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Exciting Trajectories for Extrinsic Calibration of
Mobile Robots with Cameras
Bogdan Khomutenko1, Gaëtan Garcia1, and Philippe Martinet1

Abstract—The paper presents a method to precompute the
optimal (so-called exciting) trajectories for the extrinsic calibra-
tion of a mobile robot equipped with the wheel odometry and
one or more cameras. Considering the fact that the calibration
is formulated as a non-linear least-square problem, the method
is based on the analysis of the cost function properties in the
neighborhood of the solution. By maximizing the determinant of
the Hessian matrix, one makes the problem better defined and
improves its robustness with respect to the measurement noise.
Another convenience of the method is the possibility to reinforce
additional constraints, like the visibility of a calibration object
and the trajectory feasibility.

The source code of the application is publicly available as a
part of visgeom project.

Index Terms—Camera calibration, Identification, Mobile
robots

I. INTRODUCTION

Mobile robots equipped with cameras for localization and
navigation purposes are becoming more and more popular.
Since a robot is an object with a stable structure, its calibration
seems to be a logical approach to reduce the number of
unknowns during real-time computations. Intrinsic calibration
of cameras may be considered as a solved problem. The
Unified Camera Model [1] is used in most recent application
involving wide-angle cameras. We use the enhanced version
introduced in [2].

The problem of extrinsic calibration has been addressed
in multiple papers; first for the manipulator equipped with
eye-in-hand cameras (for example, [3]), and more recently
for the mobile robots [4], [5], [6]. In [5] an impact of
the trajectories on the calibration quality is mentioned, and
a method to compute optimal trajectories for solving the
linear part of the calibration, the wheel odometry intrinsic
calibration, is proposed. Concerning the nonlinear part (which
includes the camera extrinsic parameters) they give some
intuitive guidelines. In particular, a straight trajectory does not
give any information on the relative position of the camera
with respect to the base, whereas a pure rotation makes the
orientation of the sensor not fully observable.

We suggest a method to improve the calibration quality
and its robustness with respect to the noise by computing the
optimal trajectories. They provide the best possible definition
of the calibration problem, which is formulated, in most cases,
as a nonlinear optimization problem. The idea of generating
exciting trajectories comes from the robotic arm community.
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It has been successfully applied to perform the dynamic
identification [7], [8]. In [9] trajectory optimization for the
extrinsic calibration of an eye-in-hand camera-manipulator
system has been done. We present a framework which allows
us to evaluate the quality of a given trajectory or of a set
of trajectories for the extrinsic calibration. In this work the
odometry is supposed to be calibrated and its output to be the
integrated trajectory with the uncertainty.

The paper is structures as follows. In section II we present
the calibration problem formulation. Note that it is general and
does not rely on any trajectory properties. That is, for a given
dataset it will do the best to estimate the unknowns. In section
III we present the method of the trajectory evaluation and
propose a cost function to optimize. Section IV gives few more
technical detail about additional practical constraints on the
trajectory as well as on the particular implementation. Section
V demonstrates the numerical tests and results.

A. Notation

Across the paper, the following notation is used:
• p — 2D point
• X — 3D point
• ξ — 6 DoF transformation [tx, ty, tz, rx, ry, rz], rep-

resented by translation and angle-axis rotation (t and
r = uθ)

• ξ(X) — transforming a 3D point X from the frame
defined by the transformation to its root frame.

• ξa ◦ ξb — composition of two transformations
• ζi — wheel odometry increment
• δ — infinitesimal motion
• C — covariance matrix
• ‖·‖2C : x 7→ 1

2x
TC−1x — weighted 2-norm

• [·]× — cross-product skew-symmetric matrix

II. CALIBRATION PROBLEM FORMULATION

Camera intrinsics are supposed to be known. It is possible
to integrate camera intrinsic calibration into this process, but
we don’t do it here for the sake of simplicity. The problem is
formulated as a minimization of the following energy function:

E(ξc, ξb, {ξi}) =

N∑
i=1

M∑
j=1

∥∥pij − f(c,iXj)
∥∥2

Cp

+

N−1∑
i=1

∥∥ξ−1
i+1 ◦ ξi ◦ ζi

∥∥2

Cζ,i

(1)

Hereafter N is the number of different robot’s poses, M is the
number of point features on the calibration board, pij is jth
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point feature, detected on ith image. You can see the illustration
in Fig. 1. The unknowns are ξc, ξb and {ξi}. The first term
is responsible for the visual localization. f : R3 → R2 is
a camera projection model. Before projecting, the point is
transformed into the camera frame:

c,iX = ξ−1
c ◦ ξ−1

i ◦ ξb(bX) (2)

Fig. 1: A scheme of the calibration process. The unknowns are {ξi}, ξc, ξb.
All of them take part in the computation of the projection of X onto the
image plane. Then the projection error is minimized. Another constraint is
the loop (ξi ◦ ζi)−1 ◦ ξi+1 based on the odometry measurement ζi.

The second term penalizes the difference between each
odometry increment ζi and the difference between the consec-
utive poses ξ−1

i ◦ ξi+1. Since the wheel odometry is noisy, we
don’t take the trajectory given by it directly, but compute the
trajectory which respects as closely as possible each increment
of the odometry. To get the values of the extrinsic parameters
we solve the following problem:

argmin
ξc,ξb,{ξi}

E(ξc, ξb, {ξi}) (3)

The only value that we actually need is ξc, but since ξb and
{ξi} are unknown we have to include it into the optimization
problem.

It might be the case that we use multiple datasets to perform
the calibration; in this case we will have one ξb and one {ξi}
for each of them, but it does not change the general concept.

III. OPTIMAL TRAJECTORY FOR THE EXTRINSIC
CALIBRATION

To estimate the quality of the optimization problem defined
in (3), we reformulate the problem. Instead of considering
the coupled solution of the visual localization and odometry
integration, which can be viewed as a SLAM problem, we say
that the integrated odometry {ξo,i} and the visual localization
{ξv,i} are given, as well as their covariance matrices ({Co,i}
and {Cv,i} respectively). It reduces the number of variables to
ξc, but the uncertainty introduced by the calculus of the other

variables is taken into account. The reformulated problem
looks as follows:

ξ∗c = argmin
ξc

E∗

E∗ =

N∑
i=1

∥∥ξ−1
c ◦ ξ−1

o,i ◦ ξc ◦ ξv,i
∥∥2

Ci

+
∥∥∥ξ̂−1

c ◦ ξc

∥∥∥2

Cξ̂c

(4)

where ξ̂c is the prior estimation of the extrinsics;
Ci = Co,i + Cv,i is the covariance defining the measurement
noise for the position; ξo,i is measured with the wheel odom-
etry; and ξv,i is the localization of the calibrated camera using
a calibration board. The first term means that, as shown on
Fig. 2, we want:

ξo,i ◦ ξc = ξc ◦ ξv,i (5)

We want to analyze the properties of the energy function
E∗ from (4) in the neighborhood of the solution. To improve
the problem stability properties we can minimize the following
criterion:

F = −
6∑
i=1

log σi

(
∂2

∂ξ2
c
E

)
(6)

where σi(·) is the ith singular value of a matrix. Basically, it
is equivalent to maximization of the Hessian matrix determi-
nant det(H) =

∏6
i=1 σi(H). In [9] they suggest the matrix

condition number as a criterion instead of the determinant,
in [7] one over the minimum singular values is proposed.
But in our case one degree of freedom is not observable,
hence the corresponding singular value is defined only via
the prior transformation estimation and does not depend on
the trajectory. In fact, the condition number will be just
proportional to the maximum singular value. Yet, there might
be a better criterion, than (6), like a different function of the
singular values; it is still an open question.

The Hessian matrix itself ∂2

∂ξ2c
E can be used to analyze

the observability of different degrees of freedom. Its singular
decomposition and singular vectors corresponding to small or
zero singular values tell us which degrees of freedom of the
extrinsic transformation cannot be observed.

In our case (3 DoF mobile robot) the only rotation is about
z-axis, hence z-component of the translation of ξc is not
observable (as it is mentioned in [6]), and its value is defined
by the prior transformation estimation. But x, y, and uθ are
observable, and the larger the singular values, the better the
final numeric estimation.

Fig. 2: δc is an infinitesimal increment of ξc, notice that δc appears twice
since ξc is present twice in the transformation chain; δv is the increment,
transformed into the terminal frame; δ = δv−δc is the residual which appears
when we modify the solution ξc by δc.
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If covariances are defined for the infinitesimal motions of
the terminal frame, then we need to transform the infinitesimal
increments δc of ξc into the terminal frame (Fig. 2):

δv = v,iT v,1δc (7)

v,iT v,1 =

(
R−1

v,i −R−1
v,i [tv,i]×

0 R−1
v,i

)
(8)

where iT j is a twist transformation matrix, Rv,i and tv,i is
another representation of ξv,i. Another way of writing the
residual in energy expression (4) is:

δ = δv − δc ≈ ξ−1
c ◦ ξ−1

o,i ◦ ξc ◦ ξv,i (9)

A. Covariance for the Visual Localization
Here we assume that the visual localization is done using a

calibration board. Any other visual localization can be used to
compute the trajectory of the camera, but the similar precision
analysis must be done in this case. The covariance of the visual
localization, assuming the camera intrinsic parameters exactly
known, comes from the uncertainty in the corner detections
of the calibration board. The localization is computed as non-
linear least squares. The cost function is defined as:

Ev =

M∑
i=1

‖(pi − f(Xi, ξ))‖2Cp (10)

Here Cp is a 2 × 2 corner detection covariance matrix. We
assume that the coordinates of a detected feature point are
decorrelated and have equal uncertainties:

Cp =

(
σ2
p 0

0 σ2
p

)
= σ2

pI (11)

For practical purposes we can assume that σp = 1, unless we
have a better prior estimation of corner detector precision.

The whole least-squares problem for all points together is
defined as follows:

JTC−1
∆p∆p = 0 (12)

where J is a concatenation of Jacobian matrices for individual
points:

J =


∂f(ξ(X1))

∂ξ
...

∂f(ξ(XM ))

∂ξ

 =


J1

...
JM

 (13)

∆p is the concatenation of reprojection errors:

∆p =


p1 − f(X1, ξ)

...
pM − f(XM , ξ)

 (14)

C−1
∆p is the covariance matrix of ∆p:

C−1
∆p =


C−1
p 0 . . . 0

0 C−1
p . . . 0

...
...

. . .
...

0 0 . . . C−1
p

 (15)

Let us consider that the solution for (12) is found by using
the iterative Newton-Gauss optimization. The solution looks
as follows (for the last iteration, [10]):

∆ξ = (JTC−1
∆pJ)−1JTC−1

∆p︸ ︷︷ ︸
J+
C

∆p (16)

Here, J+
C is the weighted generalized inverse of J . We know

that if a linear mapping is applied to a random Gaussian vector:

y = Ax (17)

Then the covariance of the result is computed as:

Cy = ACxAT (18)

In our case:

Cv = J+
C C
−1
∆pJ

+T
C

= (JTC−1
∆pJ)−1JTC−1

∆pC∆pC−1
∆pJ(JTC−1

∆pJ)−1

= (JTC−1
∆pJ)−1JTC−1

∆pJ(JTC−1
∆pJ)−1

= (JTC−1
∆pJ)−1

(19)

This general form, which is an interesting theoretical result by
itself, can be simplified even further, if we recall that C−1

∆p =
σ−2
p I:

Cv = σ2
p(JTJ)−1 (20)

B. Odometry Covariance Matrix

We assume the unicycle kinematic model, locally circular
motion. For a different kind of kinematic scheme, strictly
speaking, it might be necessary to do a similar analysis. But
in our belief, it will not make much difference. For the sake
of clarity, to avoid introducing additional notation, we denote
the 3 DoF motion increment by ζ, since the other DoFs equal
zero.

ζi =

xy
ϕ

 =


l cos

ϕ

2

l sin
ϕ

2

ϕ

 (21)

where l is the elementary distance and ϕ is the elementary
rotation (Fig. 3). Together they form a control vector u.

Fig. 3: The circular motion model. ϕ is the turning angle; l is the distance.
There are two frames: xy — the starting frame, x2y2 — the terminal local
frame. The motion here is exaggerated to illustrate the geometry, but in reality
the model is applied for small translations and rotations.
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We are interested in Cζ,i, the covariance which characterizes
the error distribution of the odometry increment measurement
in its local frame. It can be computed as follows:

Cζ,i =
∂ζi,local

∂ζi

∂ζi

∂u
Cu,i

(
∂ζi,local

∂ζi

∂ζi

∂u

)T
(22)

Here Cu,i is the covariance of the control vector; ζi,local is the
elementary motion expressed in the terminal frame.

The transformation between the root frame and the local
frame is:

∂ζi,local

∂ζi
=

 cosϕ sinϕ 0

− sinϕ cosϕ 0

0 0 1

 (23)

The Jacobian matrix of the motion:

∂ζi

∂u
=


cos

ϕ

2
− l

2
sin

ϕ

2

sin
ϕ

2

l

2
cos

ϕ

2

0 1

 (24)

Multiplying the two matrices yelds:

∂ζi,local

∂ζi

∂ζi

∂u
=


cos

ϕ

2

l

2
sin

ϕ

2

− sin
ϕ

2

l

2
cos

ϕ

2

0 1

 (25)

We need to integrate the covariance matrix along the tra-
jectory to get its actual value at a given point:

o,iCo,i = Cζ,i + iT i−1
o,i−1Co,i−1

iT T
i−1 (26)

T is a twist transformation matrix, like in (8). The given
expression gives a matrix 3×3; three more rows and columns
are to be added to make it 6×6. We also add a small constant
covariance matrix C̃ to it, to introduce some uncertainty in the
other 3 directions, then the frame must be changed from i-th
odometry frame to i-th camera frame:

Co,i = v,iT o,i(
o,iCo,i + C̃)v,iT T

o,i (27)

IV. TECHNICAL DETAILS

The camera model used here is the Enhanced Uni-
fied Camera Model, presented in [2]. We used the
Ceres solver [11] as a non-linear solver for both tra-
jectory optimization and extrinsic calibration problems.
The source code of the project can be found at
https://github.com/BKhomutenko/visgeom.

As it is mentioned in [5], in any experimental setup there
are some practical constraints which are not necessarily rep-
resented by the cost function (6). It is possible to augment
it by adding terms to find the best of practical and feasible
trajectories.

A. Visibility Constraint

To make sure that the images contain the calibration board
along the trajectory, we reinforce the visibility constraint by
adding a term to (6):

F = −
6∑
i=1

log σi

(
∂2

∂ξ2
c
E

)
+

M∑
j=1

N∑
k=1

ρr (f(Xj , ξk, ξc))

(28)
here ρr : R2 → R is the penalty functions. it works as follows:

ρr(p) =

{
0 if ‖p− p0‖ < r

λ(‖p− p0‖ − r)2 otherwise
(29)

where p0 is the center of projection; r is a certain radius. We
can divide image into three zones, as it is shown on Fig. 4. All
the feature points of the calibration board in the first zone are
not penalized (and its radius is r), but once a point approaches
zone 2, the additional cost starts growing quadratically, which
means, considering that the data term is a logarithm of singular
values, that all the points will rather stay in zone 1 after the
optimization.

Fig. 4: Every image is divided into three concentric zones: 1) the additional
cost for the points there is 0; 2) the additional cost for points grows
quadratically with respect to the distance from the projection center; 3) the
are no points projected into this zone because of the fact that we are using
fisheye cameras.

This method is adapted for the fisheye optics. For pinhole
cameras it might be interesting to use a different regularization
term.

B. Constraints on the Trajectory Curvature

For certain types of mobile robots (such as ones with
steerable wheels) there are limits on the trajectory curvature.
This constraint can be taken into account by adding the
following term to the cost function:

Ecurvature = λκ

N−1∑
i=1

max

(
ϕi

li
− κmax, 0

)2

(30)

Where ϕ is the elementary rotation, l is the elementary
translation length.

C. Trajectory Parametrization

It appears that a trajectory which is a single arc of a constant
curvature is not enough to do the extrinsic identification. It
has a simple explanation: for such a trajectory the camera’s
trajectory will also be an arc of a different radius. If we
rotate the camera’s initial position and the calibration board
about the center of the circular trajectory, then the camera’s
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motion will be the same with respect to the calibration board.
It means that such a trajectory will define a circle with the
center at the trajectory’s center, on which lies the camera.
If we take two distinct arcs with different curvature as a
trajectory, it will define two circles, and the camera has to
be at one of the intersections, since two circles generate two
intersections. If the camera’s prior position is accurate enough,
the optimization will converge to its real position, that is why
the trajectory is represented by two arcs It is parametrized
by their initial point along x, initial orientation, linear and
angular speed of the robot. It makes 8 optimization parameters
in total. ”The optimal trajectory” refers to the solution of the
optimization problem with such a parametrization.

D. Optimization Initialization

A good initialization is important to have the problem
converged to the global optimum. In order to do that the
initialization is carried out as follows:

1) The prior on the camera extinsics ξc must be provided
by the user. Generally, its position can be measured
with a reasonable precision, the orientation prior can
be approximative.

2) Transformations {ξi} are initialized using the odometry
measurements, which is straight-forward.

3) ξb is initialized in a few steps:
a) Using first image of a sequence, compute cξb via

the virtual visual servoing.
b) Compute ξ̂b = ξ1 ◦ ξc ◦ cξb
c) Using all the images of the sequence, minimize

the reprojection residual over ξb, using ξ̂b as the
initialization. Basically we minimize (1) fixing all
the variables, except for ξb.

The camera intrinsics are supposed to be known. Another
option is to get their accurate estimation and include one more
block into the optimization problem along with a set of images
to perform the intrinsic calibration simultaneously with the
extrinsic one.

V. RESULTS

The concept has been tested using synthetic data, which
allows us to compare the results with the true value. That is,
for a generated trajectory, a set of images of the calibration
board has been generated, using the camera model (30 images
per trajectory piece). These images have been used to perform
the calibration. Even though the images are synthetic, the
image processing part still introduces a certain error in the
calibration due to the imperfection of the pattern detection.
The extrinsic calibration has been done twice: once using
the optimal trajectory, and one more time using a suboptimal
one. The suboptimal trajectory has been obtained by stopping
the optimization process before the convergence, but after the
visibility and curvature constraints have been satisfied. You
can see both trajectories on the Fig. 5.

To check the extrinsic calibration robustness, some noise
has been added to the odometry measurements. The abso-
lute value of the noise and the resulting calibration error

Fig. 5: Generated trajectories: Cyan – the initial trajectory, E = 688, the
curvature constraint is not satisfied; green – a suboptimal trajectory, E =
−29.6; Blue – the optimal trajectory, E = −37.4. E is the cost function.

TABLE I: Comparison between extrinsic calibration quality for two trajecto-
ries. The numbers in the last four columns represent the error in the extrinsic
transformation estimation.

Odometry noise,
absolute value

Optimal
trajectory

Suboptimal
trajectory

t, m uθ, rad et, m eθ , rad et, m eθ , rad
0 0 0.00935 0.000665 0.0166 0.00181
0.002 0.01 0.0101 0.00302 0.0431 0.0143
0.004 0.02 0.0164 0.00727 0.199 0.0507
0.006 0.03 0.0628 0.0149 0.436 0.105
0.008 0.04 0.13 0.0238 0.739 0.17

are summarized in Table I. The results are also visualized
on Fig. 6. The true values of the extrinsic parameters are
ξc = [3.5, 0.35, 0,−1.2092, 1.2092,−1.2092]. The errors are
computed in the following way:

δ = ξ−1
c ◦ ξ̂c

et = ‖tδ‖
eθ = θδ

(31)

where ξ̂c is the estimated extrinsic parameters; tδ is their
translational part; θ is the norm of the rotation vector of δ

Fig. 6: Visualization of the calibration results as a function of the odometry
noise. Blue – ground truth, green – optimal trajectory, blue – suboptimal
trajectory. The camera wire model is a pyramid 0.4×0.4×0.4m. The stronger
the noise, the farther away the estimated extrinsics from the real values. You
can see that for the optimal trajectory (on the left) the sensitivity to the noise
is significantly smaller than for the suboptimal one.

You can see that the optimal trajectory is significantly more
resistant to the noise in the odometry measurements. The noise
in the test has zero mean, and in our strong belief odometry



6

TABLE II: Comparison between extrinsic calibration quality for monocular
and stereo systems. The numbers in the last four columns represent the error
in the extrinsic transformation estimation. The transformation is the same in
both cases.

Odometry noise,
absolute value

Monocular Stereo

t, m uθ, rad et, m eθ , rad et, m eθ , rad
0 0 0.00935 0.000665 0.0172 0.00123
0.002 0.01 0.0101 0.00302 0.0102 0.00331
0.004 0.02 0.0164 0.00727 0.0173 0.00506
0.006 0.03 0.0628 0.0149 0.0565 0.00804
0.008 0.04 0.13 0.0238 0.116 0.0131

bias would have a very negative effect on this calibration. It
must be eliminated during the preceding odometry calibration.

Fig. 7: Generated trajectories for the stereo extrinsic calibration. Blue – the
optimal trajectory for the left camera, green – Blue – the optimal trajectory
for the right camera, red – the calibration board position. Considering the
symmetry of the stereo system, it is logical that the two trajectory sets are
symmetrical.

We can perform simultaneous calibration of extrinsic param-
eters for a stereo system. For that we define the transformation
between the board and the cameras as follows:

c1ξb = (ξo,i ◦ ξc)
−1 ◦ ξb

c2ξb = (ξo,i ◦ ξc ◦ c1ξc2)−1 ◦ ξb
(32)

The extrinsic parameters for the first camera are the same. For
the second ξc2 = [3.5,−0.35, 0,−1.2092, 1.2092,−1.2092].

Since extrinsic transformations for the two cameras are
different, different trajectories have to be used for the optimal
calibration. The trajectories are represented on Fig. 7. In the
optimization problem we have the following cost function
blocks:

1) The first camera optimal trajectory — 60 images.
2) The second camera optimal trajectory — 60 images.
3) The stereo calibration — two times 27 images.
You can see the results in Table II. For stronger noise the

stereo version gives a slightly better orientation estimation,
but generally the order of precision is the same as for the
monocular calibration. Note that we generated the calibration
trajectories regardless the fact that the two cameras’ extrinsics
are coupled via the stereo calibration.

VI. CONCLUSION

Planned data acquisition can improve the calibration quality.
The developed methodology lets us evaluate a trajectory’s

quality for the extrinsic calibration, taking into account the
odometry noise properties and image-based localization un-
certainty. Global optimization problem allows us to include
additional constraints, such as space limitations, size of the
calibration board in the image and so on.

The synthetic data allowed us to test the concept in a
fully controlled environment; the next step is to perform
the extrinsic calibration of real experimental platforms, and
validate its precision via visual localization algorithms.

The criterion on the trajectory quality for the extrinsic
calibration can be applied for any kind of visual localization,
whether they use the calibration board or not. Here we suggest
a methodology to estimate the localization precision using
the calibration board, but any visual odometry system can
replace it (For example, [6]). The only requirement is to be
able to estimate the localization covariance matrix. For the
natural features doing it precisely is a challenging problem.
A possible research track might be to estimate the average
visual localization precision statistically. Another option is to
do it in two steps. First using any kind of trajectory perform
visual SLAM, then use a similar calculations as in Section
III.A to get the localization covariance estimation, based on
the environmental structure. Analyzing the features visibility
is also a complicated problem.

The method can also be used to analyze the observability
properties of extrinsic parameters for a given trajectory. An-
other interesting extension might be to compute the optimal
trajectories for the simultaneous wheel odometry, IMU, and
exteroceptive sensor calibration.
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