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An Enhanced Unified Camera Model

Bogdan Khomutenko1, Gaëtan Garcia2, and Philippe Martinet1

Abstract— This paper describes a novel projection model
based on the so-called unified projection model. The new model
applies to catadioptric systems and wide-angle fish-eye cameras,
it does not require additional mapping to model distortions,
and it takes just two projection parameters more than a simple
pinhole model to represent radial distortion (one parameter
more than the unified model). Here we provide a study of
different mathematical aspects of the model, its application
limits, and explicit closed-form inversion. The latter allows to
apply all the notions of epipolar geometry with no difficulties.
Also we introduce a concept of projection surface, which is
a useful notion to study and compare different projection
models with radial distortion. Using developed software, several
different lenses were calibrated using the proposed model, and
in all cases sub-pixel precision was achieved.

I. INTRODUCTION

Most computer vision problems in robotic applications in-
volve camera modeling and calibration. Also fisheye cameras
are of great interest in the field because they allow to equip
the robot with 360◦ stereo vision using few cameras.

But wide-angle cameras do not obey a simple pinhole
projection model. Multiple models have been proposed to
approximate the projection process in such cameras. The
authors of [1] propose to compute the distance from the
projection center to the projected point using a polynomial
function of the angle between the optical axis and the
ray direction (so-called capture ray-based model). The so-
called unified model is of particular interest to us because
our own model is based on it. [2] introduces the unified
model and shows that it describes all central catadioptric
systems. In [3] the model was augmented with an additional
distortion mapping and a calibration technique was proposed.
Equivalence between the unified model and the captured ray-
based model as well as the pinhole model was shown in
[4]. The model was successfully applied to model fisheye
cameras as well.

In [5] the projection is modeled using an intermediate
surface. The surface is defined using a polynomial function
of image points. The notion is somewhat similar to one that
we propose in this paper, but it is the other way around: the
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projection surface is defined using an equation in 3D space
and allows to compute projections of spatial points.

Important properties of a distortion model are simplicity
and flexibility. That is, the model should have few parameters
but still allow us to model different types of cameras. Also
it is important for a model to have a simple mathematical
form, which allows to study analytically the properties of the
model.

Tangential distortion is not considered in this work.
Though it can easily be added, we argue that without it the
model is precise enough and a closed-form inversion of the
projection function can be calculated.

In section II, we describe the unified model, from which
the proposed one is derived. In section III, the proposed
model is presented and its properties are studied by means of
projection surfaces; also the inverse of the model in closed
form is calculated. In section IV, the calibration results are
presented and the efficiency of the model in case of different
cameras is shown.

II. RELATED WORK

The simplest camera model is represented by this projec-
tion relation:

p =
1

z
KX (1)

Here p = (u v)T is an image point, X = (x y z)T is a
spatial point to be projected. K is a projection matrix:

K =

fu 0 u0

0 fv v0

 (2)

The distortion model is usually added in the following
manner. First we project all the points onto the projection
plane:

Xn = (xn yn 1)T =
X

z
(3)

Then we apply radial distortions:

Xd =D(Xn) =


D(r)xn

D(r)yn

1

 (4)

Here r =
√
x2n + y2n; D : P2 → P2 is a radial distortion

mapping (Pn is a n-dimensional projective space on R). It is
defined by D : R+0 → R+, that represents the deflection of



a ray from its pinhole trajectory; D(0) = 1. The last thing
is to apply the projection matrix K.

Theoretically we can model any projection mapping forX
with z > 0 using these relations. But there are two problems.
The first is how to choose the distortion function D. In the
OpenCV the following form is used:

D(r) =
1 + k1r

2 + k2r
4 + k3r

6

1 + k4r2 + k5r4 + k6r6
(5)

Obviously these models approximate the distortions just in
a limited range of r.

This fact is also related to the second problem, which
arises when z → 0. In this case the model is still defined
but farther we go from the center of projection, the less
precise the result, due to the distortion model limitations and
numerical problems.

A. Unified Camera Model

This model aims to model correctly projection of points
with zero and even negative z. It is needed to model fisheye
lenses with more than 180◦ angle of view. This is done
by changing the normalization equation from (3) to the
following [2]:

m =
(
xm ym 1

)T
=

(
x

z + ξρ

y

z + ξρ
1

)T
(6)

where ρ =
√
x2 + y2 + z2; ξ is a projection parameter.

When ξ = 0 we are back to the pinhole model. But the
larger we take ξ, the wider the allowed angle between the
optical axis and the point to be projected. So, for narrow-
angle low-distortion cameras we expect this parameter to be
about 0, while for fisheye cameras it should be large (in
the order of 1). We shall notice that (6) generally does not
map straight lines to straight lines. So, it introduces some
distortion, which is in fact similar to that of a real fisheye
camera.

Unfortunately these distortions are not flexible enough
to model a real camera. That is why another mapping is
introduced in [3]:

xd =D(m) + δ

D(r) = 1 + k1r
2 + k2r

4 + k3r
6

δ(m) =


2k4xmym + k5(r

2 + 2x2m)

2k5xmym + k4(r
2 + 2y2m)

0


(7)

Where r =
√
x2m + y2m; δ models tangential distortions due

to a misalignment of the retina normal and the lens optical
axis in the camera;D is defined as in (4), D represents radial
distortions.

Finally we apply the projection matrix K:

p = KXd (8)

Overall we have 10 projection parameters: ξ, k1..5, fu, fv ,
u0, v0.

B. Distortion Model Issues

Even though the model provides high precision, it has
some drawbacks. We can rewrite (6) asm = φ(r)Xn, where
Xn = X/z, and r =

√
x2n + y2n. Here φ represents the

nonlinear part of the projection:

φ(r) =
1

1 + ξ
√
1 + r2

(9)

We see that the function φ(r) is even, so, its Taylor expansion
contains just even degrees of r. Hence:

φ(r) = φ(0) +
φ′′(0)

2
r2 + o(r2) (10)

So, the argument here is that in the neighborhood of
the projection center the distortion caused by the nonlinear
projection model is well-approximated by a second order
polynomial with φ∗ = φ(0) + φ′′(0)

2 r2. If after we apply
another distortion model that contains a second-order term,
we still get a distortion that is well-approximated with a
second-order polynomial. Hence, the second order term in
the distortion model (7) is redundant and it does not improve
the model precision.

III. PROPOSED MODEL

Here are the proposed projection relations:

m =



x

αρ+ (1− α)z
y

αρ+ (1− α)z

1


ρ =

√
β(x2 + y2) + z2

p = Km
(11)

The two parameters are α ∈ [0, 1] and β > 0. They allow
us to better approximate the properties of lenses with strong
distortion. This model assumes that the denominator αρ +
(1− α)z > 0. K is the same matrix as in (2).

A. Projection Surfaces

To analyze the model, let us introduce the notion of pro-
jection surface. For the sake of simplicity let us consider only
projection relations with radial distortion. That is, every pro-
jected point can be written as m = (x/η(X) y/η(X) 1)T

where x and y are the components of the spatial pointX , and
η : R3 → R+ is a function of X , moreover ∀X1,X2 ∈ R3: x21 + y21 = x22 + y22

z1 = z2
=⇒ η(X1) = η(X2) (12)

This means that η can be represented by a function:

η̂ : R2 → R+ (13)



so that:

η(X) = η̂(
√
x2 + y2, z) = η̂(r, z) (14)

η̂(r, z) = η̂(−r, z), ∀r ∈ R (15)

(15) allows us to operate on R2, rather than R+0×R. In this
case y = 0 =⇒ η(X) = η̂(x, z), or η̂ represents η in xz

plane.
Also we require:

∀λ ∈ R+ η(λX) = λη(X) (16)

that is, η is a homogeneous function of degree 1. The same
holds for η̂ as long as both r and z are homogeneous
functions of X of degree 1.

Let us define the projection surface P by the following
equation:

η(X) = 1 (17)

Projection surface is a surface of revolution. It is generated
by rotating the curve η̂(x, z) = 1 about z-axis. Let us call
this curve a projection curve. The geometric meaning of (17)
is that all the points of the projection surface are projected
orthogonally to the image plane. So, we can think of the
projection process as scaling the point X by η(X) and then
projecting it orthogonally into m ∈M — the normal plane
(see Fig. 1):

Xp =
X

η(X)

m = (xp yp 1)

(18)

Using (16) we can deduce:

η(Xp) = η

(
X

η(X)

)
=
η(X)

η(X)
= 1 (19)

Hence, all the points Xp belong to the projection surface.
In fact Xp is the intersection between the projection surface
P and the OX ray (Fig. 1).

Fig. 1: Illustration of the projection surface notion. z is the optical axis; O is
the center of projection; Xp is obtained by projecting X to P along OX
ray. Then this point is transformed into m by projecting it orthogonally
onto an intermediate projection plane M which is defined as z = 1

One convenience of the notion is that it is relatively easy
to see for which spatial points the projection is defined. For

example, (3) corresponds to η(X) = z. So, the projection
surface in this case is defined by z = 1. It is a plane. And
all the points with z ≤ 0 do not define rays that intersect the
surface.

Let us apply the notion to the proposed model. In this
case:

η(X) = α
√
β(x2 + y2) + z2 + (1− α)z (20)

So, η(X) = 1 leads to:

α
√
β(x2 + y2) + z2 + (1− α)z = 1 (21)

Let us replace 1− α by γ and x2 + y2 by r2:

α
√
βr2 + z2 = 1− γz (22)

By squaring both sides we get:

α2βr2 + α2z2 = 1− 2γz + γ2z2 (23)

We should remember that as we have squared both sides,
we may get some solutions that do not satisfy (22). We may
notice that γ2 − α2 = γ − α, hence:

α2βr2 = 1− 2γz + (γ − α)z2 (24)

α2βr2 + (α− γ)z2 + 2γz = 1 (25)

This equation defines a second-order projection curve. α =

0.5 leads to α = γ and

z = 1− 0.25βr2 (26)

That is, the projection curve is a parabola. If α < 0.5,
(25) defines a hyperbola and if α > 0.5, it is an ellipse
(because the coefficient in front of z2 is negative and positive
respectively). We can see that r = 0, z = 1 always satisfies
(22). So, the projection surface is a surface of revolution,
which is defined by a conic projection curve that passes
through (0 0 1)T .

That is the difference between the proposed model and
(6). The latter allows to get just one parabola as a projection
curve when ξ = 1, while the former allows to scale this
parabola along the x-axis.In the case, when ξ 6= 1 the same
is true, but it is just less obvious. β allows us to adjust the
projection surface, while α defines its shape.

B. Completeness of the Model

In fact we can show that (25) describes all the possible
conics that pass through (0 1)T and are symmetric with
respect to z-axis (here we consider rz coordinate plane).
To make a sketch of a proof let us consider a general conic
equation:

Ar2 +Brz + Cz2 +Dr + Ez = 1 (27)



To make it symmetric with respect to z-axis we have to have
B = 0 and D = 0. Then, by substituting z = 1, r = 0 we
get:

C + E = 1 (28)

If we check (25), we see that all these conditions are satisfied.
Indeed:

B = 0

D = 0

C + E = α− γ + 2γ = α+ γ = 1

(29)

But what if there is a projection curve which does not pass
through (0 1)T ? Actually we can scale it so that it does
(using parameters fu and fv — see Fig. 2). So, we can say
that the proposed model is complete in the sense that it can
fit any projection whose projection curve is a conic section.

r

X

a
bpb

m

O

z
cpc

Q

Fig. 2: Using projection curve Q, point X is projected to m, which z-
coordinate is a. If a = 1 and f = c then the final projection is pc = fm.
But if a < 1, let us say that b = 1, then pb = m

a
and the final projection

pc = fpb = f
a
m = f ′m. So, we see that the projection defined by Q

and f ′ is equivalent to one defined by f and Q scaled such that it pass
through 1. The same argument is true when a > 1.

C. Inverse Model

Let us denote by f : R3\0 → R2 the mapping defined
in (11). Here by inverse we mean an injective mapping g :

R2 → R3 such that:

f(g(m)) =m (30)

or, in other words, f ◦ g = I . We know that the points of
the projection surface are projected orthogonally. So, g may
be defined as:

g :

x
y

 7→


x

y

z(x, y)

 (31)

Where z(x, y) is an explicit solution of (22) with r =√
x2 + y2. To do that we can solve (25) and then choose

the proper solution. It is a quadratic equation:

Az2 +Bz + C = 0

A = α− γ

B = 2γ

C = α2βr2 − 1

(32)

This is solved as follows:

D = B2 − 4AC =

= 4
(
γ2 − (α− γ)(α2βr2 − 1)

)
z =
−B ±

√
D

2A
=

=
−γ ±

√
D/4

α− γ

(33)

We can choose the solution by using the fact that z(0, 0) = 1.
Notice that r = 0 =⇒ D/4 = α2. Hence, the solution must
be defined by:

z =

√
γ2 − (α− γ)(α2βr2 − 1)− γ

α− γ
(34)

We see that (34) is not defined when α = 0.5. It is so because
(25) is no longer a quadratic equation.

We can avoid the singularity by multiplying
both numerator and denominator of (34) by√
γ2 − (α− γ)(α2βr2 − 1) + γ:

z =
γ2 − (α− γ)(α2βr2 − 1)− γ2

(α− γ)
(√

γ2 − (α− γ)(α2βr2 − 1) + γ
) =

=
1− α2βr2√

γ2 − (α− γ)(α2βr2 − 1) + γ
(35)

Also let us consider the expression under the square root in
the denominator:

γ2 − (α− γ)(α2βr2 − 1) =

= (α− 1)2 + 2α− 1− (α− γ)α2βr2 =

= α2 − 2α+ 1 + 2α− 1− (α− γ)α2βr2 =

= α2(1− (α− γ)βr2)

(36)

hence, we can rewrite the solution as:

z =
1− α2βr2

α
√

1− (α− γ)βr2 + γ
(37)

Due to the square root, z is defined as a real value when:

1− (α− γ)βr2 ≥ 0 (38)

If α ≤ 0.5 then α − γ ≤ 0 and (38) is always true. On the
other hand if α ≥ 0.5 then z is defined for:

r2 ≤ 1

(α− γ)β
(39)

It is so because the projection curve for α > 0.5 is an ellipse,
so the projection relation is not surjective.



D. Homography matrix

In [6] it was shown that the unified model allows us to
use homography matrix to perform 3D reconstruction. The
proposed model also allows us to do it. Suppose that we have
set of points X1..N belonging to a plane and we observe
it with two calibrated cameras a and b (with projection
functions defined by ηa and ηb respectively). Let us define
the plane by the following equation:

na ·Xa = da (40)

Here superscript a stands for the first camera’s frame; we
suppose da 6= 0. Then we can apply the projection model:

Xa
p =

Xa

ηa(X
a)

(41)

On the other hand we can reconstruct Xp from a point m =

(xm ym 1) from the normalized pale M (see Fig. 1) using
(37):

Xp =


xm

ym

z(xm, ym)

 (42)

By computing the scalar product with na for both sides of
(41) and applying (40) we get:

1

ηa(X
a)

=
na ·Xa

p

da
(43)

The transformation between frames a and b is defined as:

Xb = RbaX
a + tba (44)

By replacing X by Xp and using (43) we obtain:

ηb(X
b)

ηa(X
a)
Xb
p = RbaX

a
p+
na ·Xa

p

da
tba =

(
Rba +

tba(n
a)T

da

)
Xa
p

(45)
We can rewrite the last equation as:

Xb
p ∝ Hb

aX
a
p (46)

where Hb
a = Rba +

tba(n
a)T

da
is a 3 × 3 homography matrix.

Reconstructing Xp1..N for both cameras a and b we can get
the following system of equations:

λ1X
b
p1 = Hb

aX
a
p1

...

λNX
b
pN = Hb

aX
a
pN

(47)

Here λ1..N are some unknown scale factors. As matrix Hb
a

defined up to a scale factor, we have 8 +N unknowns and
3N equations. So, we can estimate Hb

a using just 4 points.

E. Jacobian Matrix

Our projection relation is:

m =

(
x

η

y

η

)T
η = γz + αρ

ρ =
√
β(x2 + y2) + z2

(48)

First let us compute the partial derivatives of ρ:

∂ρ

∂x
=
βx

ρ

∂ρ

∂y
=
βy

ρ

∂ρ

∂z
=
z

ρ
(49)

Then by applying the chain rule and noticing that
∂η

∂ρ
= α

and
∂η

∂z
= γ we can compute the Jacobian matrix:

∂m

∂X
=


1

η
−
αβx2

η2ρ
−
αβxy

η2ρ
−
x

η2

(
γ +

αz

ρ

)

−
αβxy

η2ρ

1

η
−
αβy2

η2ρ
−
y

η2

(
γ +

αz

ρ

)


∂p

∂X
=

fu 0

0 fv

 ∂m

∂X

(50)
This Jacobian matrix allows us to speedup a bundle adjust-
ment process in a SLAM system because it is more efficient
than numeric or automatic differentiation.

IV. CALIBRATION USING THE MODEL

This section aims to show that the model can adequately
approximate the projection relations of a wide range of dif-
ferent lenses. We don’t try to show that the model performs
better than the existing ones. Moreover, The unified model is
supposed to fit the data better because it has more complex
projection relation.

To test the model, a calibration of several different lenses
was performed. In all cases sub-pixel precision was achieved.
All the example images here are taken with a Fujinon
FE185C057HA-1 lens (in Table I it goes second). Below we
describe the calibration methodology.

The calibration was done using a check-board calibration
pattern. In order to perform the calibration a software was
developed . It was written in C++ in a manner such that it is
easy to reuse it to perform calibration of a different model.
To extract the image coordinates of the pattern a standard
function of the OpenCV library was used.

Actually it is a practical way to extract the pattern, alterna-
tive to the manual corner selection. But it has its drawbacks,
first of all poor precision. Relatively high reprojection errors
for some corners are explained by this fact. But the overall
quality of extraction together with a large dataset (about 100
images) allow us to obtain a precise parameter estimation.



A. Non-linear Optimization Problem

Given a reference model of the calibration board {Xi ∈
R3} and a set of projections of the model {pij ∈ R2}, (where
i stands for the corner index in the board, j is the index of the
positions from which the image was taken), and a projection
model:

f : R3 × RN → R2 (51)

where N is the number of projection model parameters, find
a set of transformation {T cj ∈ SE(3)} (superscript c stands
for ”camera”) and a vector of numeric parameters α ∈ RN

such that it minimizes the error function:

E =
∑
i

∑
j

‖pij − fk(T cjXi,α)‖2 (52)

Here α is the vector of intrinsic parameters, and the trans-
formations represent the extrinsic ones.

The ceres-solver library [7] was used to carry out the
optimization part. The library provides so-called automatic
derivation which allows to compute the Jacobian matrix of
the error vector exactly with no explicit symbolic definition
of it. (for example, see [8]). This allows us to use the same
calibration software to calibrate another camera model by
simply changing the projection relations.

B. Initial Approximation

To achieve better convergence the initial extrinsic param-
eters of the calibration board were estimated using fixed
projection parameters.

Fig. 3: Initial approximation of the transformation between the board and
the camera — the reprojected grid is represented by gray circles.

As long as initial projection parameter are arbitrary, the
position estimation is also poor and cannot be considered as
a real estimation. But it brings the initial parameter vector
of the global optimization problem to a ”valley” from where
it will converge to the global optimum.

The extrinsic parameters can be estimated independently
for each image, hence, the time consumption of this part is
negligible in comparison to the global optimization.

C. Calibration Results

The overall optimization (that is, bundle adjustment) is
done in a fraction of a second, while corner extraction
takes about one minute in total. The standard deviations
of the reprojection errors along x and y axes as well as
the number of images used in the calibration are given in
Table I. The first three lenses are fisheye, and have high
α value. The second and the third are of the same model
and their projection parameters are quite close. The last
two lenses are low-distortion, narrow-angle, and their α are
significantly smaller than for fisheye. Fig. 4 shows projection
curves corresponding to the calibrated lenses.

r

z

Fig. 4: Projection curves for the calibrated lenses. Blue — first, green —
second and third, red — fourth, cyan — fifth.

Fig. 5 is the reprojection of the grid after the calibration.
Fig. 6–7 show the undistortion using the model. Fig. 7 shows
the undistortion of a region on the border of the image: lines
that are straight on the calibration board appear straight. To
perform this undistortion we have to rotate the virtual camera
with respect to the real camera. Otherwise the region would
not be in the field of view of the virtual pinhole camera.

TABLE I: Calibration results. Second and third lines represent different
lenses of the same model. The number of images is conditioned by the fact
that the OpenCV extractor fails to extract the grid from some images and
they have to be discarded. The resolution in all cases is 1296 × 966. σx
and σy represent the reprojection error distribution after the calibration.

Lense model Images σx, px σy , px α β

CF5M1414 88 0.14 0.14 0.571 1.18

FE185C057HA-1 138 0.17 0.16 0.629 1.02

FE185C057HA-1 86 0.31 0.32 0.626 1.03

DF6HA-1B 40 0.20 0.18 0.082 5.50

COMP-M0814-MP 66 0.31 0.33 0.007 46.2

The comparison between the proposed model (11) and
unified camera model (6) (with and without the distortion



Fig. 5: Grid projection after calibration.

Fig. 6: Undistortion using the calibrated model — all the straight lines after undistortion become straight. Here the board is in the middle of the image.

Fig. 7: Undistortion using the calibrated model. Before reprojection the 3D points were rotated. The model works well even on the very border of projection.



layer (7)) is given in Table II. The first thing that we see
is that UCM-D does not improve the error. The change in
σx from EUCM to UCM-D is negligible. On the other hand
the computation time increases by an order of magnitude.
If we compare UCM and EUCM, then we see that there
is no significant change in computation time. But there
is a significant improvement of precision for CF5M1414,
while the performance of either model is almost the same
for FE185C057HA-1. It becomes clear by looking at Ta-
ble I where for FE185C057HA-1 β is almost 1, while for
CF5M1414 it is not. And β is the parameter that makes
the difference between two models. We can see a significant
improvement for DF6HA-1B (σx changes from 0.27 to 0.20).

TABLE II: Calibration results. Here N is the number of images in a dataset;
σx is the standard deviation of the final error; T is the computation time. The
models are: UCM — unified camera model (6), EUCM — enhanced unified
camera model (11), UCM-D — unified camera model with distortions (7).
The resolution in all cases is 1296× 966.

Lense model N

UCM EUCM UCM-D

5 parameters 6 parameters 10 parameters

σx, px T, s σx, px T, s σx, px T, s

CF5M1414 88 0.52 0.070 0.14 0.086 0.13 0.591

FE185C057HA-1 139 0.18 0.092 0.17 0.220 0.17 1.594

FE185C057HA-1 86 0.32 0.062 0.31 0.079 0.31 0.577

DF6HA-1B 40 0.27 0.021 0.20 0.025 0.19 0.176

COMP-M0814-MP 66 0.32 0.029 0.31 0.100 0.31 1.109

V. CONCLUSIONS

The notion of projection curves and projection surfaces
seems to be useful in projection model analysis. The cali-
bration tests show us that the model has a wide application
field. It shows the same performance as the unified model
with distortions for all the lenses that were used for the
experiments. Still, the computation complexity remains at
the level of pure unified model.

A general calibration and visual geometry framework
(written in C++) has been developed and is available on
GitHub: https://github.com/BKhomutenko/visgeom.
The framework includes the camera model and general
calibration tools, so it may be useful in any project that
involves camera calibration (regardless of the model to be
used).

The model is also successfully used in a stereo visual
SLAM project using fisheye cameras. Due to explicit

inverse model it allows to rapidly compute stereo re-
construction from a single stereo image, while any model
without inversion would require to solve an optimization
problem in order to do it.

This model projects straight lines into conics. So, it is
possible to formulate epipolar constraints as it is presented
in [9]. It may allow us to perform 3D reconstruction and
execute RANSAC algorithms efficiently without applying
inverse projection mapping.

Also, studying straight line projections may lead us to
some visual servoing [10], [11] and pose estimation [12]
applications using the model. Finally we strongly believe
that the model may improve the modeling of catadioptric
systems, and an extension of this work in this way can be
done.
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