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On the steady solution of linear advection problems
in steady recirculating flows

F. Chinesta∗, G. Chaidron
Laboratoire de Rhéologie et Thermodynamique des Matériaux Macromoléculaires,

Conservatoire National des Arts et Métiers, 292 rue Saint Martin, 75141 Paris Cedex 03, France

Numerical modelling of non-Newtonian flows typically involves the coupling between equations of motion 
characterized by an elliptic behaviour, and the fluid constitutive equation, which is an advection equation linked to 
the fluid history. In this paper we prove that linear steady advection problems in steady recirculating flows have 
only one solution when the kinematics differs from a rigid motion. We also give a numerical procedure to 
determine this steady solution. We will describe this numerical procedure for two linear models the first will be 
the SFRT flow model and the second will be a simplified linear formulation of the Pom–Pom viscoelastic model.
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1. Introduction

Numerical modelling of non-Newtonian flows usually involves the coupling between equations of mo-
tion, which define an elliptic problem, and the fluid constitutive equation, which introduces an advection
problem related with the fluid history. For example, in a short fiber-reinforced thermoplastic (SFRT)
model, the extra-stress tensor depends on the fiber orientation whose evolution is given by an advection
equation. In some viscoelastic models, the extra-stress tensor evolution is governed by an advection equa-
tion. For example, in the recent Pom–Pom viscoelastic model, the extra-stress tensor depends on both
the molecular orientation and the molecular extension, whose evolutions are also given by two advection
equations. Thus, generally, such a model is defined from the equations of motion, which define an elliptic
problem, and from the extra-stress tensor evolution, which defines a hyperbolic problem.

Usually the solution of the coupled model is found by an uncoupled fixed-point strategy. In this tech-
nique, the resolving process starts with an arbitrarily chosen extra-stress tensorial field from which the
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velocity and pressure fields are obtained by solving the equations of motion. Then, as we know the kine-
matics of the flow, the associated extra-stress tensorial field is obtained from integration of its governing
equation. The process must be continued until convergence.

The numerical discretisation of the equations of motion does not introduce great difficulties. However,
the discretisation of the advection equation is more complex. It can be carried out either by integrating
its Lagrangian description by means of the method of characteristics [1–6], or by using the Eulerian dis-
cretisation of its variational formulation: streamline upwind (SU) or streamline upwind Petrov–Galerkin
(SUPG) finite elements, [7–11], discontinuous finite elements [12] or discontinuous finite volumes [11].
However, for the orientation equations as encountered in SFRT or Pom–Pom models among others, the
interpolation of the orientation tensors (which is required if standard Eulerian discretisation techniques
are used) introduces non-physical orientation effects [6]. Many different general differential viscoelastic
models exist, some of them involving advection problems in the constitutive equation. A great number
of references about the discretisation of such models can be found, for example, in [13,14].

Such numerical modellings are made in order to simulate real industrial processes and to predict
resulting mechanical properties of conformed pieces afterwards. Many of the experimental and industrial
flows show recirculating areas or recirculate themselves. As an example, in a lid-driven cavity problem,
the flow recirculates under the influence of a moving plate. In a contraction or in an expansion flow
(as encountered, for example, in extrusion processes), various recirculating areas are observed [15–17].
Actually many rheometric devices involve this type of flows. Most of these phenomena are associated
with a steady state of the flow. This steady state of the flow introduces some additional difficulties in
the numerical simulation. Actually, the advection equation is supposed to have a steady solution in these
steady recirculating flows but neither boundary conditions nor initial conditions are known in such flows.
General steady solution of the linear advection equations in non-Newtonian steady recirculating flows
have not been found so far.

In this paper, we prove that linear steady advection problems in steady recirculating flows have only
one solution when the kinematics differs from a rigid motion. We also give a numerical procedure to
determine this steady solution, based on the fact that steady solution must be periodic along the closed
trajectories of the flow. This exact solution may be used in the context of steady simulations giving the
steady solution in the steady recirculating parts of the flow. It also may be used to check the accuracy of
other discretisation techniques, which are solving the evolution model and for which initial conditions
are given in the fluid domain.

However, even if this result concerns only linear advection equations, it will be very useful to solve
non-linear advection equations. In this last case the solution is searched by an iterative algorithm, which
at each iteration solves a linear advection problem. In this way, the result concerning the existence and
unicity of solution for linear advection equations in steady recirculating flows and the numerical procedure
to obtain this solution (given in Section 3) allow us to develop accurate and efficient solvers for non-linear
advection equations [18].

This work generalizes the theoretical result given in [6] which proves that, in a general recirculating
flow, for fibers with a quasi-infinite aspect ratio, the only stable solution for the fiber orientation is the
local alignment of the fibers with the flow.

In order to simplify the description of the proposed technique, we will consider two linear models:
the first one concerns the short fiber-reinforced thermoplastics (SFRT) flow and the second one consists
in a simplified linear formulation of the Pom–Pom viscoelastic model. Both models will be introduced
in the next section. These are only two examples among many others. In general non-Newtonian flow
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models involve constitutive laws described with linear and non-linear advection equations. Thus, if we
consider, for example, the upper convected Maxwell viscoelastic model (UCM) then the extra-stress tensor
evolution is given by the solution of an advection equation. In the case of steady recirculating flows we
need to solve this advection equation without initial or boundary conditions. In this way the results and
numerical procedures presented in this paper can be applied to treat many problems in non-Newtonian
fluid mechanics.

From now, and without losing generality, we will restrict our discussion to the 2D case; however, all
the results can be easily generalized to the 3D case.

The following notation will be used hereafter.

• We will denote a vector by an underline, e.g.v, with componentsvi .
• In the same way, the components of a second-order tensora will be expressed asaij .
• The unit vector associated with themth coordinate axis isem.
• With the symbol⊗ we indicate the tensorial product, e.g.u ⊗ v, with componentsuivj .
• With Tr we denote the trace of a tensor.

2. Advection problems in polymer processing modelling

2.1. A first example: the short fiber-reinforced thermoplastic flow

The flow model associated with a short fibers reinforced thermoplastic model is defined by the following
equations [19–25]:

• The momentum balance equations, without inertia and mass terms:

Div σ = 0, (1)

whereσ is the stress tensor.
• The incompressibility condition:

Div v = 0, (2)

wherev represents the velocity field.
• The constitutive equation, with a quadratic closure relation for the fourth-order orientation tensor and

other simplifying assumptions [26], is

σ = −pI + 2µ{D + Np Tr(s D)s}, (3)

wherep denotes the pressureI the unit tensor,µ the equivalent suspension viscosity (µdepends on
the chosen model [23]),D the strain rate tensor,Np a scalar parameter depending on both the fiber
concentration and the fiber aspect ratio ands the second-order orientation tensor defined by

s =
∮

ρ ⊗ ρΨ (ρ) dρ, (4)

whereρ is the unit vector associated with the direction of the fiber axis, andΨ (ρ) the orientation
distribution function, satisfying∮

Ψ (ρ) dρ = 1. (5)
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If Ψ (ρ) = δ(ρ − ρ̂) with δ() the Dirac delta function, all the orientation probability is concentrated in
the direction defined bŷρ, and the corresponding orientation tensor isŝ = ρ̂ ⊗ ρ̂. In a planar case, the
isotropic orientation state is defined by the uniform distribution function:

Ψ (ρ) = 1

2π
. (6)

The orientation tensor related to a planar isotropic orientation state is then

s = I

2
. (7)

From a physical point of view, we can consider that the eigenvalues of the second-order orientation
tensor (s) represent the probability of finding the fiber in the direction of the corresponding eigenvectors.

• With a quadratic closure relation for the fourth-order orientation tensor, the orientation equation is
expressed as

ds

dt
= Ω s − s Ω + k(D s + s D − 2Tr(s D)s) + Dr

(
s − I

2

)
, (8)

wheres satisfies{
s = st ,

Tr(s) = 1.
(9)

D andΩ are the symmetric and skew-symmetric components of Gradv, k is a constant that depends
on the fiber aspect ratior : k = (r2 − 1)/(r2 + 1), with r = L/Φ ratio of the lengthL and the diameter
Φ of the fiber, andDr a diffusion coefficient.

The non-linear term in Eq. (8),−2Tr(s D)s, assures the unit trace of tensors, i.e. Tr(s) = 1.
Slender-body theories [24,25] consider fibers with quasi-infinite aspect ratio (i.e.k = 1), the viscosity

of the solvent and a diffusion coefficient depending on the equivalent strain rate (Dr = GI

√
2Tr(D D))

[26]. Other authors propose to introduce the apparent increase of the shear viscosity by the fiber
rotation, consideringk 6= 1 [23]. In this case it is assumed that the fibers have a spheroidal shape and
the introduction of the third rheological parameterCI seems no longer necessary (CI = 0).

For both models, slender-body theories (k= 1, CI 6= 0) and non-spherical particles suspensions
(k 6= 1, CI = 0), Eq. (8) keeps its non-linear character.

The orientation equation (Eq. (8)) can be written in the form

da

dt
= Ω a − a Ω + k(D a + a D) + D∗

r

(
a − I

2

)
, (10)

with Dr = D∗
r /Tr(a). The unit trace orientation tensors becomes

s =
a

Tr(a)
. (11)

Eq. (10) is also non-linear due to the dependence of the diffusion parameter on the orientation tensor

D∗
r = Dr Tr(a).

However, when diffusion effects are neglected (Dr = 0), Eq. (10) becomes linear.
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In the following, we may consider the general expression of the orientation evolution, Eq. (10), but
we will limit our discussion to the linear case, because in Section 3 a result concerning the existence
and unicity of solution for linear advection equations in steady recirculating flows will be given.

The flow model is defined inΩ = R2. On the boundaryΓ = ∂Ω, either the velocity or the traction is
imposed.

v(x ∈ Γ1) = vg, (12)

and

σ n(x− ∈ Γ2) = Fd, (13)

with Γ1 ∪ Γ2 = Γ andΓ1 ∩ Γ2 = ∅, andn(x) is the outward unit vector, normal to the boundary at the
pointx. The inflow boundary will be denoted byΓ −

Γ− = {x ∈ Γ1, v
t (x)n(x) < 0}. (14)

As the orientation equation has a hyperbolic character, the integration of the orientation equation only
requires an orientation boundary condition on the inflow boundary in a steady-state flow simulation

s(x ∈ Γ−) = s
0
. (15)

In this way, in order to obtain the steady solution of the flow problem, we need to solve Eqs. (1)–(3), (10)
and (11) with the corresponding boundary conditions. If we use an uncoupled strategy, then the solution
is reached by means of an iterative schema. For example, a fixed point strategy allows us to solve the
kinematics of the flow, Eqs. (1)–(3), from the fiber orientation calculated at the previous iteration. Now,
the fiber orientation can be actualized solving Eqs. (10) and (11) from the flow kinematics which we have
just evaluated. Thus, at each iteration, the steady solution of the advection Eq. (10) must be obtained,
and for steady recirculating flows the numerical procedure proposed in Section 3 can be applied with
accuracy.

2.2. A second example: a simplified linear formulation of the Pom–Pom viscoelastic model

In this section we consider a simplified formulation of the Pom–Pom viscoelastic model proposed by
McLeish and Larson [27]. In this case the constitutive equation is given by

σ = −pI + βλ2s, (16)

whereλ represents the molecular extension, ands the molecular orientation.
The evolution of the molecular extension field and the evolution of the molecular orientation field are

given by two advection equations. In a first approximation, we consider these two equations as linear:

∂a

∂t
+ (vGrad)a − Ω a − a Ω + D a + a D − 1

τb

(
a − I

2

)
, (17)

with

s =
a

Tr(a)
(18)
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and

∂λ

∂t
+ (vGrad)λ = λTr(s D) − 1

τs

(λ − 1), (19)

whereτ b andτ s are two relaxation times that we will consider constants.
We can notice that the advection problem governing molecular orientation is very close to the one

governing inextensible short fiber orientation. The model defined by Eqs. (17) and (18) may be rewritten
in the equivalent form:

ds

dt
= Ω s − s Ω + D s + s D − 2Tr(s D)s − 1

τ ∗
b

(
s − I

2

)
, (20)

where the relation between the two relaxation times depends on the molecular extension (τ∗
b = τbTr(a) =

τbλ
2) [28]. This fact introduces a first non-linearity. Moreover, in order to impose the unit trace of tensor

s another non-linear term−2 Tr(s D)s is introduced. We focus our attention on the first formulation
(Eqs. (17) and (18)) where the advection problem (Eq. (17)) remains linear if the corresponding relaxation
time is considered as constant.

3. Steady solution of linear advection equations

3.1. Introduction

Eqs. (10) or (17) can be written taking into account the linearity and symmetry of the orientation tensors
in the Lagrangian vectorial form:

da

dt
= A(x(t))a + B(x(t)), (21)

where

a =




a11

a12

a22


 . (22)

The matrixA and the vectorB depend only on the flow kinematics or on the material properties, and in
consequence on the particle position given by the integration of

dx

dt
= v(x(t)). (23)

The differential system (21) is linear and in consequence its general solution may be written as the addition
of the general solution of the homogeneous differential system:

da

dt
= A(x(t))a, (24)

and a particular solution of the non-homogeneous differential system (Eq. (21)).
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3.2. General solution of the homogeneous differential system

It is well known that for a linear homogeneous differential system, the linear combination of solutions
is also a solution of the differential system. Thus, if we denote bya

(11)
h (t), a

(12)
h (t) and a

(22)
h (t), the

solutions of the differential system (24) associated with the initial conditions given bye1 ⊗ e1, e1 ⊗ e2 +
e2 ⊗ e1 ande2 ⊗ e2:

a
(11)
h (t = 0) =




1

0

0


 , (25)

a
(12)
h (t = 0) =




0

1

0


 , (26)

a
(22)
h (t = 0) =




0

0

1


 . (27)

Then, the solution of (24) associated with the initial condition

ah(t = 0) =




α11

α12

α22


 , (28)

with (α11, α12, α22) ∈ R3, will be given by

ah(t) = α11a
(11)
h (t) + α12a

(12)
h (t) + α22a

(22)
h (t). (29)

3.3. Particular solution of the non-homogeneous differential system

Since we are looking for a particular solution, we proceed by integrating Eq. (21) with an arbitrary
initial condition given by

ac(t = 0) =




β11

β12

β22


 , (30)

from which the particular solutionac(t) is obtained.

Remark. In our simulations we have considered the isotropic formβ11 = 0.5, β12 = 0.0 andβ22 = 0.5,
but the final solution does not depend on this arbitrary choice.

The general solution of the system (21),a(t), is then

a(t) = α11a
(11)
h (t) + α12a

(12)
h (t) + α22a

(22)
h (t) + ac(t), (31)
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and its initial value is

a(t = 0) =




α11 + β11

α12 + β12

α22 + β22


 . (32)

3.4. Solutions in steady recirculating flows

A necessary condition that the steady solution of the advection equation must verify is its periodicity
along the closed streamlines. Thus, the solution after a spatial periodT (complete rotation) must be the
initial value, therefore

a(t = 0) = a(t = T ). (33)

This condition implies

a(t = 0) = α11a
(11)
h (T ) + α12a

(12)
h (T ) + α22a

(22)
h (T ) + ac(T ). (34)

This defines the linear system which can be denoted by

C α = D. (35)

From this system, we can obtain the values of the three components of the vectorα: α11, α12 andα22.
Thus, the steady solution of the orientation equation on the closed streamlines is defined by Eq. (31). This
general solution is unique if detC 6= 0. For rigid motion kinematics detC 6= 0 and the solution along a
closed streamline depends only on an arbitrary orientation considered at a point on the streamline, from
which the orientation is integrated.

We have just found that for general steady recirculating flows there is only one solution at the considered
point verifying the periodicity relation, Eq. (33). Thus, at this point the solution must be constant, and
from the fact that the solution at each point on the trajectory can be obtained from this initial value, we
prove that there is only one steady solution which can be obtained by imposing the periodicity condition
given by Eq. (33).

For the considered examples, the periodicity is only required in the constitutive equation, which implies
the periodicity of tensors, but not necessarily the periodicity of the tensorial fielda. In this case, we can
replace the condition

a(t = T ) = a(t = 0), (36)

by

m a(t = T ) = a(t = 0), m ∈ R, (37)

without destroying the periodicity ofs, since

s(t = 0) =
a(t = 0)

Tr(a(t = 0))
=

ma(t = T )

mTr(a(t = T ))
= s(t = T ). (38)
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For the molecular extension, in the second example, the advection problem (19) is scalar, and an exact
solution is given by

λ(t) = eγ (t)

{
λ0 +

∫ t

0

e−γ (t ′)

τs

dt ′
}

, λ0 ∈ R, (39)

with

γ (t) =
∫ t

0

(
Tr(s D) − 1

τs

)
d′, (40)

wheres andD depend on the Lagrangian time through the characteristic equation:s(x(t)) andD(x(t)).
The associated initial conditionλ(t = 0) is

λ(t = 0) = λ0, (41)

and the periodicity conditionλ(t = 0) = λ(t = T ) is written as

λ0 = eγ (T )

{
λ0 +

∫ T

0

e−γ (t)

τs

dt

}
. (42)

Thus, we can obtain the value of the initial extensionλ0 from that equation.

4. Numerical examples

In order to verify the numerical procedure we are going to analyze different simple recirculating flows.
In the integration of differential equations a fourth-order Runge–Kutta schema has been used.

4.1. SFRT flow without diffusion effects

In this first example we consider the model given in Eq. (10) with the diffusion coefficient equal to
zero. In this case, and for fibers with a quasi-infinite aspect ratio in a general flow, the only solution is
given by local alignment of the fibers with the streamlines [6].

4.1.1. Rotation of a rigid body
We now consider the rigid motion given by the velocity field

vT = (−y, x). (43)

This equation describes the rigid body rotation around the centre point (0,0). The velocity is constant on
a circle trajectory centred in this point. The magnitude of the velocity depends linearly on the radius. We
solve the problem for the pointxT = (0, 1). The matrix of coefficients given in (35) is singular. This
means that any solution may be considered at the chosen point as a periodic initial solution.

4.1.2. Planar and circular flow
We will consider here the planar flow given by the following velocity field

vT = (−y
√

x2 + y2, x
√

x2 + y2). (44)
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Fig. 1. Steady orientation along a closed streamline for fibers with infinite aspect ratio.

This flow is circular and the velocity is constant on a circle trajectory centred in the point (0,0). The
magnitude of the velocity is the radius squared. We are looking for a periodic orientation solution with a
unit trace at the pointxT = (0, 1) with the strategy described above. The solution found, as depicted in
Fig. 1, corresponds with the local alignment of the fibers with the flow, i.e.

a
(0,1)

=
(

1 0

0 0

)
. (45)

We represent the orientation tensor by means of an ellipse. The ellipse axes directions correspond to the
eigenvectors of the orientation tensor and the half of the length of the axes correspond to the eigenvalues.
In Fig. 1 we see that the ellipses are resumed to unit segments oriented in the flow direction. This result
shows us that all the fibers are aligned in the flow direction all along the streamline. When inextensible
fibers with a finite aspect ratio are considered, the local alignment of the fibers with the flow is not a
solution, and moreover in [29] it is proved that for general flows the periodic solution can not have a unit
eigenvalue. We can verify that result using our strategy.

If we are looking for a periodic fiber orientation in the flow defined by (44) for fibers withk = 0.6,
then the solution found at the pointxT = (0, 1) is given by

a
(0,1)

=
(

0.8 0

0 0.2

)
. (46)

We increase the isotropic behaviour with thekparameter, until we reach the isotropic orientationa = I/2
for circular particlesk = 0.

The periodic solution associated with the initial condition given by Eq. (46) along the streamline is
depicted in Fig. 2. We can see, in this figure, that ellipses have a certain thickness corresponding of a
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Fig. 2. Steady orientation for fibers with finite aspect ratio.

non-null eigenvalue in the radial direction. That means that the most probable direction of a fiber is the
direction of the streamline but there is a light misalignment. As the orientation tensor represents the
orientation probability we only obtain a solution in an averaged sense.

4.1.3. Lid-driven cavity flow
Finally we consider the lid-driven cavity flow problem, with the flow kinematics given by the solution

of the Stokes problem defined by

∇p = µ 1v, in]0, 1[×]0, 1[, v = 0 onx = 0; x = 1; y = 0,

vT = (2
5x(x − 1),0) ony = 1. (47)

In order to get accurate incompressible solutions, we use a stream function formulation and solve
the resulting biharmonic equation with a pseudospectral Chebyshev technique, neglecting the fiber
orientation effects on the kinematics of the flow. Figs. 3 and 4 show the steady orientation solution
along some closed trajectories for fibers with quasi-infinite and finite (k= 0.9) aspect ratios, respec-
tively.

In the first case (Fig. 3), the local alignment of the fibers with the flow is identified, except in the
neighbourhood of the centre of rotation, where kinematics very close to rigid motion is found. However,
even in these areas, the local alignment may be considered as a steady orientation solution.

In the second case (Fig. 4), as indicated in [6], high gradients near the corners and elongational flow
both induce high deviations from the local alignment in some regions of the fluid domain. In order to
emphasize this deviation, we have superimposed the orientation field with the unit vectors in the streamline
direction.
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Fig. 3. Steady orientation in a cavity flow for fibers with infinite aspect ratio.

Fig. 4. Steady orientation in a cavity flow for fibers with finite aspect ratio.

4.2. The coupling between orientation and extension

Now, we are going to consider the linear formulation of the Pom–Pom viscoelastic model.

4.2.1. Planar and circular flow
We can expect that for relaxation times much longer than the period time, the steady orientation solution

in the flow defined by (Eq. (44)) will be the local alignment, and due to the fact that this flow is a simple
shear flow we do not expect any molecular extension.

In applying our strategy we obtain a steady orientation at the pointxT = (0, 1) that approaches

s(0,1) =
(

1 0
0 0

)
, (48)

without molecular extension.
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Fig. 5. Steady molecular orientation in a non-rigid planar circular flow, with a relaxation timeτb = T /10.

Fig. 6. Steady molecular orientation in a non-rigid planar circular flow, with a relaxation timeτb =� T .
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Fig. 7. Steady molecular orientation in a lid-driven cavity flow, with a relaxation timeτb = T /10.

With relaxation timesτb = τs = T/10 (whereT is the period), another steady solution is found as
depicted in Fig. 5.

The isotropy increases as the relaxation time of the orientation process decreases. When the relaxation
time is much shorter than the period, the steady orientation tends to the isotropic tensor, as we can see in
Fig. 6.

Fig. 8. Steady molecular extension in a lid-driven cavity flow, with a relaxation timeτb = τs = T /10.
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4.2.2. Lid-driven cavity flow
We now consider the cavity problem (see Eq. (47)). The steady orientation along the streamline which

passes through the pointxT = (0.5,0.99) and withτb = τs = T/10 is given in Fig. 7. In this case we
observe a high molecular extension. In Fig. 8, we represent the extension along the streamline associated
with the orientation depicted in Fig. 7. The extension magnitude is related to the circle diameter, with
the natural extensionλ = 1 given by the circle located at the centre of rotation. In this case the steady
extension found at the pointxT = (0.5,0.99) is λ(0.5,0.99) ≈ 6. This result shows that a steady-state
value of the extension is reached, and corresponds to the steady state of the flow in the recirculating area.

5. Conclusions

In this paper, we have proved that a steady state solution exists for linear advection equations defined
in steady recirculating flows. We also show that this solution is unique in most cases. We have presented
a numerical procedure to evaluate steady solutions of linear advection problems defined in steady recir-
culating flows as encountered in non-Newtonian flow modelling (contraction flows, rotary rheometric
devices). This strategy may be used in uncoupled algorithms where a steady solution of the advection
equation in a recirculating part of the flow is required at each step, or to verify the accuracy of other nu-
merical techniques. It may also be used to evaluate the accuracy of the hypothesis eventually introduced
(as for example the local alignment of the fibers with the flow in SFRT simulations).

Non-linear advection equations which are usually involved in non-Newtonian flow modelling do not
represent a strong handicap for the proposed technique, because as discussed in the introduction of this
paper, the resolution of a non-linear problem is transformed in the resolution of a sequence of linear ones,
for which the proposed strategy is adapted.
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