
HAL Id: hal-01722268
https://hal.science/hal-01722268v1

Submitted on 3 Mar 2018 (v1), last revised 11 Sep 2024 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Direct Fisheye Stereo Correspondence Using Enhanced
Unified Camera Model and Semi-Global Matching

Algorithm
Bogdan Khomutenko, Gaëtan Garcia, Philippe Martinet

To cite this version:
Bogdan Khomutenko, Gaëtan Garcia, Philippe Martinet. Direct Fisheye Stereo Correspondence Using
Enhanced Unified Camera Model and Semi-Global Matching Algorithm. ICARCV 2016, Nov 2016,
Phuket, Thailand. �10.1109/ICARCV.2016.7838761�. �hal-01722268v1�

https://hal.science/hal-01722268v1
https://hal.archives-ouvertes.fr


Direct Fisheye Stereo Correspondence Using
Enhanced Unified Camera Model and Semi-Global

Matching Algorithm
Bogdan Khomutenko and Gaëtan Garcia and Philippe Martinet

IRCCYN, École Centrale de Nantes (ECN), Nantes, France
Email: firstname.lastname@irccyn.ec-nantes.fr

Abstract—In this paper, it is shown that the Enhanced Unified
Camera Model, which is used to model fisheye cameras, projects
straight lines into conic sections. Then a way to find equations
of straight line projections is proposed. The method is applied to
epipolar curves to adapt the Semi-Global Matching algorithm
to fisheye stereo systems to compute a dense direct stereo
correspondence without undistortion and rectification of fisheye
images. It is done by efficient image sampling along an epipolar
curve, using an algorithm for rasterization of implicit curves.

A C++ implementation is available online.

I. INTRODUCTION

The fisheye camera is a powerful sensor for omnidirectional
perception: it is cheap and robust, but it has one major
inconvenience. Its projection is highly non-linear and images
taken with them are distorted, which makes it difficult to
deal with such problems as epipolar geometry and stereo
correspondence.

A stereo correspondence algorithm called Plane Sweep,
originally proposed in [1], was applied to fisheye cameras
in [2] to get the direct stereo correspondence. In the same
paper the advantage of the direct fisheye correspondence over
rectified, pinhole-based version was discussed.

We propose an adaptation of the Semi-Global Matching
Algorithm [3], which is, perhaps, the most well-known and
most-used algorithm for stereo correspondence. It has an
efficient and fast-to-compute regularizer. The main assumption
of this algorithm is that it is possible to efficiently sample an
image along an epipolar line. In order to do it, images are
usually rectified and undistorted using the pinhole model, as
mentioned above.

A recent approach to camera projection modeling and anal-
ysis, called Projection Surface and presented in [4], allowed
us to find a convenient way to sample fisheye images along
an epipolar line. Geyer and Daniilidis in [5] showed that the
Unified Camera Model projects straight lines into conics. Here
we show that the same is true for the Enhanced Unified Camera
Model introduced in [4], and then suggest a method to compute
an equation of epipolar curves. In the work on omnidirectional
LSD-SLAM [6], the authors use the projection model and its
Jacobian matrix at each step to sample the epipolar curve
with a step of 1 pixel; then they mention that this way of
curve sampling is much more computationally expensive than
following a straight line. But if the curve equation is known, it

is possible to efficiently follow it, using a curve rasterization
algorithm. An algorithm for rasterizing implicit curves has
been suggested in [7].

The structure of the paper is as follows. In the second
section we review the Enhanced Unified Camera Model, the
concept of the Projection surface, then show how to obtain
an equation of a straight line projection. In the third section
we describe how to compute the epipolar curve equation for
a calibrated stereo system, as well as the algorithm for stereo
correspondence. In the fourth section we discuss the experi-
mental results. The last section is dedicated to the conclusions
and the future work on the subject.

II. ENHANCED UNIFIED CAMERA MODEL

The basic projection relations are as follows [4]:

m =


x

αρ+ (1− α)z
y

αρ+ (1− α)z

1

 ρ =
√
β(x2 + y2) + z2

p = Km

(1)

The two parameters are α ∈ [0, 1] and β > 0. They
allow us to better approximate the properties of lenses with
strong distortion. This model assumes that the denominator
αρ+(1−α)z > 0. K is the projection matrix, which transforms
normalized coordinates into image coordinates:

K =

(
fu 0 u0
0 fv v0

)
(2)

A. Projection Surfaces

To analyze the model, let us introduce the notion of
projection surface. For the sake of simplicity let us consider
only projection relations with radial distortion. That is, every
projected point can be written as m = (x/η(X) y/η(X) 1)T

where x and y are the components of a spatial point X , and
η : R3 → R+ is a function of X , moreover ∀X1,X2 ∈ R3:{

x21 + y21 = x22 + y22
z1 = z2

=⇒ η(X1) = η(X2) (3)

Also we require:

∀λ ∈ R+ η(λX) = λη(X) (4)



that is, η is a homogeneous function of degree 1.
Let us define the projection surface P by the following

equation:
η(X) = 1 (5)

The projection surface is a surface of revolution. The geometric
meaning of (5) is that all the points of the projection surface
are projected orthogonally to the image plane. So, we can think
of the projection process as scaling the point X by η(X) and
then projecting it orthogonally onto m ∈ M — the normal
plane (see Fig. 1):

Xp =
X

η(X)

m = (xp yp 1)

(6)

Using (4) we can deduce:

η(Xp) = η

(
X

η(X)

)
=
η(X)

η(X)
= 1 (7)

Hence, all the points Xp belong to the projection surface. In
fact Xp is the intersection between the projection surface P
and the OX ray (Fig. 1).

X

Xp

m

O

z

P

M

y

x

Fig. 1. Illustration of the notion of projection surface. z is the optical axis;
O is the center of projection; Xp is obtained by projecting X to P along
OX ray. Then this point is transformed into m by projecting it orthogonally
onto an intermediate projection plane M which is defined as z = 1

One convenience of the notion is that it is relatively easy
to see for which spatial points the projection is defined. For
example, the classical pinhole camera model corresponds to
η(X) = z. So, the projection surface in this case is defined
by z = 1. It is a plane. And all the points with z ≤ 0 do not
define rays that intersect the surface.

Let us apply the notion to the proposed model. In this case:

η(X) = α
√
β(x2 + y2) + z2 + (1− α)z (8)

So, η(X) = 1 leads to:

α
√
β(x2 + y2) + z2 + (1− α)z = 1 (9)

Let us replace 1− α by γ and x2 + y2 by r2:

α
√
βr2 + z2 = 1− γz (10)

By squaring both sides we get:

α2βr2 + α2z2 = 1− 2γz + γ2z2 (11)

We should remember that as we have squared both sides, we
may get some solutions that do not satisfy (10). We may notice
that γ2 − α2 = γ − α, hence:

α2βr2 = 1− 2γz + (γ − α)z2 (12)

α2βr2 + (α− γ)z2 + 2γz = 1 (13)

B. Straight Line Projection

Using the notion of projection surface, we can show that
straight lines are projected as conic sections. Given straight
line l let us define plane H which passes through l and O
(Fig. 2). It is defined by the following equation:

Ax+By + Cz = 0 (14)

To find the line projection first we need to project it onto the
projection surface. To do it, we need to find intersection c
between surface P and plane H . This intersection is defined
by the following system of equations:{

Ax+By + Cz = 0

α2β(x2 + y2) + (α− γ)z2 + 2γz = 1
(15)

Fig. 2. A calibrated stereo system. R1
2 and t12 define the transformation

between the camera frames (rotation matrix and translation vector); X is a
reconstructed point; straight line l passes through it and the center of projection
of the first camera O1. Plane H passes through O2 and l. Curve c is the
intersection between the plane and projection surface P . To get an epipolar
curve we need to exclude z coordinate from the equation of c.

The next step in the projection process is to project the
curve orthogonally onto the intermediate plane M . It means
that we need to exclude z from the equations. If C = 0 then
the projection is a straight line, defined by

Ax+By = 0 (16)

This line passes through the center of projection. It is logical
because the system has only radial distortions and the only
straight lines that are projected into straight lines are the ones
which pass through the optical axis. If C 6= 0 then we can find
z from the first equation:

z =
Ax+By

C
(17)

and substitute it into the second one:

α2β(x2 + y2) + (α− γ)

(
Ax+By

C

)2

+ 2γ
Ax+By

C
= 1

(18)
As you can see, we have a second degree polynomial of x and
y. This polynomial defines a conic section.



III. STEREO MATCHING USING THE ENHANCED MODEL

Using the epipolar geometry described above we can effi-
ciently sample the right image of a stereo image pair along
an epipolar line. It allows us to apply the Semi-Global Block
Matching algorithm to the problem of stereo reconstruction
using the proposed model without image rectification.

A. Epipolar Geometry

We can get closed-form expressions for coefficients of
epipolar curve equations for a calibrated stereo system. Con-
sider two cameras with calibrated projection models f1 and f2.
The transformation between them is known and represented by
a rotation matrix R1

2 and a translation vector t12 (see Fig. 2).
Hereafter the superscript defines the projection frame. For a
reconstructed point X1 = f−11 (p1), we can define a plane
that passes through it and both centers of projection. It will be
defined by the following equation:

X2 ·
(
R2

1(t12 ×X1)
)

= 0 (19)

This is a classical equation, which introduces the Essential
matrix R2

1[t12]×. But what we are interested in is the fact that
we have an equation of type (14). Hence we can find the
equation of projection of the intersection of this plane with the
projection surface of the second camera using (16) or (18).

The final thing to do is to replace x and y by their
expressions as functions of u and v:

x =
u− u0
fu

y =
v − v0
fv

(20)

to get a polynomial of the following kind:

kuuu
2 + kuvuv + kvvv

2 + kuu+ kvv + k1 = 0 (21)

Let us denote this polynomial by h(u, v) or h(p). Except
for the epipolar lines that pass very close to the projection
center (in which case we can apply (16)), the expressions of
the polynomial coefficients in this equation are cumbersome,
especially k1:

kuu = A2κ+C2α2β
C2f2

u

kuv = 2ABκ
C2fufv

kvv = B2κ+C2α2β
C2f2

v

ku = −A2fvu0κ−ABfuv0κ−ACfufvγ−C2α2βfvu0

C2f2
ufv

kv = −ABfvu0κ−B2fuv0κ−BCfufvγ−C2α2βfuv0
C2fuf2

v

k1 =
hA2A

2+hABAB+hACAC+hB2B
2+hBCBC+hC2C

2

C2f2
uf

2
v

hA2 = f2vu
2
0κ

hAB = 2fufvu0v0κ
hAC = 2fuf

2
v γu0

hB2 = f2uv
2
0κ

hBC = 2f2ufvγv0
hC2 = α2βv20(f2u + f2v )− f2uf2v
κ = α− γ

(22)

Fortunately, we don’t have to evaluate all of them. If we know
the projection of the epipole e, we can calculate k1 using the

fact that h(e) = 0 (since the epipolar curves pass through it).
If we denote the first five terms of h(u, v) by h′(u, v) then:

k1 = −h′(e) (23)

B. Curve Rasterization

To follow the curve in an efficient manner we have to
rasterize it first. The following algorithm requires that the curve
be defined by an equation as follows:

f(u, v) = 0 (24)

Here f : R2 → R with ∇f = (fu, fv)
T defined; u, v ∈

R are the image coordinates. Then we need a starting pixel
p0 = (u0, v0)T and a goal p1 = (u1, v1)T (see Fig. 3). Since
the image is discrete, we cannot require that f(p0) = 0. But
at least we can assume that the starting point and the goal
are close to the curve. That is the distance from the nearest
solution of (24) to either of these points is less than 1. We
assume that p0 ∈ Z2 and it might be the case that p1 ∈ Z2, but
it is not necessary. Among the two possible directions of the
curve starting at p0, the algorithm chooses the one which leads
towards the goal p1. More formally, if the chosen direction is
defined by a tangent vector t, then:

t · (p1 − p0) > 0 (25)

Fig. 3. A curve rasterization process. We start from p0 and make step ∆u
towards p1, because tangential vector t is closer to u-axis, than to v-axis.
Then we use the perpendicular direction to compensate the error, that is make
step ∆v.

We assume that the angle between t and the desired direc-
tion is small, so the singular configuration when t·(p1−p0) =
0 is supposed to never happen. t is calculated by rotating
gradient vector ∇f by π/2 clockwise or counterclockwise
depending on the goal condition. Then we retain the rotation
direction and use it until end of rasterization process. One may
notice that

t · q = εdet[∇f q] (26)

Here ε defines the rotation direction; ε = 1 means counter-
clockwise, while ε = −1 means clockwise.

Now we can describe algorithm 1. The idea is that at every
step we check which direction, u or v, is closer to the actual
tangential direction. To do it, we compare components of ∇f
by absolute value. Let us say, |fv| > |fu|. It means that t is
closer to u-direction. So we change u by ±1 depending on the
sign of fv and the rotation direction that was defined before.
Then we check what is the actual error of (24) and apply a
simple control law to make it smaller:

∆v = −round

(
f(p)

fv(p)

)
(27)



Algorithm 1 Algebraic curve rasterization
1: p = (u, v)T . We use u and v to refer to different

components of p
2: ∇f = (fu, fv)

T . The same for ∇f , fu and fv
3: p← p0

4: if det [∇f(p0) (p1 − p0)] > 0 then . The rotation is
counterclockwise

5: ε← 1
6: else . The rotation is clockwise
7: ε← −1
8: end if
9: for n = 1..Nmax do

10: if |fu(p)| > |fv(p)| then . The curve tangent is
closer to v-direction

11: v ← v+ εsign(fu(p)) . First go along the tangent
12: u← u− round(f(p)/fu(p)) . Compensate the

total error
13: else . The curve tangent is closer to u-direction
14: u← u− εsign(fv(p))
15: v ← v − round(f(p)/fv(p))
16: end if
17: PROCESS(p) . Either draw a point at the pixel or add

it to the list of points
18: end for

The described algorithm is general and works for any f
given that it does not contain features too fine to be properly
depicted with the image’s sampling step.

C. Semi-Global Matching Algorithm Using the Model

Now we are ready to present the Semi-Global Matching
algorithm [3] for two fisheye cameras. The actual change in the
algorithm appears only in the first step — error accumulation.
The second part stays intact. The global idea of the algorithm
is to use an efficient dynamic programming algorithm to
regularize the distance map.

a) Error accumulation: The second part of the algo-
rithm requires a table of photometric error for all pixels and all
possible disparity values. It means that for a 480p video frame
(which is not incredibly high) and maximum allowed disparity
of 64 we need 480×720×64 ≈ 22M bytes of memory which is
a lot for a single data buffer. Moreover for the second step we’ll
need at least 4 times that much for the dynamic programming
algorithm. If we want to have better reconstruction quality, this
number will be even higher (in the original paper they suggest
to perform the dynamic programming in 16 directions). There
is a modification of this algorithm, called Semi-Global Block
Matching, which significantly reduces the required buffer size.
The idea is to divide the image into square blocks and compute
the photometric error for them, not for individual pixels. If the
block size is 3× 3 then it reduces the buffer size by a factor
of 9 (as well as computation time of the second step).

We need an assumption that the two cameras are oriented
more-less in the same direction and the second camera is on
the right of the first one. It allows us to say that the epipolar

curves are mostly horizontal and the points move left along
them from the first frame to the second.

The final error accumulation step works as follows:
1) For every image block, compute the equation of the

epipolar line which corresponds to the block center. This
step is required only once as long as the cameras’ relative
position remains the same.

2) For every epipolar curve we take a narrow band along it
(Fig. 4) and save it into a separate rectangular buffer of
size N × (Dmax + N − 1), where N is the block size,
Dmax is the maximum disparity size.

3) Moving the image block along this band, we compute
the average absolute photometric error and store it into
the corresponding error buffer line.

Fig. 4. An illustration of the error accumulation process. Curve c is the
epipolar curve of a certain point from the first image. p1 is the epipole; p0
corresponds to the case where the point’s depth is infinite. Starting in p0 we
go along c for a certain number of steps, then we copy the band of image
I2 around the curve to separate buffer J . Then, sliding with a patch from I1
along J we compute the cost for different values of disparity. Notice that one
pixel step along J is equivalent to one pixel step along c on I2.

Once we have done this, the error buffer is filled up and
we can go to the second step

b) Dynamic programming: Let us denote the error
buffer E : Z3 → R. It has two spacial coordinates u, v and
one disparity coordinate d. To regularize the disparity map
we compute the final cost of a pixel (u, v) having a disparity
value d as a sum of costs of cheapest paths through uvd space,
whose footprint in uv is a straight line and passing through
(u, v, d). A path cost is defined as a sum of all errors along
the path plus λS times the number of disparity changes by
1 (number of steps) plus λJ times the number of disparity
changes by more than 1 (number of jumps); λS and λJ are the
algorithm’s parameters, and generally the algorithm’s output is
quite stable with respect to them. The number of paths defines
how regular we want the result to be. The tests show that only
two directions is enough to get decent results. But considering
the possibility of a GPU implementation we can increase this
number to improve the result.

The main interest of this approach is that we can compute
the optimal cost of all the paths in a certain direction in linear
time with respect to the error buffer size. Assume that we
have chosen the number of regularization directions. Suppose
that we treat the horizontal direction first. For other directions
everything is the same, but for the sake of clarity we explain
the algorithm for the horizontal one. Now to know the optimal



path’s cost for a given point we need to know the cost of
optimal paths on either side. Hence we have to execute the
dynamic programming algorithm twice. Once for all the semi-
paths from the left side of the image till the point, and the
second time from the right side. For each of these tasks we
need a cost buffer. Let’s call it C : Z3 → R. Then we notice
that we will treat every line in uv independently. For a line
defined by v = v0 let us denote C(u, v0, d) by Cu,d. If we
suppose that for a certain u we have the optimal cost in Cu,d,
then the following recursive relation is true [3]:

Cu+1,d = Eu+1,d + min(Cu,d, Cu,d−1 + λS ,
Cu,d+1 + λS , Cu,min + λJ)

(28)

It means that it takes O(1) time to compute one value of C.
The complete procedure is described in alg. 2.

Algorithm 2 Dynamic programming algorithm to compute a
left-to-right path cost

1: for v ∈ 1..vmax do
2: Cu,d , C(u, v, d)
3: Eu,d , E(u, v, d)
4: for d ∈ 1..Dmax do
5: C(1, v, d)← E(1, v, d)
6: end for
7: for u ∈ 1..umax − 1 do
8: Cmin ← min

d
Cu,d

9: for d ∈ 1..Dmax do
10: Cu+1,d ← Eu+1,d + min(Cu,d, Cu,d−1 +

λS , Cu,d+1 + λS , Cu,min + λJ)
11: end for
12: end for
13: end for

IV. EXPERIMENTAL RESULTS

The algorithm was tested using a calibrated camera
attached to a robotic arm. This setup allows us
to know precisely the transformation between two
camera poses. The implementation is available at
https://github.com/BKhomutenko/visgeom. Since
we implemented the most basic version of the algorithm, we
had to use textured objects for the reconstruction. In Fig. 5
you can see an example of the algorithm’s result an image
and its disparity map.

The block size in our case is 3× 3; the maximum disparity
value is 64; the image size is 1024×768; the time to compute
disparity for a pair of images is about 0.3 s for the given
parameters (can be improved using parallelization).

To quantify the result, 3D reconstruction of a planar object
was performed and compared with ground truth (see Fig. 6). To
obtain the ground truth, the transformation between the robot’s
base and the plane was measured. Knowing the robot’s pose
it is possible to compute the transformation between the plane
and the camera. Then, using the calibrated camera model, the
ground truth for distance maps was generated for 6 different
camera poses. The planar object does not cover the image

Fig. 5. An example of running the implemented stereo correspondence
algorithm. One of the original images (left) and its disparity map (right) for
2 cm stereo base.

entirely, so multiple datasets were acquired to test the approach
in different parts of the images. To get the numeric results,
disparity maps generated by the algorithm were transformed
into distance maps; then the difference between the obtained
maps and the ground truth was computed and analyzed. The
pixels outside the planar object are ignored. All pixels, whose
distance value is off by more than 100 mm, are considered as
outliers and rejected.

Table I represents the error distribution of the distance
reconstruction as a function of the stereo base. You can see that
increasing the stereo base consistently leads to a decrease in the
mean and standard deviation of the error distribution. Table II
shows the results for different datasets. Average distances from
the camera to the plane are given to give a better idea about
the reconstruction precision The error distribution is relatively
narrow with respect to the actual distance values. Also the
inlier rate is high, which means that overall this algorithm is
efficient in plane reconstruction.

TABLE I
PLANE RECONSTRUCTION ERROR AS A FUNCTION OF THE STEREO BASE.

Stereo Base, mm Mean Error, mm σerror, mm Inliers, %
10 -7.50 23.4 97.8
15 -4.41 18.1 98.8
20 -4.07 15.4 98.7
25 -2.40 13.6 99.0
30 -1.79 12.4 99.1
35 -1.70 11.7 99.1
40 -0.98 11.2 99.0
45 0.09 10.1 98.7

TABLE II
PLANE RECONSTRUCTION ERROR FOR DIFFERENT DATASETS. THE STEREO

BASE IS 35MM.

Dataset Avg Distance, mm Mean Error, mm σerror, mm Inliers, %
1 552 1.00 15.0 99.3
2 381 -1.70 11.7 99.1
3 490 -0.83 15.1 99.7
4 423 -1.29 13.4 98.7
5 356 -2.42 14.1 99.5
6 433 1.61 22.0 98.4

V. CONCLUSION

The enhanced unified camera model offers nice analytic
properties. The fact that straight lines become conic sections



a b c d

Fig. 6. An illustration of the evaluation methodology. Each row corresponds to a different dataset (from the top: 3, 5, 6); a — the reference image; b — the
ground truth of the newspaper plane distance map; c — the reconstruction result using disparity maps, which were computed using the camera’s intrinsics and
the robot poses as extrinsic parameters of stereo; d — the absolute difference between the ground truth and the reconstruction using the stereo.

after being projected offers us new ways to treat problems
of visual geometry in case of fisheye camera. The proposed
approach to stereo correspondence problem, which does not
require rectification and undistortion, may be applied in mobile
robotics as an omnidirectional depth sensor. In fact, any
other stereo correspondence algorithm based on search along
epipolar lines can be applied to fisheye cameras using the
proposed approach or its slight modification.

Other possible applications of the geometric results above
are visual servoing using straight lines, straight line reconstruc-
tion, and straight-line-based SLAM.

There are multiple ways to improve the algorithm. We can
improve the reconstruction quality by using better metrics
for patch comparison, which may take into account local
affine transformations along epipolar lines. Right now the
regularization coefficients are fixed and equal across the image.
But they can be computed based on the image content (for
example, lower jump cost across edges). By adding more
constraint directions the quality of disparity maps can be
improved as well (currently only two directions are used).

Another important thing to do is to create a dataset with
ground truth and camera intrinsic parameters for testing and
comparing direct stereo correspondence algorithms for fisheye
cameras.

REFERENCES

[1] R. T. Collins, “A space-sweep approach to true multi-image matching,”
in Proceedings of the 1996 Conference on Computer Vision and
Pattern Recognition (CVPR ’96), ser. CVPR ’96. Washington, DC,
USA: IEEE Computer Society, 1996, pp. 358–. [Online]. Available:
http://dl.acm.org/citation.cfm?id=794190.794659

[2] C. Häne, L. Heng, G. H. Lee, A. Sizov, and M. Pollefeys, “Real-
time direct dense matching on fisheye images using plane-sweeping
stereo,” in Proceedings of the 2014 2Nd International Conference
on 3D Vision - Volume 01, ser. 3DV ’14. Washington, DC,
USA: IEEE Computer Society, 2014, pp. 57–64. [Online]. Available:
http://dx.doi.org/10.1109/3DV.2014.77

[3] H. Hirschmuller, “Accurate and efficient stereo processing by semi-global
matching and mutual information,” in 2005 IEEE Computer Society
Conference on Computer Vision and Pattern Recognition (CVPR’05),
vol. 2, June 2005, pp. 807–814 vol. 2.

[4] B. Khomutenko, G. Garcia, and P. Martinet, “An Enhanced Unified
Camera Model,” IEEE Robotics and Automation Letters, vol. 1, no. 1,
pp. 137–144, Jan 2016.

[5] C. Geyer and K. Daniilidis, “A unifying theory for central panoramic
systems and practical applications,” in Proceedings of the 6th European
Conference on Computer Vision-Part II, ser. ECCV ’00. London,
UK, UK: Springer-Verlag, 2000, pp. 445–461. [Online]. Available:
http://dl.acm.org/citation.cfm?id=645314.649434

[6] D. Caruso, J. Engel, and D. Cremers, “Large-scale direct slam for
omnidirectional cameras,” in Intelligent Robots and Systems (IROS), 2015
IEEE/RSJ International Conference on, Sept 2015, pp. 141–148.

[7] J. D. Hobby, “Rasterization of nonparametric curves,” ACM Trans.
Graph., vol. 9, no. 3, pp. 262–277, Jul. 1990. [Online]. Available:
http://doi.acm.org/10.1145/78964.78966


