponding stability of E1 on the red or blue curve of function H(-) where
Ap &~ 2.155, ST ~ 1.884 (or S} = 2.342) and S? ~ 1.127 (or S2, &~ 4.561). (b) Variation of a pair of complez-conjugate
eigenvalues as Sin increases. (c) Projection of the w-limit set in variable S as a function of Si,. A green open circle
represents a transcritical bifurcation.

Thus, the condition min(D,,, D,) < D does not imply ¢4 > 0 and for instance the condition D < D,,
is sufficient to destabilize the system. Indeed, the numerical simulations have been considered when
m,, > 0, such that D, = oD +m, > D (a < 1) and m, = 0, such that D, = 8D +m, < D (8 < 1).
Therefore, the mortality of isolated bacteria lead to their coexistence with bacteria in flocs around a
stable limit cycle.

4.3. Multiplicity of positive steady states. In this section, we illustrate the bi-stability and
the multiplicity of positive steady states of flocculation model (1.4) in case 2 of (3.5). When the growth
rates are of Monod-type (4.1), the equation D(S;, —S) = H(S) is equivalent to a polynomial equation
of fifth degree. Therefore, there is at most five solutions of this equation. The positive steady states
correspond to solutions which are in the interval I. We succeeded in finding a set of parameters with 3
solutions at most in this interval. The numerical simulations illustrate the results of Proposition 2.6 and
Proposition 2.7, which are obtained for the Monod-type growth rates (4.1). All parameter values used in
this section are summarized in Table 1. Figure 13 illustrates the case A\, < S;, < A\, where there exists
a unique positive steady state

Ey ~ (3.37,0.98,1.38)
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which is LES. The numerical simulation shows the global convergence to the positive steady state E; for
any positive initial condition. Figure 14 illustrates the case A\, < A, < S, with three positive steady

(a) (b)

20

45

0 1 2 3 4

)\u, S’in v

oEoz 04 06 08 1 43 4y
0 u

Fic. 13. The case Ay =2 < Sin =5 < Ay = 5.4: a unique positive steady state E1 and global convergence to E.

states
F ~ (3.06, 12.11, 157.46), Fy ~ (5.17,8.53,524.30) and Fs ~ (8.81,2.64, 1086.32).

The numerical simulations show the bi-stability with two basins of attraction, one toward F; and the
other toward E3 which are stable nodes. These two basins are separated by the stable manifold of saddle
point FEs. As it was proved in Proposition 2.7, the steady state F; promotes planktonic biomass u and
E5 promotes attached biomass v. Figure 15 illustrates the case A, < Sin < A\p = 2.25 < A\, with two

500
400+

300

200

1001 . :
Y I s If Eg\\?\/

Fi1G. 14. The case Ay = 2.5 < Ay, = 10 < S;, = 15.8: three positive steady states and bi-stability.

positive steady states
E; ~(1.37,0.19,0.62) and F5~(1.73,0.07,0.1).

The numerical simulations show the bi-stability with two basins of attraction, which are separated by the
stable manifold of saddle point F5. One basin of attraction attracts the solutions to the positive steady
state E7 and another to the washout steady state Ey. Figure 16 illustrates the case S;;, > A, with a
unique positive steady state

E; ~ (1.15,0.3,2.54).

The numerical simulations show the global convergence to the positive steady state E; for any positive
initial condition. Figure 17 illustrates the case S;, > A, > A, with three positive steady states

Ey ~ (3.31,2.23,27.08), E,~ (3.98,1.67,4.12) and Ej; ~ (4.39,0.63,0.24).

The numerical simulations show the bi-stability with two basins of attraction, one to the positive steady
state F7 and the other to the positive steady state F3 which are stable nodes. These two basins are
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separated by the stable manifold of saddle point F5. As it was proved in Proposition 2.7, the steady state
E; promotes simultaneously two biomass v and v. Figure 18 illustrates the case A\, < S;, < A, with no
positive steady state. The numerical simulations show the global convergence toward the washout steady
state Ejy.

5. Conclusion. In this work, we have analyzed mathematically and through numerical simulations
a model of the chemostat with three nonlinear differential equations where one species is present in two
forms, isolated and attached with the presence of a single growth-limiting resource. The new feature was
that maintenance terms are added to depletion or removal rates in order to give a complete analysis of
flocculation model (1.4).

To our knowledge, our study is the first attempt to bring out the common effects of the flocculation
phenomenon and mortality in the coexistence around a stable limit cycle. Depending on the two control
parameters Sy, and D, the flocculation model may exhibit sustained oscillations and the occurrence of
stable limit cycles via supercritical Hopf bifurcations.

More precisely, when D,, < D,,, we show that the system may exhibit bi-stability with multiplicity of
coexistence steady states that can bifurcate through saddle-node bifurcations or transcritical bifurcations.
Whereas, the bi-stability could occur in the classical chemostat model (1.1) only when the growth rate
is non-monotonic. If, in addition D, < D, the coexistence of planktonic and attached bacteria may be
only around a positive steady state.

Considering mortality of isolated and aggregated bacteria (D < D, < D,,), we have identified that
the phase portraits may be very rich. More precisely, the one-parameter bifurcation diagram for model
(1.4) shows the effect of control parameter S;,, on the behavior of the system. For small enough S;,,, there
is exclusion of planktonic and attached species. Increasing S;,, system (1.4) undergoes Hopf bifurcations
at the positive steady state Fy. Furthermore, this system may exhibit bi-stability with convergence either
to a stable limit cycle or to the washout steady state. The disappearance of stable limit cycles can be
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FiG. 17. The case Ay = 2.7 < Ay = 4.5 < S, = 4.6: existence of three positive steady states and bi-stability.
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F1G. 18. The case Ay =3 < Sip = 5.5 < Ay = 6: global convergence toward Ey.

either by supercritical Hopf bifurcations or homoclinic bifurcations. For large enough S;,, there is global
convergence to the positive steady state or to a stable limit cycle. However, we have shown that the
mortality of planktonic or attached species (for instance D,, < D < D,,) suffices to ensure the coexistence
around a stable limit cycle.

Our findings on the destabilization by of the positive steady state are similar to those in [2, 18]. In
[18], the steady state of a trophic chain (prey-predator) in a chemostat can be destabilized by mortality
where stable limit cycles and multiple chaotic attractors are found. The maintenance (or decay) rate
coefficients considered in a tri-trophic food chain model can cause destabilization of system when the
operating diagram shows local and global bifurcations of steady states and of limit cycles [2].

Our results show that the mortality of the species is necessary for the emergence of stable limit cycles
in the flocculation model (1.4). This is mainly due to the joined effect of mortality and flocculation.
However, in the model of flocculation introduced in [10], without mortality (D,, = D, = D), it has been
shown that the model can have unstable limit cycles with a non-monotonic growth rate of planktonic
bacteria, see [6]. It is the effect of flocculation and inhibition by the substrate on the growth that was the
cause of the appearance of unstable limit cycles. Adding a second species to the model, where only the
most efficient species makes flocs, the model does produce oscillations with emergence of a stable limit
cycle. Therefore, the properties of the model depend highly on the flocculation phenomenon through
the attachment and detachment velocities A(-) and B(-) respectively in (1.3) and should be carefully
discussed with the biologists.

Thereby, the flocculation models are sensitive to mortality of species which is neglected in the liter-
ature. The behavior of the system is richer with coexistence, bi-stability, multiplicity of positive steady
states, and emergence of stable limit cycles. This last feature cannot occur in the flocculation model
without mortality what confirms the output sensitivity and the importance of mortality in biological
systems. All these bifurcations enrich notably the dynamic behavior of the analyzed flocculation model
(1.4).
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Appendix A. Proofs.

A.1. First proofs. In this Appendix, we give the proofs of the results given in section 2.
Proof of Proposition 2.3. Since

S=0 = S=DS;,>0,

then no trajectory can leave the positive octant Ri by crossing the boundary face S = 0. In addition,
whenever u = 0 with v > 0, then @ = bv > 0. Similarly, whenever v = 0 with u > 0, then © = au?® > 0.
Hence, the vector field points inside

0= {(S,u,v) ER3:8>0,u>0,v> O}
along the whole boundary of ® without the horizontal semi-axis
'={5>0,u=v=0},
which is invariant under the system (1.4) because the function
t— (S@),u),v(t) = (Sin + (S(0) — Sin)e”P*,0,0)

is a solution of (1.4). By uniqueness of solutions, I' cannot be reached in finite time by trajectories for
which u > 0 or v > 0. Therefore, the solutions remain non-negative.
Let z = S 4 u + v. The sum of the three equations of (1.4) yields

5(t) = DS — DS(t) — Dut(t) — Dyv(t) < Dunie (DPSW - z(t)) .

Using Gronwall’s Lemma, we obtain

D
(A1) z(t) < —Sin + (z(O) - VSin> e~ Pmint forall > 0.
We deduce that D
z(t) < max <z(0)7 TSi > forall t>0.
Therefore, the solutions of (1.4) are positively bounded and are defined for all ¢ > 0. From (A.1), it can
be deduced that the set 2 is positively invariant and is a global attractor for (1.4). O

Proof of Proposition 2.7. A straightforward calculation shows that

o(S)((S) - B)Dui(S) — DuplS)]
(4.2) H(S) = a0®) —eOWE

From (2.6) and (A.2), it follows that
p(ST)(W(S*) —b) _  D(Sin — S*)(S7)

alp(5*) —(S*)]  Dutp(S*) — Dyp(S*)
Therefore, the expressions (2.9) and (2.10) can be rewritten also as follows:

D(Sin — 5)1(9)

(A.3) w=U(ST) with Ui(S) = o e
and
(A.4) v* =Vi(S*) with Vi(S) = D(Sin = S)¢(S)

Dyp(S) — Dutp(S)
We show that
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1. If Ay < Ay, then Uy(+) is strictly decreasing on I N[0, S;,] and V() is strictly increasing on I.
2. If A, < Ay, then U and V are strictly decreasing on I and V; is strictly decreasing I N[0, S;,].
From (2.9) and (A.3), a simple calculation yields that

—¢ (Dutp — Do) — g'Dyp (Sin — S) + f' Dyt (Sin — 5) fo@—b)+g'pb-¢)
(Du'l/)_Dv@)2 a(¢_@)2

Therefore, if A, < Ay, then U{(S) is negative on I N [0, S;y,] and if A, < Ay, then U’(S) is negative on 1.
From (2.10) and (A.4), a direct calculation shows that

Ui(s) =D , U'(9) =

V{(S) = D_QP (Dyp — Dyp) — f'Dytp (Sin — S) + ¢’ Dy (Sin — S)
1 (Dup = D))’ ’
yis) = e @ =]2Y—9) + g W —b) (20 —¢)
a($—p)* P2

If Ay < Ay, then V'(S) is positive on I and if A\, < A, then V/(S) is negative on I N [0,S;,] and V'(S)
is negative on I. Let S* < S**. Therefore, if A\, < A,, then

uw* =Up(S*) > u™ =U1(S*™) and v* =V(S") <v™ =V (5*).
Furthermore, if A, < A, then
u* =U(S")>u* =U(S") and v* =V1(S*) > 0™ =V1(5*).

This completes the proof. O

A.2. The sign of c¢;. In this section, we consider the sign of the coefficient c;.
Proof of Lemma 3.2. From the second equation of (2.1), we have

©(SM)u* — a(u* +v*)u* + bv* = p(S*)u* — a(2u* + v )u* + a(u*)? + ' = —mgou* + a(u*)? + bv* = 0.

Hence

*

mag = au™ +bv—* > 0.
u
From the third equation of (2.1), we have
G(5*)0* + a(u + v )ut — bo* = —mggv* + a(u*)? = 0.
and therefore,

*\2
mggza(u ) > 0.
v*

Thus, all m;; are positive for all ¢,j = 1,...,3 with (¢,7) # (2,3). Since m;; > 0,4 = 1,...,3, then
c1 = Z?:l mi; > 0. O

A.3. The sign of c3. We study the sign of c3 is a more general context. Consider the following
system of differential equations

o = folwo,x1,x2)
(A.5) 1 = fi(wo,x1,x2)

to = falwo,x1,22).
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162 Let a* = (zf, 27, x35) be a steady state, and let

agp @1 Qo2
463 J=1| a0 a1 a2

G20 Aa21 Aa22
164  where

Ofi
Ox;j

165 a; = =—(z*), i=0,1,2, j=0,1,2

466 be the Jacobian matrix of (A.5) at z*. The steady state a* = (x, 2}, x3) is a solution of the set of
467 equations

0 = folwo,z1,22)
468 0 = fi(wo,®1,22)
0 = fQ(xO,xlaIQ)-

469 We solve this set of equations in the following manner:

470 1. We first solve the second and third equations fi(zo,z1,22) =0 and fo(xo,x1,z2) = 0 which are
A71 assumed to define 1 and x5 as functions of xg, that is to say, there exists xg — (X1(x0), X2(z0))
472 such that

473 (A.6) fi(zo, X1 (o), X2(20)) =0 and  fa(2o, X1(20), X2(20)) = 0.

A74 2. Then, we replace x1 by X;(z¢) and xo by Xa(x¢) in the first equation to obtain

475 (A?) h(xo) =0, where h(xo) = fo(.’Eo, X, (.’Eo), XQ((E()))

476 which is assumed to have a solution zj.

477 3. Therefore, 7 = X1 (zf) and x5 = Xo(x) define the steady state z* = (xf, ], z3).

Lemma A.1. Assume that A := ay1a29 — ajoa21 # 0, then we have the following formula
det(J) = 1 (z§)A.
478 Proof. Deriving (A.6) with respect to xq gives the following formulas

p)
{ag{é‘*‘ahXﬂ )+ale2( 0)

8z 1 8f2 X1 (z0) + 22 X} (2) =

179 (A.8)

Oxo

where the partial derivatives of f; and fy are evaluated in (zq, X1(zg), Xa2(z)). For zy = z, system
(A.8) becomes

aro + a11 X1 (x5) + a2 X (xg)
ago + ag1 X1(w5) + aeXj(zg) =

Using A # 0, we have

a10G22 — A20G12 20011 — 410021
PR\ Lok
Xi(zg) = T A Xy(zg) = - A

The development of the determinant of J with respect to the first line gives

det(J) = apoA — a1 (@10a22 — a20a12) + ao2 (a10a21 — az0a11) -
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Thus,
det(J) =A (aoo + a01X{ (.’ES) + QOQXé(xS)) .

By using expression (A.7) of h(xg), it follows that
dfo

9fo | 9fo
n ==+ X X .
(370) 6560 + 81’1 1(-TO) + 8172 2(.’1:0)
Hence, b/ (x) = ago + ap1 X1 (x) + ao2 X5(xd). Therefore, det(J) = AR/ (z§). a
Proof of Proposition 3.3. In the particular case of system (1.4), we have
fo(wo,z1,02) = D(Sin —0) — f(w0)71 — g(w0)w2

fl($0,$17$2)

[f(z0) — Du]z1 — a(z1 + 22)71 + b2
f2($0,$1,$2) = [ -

g(xo) — Dy]xa + a(zy + x2)x1 — bas.

Since,
h(zg) = D(Sin — xo) — H(xg), where H(xg) = f(x0)X1(z0)+ g(zo)Xa(xo).

it follows that
h/(l’o) =-D— Hl(l’o).

Substituting 7 and x3 by their expressions U(S*) and V(S*) given by (2.9) and (2.10), respectively, in
the expression of A, a straightforward calculation shows that

(A.9) A = —p(g)(¢(x5) — b).
We conclude from Lemma A.1 that,
¢ = — det(J) = —p(a}) () — B)(D + H'(z3)).
O

A.4. The sign of c4. In this Section we consider the sign of the coefficient cy.
Proof of Proposition 3.4. In the case 1, one has D,, < D,. From Lemma Lemma 2.5, it follows that
Ay < Ap. In the case 2, one has D, < D,. From Lemma Lemma 2.5, two cases must be distinguished:
either A\, < A, or A, > \,. Straightforward calculations show that:

—p)? 2(p — b
(A.10) cs = DyDf'u* + Dg'auv* + f’MF T g'WG + P

where

F =2(D = Dy)¢¢ + (Dyy — D)¢” + (Dy, — D)¢* + D),
G = (D - Dv)b@(2w - (P) + D’(/}?’ + (Du - D)b¢2 - Du‘pr + (Dv - D)’L/}2(P7

Py = D*(mgymas) + D (f'u* + g'v*) mas + (maamas)ca.
From (3.3), c2 can be written as follows:
(A.11) Co = MmiaMa1 + Mmizma1 + ma1 (Mag + M33) + Maams3 — M32az3.
Since maamas — maaassz = A, it follows from its expression (A.9) that:

(A.12) Maamas — mazazs = A = —p(5*) [(S) — b].
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Let A\, < Ap. Thus, A is positive and so ¢a > 0. Consequently, P is positive. In the case 1 (D, < D, < D)
and the case 2 (D, < D, < D), it is easy to check F' < 0 and G < 0 where 9 < 0 < ¢ on |Ay, A\y[. Thus,
one can conclude that ¢4 > 0 in the first and the second cases when A, < \,.
Let Ay, > \,. Straightforward calculations show that:
Cqy = A + B + P2

where

2 2
A = Dmyomaor + mi1Ma2 — M211M321M13, B = Dmygms; + my1m33 — M31a231M12,

Py = (f'u* + g'v*)miamar + (f'u* + g'v*)mizmsr + maa(ca — mizma1) + mas(ca — miamay).
From (A.11) and (A.12), one has
Co — M13M31 = Mi2Mo1 + M1 (Mo + ms3) + (b — 1Y) >0,

and
Co — M12Ma1 = Mi3Ma1 + M1 (Mag + mas) + (b — 1) > 0.

Thus, P, > 0. On the one hand, we can write m?, = D f'u* + Ps with P3 > 0 since all the terms of my;
are positive. Thus, from expression (3.2), one has

miy mag — marmaamaz = Df'u*[a(2u* +v*) — ] — gf u*a(2u* + v*) + Pymas.

Then,
A= (D —g)f'u*a2u* +v*) + D, Df'u* + P3mas.

In the case 2, our Hypothesis 2.2 implies that g(S*) < g(A,) < f(Ay) = Dy < D for all S* €)X, A [.
Therefore, A > 0. On the other hand, we can write m?, = Dg'v* + P, with P, > 0. From expression
(3.2) of ags and mgg, one has ass = mgssg + 1. Therefore,

m31mas — maiazzmaz = (D — f)g'vimas — fg'v* + Pamas.

Since f(S*) < f(Ay) = D, < D for all S* €]\, \,[, then

B=(D - f)g'v*mss + (D — f)gg'v* + fg'v" Dy, + Pymsz > 0.
Thus, in the second case when A, < A,, we can conclude that ¢; > 0 for all S* €]\, A\, [. O

Appendix B. Parameters used in numerical simulations. All the values of the parameters
values used in numerical simulations are provided in the following Table.

TABLE 1
Parameter values used for (1.4) when the growth rates f and g are given by (4.1).

Parameter mq k1 mo ko a b D D, D,
() (g/D) () (g/) (t/h/9) (™Y (h™ Y () ()

Figures 4 and 11 1.1
Figure 12 5 2 5 3 4 2 0.1 3.35 0.09
Figure 13 4.5 1 3 2.7 2 3 3.5 3 2
Figure 14 60 0.5 0.6 20 0.01 0.01 50 50 0.2
Figures 15 and 16 4.5 1.7 4 1.5 2 0.8 3.2 3 1.6
Figure 17 20 1.5 2 2.7 1.2 3 47 15 1
Figure 18 4 2 3 1.5 2 3 3 3 2
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