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Abstract: This paper studies the optimal duration of unemployment insurance (UI) benefits in

a basic job search model where a risk neutral UI agency can not monitor the search effort of risk-averse

workers. Social assistance payments are taken as exogenous by the unemployment agency which chooses

optimally the level of UI benefits, the date of their exhaustion and the level of the financing tax. So, due

to possible finite values of the duration of unemployment benefits, the resulting agency’s problem brings

nonstationarity complexities that are usually deemed intractable in models where utility and search costs

functions are nonlinear. We then propose a new strategy, based on the study of the geometric properties

of the set of constraints, and explicit formal conditions, with very general utility and search costs func-

tions, for obtaining a zero, positive or infinite optimal duration of UI.
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1 Introduction

UI programs are generally limited in time even if the range of their potential dura-
tion is strikingly large across countries. For example, UI benefits last only 6 months in
the United States, whereas in Europe they can vary from 6 (in United Kingdom) to 38
months (in the Netherlands). Besides the insurance system, there is often a less generous
assistance or solidarity system that is not subject to prior contributive participations and
that gives some monetary support to those who are no longer eligible for UI benefits.1 As
a suitable instrument for containing moral hazard problem created by weak monitoring
of search efforts, the maximum duration of UI benefits thus defines a time sequence of
insurance and assistance policies that provides incentives to tail off the unemployment
period.2

Davidson and Woodbury (1997) were the first who really question the optimal termi-
nation of UI benefits in a discrete time search and matching framework where wages are
exogenous and the number of jobs is fixed. In their model, the utility function is linear
but they argue that risk aversion comes from the assumption that search costs are convex
in search effort. As the potential duration of UI benefits is finite, the model is nonsta-
tionary. With the help of numerical exercises, they conclude that the optimal duration
of unemployment should always be infinite, which renders suboptimal almost all existing
UI programs. As noticed by Fredriksson and Holmlund (2006), they do not examine the
optimal time sequence of UI benefits since they only compare a situation where UI ben-
efits are unlimited to a situation where benefits are limited then arbitrarily set to zero.
Fredrikson and Holmlund (2001) also suggest that the assumption of an exogenous social
payment is the cause of the optimal infinite duration in the paper of Davidson and Wood-
burry (1997). We will see that this argument doesn’t hold. The paper of Fredriksson
and Holmlund (2001) considers the optimal duration of UI benefits in a Pissarides (2000)
framework where search efforts and wages are endogenous but stationary, that renders
the analysis mathematically tractable. Stationarity comes from the assumption that the
necessary waiting duration to change state is a random variable that follows a Poisson
process. UI is then on average duration limited. Using numerical simulations, they find
that the optimal profile of UI is decreasing or, equivalently, that the optimal duration of
UI benefits is finite.

The issue we particularly address in this paper is how to reconcile analytically the nu-
merical result of Davidson and Woodburry (1997) with the one of Fredrikson and Holm-
lund (2001) in a same framework. We then start by integrating in a Mortensen (1977)’s
model the fact that insurance and social assistance roughly describe a decreasing profile

1Few countries provide UI benefits indefinitely: Australia, Belgium and New Zealand (see e.g. Tat-
siramos and van Ours (2014), for a recent survey on the different existing UI designs and their potential
labor market effects).

2There is a large theoretical literature on the optimal design of UI that suggests that a decreasing
sequence gives better incentives that a non-increasing profile (see e.g. Shavell and Weiss 1979; Hopenhayn
and Nicolini 1997, 2009; Cahuc and Lehmann, 2001, Fredriksonn and Holmlund, 1998). There are also
strong empirical results that extending eligibility duration has a negative effect on unemployment duration
(see e.g. Lalive, (2007, 2008) ; Rothstein, 2011).
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of unemployment payments insofar as the latter program is less generous. This pattern of
unemployment transfers indeed constitutes a common feature in most OECD countries.
We also consider social assistance as a given policy for an unemployment agency which
has to optimally choose the level of UI benefits, their duration and the financing tax.
Risk-averse workers receive an exogenous wage and pay tax to finance benefits. Search
efforts are unobservable so the unemployment agency never stops inducing the unem-
ployed to search, whatever the length of unemployment spell or unemployment status.
As in Mortensen (1977), we consider here only the finite termination of UI benefits as the
source of nonstationarity of search efforts, while UI benefits and wage taxes are constant
over time (see van der Berg, 1990 for other sources of nonstationarity in search models).
Nonstationarity usually brings analytical difficulties deemed intractable in models where
utility and search costs functions are nonlinear. Despite this, we will give a precise for-
mulation of the optimal duration of UI benefits.

Another important feature of our model is that the budget constraint is supposed to
be balanced in average but not at every time. So, in the considered setting, we aim
at maximizing the initial utility value U(0) of an eligible unemployed, with respect to
T (maximum duration of UI benefits), the tax τ and the level of UI benefits b, under
the budget constraint B(0) = 0. The model under consideration will be referred to as
”the agency’s problem” and can be regarded as a dynamic optimization problem where
the objective function (i.e. the expected utility of an eligible unemployed) as well as
the inter-temporal budget constraint, are derived from solutions of differential equations.
The main contribution of our paper is twofold. First, we provide a clear formalization of
a finite optimal duration T of UI benefits by exploiting the geometric properties of the
constraints. Secondly, we show that the special cases when the optimal duration T is zero
or infinity are obtained as limiting cases of our strategy.

The paper unrolls as follows. In Section 2, we discuss the worker’s behavior and the
agency’s behavior. We also set up the agency’s problem as a dynamic optimization prob-
lem with respect to the variables {b, τ, T, U0}, where U0 denotes the initial utility value.
Section 3 remodels the agency’s problem. In particular, Theorem 3.1 establishes that
solutions (b̄, τ̄ , T̄ , Ū0) to the agency’s problem can be obtained from some formulation
of T̄ depending on any element (b̄, τ̄ , Ū0) that solves a classical three dimensional op-
timization problem (with respect to the unknowns {b, τ, U0}). In Section 4, we prove
that the agency’s problem can be recast as a two dimensional optimization problem over
a nonempty and bounded set Γ ⊂ IR2 with a possibly non-convex geometric form that
depends on the fixed parameters. Specifically, Theorem 4.1 states for some real-valued
mapping J that an optimal contract (b̄, τ̄ , T̄ , Ū0) can be alternatively obtained from an
element (b̄, τ̄) ∈ argminΓJ (namely (b̄, τ̄) ∈ Γ and J(b̄, τ̄) = min

Γ
J), together with a posi-

tive optimal duration T̄ = T̄ (b̄, τ̄) (depending on b̄ and τ̄) and some value Ū0 = Ū0(b̄, τ̄).
Finally, Theorem 4.2 puts out the following two possibilities: either there exists a min-
imizer of J over Γ, which ensures the existence of optimal values (b̄, τ̄ ) associated with
a finite and positive optimal duration T̄ ; or there exists no minimizer of J over Γ. This
later case is related to any situation in which the optimal duration is zero or infinite.
In section 5, we give a numerical illustration of the model and its qualitative properties.
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Section 6 concludes.

2 The model

We consider a standard continuous job search model à la Mortensen (1977) where
mortal risk-averse workers have no access to financial markets and so cannot save or
borrow.3 We focus on search decisions, so that the gross wage, denoted by w, is set at an
exogenous level. We also consider a two-tiered unemployment compensation system and
so two types of job-seekers : those eligible to UI benefits b and those who after a maximum
period of eligibility T are still jobless. The latter benefit from welfare or assistance system
that is generally less generous. After T periods, the environment becomes stationary as
assistance payments for noneligible unemployed, z, are unlimited. We assume, eventually,
that UI benefits b and the employment tax τ are constant over time.

2.1 Worker’s behavior

Each worker maximizes his expected discounted utility, which writes

E0

∫ ∞

0
e−rt [u(x)− v(εt)] dt,

where r ∈ (0, 1) is the discount rate, x is the consumption level, E0 is the expectation
operator and the other parameters are described as follows:
- The instantaneous utility function of consumption u(.) has standard properties namely

continuous, increasing and concave over ]0,+∞[.
- The search cost function v(εt), where εt denotes the search effort, is positive, convex

and has the usual standard form:

v(εt) =
c

1+α
ε1+α
t , with α > 0.

In our partial model, an employee can not search for another job and be laid off but,
similarly to an unemployed worker, can die according to a Poisson process with arrival
rate µ. So for an employee, we always have v(0) = 0 and his expected utility E is simply
:

E =
u(w − τ)

η
, where η = r + µ. (2.1)

An unemployed worker chooses his search effort level ε and exit out of unemployment
at rate λ(ε). For the sake of simplicity, we assume that λ(ε) = ε. The expected utility of

3A recent branch of the research on UI shed some light on how savings and borrowing behaviors can
affect the optimal timing of UI benefits by using numerical simulations (e.g. Kacherlakota, 2004; Shimer
and Werning, 2008; Mitchell and Zhang 2010; Rendahl 2012). Card et al. (2007) and Chetty (2008) also
give some evidences that the exit rate from unemployment is affected by the agent’s wealth.
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an eligible unemployed, denoted by U(t), satisfies the following Bellman equation

rU(t)− U̇(t) = max
εt

{u(b)− v(εt) + ε(t) [E − U(t)]− µU(t)} (2.2)

U(T ) = Ua,

where Ua is the expected utility of a noneligible jobless that we will describe below.
The flow value of being an eligible unemployed at t equals the flow payoff u(b) − v(εt)
augmented by the average gain of status change εt [E − U(t)] and lowered by the loss
caused by death, which occurs at rate µ. At the exhaustion of the insurance benefits
period T , an eligible jobless becomes a noneligible one. Therefore his expected utility is
Ua, what is formalized by the terminal condition U(T ) = Ua. The first order condition
for optimal search effort at t is given by

ε(t) := εt =

(

E − U(t)

c

)
1
α

. (2.3)

It is straightforward to verify that if E = U(t) then ε(t) = 0 as there is no gain to
search for a job. Moreover, the profile of U(t) determines completely, in an opposite way,
the evolution of ε(t). A noneligible unemployed has a stationary environment since the
assistance payment z is unlimited over time. The discounted expected utility Ua thus
satisfies the following Bellman equation :

rUa = max
εa

{u(z)− v(εa) + εa(E − Ua)− µUa} (2.4)

and the first order condition for optimal search effort in this case is given by

εa =
(

E − Ua

c

)

1
α

. (2.5)

Rearrange (2.2), taking into account the optimal search effort (2.3), and setting β =
α

1+α
c

−1
α and q = 1

α
, gives us the following differential equation

U̇(t) = ηU(t)− β [E − U(t)]1+q − u(b). (2.6)

Observe that Ua is defined through (2.4) (also using (2.5)), that can be rewritten as

ηUa − β(E − Ua)
1+q − u(z) = 0. (2.7)

2.2 Agency’s behavior

Let B(t), Ba, Be be the values of the costs associated with insurance, assistance and
employment, respectively. The actuarially fair relation between benefits and taxes for an
unemployed eligible worker is represented by the following Bellman equation

rB(t) = b+ ε(t) [Be − B(t)]− µB(t) + Ḃ(t), (2.8)

B(T ) = Ba,
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where Be and Ba satisfy

Be =
−τ

η
, (2.9a)

rBa = εa [Be − Ba]− µBa. (2.9b)

From an easy computation we get

Ba = −
τεa

η(η + εa)
. (2.10)

The expected gain from an employee is given by (2.9a) and the gain from an current
noneligible unemployed is given by (2.9b). Let us notice that the unemployment agency
does not finance and does not provide the welfare payment z but captures the tax employ-
ment from a former noneligible unemployed. Then the value cost of insurance B satisfies
the following first-order differential equation

Ḃ(t) = (η + ε(t))B(t) +
τ

η
ε(t)− b. (2.11)

This last relation is, from the point of view of the UI agency, the financial counterpart of
the worker’s position on the labor market as the flow of taxes and benefits are contingent
to the worker’s job status. The unemployment agency collects employment taxes τ and
distributes UI benefits b such as the net cost of an eligible unemployed at date 0 is nil.
We do not impose a balanced budget at each date.

2.3 The optimal contract

As search is a private information, the agency then chooses b, τ and T so as to maximize
worker’s utility under the budget constraint. More precisely, we are then interested in
maximizing the expected utility U(0) obtained from (2.6) with respect to nonnegative val-
ues of b and τ and positive values of T verifying the set of constraints (s1)-(s3) given below:

(s1) The utility and cost functions U and B satisfy the ordinary differential equations
(2.6) and (2.11), respectively, and are such that

U(T ) = Ua, U(0) > Ua, (2.12a)

B(T ) = Ba, B(0) = 0. (2.12b)

(s2) The following additional conditions on the parameters are needed:

τ ≥ 0, w − τ ≥ b, (2.13a)

b ≥ z. (2.13b)

(s3) The discounted utility Ua at time T is implicitly given by (2.7) while the value cost
Ba at time T is defined in (2.10).
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Let us discuss briefly some of the conditions above. In our principal-agent frame-
work, we suppose that the unemployment agency wants to propose to each agent that
enters unemployment a contract that defines {b, τ, T} such as the present value of insured
unemployment is higher than the present value of social assistance, subject to an appro-
priate budget constraint. Constraints (2.12a) formalize this assumption and overall assure
that a positive date of exhaustion T is a relevant parameter of our problem. Indeed, if
U(t) = Ua, it comes that ε(t) = εa and the environment of the model becomes stationary.
Recall that for the sake of tractability, we presume a two-tier UI scheme where unem-
ployment payments and tax rate are constant over time. We then start by proceeding
with the assumption that b ≥ z and let the analysis assert whether a strict inequality is
optimal or not. The interpretation of the additional conditions (s2) is obvious insofar as
there is no rational incentive that drives a worker to accept a contract that enforces him
to pay a tax in order to receive less that what he would have with social assistance.

From a mathematical viewpoint, the optimal contract is solution of the following prob-
lem:

max
(T,b,τ,U0)∈Q

U0, (2.14)

where Q is the set of elements (T, b, τ, U0) such that :
(b1) condition (2.13) is fulfilled (by b and τ) ;
(b2) there exist mappings U : [0, T ] → IR and B : [0, T ] → IR verifying

(2.6), (2.11) and (2.12) with U(0) = U0.

An alternative characterization of elements (T, b, τ, U0) ∈ Q can be obtained by in-
troducing the following sets:

S(T, b, τ) := {U : [0, T ] → IR s.t. (2.6) holds}, (2.15a)

GU(T, b, τ) := {B : [0, T ] → IR s.t. (2.11), (2.12b) hold with U : [0, T ] → IR}, (2.15b)

G(T, b, τ) := {U ∈ S(T, b, τ) s.t. GU(b, τ, T ) 6= ∅}. (2.15c)

So, we readily observe that Q can be written as the set of elements (T, b, τ, U0) verifying
(2.13) and such that :

G(T, b, τ) ∩ {U : [0, T ] → IR; U(0) = U0, U(0) > Ua} 6= ∅. (2.16)

It is worth noticing that a natural approach to investigating problem (2.14) (at first
sight) would consist in computing explicitly U(0), which is not a simple task. So, we use
a different methodology.

3 Remodeling the agency’s problem

The objective of this section is to provide a more tractable formulation of the maxi-
mization problem (2.14), by exploiting specific properties obtained from the analysis of
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the utility function U and also by computing the cost function B with respect to U . As
an important part of our methodology, we will henceforth work with the two differences
W (t) = E − U(t) and Wa = E − Ua instead of the expected utilities themselves. We also
deal here with only finite positive values of T . It will clearly appear in the next section
that this approach is not restrictive at all since any (possible) optimal values T = +∞
and T = 0 should necessarily appear as limiting cases of our strategy.

3.1 A transformed utility equation

Instead of using the formulation (2.6), we focus our analysis on a simpler and trans-
formed equation. Clearly, settingW = E−U and recalling that ηE = u(w−τ) (according
to (2.1)), we readily see that (2.6) becomes

Ẇ (t) = ηW (t) + β [W (t)]1+q − u(w − τ) + u(b). (3.1)

Let us introduce the two mappings F and H defined for s ∈ IR+ by

F (s) = ηs+ βs1+q, (3.2a)

H(s) = F (s)− γ, where γ = u(w − τ)− u(b). (3.2b)

Then it is immediately seen that (3.1) is equivalently written as

Ẇ (t) = H(W (t)). (3.3)

This last formulation will be very useful regarding the analysis of the utility function as
well as for the computation of the cost function. Moreover, introducing the new variable
Wa = E − Ua, we observe that (2.12a) can rewritten as

W (T ) = Wa, (3.4a)

W (0) < Wa. (3.4b)

Now, with regards to our methodology, we consider some quantity W∗ that verifies
H(W∗) = 0, or equivalently

F (W∗) = γ, where γ = u(w − τ)− u(b), (3.5)

while it can be furthermore checked from (2.7) thatWa is implicitly given by the following
equality

F (Wa) = κ, where κ = u(w − τ)− u(z). (3.6)

It is of importance to see that W∗ and Wa are well-defined and nonnegative. Indeed, we
observe that γ and κ (introduced in (3.2b) and (3.6)) are nonnegative parameters (under
conditions (2.13)), since u is assumed to be increasing on (0,+∞). Consequently, as F is
continuous and increasing [0,+∞), together with F (0) = 0, we deduce that there exists a
unique couple of nonnegative values (W∗,Wa) such that F (W∗) = γ (namely H(W∗) = 0)
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and F (Wa) = κ. These two specific values W∗ (depending on b and τ) and Wa (only
depending on τ) are obviously defined by

W∗ = F−1(u(w − τ)− u(b)), Wa = F−1(u(w − τ)− u(z)). (3.7)

A very more interesting formulation of (2.14) is proposed farther, through the compu-
tation of the initial cost value (by using (3.3) and the cost equation) and the analysis of
the utility function, with respect to the values Wa and W∗.

From now on, the values Wa and W∗ (given in (3.7)) are sometimes denoted by Wa(τ)
and W∗(b, τ), respectively, so as to be more precise. We also consider sometimes the more
precise notationsH(b,τ)(s) and γ(b, τ) (instead ofH(s) and γ) given for some values (b, τ, s)
by H(b,τ)(s) = F (s) − γ(b, τ), where γ(b, τ) = u(w − τ) − u(b) and F (s) = ηs + βs1+q

(introduced in (3.2)).

3.2 Analysis of the utility function

In this section we study the behavior of solutions W to (3.3) with respect to the
knowledge of W (T ). More precisely, given T > 0 and Wa > 0, we are interested in
solutions W of the following system

Ẇ = H(W ), with W (T ) = Wa, (3.8)

so as to give us a more precise characterization of the set of constraints Q arising in (2.14).
In particular, we establish that solutions to (3.8) can be described by using the following
system (3.9) that we first investigate:

V̇ = −H(V ), with V (0) = Wa. (3.9)

Some nice properties of the function H(.) are exploited for investigating existence, unique-
ness and regularity results (thanks to the well-known Cauchy-Lipschitz theorem).

Lemma 3.1 For any Wa > 0, there exists a unique global solution to the system (3.9).
Moreover, V ∈ C2(IR+) and, for t ≥ 0, V (t) can be written as

V (t) = W∗ + (V (0)−W∗)e
−φ(t), (3.10)

where φ(t) := ηt+
∫ t

0
P (s)ds (P being some nonnegative mapping). (3.11)

Proof. See Appendix.

The next lemma shows us that the profile of solutions W to (3.3) on [0, T ] depends on
the relative values of the quantities Wa and W∗ defined in (3.7) (see Figure 1).

Lemma 3.2 Let Wa > 0 and W∗ ≥ 0 be given by (3.7). Then, for any T > 0, problem
(3.8) admits a unique classical solution W on [0, T ], defined by

W (t) = V (T − t), for t ∈ [0, T ], (3.12)
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where V satisfies (3.9). So, W ∈ C2([0, T ]) and the following statements are reached:
(i1) Wa > W∗ ⇒ W is increasing and, for t ∈ [0, T ], we have W∗ < W (t) ≤ Wa.
(i2) Wa =W∗ ⇒ W ≡W∗ on [0, T ].
(i3) Wa < W∗ ⇒ W is decreasing and, for t ∈ [0, T ], we have Wa ≤W (t) < W∗.

Proof. See Appendix.

Figure 1: The evolution of W (t) and the duration of unemployment.

In light of Lemma 3.2, we observe that the expected utility of an insured unemployed
U(t) is decreasing, constant or increasing if the difference Wa−W∗ is respectively positive,
null or negative. A decreasing expected utility U(t) (obtained for Wa > W∗) means that
UI benefits b is larger than the assistance payments z. When Wa = W∗ (namely b = z),
we have U(t) = Ua and so the expected utility of an insured jobless is independent of
T ; so it can be verify from (2.11) that the budget constraint is also independent of T
and that it simply gives the level of tax rate τ with respect to the search effort ε. These
results are very intuitive insofar as the only difference between the expected incomes of
an insured unemployed and those of a non-insured jobless comes precisely from the gap
between the level of UI benefits b and the assistance payments z.

The first statement (i1) illustrates the case highlighted by Mortensen (1977) where the
expected utility U(t) declines and the search effort εt rises during insured unemployment,
until the maximum benefit duration T . Once the UI benefits are exhausted, the search
behavior as the gain from unemployment are stationary, respectively equal to εa and Ua.

Note that the two statements (i2) and (i3) in Lemma 3.2 are not compatible with
condition (2.12a), which writes W (0) < Wa and W (T ) = Wa, where the function W =
E −U satisfies (3.3). So, from Lemma 3.2 (also see Fig. 1), condition (2.12a) requires to
assume that W satisfies W∗ < W (0) < Wa. Furthermore, these last inequalities obviously
entail that W∗ < Wa, which is equivalent to b > z (according to the definitions of Wa and
W∗ given in (3.7)). It turns out that condition (2.12a) makes sense provided that b > z
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and that W∗ < E − U(0) < Wa.
As a result, we readily deduce the more precise definition of the set of constraints Q

(arising in (2.14)) given by the following lemma.

Lemma 3.3 The set Q involved in (2.14) can be rewritten as the set of elements (T, b, τ, U0)
such that:

(b, τ) ∈ Ω, G(T, b, τ) ∩ K(T, b, τ, U0) 6= ∅, (3.13)

where G(T, b, τ) is given in (2.15), while Ω, illustrated in Fig. (2), is, defined by

Ω := {(b, τ) ∈ IR2; τ > 0, w − τ ≥ b, b > z}, (3.14)

together with K(T, b, τ, U0) defined by

K(T, b, τ, U0)
:= {U : [0, T ] → IR; U(0) = U0, E − U(T ) =Wa, W∗ < E − U0 < Wa}.

(3.15)

Figure 2: The set Ω.

It can be noticed that Ω = ∅ if w ≤ z. So, as a standing assumption in the sequel of
the paper, we set

z ∈]0, w[. (3.16)

A revelant simplification of the set G(T, b, τ)∩K(T, b, τ, U0) (involved in (3.13)) is given
in the next section.

3.3 A first reduction step of the model with exact formulation

of the cost function

3.3.1 Computation the cost function

The real issue of this section is to refined the formulation of Q given in Lemma 3.3.
For this purpose, we compute B(0) with respect to some utility function U and some
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(T, b, τ, U0), under the condition B(T ) = Ba (from (2.12b)) and the following standing
assumptions:

(b, τ) ∈ Ω and U ∈ S(T, b, τ) ∩ K(T, b, τ, U0). (3.17)

Let us stress that (3.17) guarantees that 0 ≤ W∗ < Wa (since (b, τ) ∈ Ω), besides
W = E − U satisfies (3.3) with W (0) = E − U0, W (T ) =Wa and W∗ < E − U0 < Wa.

The following lemma shows us that B(0) can be formulated as a first step with re-

spect to the quantity ψ defined for t ≥ 0 by ψ(t) = e−ηt−
∫ t

0
ε(s)ds, where η = r + µ and ε

denotes the search effort.

Lemma 3.4 The cost function B at time t = 0 is given by

B(0) =

(

B(T ) +
τ

η

)

ψ(T ) + (b+ τ)
∫ T

0
ψ(s)ds−

τ

η
. (3.18)

Proof. See Appendix. •

The first term of equation (3.18) can be interpreted as the net cost of an non-insured
unemployed. The second term is the net unemployment subsidy to an insured jobless as
he does not pay tax, whereas the last term is the potential gain from an entirely life of
employment, which lasts in average 1/η unit of time.

Some quantities occurring in the above formulation of B(0) are given by the next
lemma.

Lemma 3.5 The following statements are obtained:

ψ(T ) =
H(W (0))

H(W (T ))
, where W = E − U, (3.19a)

∫ T

0
ψ(t)dt = H(W (0))

∫ W (T )

W (0)

ds

H2(s)
, (3.19b)

Ba +
τ

η
=

τ

F ′(Wa)
. (3.19c)

Proof. See Appendix.

Substituting the results of Lemma 3.5 into (3.18) with B(T ) = Ba amounts to the
following lemma.

Lemma 3.6 The differential cost equation (2.11) with B(T ) = Ba admits a unique clas-
sical solution on [0, T ] such that

B(0) = τ
H(W (0))

ρ(b)F ′(Wa)
+ (b+ τ)H(W (0))

∫ Wa

W (0)

ds

H2(s)
ds−

τ

η
, (3.20)



The optimal duration of unemployment benefits 13

where H and F are the mappings given in (3.2), W (0) = E−U(0), while ρ(b) is a positive
real number defined by

ρ(b) = u(b)− u(z) (= H(Wa(τ))). (3.21)

Lemma 3.6 provides an explicit expression of the cost function with respect to the
differences W (0) and Wa. It especially establishes that B(0) is depending on T only
through the value of U(T ).

3.3.2 A model with a simplified cost constraint

Clearly, under the assumption (3.17) and by Lemma 3.6, we observe that the condition
GU(T, b, τ) 6= ∅ (where GU(T, b, τ) is given in (2.15)) can be reduced to

Φ(b, τ,Wa,W (0)) = 0, (3.22)

where W (0) = E − U0 and where Φ is defined for (b, τ,Wa,W (0)) by

Φ(b, τ,Wa,W (0))

= τH(W (0)) + ρ(b)F ′(Wa)

(

(b+ τ)H(W (0))
∫ Wa

W (0)

ds

H2(s)
−
τ

η

)

.
(3.23)

As a straightforward consequence, we conclude that the second condition in (3.13) (i.e.,
K(T, b, τ, U0) ∩G(T, b, τ) 6= ∅) reduces to

K(T, b, τ, U0) ∩ {U ∈ S(T, b, τ) s.t. Φ(b, τ,Wa, E − U0) = 0} 6= ∅, (3.24)

where S(T, b, τ) is given in (2.15). It is further readily checked that (3.24) is equivalent
to

K(T, b, τ, U0) ∩ S(T, b, τ) 6= ∅ and Φ(b, τ,Wa, E − U0) = 0. (3.25)

So, by Lemma 3.3, we immediately obtain the following result.

Lemma 3.7 The set of constrains Q of the worker’s problem (2.14) can be equivalently
expressed as

Q = C ∩ {(T, b, τ, U0); Φ(b, τ,Wa, E − U0) = 0} (3.26)

where C of is the set of elements (b, τ, U0, T ) that satisfy the following (i1)-(j1):

(i1): (b, τ) ∈ Ω, (j1): K(T, b, τ, U0) ∩ S(T, b, τ) 6= ∅. (3.27)

The set C plays a crucial role in our methodology and its formulation will be simplified
in the next section.



The optimal duration of unemployment benefits 14

3.4 A second reduction step of the model based upon a separate

formulation of the optimal duration

The next lemma is helpful for a key transformation of the set C involved in (3.26).

Lemma 3.8 For any W0 verifying W∗ < W0 < Wa, where W∗ and Wa are nonnegative
values given by (3.7), there exists a unique positive time, given by

T =
∫ Wa

W0

1

H(s)
ds, (3.28)

with a unique W ∈ C∞([0, T ]) that satisfies (3.3) with W (0) =W0 and W (T ) =Wa.

Proof. See Appendix. •

Now, we give a fruitful simplification of C.

Lemma 3.9 The set of constraints C arising in problem (3.26) is nothing but the set of
elements (b, τ, U0, T ) that satisfy the following (i1)-(i3):

(i1) : (b, τ) ∈ Ω, (i2): W∗ < E − U0 < Wa, (i3): T =
∫ Wa

E−U0

1

H(s)
ds. (3.29)

Proof. See Appendix.

The next theorem is reached as an immediate consequence of Lemmas 3.7 and 3.9.

Theorem 3.1 Solutions (T̄ , b̄, τ̄ , Ū0) to the agency’s problem (2.14) are obtained from
solutions (b̄, τ̄ , Ū0) of the following optimization problem

max
b,τ,U0

U0 (3.30a)

subject to : Φ(b, τ,Wa(τ), E(τ)− U0) = 0, (3.30b)

W∗(b, τ) < E(τ)− U0 < Wa(τ), (3.30c)

(b, τ) ∈ Ω, (3.30d)

where (W∗,Wa) is given in (3.7), Ω is the bounded set given in (3.14) and Φ is defined in
(3.23), together with the corresponding optimal duration T̄ given by

T̄ =
∫ Wa(τ̄ )

E(τ̄)−Ū0

1

H(b̄,τ̄)(s)
ds. (3.31)

Let us underline that the use of standard Lagrangian techniques does not seem appro-
priate for investigating the constrained optimization problem (3.30). In the next section,
we then use another methodology that first consist in simplifying the above formulation
of the model and more specifically its set of constraints.
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4 Characterization of optimal durations through a

two dimensional model

In this section , we show that the agency’s problem can be reduced to minimizing some
continuous function of variables b and τ over a closed and bounded set of IR2. It is also
obtained that the specific optimal durations T̄ = 0 and T̄ = +∞ are associated only
with optimal values (b̄, τ̄) that are located on some parts of the boundary of the set of
constraints.

4.1 The agency’s problem as an implicit two-dimensional mini-

mization problem

We use the same notations as in the previous section and show that (3.30) can be
rewritten as a more exploitable two-dimensional minimization problem. This strategy
essentially brings the numbers of relevant variables down to only two, namely b and τ .

In order to reach such a transformation, we begin with introducing the new vari-
ables y = E − U0 and ν = E − Ua (namely, y = W0 and ν = Wa). Clearly, we have
U0 = E − y = (1/η)u(w − τ)− y.

So model (3.30) can be alternatively considered through the following formulation

min
b,τ,y

y − (1/η)u(w − τ) (4.1a)

subject to : Φ(b, τ, y, ν(τ)) = 0, (4.1b)

W∗(b, τ) < y < ν(τ), (4.1c)

(b, τ) ∈ Ω, (4.1d)

where Ω is given in (3.14) and the other quantities are defined by

W∗(b, τ) := F−1(u(w − τ)− u(b)), (4.2a)

ν(τ) := F−1(u(w − τ)− u(z)), (4.2b)

Φ(b, τ, y, ν) := τH(b,τ)(y) + ρ(b)H ′
(b,τ)(ν)



(b+ τ)H(b,τ)(y)
∫ ν

y

ds

H2
(b,τ)(s)

−
τ

η



 , (4.2c)

together with ρ(b) := u(b)− u(z) (= H(b,τ)(ν(τ))), while F and H(b,τ) are given in (3.2).

As a consequence, the following result follows immediately from Theorem 3.1.

Lemma 4.1 Any solution (T̄ , b̄, τ̄ , Ū0) of the agency’s problem (2.14) is obtained from
any element of the form (b̄, τ̄ , ȳ) that solves (4.1), together with

Ū0 = E(τ̄ )− ȳ and T̄ =
∫ ν(τ̄)

ȳ

1

H(b̄,τ̄)(s)
ds . (4.3)
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Now, we focus on simplifying the set of constraints involved in (4.1). More precisely, we
prove that the constraints related to the parameters (b, τ, y) can be reduced to (b, τ) ∈ Γ
(for some subset Γ of Ω) together with some unique value y = y(b, τ) (that only depends
on the pair (b, τ)).

Specifically, for (b, τ) ∈ Ω, we recall that ν(τ) > W∗(b, τ) (since b > z), and we
discuss the existence and uniqueness of some real value y(b, τ) ∈ [W∗(b, τ), ν(τ)] such that
Φ(b, τ, y, ν(τ)) = 0.

Lemma 4.2 Let (b, τ) ∈ Ω, set I(b,τ) = [W∗(b, τ), ν(τ)] and consider the mapping Φ(b,τ)

defined for s ∈ I(b,τ) by
Φ(b,τ)(s) = Φ(b, τ, s, ν(τ)). (4.4)

Then Φ(b,τ) is continuous and decreasing on I(b,τ). Moreover, Φ(b,τ) has a zero y(b, τ) on
I(b,τ) (which is unique) iff the pair (b, τ) also satisfies

ζ(b, τ) ≥ 0, where ζ(b, τ) := b+τ
F ′(W∗(b,τ))

− τ
η
. (4.5)

In particular, under condition (4.5), the following statements are reached:
- if ζ(b, τ) > 0 then y(b, τ) ∈]W∗(b, τ), ν(τ)[;
- if ζ(b, τ) = 0 then y(b, τ) =W∗(b, τ) < ν(τ).

Proof. See Appendix. •

Lemma 4.2 gives us general conditions that guarantee that the budget constraint
(4.1b) is binding. More specifically, the first statement in Lemma 4.2 ensures a positive
value of the potential duration of unemployment T with positive values of b and τ such
that U0 > Ua. The second statement stipulates that the budget constraint can be also
satisfied with some positive values of b and τ such that U0 = U < Ua where U is constant.
This last result implies according to (3.3) that the duration of unemployment T must be
infinite.

Finally, we show that (4.1) can be transformed into a two-dimensional minimization
problem over the set Γ defined as follows:

Γ = {(b, τ) ∈ Ω; ζ(b, τ) > 0}, where ζ is given in (4.5). (4.6)

The next result is obviously deduced from Lemma 4.2.

Lemma 4.3 There exists a single-valued mapping y : Γ → (0,+∞) that is implicitly
defined for (b, τ) ∈ Γ by

y(b, τ) ∈ (W∗(b, τ), ν(τ)), Φ(b, τ, y(b, τ), ν(τ)) = 0. (4.7)
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It is interesting to see from Lemma 4.2 that, for (b, τ) ∈ Γ, the value of y(b, τ) can
be computed (numerically) by applying a dichotomy method to the mapping Φ(b,τ) on
[W∗(b, τ), ν(τ)].

The following theorem is readily deduced from Lemmas 4.1 and 4.3. It provides a
more exploitable formulation of (4.1) that involves the set Γ introduced in (4.6) and that
will be useful with regards to both theoretical and numerical viewpoints.

Theorem 4.1 Solutions (T̄ , b̄, τ̄ , Ū0) to the agency’s problem (2.14) are obtained from
solutions (b̄, τ̄) of the following optimization problem

min
b,τ

J(b, τ) := y(b, τ)− (1/η)u(w − τ), (4.8a)

subject to : (b, τ) ∈ Γ, (4.8b)

where y(b, τ) is given in (4.7). Moreover, we have Ū0 = −J(b̄, τ̄) together with a finite
positive optimal duration

T̄ =
∫ ν(τ̄)

y(b̄,τ̄)

1

H(b̄,τ̄)(s)
ds. (4.9)

Theorem 4.1 establishes that the optimal duration T̄ is non-null and finite whenever
(4.8) admits a solution belonging to Γ. Note also that J is bounded below over Γ, as the
mapping y(., .) is positive on Γ and as the utility function u is assumed to be continuous
on (0,+∞[ (together with w − τ ≥ z > 0 for (b, τ) ∈ Ω). This latter fact does not
guarantee the existence of a solution to (4.8), even if Γ is nonempty and J is continuous
over Γ. Let us underly that Γ is bounded but not necessarily closed if nonempty. So any
existing minimizer of the objective function J over Γ does not necessarily belong to Γ
but to its closure (denoted by Γ̄). These issues will be investigated in the next section.
However we do not prove uniqueness of a solution for the agency’s problem.

4.2 Description of the feasible set and continuity of the objective

function

As we cannot ensure the existence of a minimizer of J (occurring in Theorem 4.1) over
Γ (introduced in (4.6)), we intend to guarantee the existence of a minimizer of J over
the closure of Γ. For this purpose, we give a precise description of the geometric form of
Γ and we establish the continuity of J over the closure of Γ. These informations will be
helpful for discussing some specific cases of optimal duration.

Lemma 4.4 For (b, τ) ∈ Ω, we have the following equivalencies:
ζ(b, τ) = 0 ⇔ ξ(b, τ) = 0;
ζ(b, τ) > 0 ⇔ ξ(b, τ) > 0,

where ζ is defined in (4.5) and ξ is the function which writes

ξ(b, τ) = F
(

c
(

ηb
τ

)α)

+ u(b)− u(w − τ). (4.10)
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So the set Γ can be alternatively defined by

Γ = {(b, τ) ∈ Ω; ξ(b, τ) > 0}. (4.11)

Proof. See appendix. •

Note that Γ is nothing but the set of elements of Ω that do not belong to the set
Σ defined by Σ = {(b, τ) ∈ IR2; b > 0, ξ(b, τ) ≤ 0}.

Resorting to the implicit function theorem, and using (4.11), we can provide a precise
description of Γ (as illustrated on Figure 3).

Lemma 4.5 There exists a real-valued mapping g such that g is continuous on [0, w] and
g is of class C1 on ]0, w[, and such that for any (b, τ) ∈]0, w[×]0, w[,

(i1) ξ(b, τ) = 0 ⇔ b = g(τ);
(i2) ξ(b, τ) > 0 ⇔ b > g(τ).

Moreover, we have g(0) = g(w) = 0 and for any τ ∈]0, w[ we have g(τ) ∈]0, w − τ [, so
that Γ = {(b, τ) ∈ Ω; b > g(τ)} 6= ∅ and Γ can be expressed as

Γ = {(b, τ) ∈ IR2; 0 < τ < w − z, max{z, g(τ)} < b ≤ w − τ}. (4.12)

Proof. See Appendix. •

In light of Lemma 4.5 we obviously reach the following result.

Lemma 4.6 The set Γ is nonempty, not closed and Γ̄ (the closure of Γ) is the closed set
verifying Γ ⊂ Γ̄ and defined by

Γ̄ = {(b, τ) ∈ IR2; 0 ≤ τ ≤ w − z, max{z, g(τ)} ≤ b ≤ w − τ}. (4.13)

Now, we are in position to deal with the continuity of the objective function J over Γ̄.

Lemma 4.7 The mapping y(., .) (defined in (4.3)) is continuous over Γ and it can be
extended to a continuous function over Γ̄ such that:

- if τ = 0 and z < b ≤ w, then y(b, τ) = ν(0);
- if b = z, then y(b, τ) = ν(τ);
- if b > z and b = g(τ) then y(b, τ) = W∗(b, τ).

So the objective J : (b, τ) → y(b, τ)−1/ηu(w−τ) can be regarded as a continuous mapping
over Γ̄.

Proof. See Appendix. •

4.3 Optimal durations linked with possible minimizers

Let us recall that Γ is a bounded but not a closed set, and so, by continuity of J over Γ̄
(from Lemma 4.7)), we know that there exists (b̄, τ̄ ) belonging to Γ̄ (but not necessarily
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Figure 3: The set Γ.

belonging to Γ) and such that J(b̄, τ̄) = minΓ J . Such an element (b̄, τ̄) equivalently solves
the following well-posed minimization problem

min
(b,τ)∈Γ̄

J(b, τ). (4.14)

It is also clear that argminΓJ , the set of (feasible) solutions to (4.8), is nothing but the
set of solutions to (4.14) that also belong to Γ. So the set of solutions to (4.14) can be
divided into two parts S1 and S2 that are described below:

1) The first part S1 corresponds to the set of solutions to (4.14) that also belong
to Γ, which is is nothing but argminΓJ , namely the set of (feasible) solutions to (4.8).
In particular, each element (b̄, τ̄) ∈ S1 is linked with some non-zero and finite optimal

duration for the agency’s problem given by T (b̄, τ̄ ) =
∫ ν(τ̄ )

y(b̄,τ̄)
1

H(b̄,τ̄)(s)
ds (see, Theorem 4.1),

hence 0 < T (b, τ) < +∞.
2) The second part S2 corresponds to the set of solutions to (4.14) that do not belong

to Γ, which is nothing but the set of elements (b̄, τ̄) ∈ Γ̄ \ Γ verifying J(b̄, τ̄) = minΓ J .
In other words, S2 is the set of solutions to (4.14) that belong to one of the sets ΛB, ΛL

and ΛC defined by:

ΛB = {(b, τ) : τ = 0, z < b ≤ w}, (4.15)

ΛL = {(b, τ) : b = z, 0 ≤ τ ≤ w − z, ζ(z, τ) > 0}, (4.16)

ΛC = {(b, τ) : z < b < w, 0 < τ < w − b, ζ(b, τ) = 0}. (4.17)

Specifically, S2 can be regarded as the set of infeasible solutions to (4.8). Any element
(b̄, τ̄ ) of S2 does not solve the agency’s problem (4.8) but can be approximated by an in-
finite sequence ((bn, τn)) ⊂ Γ (also referred to as a minimizing sequence of J over Γ) such
that J(bn, τn) decreases and converges to J(b̄, τ̄) (as n → +∞). It is also obvious that
each element (bn, τn) is associated with some non-zero and finite duration of UI benefits

T (bn, τn) =
∫ ν(τn)
y(bn,τn)

1
H(bn,τn)(s)

ds. So an optimal duration for the (4.8) linked with (b̄, τ̄ )
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can be regarded as the value given by T̄ = limn→+∞ T (bn, τn), whenever this limit exists.
In particular, we have T̄ = T (b̄, τ̄ ), provided that the mapping T (., .) is continuous over Γ̄.

In addition, for (b, τ) ∈ Γ̄, we know that W∗(b, τ), ν(τ) and y(b, τ) are well-defined
values (see, Lemma 4.7) that satisfies W∗(b, τ) ≤ y(b, τ) ≤ ν(τ). It also is easily seen that
1/H(b,τ) is continuous over (W∗(b, τ),+∞) and that the following property holds:

1
H(b,τ)(s)

∼ 1

(F (1)(W∗(b,τ)))(s−W∗)
as s→W∗(b, τ). (4.18)

It follows from the limit comparison test (for improper integrals) that a sufficient condi-
tion for having T (b, τ) = +∞ is given by y(b, τ) = W∗(b, τ) and y(b, τ) < ν(τ).

Therefore the following observations can be done in light of Lemma 4.7.

Lemma 4.8 For any element (b, τ) ∈ Γ̄, we have the following results:
• (b, τ) ∈ ΛB ∪ ΛL ⇒ y(b, τ) = ν(τ) ⇒ T (b, τ) = 0;
• (b, τ) ∈ ΛC ⇒ y(b, τ) =W∗(b, τ) and y(b, τ) < ν(τ) ⇒ T (b, τ) = +∞.

The following theorem is immediately deduced from the previous arguments.

Theorem 4.2 Let S := argminΓ̄J be the set of solutions of (4.14). An optimal dura-
tion for the agency’s problem can be considered through the following situations related to
(4.8):

- If S ∩ Γ 6= ∅, then any element (b̄, τ̄) ∈ S ∩ Γ is linked with a positive and finite
optimal duration T̄ for the worker’s problem, given by T̄ = T (b̄, τ̄).

- If S ∩ Γ = ∅, then there exists some element (b̄, τ̄) ∈ S ∩ (ΛB ∪ ΛL ∪ ΛC). Such an
element is linked with a optimal duration T̄ for the worker’s problem, given by

T̄ = T (b̄, τ̄) =

{

0, if (b̄, τ̄) ∈ ΛB ∪ ΛL,
+∞, if (b̄, τ̄) ∈ ΛC ,

(4.19)

provided that the mapping T (., .) is continuous over Γ̄

If the minimizer of the function J over Γ̄ belongs to the set ΛC , then it is always
possible to find a pair (b, τ) ∈ Γ more and more closer to (b̄, τ̄) and linked with a more
and more longer potential duration of UI benefits T . When (b, τ) is close enough of (b̄, τ̄),
the optimal insurance system is then characterized by a flat profile of unemployment
payments since the assistance system is never reached.
If the minimizer of the function J over Γ̄ belongs to the set ΛB ∪ΛL, then, according to

Theorem 4.2, there also always exists a couple (b, τ) ∈ Γ that tends to (b̄, τ̄) and improves
the value of J with a compatible shorter potential duration of UI benefits T . If (b, τ) ∈ Γ
is sufficiently near to (b̄, τ̄), the optimal UI then meets the assistance system.
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5 Numerical illustrations

In this section we give an illustrative numerical example of our model based on the
American economy. We first roughly calibrate some unknown parameters so as to fit
some keys characteristics of the American labor market.

5.1 Calibration of the model

Let us consider the very usual CRRA function u defined by

u(x) = 1
1−λ

x1−λ with λ 6= 1. (5.20)

The aversion risk parameter λ is calibrated to be 2 but we discuss later of its impact
on the numerical results. The time unit is one month. The interest rate is therefore set
to r = 0.00327 which corresponds to an annual rate of 4%. In the United-Sates, life
expectancy at birth is somehow above 78 years whereas the minimum legal age at which
people can work is 15 years (OECD, 2014). The life expectancy in our model is set at 63
years since we only consider the working age population, which makes the death monthly
rate µ = 0.0013. The duration of UI benefits T is set at 6 months which is the duration
of regular UI benefits. To calibrate the UI program, we follow Nakajima (2012), who
takes into account both monetary and non-monetary benefits of unemployment. Eligible
UI benefits b and non-eligible unemployment benefits z are then respectively set to $1393
and $961 with a mean wage equals to $3202.

Parameters Value
α Curvative parameter of disutility from search 0.827
c Level parameter of disutility from search 0.019
µ Death rate 0.0013
r Monthly interest rate 0.00327
λ Coefficient of relative risk aversion 2
T Maximum period of UI eligibility in months 6
w Gross wage 3202
b Unemployment insurance benefits 1393
z Unemployment assistance benefits 961
1/ε0 Mean duration of unemployment for eligible unemployed at 0 5
1/εa Mean duration of unemployment for non eligible unemployed 4

Table 1: Calibration

It is also necessary to assign a value to the level parameter of disutility of search c and
a value to the curvature parameter of disutility from search α, for which there are no
available information. The values of α and c are chosen such that the mean duration of
unemployment for an eligible and an non-eligible unemployed are respectively 4 and 5
months. Then we uncover the values {c, α, y, τ} by solving the system composed of the
following constraints: the first order conditions for optimal search effort (2.3) and (2.5),
the equality (2.7) that gives Ua, the budget constraint (4.7) and the expression of the
potential duration of UI benefits (3.31) from Theorem 3.1.
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5.2 Simulations results

Using the values of parameters given in the previous section, we begin with illustrating
the evolution in time of the search effort and the gains from employment. As expected
from Lemma 3.2, search effort increases monotonously over time (Fig. 4) while the ex-
pected utility of an eligible jobless, U(t), decreases (Fig. 5).
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Figure 4: The evolution of ε(t) and the duration of
unemployment.
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Figure 5: Evolution in time of the gains from em-
ployment W (t).

The computation of the optimal contract is described in the second row of Table 2
(see also Fig. 6 and 7). The optimal duration of UI benefits is 12.68 months, double the
potential duration of the baseline model with more generous UI benefits but also a higher
tax rate.4 The latter was equal to 21.9 in the baseline model versus 78.63 for the optimal
contract. The greater generosity of the optimal contract reduces incentives to find a job
since search efforts decrease significantly for the eligible unemployed to ε0 = 0.1 (at t = 0)
and, to a lesser extent, for the non-insured unemployed to εa = 0.249.
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Figure 6: Geometric form of the domain Γ.
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Figure 7: 3D view of the profile of J near

the solution (b̄, τ̄) = (2653.52, 78.63)

4The optimal duration of UI seems very high for the American economy. Let us underline that these
simulations are only for illustrative purposes. Taking into account, for example, transitions between
employment and unemployment or eligibility criteria would certainly affect our numerical results.
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Finally, we consider how the results can be affected when the risk aversion parameter
λ is modified. Intuitively, the risk aversion parameter should play an important role in
the definition of the optimal contract since a higher value of risk aversion makes both
consumption smoothing and insurance more important for the worker.

Rows 3-7 of Table 2 reports the results obtained when the risk aversion is gradually

λ b̄ τ̄ T̄ U0

2 2653.26 78.63 12.68 -0.073
2.1 2611.11 121.23 19.72 -0.031
2.2 2561.14 184.962 29.88 -0.013
2.3 2486.27 276.693 43.88 -0.0062
2.4 2382.94 402.69 61.60 -0.0034
2.5 2253.0 564.82 81.11 -0.0015

Table 2: Optimal unemployment insurance

raised to 2.5. We can notice the striking increase of the optimal expected utility U0 with
higher values of λ and the trade-off between the level of UI benefits and the duration of
their paiement.
However, it is obvious that with such degrees of risk aversion, the optimal contract gives

much lower incentives for employment than the baseline program. In our framework and
for the parameters chosen, a later exhaustion date of UI benefits and longer duration of
unemployment, as λ grows, do not compensate the financial gains from the fall in benefits,
that leads to an increasing tax rate.

6 Conclusion

If a significant work has been done to determine the optimal profile of UI benefits, it
was generally with the implicit assumption that their potential duration was infinite. It
is true that a fixed and predictable date of exhaustion of benefits often brings inextrica-
ble or for the less hardly extricable technical difficulties since one has to deal with time
dependency of search effort (see Mortensen, 1977; van der Berg, 1990). To stride over
these drawbacks, some models assume a given Poisson process for a random duration of
benefits and/or run numerical exercises to determine the optimal profile. In so doing,
they can find an infinite (e.g. Davidson and Woodbury, 1997) or a finite (e.g. Fredriksson
and Holmlund, 2001) expected optimal duration.
In this paper we propose a new methodology based on the study of the geometric prop-
erties of the set of constraints to deal with nonstationarity complexities. This strategy
permits us to formally characterize the optimal duration of UI benefits. However, the
model used here is very basic and many extensions can be contemplated by lifting some
restrictions. In particular, we assume constant benefits and wage taxes over the spell of
unemployment and an exogenous assistance payment. Maybe a decreasing sequence of
benefits with an assistance payment optimally chosen could substantially influence the
trade-off between the level and the duration of UI benefits. Another important feature of
our model is the absence of financial markets. In a sequential job search model, Shimer
and Werning (2008) show how savings and borrowing behaviors can play a significant role
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in the definition of an optimal insurance unemployment system. It is probably the case
in our model. These questions will be the subject of future investigations.
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7 Appendix

7.1 Proof of Lemma 3.1

We begin with proving the existence and uniqueness of a global classical solution to (3.9). Let
us recall that the mapping H involved in (3.9) is defined for s ≥ 0 by :
H(s) = ηs+ βs1+q − γ (for some values η > 0, β > 0, γ ≥ 0 and q > 0),

hence its derivative H ′ is defined for s ≥ 0 by :
H ′(s) = η + β(q + 1)sq.

Clearly, H is of class C1 on the open set (0,+∞), hence H is locally Lipschitz on (0,+∞).
Consequently, for Wa ∈ (0,+∞), by the Cauchy-Lipschitz theorem, we know that there exists a
maximal positive time Tm (finite or infinite) that ensures existence and uniqueness of a classical
solution V to (3.9) on [0, Tm) such that
V (t) ∈ (0,+∞) for t ∈ [0, Tm).

We also know that there exits some value W∗ ≥ 0 such that H(W∗) = 0. Then, given any
t ∈ [0, Tm) and applying the Taylor formula to H between V (t) and W∗ gives us:
H(V (t)) = H(W∗) + (V (t)−W∗)H

′(χ(t)) = (V (t)−W∗)H
′(χ(t)),

where χ(t) is some value between V (t) andW∗ (hence χ(t) is nonnegative). So, for t ∈ [0, Tm), by
(3.9), H(W∗) = 0 and setting Z(.) = V (.) −W∗, we equivalently obtain Ż(t) = −Z(t)H ′(χ(t)),
namely,

d

dt

(

Z(t)eφ(t)
)

(t) = 0, (7.1)

together with φ(t) :=
∫ t
0 H

′(χ(s))ds, namely

φ(t) = ηt+

∫ t

0
P (s)ds, where P (s) = β(q + 1)(χ(s))q .

Hence, given t ∈ [0, Tm), by integrating (7.1) between 0 and t we get Z(t) = Z(0)e−φ(t), that is

V (t)− V (0) = (V (0)−W∗)e
−ηt−

∫ t

0
P (s)ds. (7.2)

As a result, we immediately deduce that V (T−
m ) (:= limt→T−

m
V (t)) is well-defined and positive

(namely, V (T−
m) ∈ (0,+∞)), which entails that Tm = +∞ (otherwise, Tm cannot be the maximal

existence time of V ). This ensures the existence and uniqueness of a global classical solution
V ∈ C2(IR+) to (3.9), given by (7.2) for t ∈ IR+. This leads to the desired result. •

7.2 Proof of Lemma 3.2

Given T > 0 and setting W (t) = V (T − t), where V is the global classical solution to (3.9)
(hence V ∈ C2(IR+) according to Lemma 3.1), we clearly have
W ∈ C2([0, T ]) and W (T ) = V (0) =Wa,

while for t ∈ [0, T ] and by (3.9) we get
Ẇ (t) = −V̇ (T − t) = H(V (T − t)) = H(W (t)).

This entails the existence of a classical solution on [0, T ] to the following system:

Ẇ = H(W ), with W (T ) =Wa. (7.3)



The optimal duration of unemployment benefits 26

Conversly, we set V (t) =W (T − t), where W is a classical solution to (7.3) on [0, T ]. It is clear
that V ∈ C1([0, T ]) and, for t ∈ [0, T ], by (7.3) we obtain
V̇ (t) = −Ẇ (T − t) = −H(W (T − t)) = −H(V (t)),

together with V (0) =W (T ) =Wa.
Then, observing that such a function V is uniquely defined on [0, T ] (according to Lemma 3.1),
we deduce that (7.3) has at most one classical solution on [0, T ] and that this unique solution is
given for t ∈ [0, T ] by

W (t) = V (T − t), (7.4)

where V is the global classical solution to (3.9). Now, from Lemma 3.1, we have
V (t) =W∗ + (V (0) −W∗)e

−φ(t).
As the mapping φ is increasing on IR+ and satisfies φ(0) = 0 and limt→+∞ φ(t) = +∞, we
readily deduce the following statements:

(k1) V (0) > W∗ ⇒ V is decreasing and W∗ < V ≤ V (0) on IR+;
(k2) V (0) =W∗ ⇒ V ≡W∗ on IR+;
(k3) V (0) < W∗ ⇒ V is increasing and V (0) ≤ V < W∗ on IR+.

The rest of the proof follows from the above results (k1)-(k3) together with (7.4). •

7.3 Proof of Lemma 3.4

Proof. Let us recall that B satisfies on [0, T ] the cost differential equation (2.11) that can be
rewritten as
Ḃ(t) = a(t)B(t) + f(t), where a(t) = η + ε(t) (with η = r + µ) and f(t) = τ

ηε(t)− b.

From this equation and setting GT (t) =
∫ T
t a(s)ds, we equivalently have

d
dt

(

B(t)eGT (t)
)

= f(t)eGT (t).

Now, integrating on [t, T ] each side of this last equality amounts to

B(t)eGT (t) −B(T ) = −
∫ T

t
f(ρ)eGT (ρ)dρ. (7.5)

From the definitions of f and a and observing that G′
T (t) = −a(t) we also have

f(t) = τ
ηa(t)− (b+ τ) = − τ

ηG
′
T (t)− (b+ τ),

hence,

f(t)eGT (t) = − τ
η

d
dt

(

eGT (t)
)

− (b+ τ)eGT (t).

So, by (7.5) and noticing that GT (T ) = 0, we get

B(t)eGT (t) −B(T ) =
τ

η
(1− eGT (t)) + (b+ τ)

∫ T

t
eGT (ρ)dρ. (7.6)

Checking that GT (ρ) = GT (t)−Gρ(t) and multiplying equality (7.6) by e−GT (t), we deduce

B(t) = (B(T ) +
τ

η
)e−GT (t) + (b+ τ)

∫ T

t
e−Gρ(t)dρ−

τ

η
,

which entails the desired value of B(0) (with respect to T and B(T )). •
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7.4 Proof of Lemma 3.5

We recall that W = E − U satisfies on [0, T ] the utility equation (3.3) which writes

Ẇ = ηW + βW 1+1/α − γ, (with constants η > 0, γ ≥ 0 and β = c−1/α α
α+1).

So differentiating the above equation on [0, T ] yields

Ẅ = ηẆ + c−1/αW 1/αẆ . (7.7)

In light of Lemma 3.2, we also know that W is increasing and satisfies W∗ < W on [0, T ],
hence, by Ẇ (t) = H(W (t)) (from (3.3)), we can see that Ẇ is positive on [0, T ] (as H is
increasing on IR+ and H(W∗) = 0). Consequently, recalling that ǫ = c−1/αW 1/α (from (2.3)),

by (7.7) we deduce that ǫ = Ẅ
Ẇ

− η. Next, by integrating on [0, t], for t ∈ [0, T ], we get

ηt+
∫ t
0 ǫ(s)ds = − ln Ẇ (0)

Ẇ (t)
, which by ψ(t) = e−ηt−

∫ t

0
ǫ(s)ds (namely the definition of ψ) amounts

to

ψ(t) =
Ẇ (0)

Ẇ (t)
. (7.8)

So, recalling that Ẇ (t) = H(W (t)) (from (3.3)), we immediately deduce (3.19a). Now, from
(7.8) and (3.3), we readily have
∫ T
0 ψ(x)dx = H(W (0))

∫ T
0

dt
Ẇ (t)

,

hence, by the change of variable s =W (t) (hence ds = Ẇdt), we obtain

∫ T
0 ψ(x)dx = H(W (0))

∫W (T )
W (0)

ds
(Ẇ (t))2

= H(W (0))
∫W (T )
W (0)

ds
(H(W (t)))2

= H(W (0))
∫W (T )
W (0)

ds
H2(s) ,

that is (3.19b). Finally, taking into account (2.10) and (2.5), we recall that Ba = − τǫa

η(η+ǫa) ,

where η = r + µ and ǫa = c−1/αW
1/α
a . Consequently, we obtain

Ba +
τ
η = τ

η

(

− ǫa

η+ǫa + 1
)

= τ
η+ǫa .

Then it can be seen that Ba +
τ
η = τ

F ′(Wa)
, that is (3.19c). •

7.5 Proof of Lemma 3.8

Let W0 be such that 0 ≤ W∗ < W0 < Wa. Then, it is not difficult to see from the formulation
of V given in Lemma 3.1 that there exists a unique positive time T such that V (T ) = W0.
Moreover, by Lemma 3.2, we deduce that there exists a unique mapping W verifying (3.3) with
W (T ) = Wa. Also recalling from Lemma 3.2 that W (t) = V (T − t) for t ∈ [0, T ], we obtain
W (0) = V (T ) =W0.
Furthermore, we know by Lemma 3.2 that W is strictly increasing on [0, T ], while it is obvious
that T =

∫ T
0 ds. Consequently, by the change of variable u = W (s) (hence du = Ẇ (s)ds), and

recalling that Ẇ (s) = H(W (s)), we obtain

T =
∫W (T )
W (0)

1
H(W (s))du =

∫Wa

W0

1
H(u)du.

This ends the proof. •
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7.6 Proof of Lemma 3.9

Let C1 denote the set of elements (b, τ, U0, T ) verifying conditions (i1) to (i3). The proof can be
divided into two parts:

- Given (b, τ, U0, T ) ∈ C, by definition of C, we have (b, τ) ∈ Ω and there exists some U ∈
K(T, b, τ, U0) ∩ S(T, b, τ) 6= ∅. Consequently, setting W = E − U , we know that W satisfies
(3.3) on [0, T ], together with W (0) = E − U0, W (T ) = Wa and W∗ < W (0) < Wa. As a
result, invoking Lemma 3.8, we conclude that T is nothing but the positive quantity given by
T =

∫Wa

W (0)
1

H(s)ds. So we have (b, τ, U0, T ) ∈ C1 and it follows that C ⊂ C1.

- Conversely, taking (b, τ, U0, T ) ∈ C1, we obviously have (b, τ) ∈ Ω together with W∗ <
E − U0 < Wa and T =

∫Wa

E−U0

1
H(s)ds. Applying Lemma 3.8 yields that there exists a unique

classical solution W to (3.3) on [0, T ] with W (0) = E − U0 and W (T ) = Wa. So, setting
U = E −W , we can easily check that U satisfies the differential equation (2.6) on [0, T ]. Then
it is readily seen that U ∈ K(T, b, τ, U0) ∩ S(T, b, τ). As a result we get (b, τ, U0, T ) ∈ C and we
deduce that C1 ⊂ C

The conclusion C = C1 follows immediately. •

7.7 Proof of Lemma 4.2

We begin with stating a preliminary estimate that will help us to compute the value Φ(b, τ, y, ν)
defined (4.2c) in special cases when y → W∗(b, τ). For the sake of legibility we sometimes omit
the parameters b and τ in the formulations of ν(τ) and W∗(b, τ).

Lemma 7.1 Let (b, τ) ∈ Ω and consider real values y and ν verifying W∗(b, τ) < y < ν, and

set Ψ(b, τ, y, ν) := H(y)

∫ ν

y

ds

H2(s)
. Then the following estimate is reached:

∣

∣

∣

∣

Ψ(b, τ, y, ν)−
H ′(ly)(ν − y)

(H ′(W∗))2(ν −W∗)

∣

∣

∣

∣

≤ (2c−qη−3)D(b, τ, y, ν), (7.9)

for some ly ∈ (W∗, y) together with

D(b, τ, y, ν) =















1
1−qH

′(ly)
(

(y −W∗)
q − y−W∗

(ν−W∗)1−q

)

, if q < 1,

−qνq−1H ′(ly)(y −W∗) ln
(

y−W∗

ν−W∗

)

, otherwise.

(7.10)

Proof. Given s ∈ (y, ν), applying Taylor’s formula to H between s and W∗(b, τ), and recalling
that H(W∗) = 0, we have H(s) = (s−W∗)H

′(cs), for some cs ∈ (W∗, s), with H
′(cs) = η+c−qcqs.

So we get
1

(H(s))2 − 1
(s−W∗)2(H′(W∗))2

= 1
(s−W∗)2

(

1
(H′(cs)2

− 1
(H′(W∗))2

)

= (H′(W∗)−H′(cs))
(s−W∗)2

(

H′(W∗)+H′(cs)
(H′(cs)2(H′(W∗))2

)

,

namely
1

(H(s))2
− 1

(s−W∗)2(H′(W∗))2
= −r(s),

where r(s) := (H′(cs)−H′(W∗))
(s−W∗)2(H′(W∗))2

(

H′(W∗)
(H′(cs))2

+ 1
H′(cs)

)

.
(7.11)

So integrating this last equality between y and ν amounts to
∫ ν
y

1
(H(s))2

ds− (ν−y)
(H′(W∗))2(y−W∗)(ν−W∗)

= −
∫ ν
y r(s)ds.
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Moreover, again by Taylor’s formula, we have
H(y) = (y −W∗)H

′(ly), for some ly ∈ (W∗, y).
Consequently, recalling that Ψ(b, τ, y, ν) := H(y)

∫ ν
y

1
(H(s))2 ds and using the previous two equal-

ities, we obtain

Ψ(b, τ, y, ν) = P −Q,

where P =
(ν−y)H′(ly)

(H′(W∗))2(ν−W∗)
, Q = (y −W∗)H

′(ly)
∫ ν
y r(s)ds,

which gives us
|Ψ(b, τ, y, ν) − P | = |Q| = Q. (7.12)

Moreover, on the one hand, we have
0 ≤ H ′(cs)−H ′(W∗)) = c−q(cqs −W q

∗ ) ≤ c−q(sq −W q
∗ ).

On the other hand, noticing that 0 < H ′(cs) ≤ H ′(W∗), we have

0 ≤ H′(W∗)
(H′(cs))2

+ 1
H′(cs)

≤ H′(W∗)
(H′(W∗))2

+ 1
H′(W∗)

= 2
H′(W∗)

.

Hence by (7.11) we deduce that

0 ≤ r(s) ≤ δ sq−W q
∗

(s−W∗)2
, where δ := 2c−qη−3.

It is also a classical matter to check for W∗ ≤ s ≤ ν that:

sq −W q
∗ ≤ (s −W∗)

q, if q < 1, (7.13a)

sq −W q
∗ ≤ qνq−1(s−W∗), if q ≥ 1. (7.13b)

As a result, for q < 1, we obtain
0 ≤ Q ≤ δ(y −W∗)H

′(ly)
∫ ν
y (s −W∗)

q−2ds

= δ
q−1(y −W∗)H

′(ly)
(

(ν −W∗)
q−1 − (y −W∗)

q−1
)

,

namely

0 ≤ Q ≤ δ
1−qH

′(ly)
(

(y −W∗)
q − y−W∗

(ν−W∗)1−q

)

(for q < 1). (7.14)

In a similar way, for q ≥ 1, we obtain
0 ≤ Q ≤ δqνq−1(y −W∗)H

′(ly)
∫ ν
y

1
(s−W∗)

ds,
namely

0 ≤ Q ≤ −δqνq−1H ′(ly)(y −W∗) ln
(

y−W∗

ν−W∗

)

(for q ≥ 1). (7.15)

This desired result follows from (7.12) together with (7.14) and (7.15). •

Now we are in position to prove Lemma 4.2. Given (b, τ) ∈ Ω, we readily observe that
the mapping Φ(b,τ) is of class C2 over (W∗(b, τ), ν(τ)]. In addition, by definition of Φ(b,τ) and
by H ′(ν) = η + c−qνq, we obtain

Φ(b,τ)(ν(τ)) = τH(ν(τ))
(

1− (1/η)H ′(ν(τ))
)

(7.16)

= −
c−q(ν(τ))q

η
τH(ν(τ)). (7.17)

So it is easily checked that Φ(b,τ)(ν(τ)) is negative. Furthermore, for y ∈ (W∗(b, τ), ν(τ)] we
obtain the following derivatives:

Φ
(1)
(b,τ)(y) = τH ′(y)−H(ν(τ))H ′(ν(τ))(b + τ)

(

H ′(y)

∫ y

ν(τ)

ds

H2(s)
+

1

H(y)

)

, (7.18a)

Φ
(2)
(b,τ)(y) = τH(2)(y) +H(ν(τ))H ′(ν(τ))(b + τ)H(2)(y)

∫ ν(τ)

y

ds

H2(s)
. (7.18b)
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Clearly, Φ
(2)
(b,τ) is nonnegative, so that Φ

(1)
(b,τ) is nondecreasing on (W∗(b, τ), ν(τ)]. Furthermore,

we readily have

Φ
(1)
(b,τ)(ν(τ)) = −bH ′(ν(τ)) < 0. (7.19)

It is then immediate that Φ
(1)
(b,τ) is negative on (W∗(b, τ), ν(τ)]. So we deduce that Φ(b,τ) is

decreasing on (W∗(b, τ), ν(τ)]. Moreover, Lemma 7.1 obviously gives us

lim
y→W∗(b,τ)

H(y)

∫ ν(τ)

y

ds

H2(s)
=

1

F ′(W∗(b, τ))
, (7.20)

which (from the definition of Φ(b,τ)) amounts to

limy→W∗(b,τ)Φ(b,τ)(y) = H(ν(τ))F ′(ν(τ))
(

b+τ
F ′(W∗(b,τ))

− τ
η

)

. (7.21)

This shows us that Φ(b,τ) can be extended to a continuous mapping over [W∗(b, τ), ν(τ)] by
setting Φ(b,τ)(W∗(b, τ)) = limy→W∗(b,τ)Φ(b,τ)(y). The rest of the proof follows immediately from
the previous arguments. •

7.8 Proof of Lemma 4.4

Given (b, τ) ∈ Ω, by (4.5) we have
ζ(b, τ) ≥ 0 ⇔ b+τ

F ′(W∗(b,τ))
≥ τ

η

⇔ η
τ (b+ τ) ≥ F ′(W∗) (where F ′(W∗) = η + c−qW q

∗ )

⇔ ηb
τ ≥ c−qW q

∗ (where q = 1/α)

⇔ c
(

ηb
τ

)α
≥W∗ (where W∗ = F−1(u(w − τ)− u(b)))

⇔ F
(

c
(

ηb
τ

)α)

≥ u(w − τ)− u(b) (since F is increasing on IR+).

This leads to the desired result. •

7.9 Proof of Lemma 4.5

Note that ξ is of class C1 over the open set ]0, w[2. It is also readily checked for any τ ∈]0, w[ that
the mapping ξ(., τ) is continuous and increasing on ]0, w] with ξ(0+, τ) < 0 and ξ(w, τ) > 0.
So there exists some (unique) value b ∈]0, w[ such that ξ(b, τ) = 0. Furthermore, for any
(b, τ) ∈]0, w[2, we have ∂bξ(b, τ) > 0. Clearly, by the implicit function theorem, we deduce the
existence of some positive mapping g of class C1 on ]0, w[ that satisfies the properties (i1) and
(i2) of Lemma 4.5.
Next, we prove for any τ ∈]0, w[ that g(τ) < w−τ . Indeed, given τ ∈]0, w[ and setting b = w−τ
(so b ∈]0, w[) we have W∗(b, τ) = 0, hence F ′(W∗(b, τ)) = η. It follows from the definition of ζ
that ζ(b, τ) = b/η > 0. Then by (i2) of Lemma 4.5 we deduce that b > g(τ), or equivalently
w − τ > g(τ), that is the desired result.
Finally we prove that limτ→w− g(τ) = 0 and limτ→0+ g(τ) = 0.

On the one hand, by recalling that g(τ) ∈]0, w−τ [ for τ ∈]0, w[ we readily obtain limτ→w− g(τ) =
0.

On the other hand, as g is positive and bounded on ]0, w[, we can consider a cluster point of
g at 0+ denoted by l. So, we clearly have l ≥ 0 and there exists some sequence (τn) ⊂]0, w[ such
that limn→+∞ τn = 0 and limn→+∞ g(τn) = l. Then we have ξ(g(τn), τn) = 0, namely
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F
(

c
(

ηg(τn)
τn

)α)

+ u(g(τn))− u(w − τn) = 0,

where F is defined for s ≥ 0 by F (s) = ηs+ βs1+q (from (3.2a)) with q = 1/α. So the previous
equality can be rewritten as

ηc
(

ηg(τn)
τn

)α
+ β

(

c
(

ηg(τn)
τn

)α)1+q
+ u(g(τn))− u(w − τn) = 0,

hence multiplying this last equality by τ
α(1+q)
n entails

ηcτn (ηg(τn))
α + β (c (ηg(τn))

α)1+q + τ
α(1+q)
n (u(g(τn))− u(w − τn)) = 0.

Now, assume that l > 0. So, by continuity of u on ]0,∞[, passing to the limit as n→ +∞ in the
latter equality amounts to l = 0, which contradicts our assumption. Consequently, we deduce
that l = 0 is the unique cluster point of g at 0+, and so limτ→0+ g(τ) = 0. This ensures the
continuity of g over [0, w] together with g(0) = g(w) = 0. •

7.10 Proof of Lemma 4.7

Consider the open set int(Γ) defined by
int(Γ) := {(b, τ) ∈ IR2; 0 < τ < w − z, max{z, g(τ)} < b < w − τ}.

It is readily seen that int(Γ) ⊂ Γ ⊂ Γ̄ and that any element of Γ̄ can be reached as the limit of
a sequence of elements belonging to int(Γ). It is also clear from Lemma 4.5 that int(Γ) 6= ∅ and
that y is well-defined over int(Γ) (from Lemma 4.2). Now, let (b, τ) ∈ Γ̄ and let ((bn, τn)) ⊂ int(Γ)
such that limn→+∞(bn, τn) = (b, τ). It is immediate from Lemma 4.2 that

Φ(bn, τn, y(bn, τn), ν(τn)) = 0, (7.22a)

W∗(bn, τn) < y(bn, τn) < ν(τn). (7.22b)

Observing that W∗(bn, τn) → W∗(b, τ) and that ν(τn) → ν(τ), we deduce from the last two
inequalities that (y(bn, τn)) is a bounded sequence. Therefore any cluster point y of (y(bn, τn))
satisfies

W∗(b, τ) ≤ y ≤ ν(τ). (7.23)

Two additional results are established in the following parts (A1) and (A2):

A1) Let us prove that y 6= W∗(b, τ) whenever b > z and b > g(τ). Indeed, assuming that
y =W∗(b, τ), by Lemma 7.1 we can check that

limn→+∞Ψ(bn, τn, y(bn, τn)) =
1

F ′(W∗(b,τ))
,

while (7.22a) and (4.2c) yield
0 = Φ(bn, τn, y(bn, τn), ν(τn))

= τnH(bn,τn)(y(bn, τn)) + ρ(bn)F
′(ν(τn))

(

(bn + τn)Ψ(bn, τn, y(bn, τn))−
τn
η

)

;

so passing to the limit as n→ +∞ in this last equality amounts to

0 = τH(b,τ)(W∗(b, τ)) + ρ(b)F ′(ν(τ))
(

b+τ
F ′(W∗(b,τ))

− τ
η

)

,

hence, by H(b,τ)(W∗(b, τ)) = 0 and F ′(ν(τ)) 6= 0, we are led to

0 = ρ(b)
(

b+τ
F ′(W∗(b,τ))

− τ
η

)

.

It is then deduced that either ρ(b) := u(b) − u(z) = 0 (that is b = z) or ζ(b, τ) = 0 (that is
b = g(τ)), which is absurd according to our assumption.
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A2) We provide some useful equality when it is assumed that y 6= W∗(b, τ); if so, by (7.23)
we have
W∗(b, τ) < y = limn→+∞ y(bn, τn) ≤ ν(τ).

Then, in light of (4.2c), passing to the limit as n → +∞ in (7.22a) and invoking classical
continuity arguments, we obtain

0 = Φ(b, τ, y, ν(τ)) = τH(y) + ρ(b)H ′(ν(τ))
(

(b+ τ)H(y)
∫ ν(τ)
y

ds
H2(s) −

τ
η

)

. (7.24)

The rest of the proof can be divide into the following parts:

B1) Taking (b, τ) ∈ Γ̄ such that b > z and b > g(τ), by (A1) and (A2) we obtain

W∗(b, τ) < y = limn→+∞ y(bn, τn) ≤ ν(τ)

together with equality (7.24). So we consider the following two cases:

- if τ > 0 (hence (b, τ) ∈ Γ), by Lemma 4.2, we deduce that y = y(b, τ), and so

limn→+∞ y(bn, τn) = y(b, τ);

- if τ = 0, then (7.24) reduces to

H(y)
∫ ν(τ)
y

ds
H2(s) = 0,

which readily gives us y = ν(τ) (since H(y) 6= 0), and so limn→+∞ y(bn, τn) = ν(τ).

B2) Now, let (b, τ) ∈ Γ̄ verify b = z or b = g(τ):

- if b = z, we immediately have W∗(b, τ) = ν(τ), which by (7.23) gives us y = ν(τ), and so

limn→+∞ y(bn, τn) = ν(τ).

- if b > z and b = g(τ) (hence, τ 6= 0 from Lemma 4.5) then we prove by contradiction that

y = W∗(b, τ). Otherwise, by (A2), we obtain 0 = Φ(b, τ, y, ν(τ)), while we can observe that

(b, τ) ∈ Ω (since τ 6= 0) and ζ(b, τ) = 0 (since b = g(τ)), so by Lemma 4.2 we get y = W∗(b, τ),

which contradicts our assumption. It results that limn→+∞ y(bn, τn) =W∗(b, τ).

This concludes the proof. •
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