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Résumé— A Fourier-related nonlocal reduction-based coupling, using the bridging domain methodol-
ogy, is investigated to analyze the influence of boundary conditions on wrinkling patterns. The nonlocal
reduction-based coupling approach is based on the well-known Arlequin framework. The analysis of the
effect of boundary conditions on instability patterns is then provided. Numerical evaluation of the non-
local reduction-based coupling approach is proposed by considering the case of buckling of a long beam
lying on a nonlinear elastic foundation.
Mots clés— Buckling, Arlequin method, Multi-scale, Nonlocal, Boundary effect, Fourier transform.

1 Introduction

A new approach based on the concept of Fourier series with slowly varying coefficients has been
presented recently, which is developed to study the instabilities with nearly periodic patterns [1, 2, 3].
The mathematical representation yields to generalized continua macroscopic models. In this technique,
the macroscopic field is defined by Fourier coefficients of the microscopic field. It has been established
that the models obtained in this way are consistent with the Landau−Ginzburg technique, but they may
remain also valid beyond the bifurcation point, and the coupling between global and local instabilities
can be taken into consideration. Besides, this approach could be very useful to analyze the instability
problems like Rayleigh−Bénard convection whose discretization requires a huge number of degrees of
freedom. Nevertheless, a clear and secure boundary condition cannot be introduced into these macro-
scopic models, which is a drawback intrinsically linked to the use of any model reduction.

To solve this problem, a multi-scale modeling approach has been proposed in order to bypass the
question of boundary conditions [4] : the full model is implemented near the boundary while the envelope
model is considered elsewhere, and these two models are bridged by the Arlequin method [5]. In order
to match two types of displacement in two models, for simplicity, it carried out a natural prolongation
coupling way, which means the coupling is based on the fine model. However, according to the Arlequin
framework [6, 7], coupling based on the coarse model is preferred to avoid the locking phenomena.

The present paper proposes to methodically answer these shortcomings. For this purpose, a novel
nonlocal reduction-based coupling approach is developed, implemented and evaluated. In this context,
the Arlequin method is adopted in order to couple the microscopic fine model and the macroscopic en-
velope model. In the proposed approach, the Fourier coefficients are computed through reduction over a
period. This constitutes a very original contribution that aims at developing a nonlocal coupling approach
so as to accurately describe the boundary behaviour and completely avoid the locking phenomena in
terms of both amplitude and phase.

2 Macroscopic modelling of instability pattern formation

As in paper [3], the multi-scale approach, based on the concept of Fourier series with slowly vary-
ing coefficients, is adopted in the present paper. Let us consider a physical phenomenon described by
the fieldU(x)(x ∈ R). The instability wave numberq is known. The unknowns of the modelU =
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{u(x),v(x),n(x)...} are described as Fourier series, whose coefficients vary more slowly than the har-
monics :

U(x) =
+∞

∑
j=−∞

U j(x)e
jiqx, (1)

where the Fourier coefficientU j(x) denotes the envelope for thejth order harmonic andU− j(x) denotes

its conjugate value. The macroscopic unknown fieldsU j(x) slowly vary over a period
[

x,x+ 2π
jq

]

of
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Fig. 1 – The left shows at least two macroscopic fields (the mean field and the amplitude of the fluctu-
ation) are necessary to describe a nearly periodic response. The right is sketch of an elastic beam on a
nonlinear elastic foundation.

the oscillation. It is worth to mention that at least two functions,U0(x) andU1(x), are necessary to
describe the nearly periodic patterns as depicted in Fig. 1.U0(x) is identified as the mean value and
U1(x) represents the envelope or the amplitude of the spatial oscillations. Notice thatU0(x) is real valued
andU1(x) can be expressed asU1(x) = r(x)eiϕ(x). The latter mathematical expression represents the first
harmonic wherer(x) is the amplitude modulation andϕ(x) is the phase modulation. The main idea of
macroscopic modelling is to deduce some differential equations satisfied by the amplitudeU j(x).

In what follows, an elastic beam, resting on a nonlinear elastic foundation is used for the develop-
ment of the microscopic model (see Fig. 1). The unknowns are the componentsu(x) and v(x) of the
displacement vector and the normal forcen(x). SoU(x) = {u(x),v(x),n(x)} and the analyzed problem
is described by the following set of differential equations :































dn
dx

+ f = 0, (a)

n
ES

=
du
dx

+
1
2

(

dv
dx

)2

, (b)

d2

dx2

(

EI
d2v
dx2

)

−
d
dx

(n
dv
dx

)+cv+c3v3 = 0. (c)

(2)

These equations are referred to as the microscopic model. The periodic patterns are fully described
by four structural parameters :EI, ES, c, c3 and an axial forcef (x). Note that the solutions of the system
(2) are the stationary points of the following potential energy :

P(u,v) =
∫ L

0

(

ES
2
(u′+

v′2

2
)2+

EI
2

v′′2+
c
2

v2+
c3

4
v4− f u

)

dx. (3)

In paper [3], many simplifications have been introduced to build the simplest macroscopic model that
can couple the membrane problem with the envelope equation similar to Landau−Ginzburg equation.
Finally, the simplified potential energy of macroscopic model is given by

P(u0,v1) =
∫ L

0

(

ES
2

(

u′0+v′21 +q2v2
1

)2
+EI

(

6q2v′21 +q4v2
1

)

+cv2
1+

3c3

2
v4

1− f0u0

)

dx. (4)

The differential equations of the system follow from the stationary behaviour of the potential energy
δP= 0. This leads to



















dn0

dx
+ f0 = 0, (a)

n0 = ES(u′0+v′21 +q2v2
1), (b)

−
d
dx

[

(6EIq2+n0)
dv1

dx

]

+
(

EIq4+n0q2+c
)

v1+3c3v3
1 = 0. (c)

(5)
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Fig. 2 – Schematic of the reduction of microscopic model.

It is not easy to associate consistent boundary conditions with macroscopic models like (4) and
(5). Indeed, the assumption of slowly varying oscillation is not valid everywhere, especially near the
boundary due to the presence of boundary layers [8]. The very simplified model (4) and (5) is able to
predict the amplitude modulation, but unable to predict the phase modulation.

3 Reduction from micro behaviour to Fourier coefficients

Although the approach of using slowly variable Fourier coefficients is well established [1, 2, 3],
how to obtain the envelopes from given micro behaviour(U(x)→U j(x)) is still challenging. This issue
will be addressed from the mathematical standpoint to the finite element point of view. Moreover, the
methodology of the nonlocal reduction will be applied in the reduction-based coupling approach in the
next section.

For a periodic functionU(x) that is integrable on
[

−π
q,

π
q

]

, the Fourier coefficients can be represented
as

U j =
q
2π

∫ π
q

− π
q

U(x)e− jiqxdx. (6)

Using Euler’s formula,U j can be divided into a real partUR
j and an imaginary partU I

j .
From the mathematical standpoint, it is straightforward to obtain all the envelopes through Eq. (6).

From the finite element method perspective, the real microscopic model (2) and (3) is used to assess
the nonlocal reduction. The reduction of the transversal displacement is conducted by considering five
envelopes. A clamped beam is defined with the following parameters :L = 30π, ES= 1, EI = 1, c= 1
andc3 = 1/3. The instability wave number is taken asq = 1. In this configuration, the beam is free of
body forces and subjected to an increasing global end shorteningu(L) =−λL. The beam is meshed using
120 microscopic elements with the element lengthle = π/4. Basically, any point of the discretized beam
can be used to implement the proposed nonlocal reduction. The only exception is the points on boundary

region
[

0, π
q

]

and
[

L− π
q ,L

]

, since the numerical integration is carried out over the period
[

−π
q,

π
q

]

. For

the sake of simplicity, each node of the element is considered as the center of the numerical integration.
Therefore, each reduction point covers eight elements over the whole period as depicted in Fig. 2.

The discretization of the nonlocal reduction can be written as

UR
j =

q
2π

∫ xi+
π
q

xi−
π
q

U(x)cos( jqx)dx=
q
2π

le
2 ∑

xn∈gp
U(xn)cos( jqxn), (7)

U I
j =−

q
2π

∫ xi+
π
q

xi−
π
q

U(x)sin( jqx)dx=−
q
2π

le
2 ∑

xn∈gp
U(xn)sin( jqxn), (8)

wherexi is the node of element.xn ∈ gp represents the corresponding Gauss point on the microscopic

elements within the integration domain
[

xi −
π
q,xi +

π
q

]

.

The reduction of the transverse displacementv is performed with Hermite shape functions. The
variations, over the domain[π,29π], of five different envelopes :v0, vR

1 , vI
1, vR

2 andvI
2, are depicted in Fig.

3. It can be observed that|vI
1| and|vR

1 | are much larger than the other three envelopes. In the meanwhile,
the median values ofv0, vR

2 and vI
2 are all close to zero. In addition, when substituting the values of

envelopesvI
1 andvR

1 in Eq. 6 to construct the microscopic behaviour v(x), it can be noticed that only
these two envelopes can sufficiently cover the microscopic model as shown in Fig. 4. Actually, in this
case, only five envelopes have been assumed. Theoretically, the microscopic transversal displacement
can be exactly illustrated if the number of envelope is infinite, yet it is not necessary and practical.
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0 10 20 30 40 50 60 70 80 90
−1.5

−1

−0.5

0

0.5

1

1.5
λ=2.21

 

 

Microscopic model

Reconstruction of V
1
I  and V

1
R

Fig. 4 – Buckling of a clamped beam under uniform compression. The instability pattern ofλ= 2.21. The
length of beam is 30π. The reconstruction of reduced Fourier coefficientsvI

1 andvR
1 is over the domain

[π,29π].

4



Ω

Ω f

Ωr

S

Sg

Fig. 5 – Definition of domains in the Arlequin framework.

4 Arlequin method in the context of nonlocal coupling

The microscopic model (2) and (3) is implemented in a small region close to the boundary. This
allows introducing the “exact” boundary conditions. The simplified envelope model (4) and (5) will be
applied in the bulk. The two models can be bridged together thanks to the Arlequin framework [5, 6].

The domainΩ, representing the whole mechanical system, is partitioned into two overlapping sub-
zones :Ω f (microscopic fine model domain) andΩr (macroscopic reduced model domain). The resulting
superposition zoneS= Ω f ∩Ωr contains the gluing zoneSg ⊆ S(see Fig. 5).

Definingu f =
{

u(x),v(x) : x∈ Ω f
}

andur = {u0(x),v1(x) : x∈ Ωr}, the energy contribution of the
two models is defined as











Pf (u f ) =
∫

Ω f

[α fW(u f )−β f f u]dΩ,

Pr(ur) =

∫
Ωr

[αrW(ur)−βr f0u0]dΩ,
(9)

in which










W(u f ) =
ES
2
(u′+

v′2

2
)2+

EI
2

v′′2+
c
2

v2+
c3

4
v4,

W(ur) =
ES
2
(u′0+v′21 +q2v2

1)
2+EI(6q2v′21 +q4v2

1)+cv2
1+

3c3

2
v4

1.
(10)

The energy associated to each domain is balanced by weight parameter functions which are rep-
resented byαi for the internal work andβi for the external work. More details on selection of these
functions can be found in [6, 7]. In this work, a linear weight function is considered in the overlapping
region.

4.1 Coupling alternatives

The coupling aims at connecting the microscopic model with envelope model. According to the
Arlequin framework, generally, coupling based on the coarse model is preferred to avoid the locking
phenomena. This requires a definition of a nonlocal reduction operatoru f → R(u f ) which involves
the Fourier transform. Contrarily, the other way is to perform the inverse connection by using a local
prolongation operatorur →P(ur), which reproduces a compatible field fromur to be coupled withu f .
Therefore, the coupling is conducted by requiring that one of the two following conditions to be satisfied
in a mean sense :

R(u f )−ur = 0, ∀x∈ Sg; (11)

u f −P(ur) = 0, ∀x∈ Sg. (12)

Due to the nonlocal character of the proposed Fourier transform in nonlocal reduction-based coupling
approach, the implementation of (11) is much more intricate. The analysis and numerical implementation
of the nonlocal reduction-based coupling approach will be detailed in the next sections, while the details
of the prolongation coupling approach (12) can be found in [4].

4.2 Reduction-based coupling approach

For transversal direction, the reduction operator is the Fourier coefficient which has the nonlocal
character over a period. Based on the discussion reported in Section 2, one can deduce the relation
amongvR

1 , vI
1 andr(x) as follows :

v(x) = v1(x)e
iqx+v−1(x)e

−iqx =
(

vR
1 + ivI

1

)

eiqx+
(

vR
−1+ ivI

−1

)

e−iqx = 2vR
1 cos(qx)−2vI

1 sin(qx), (13)
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Fig. 6 – Schematic of the nonlocal reduction-based coupling approach. Two Gauss points are located at
each macroscopic element inSg.

wherevR
−1 = vR

1 , vI
−1 =−vI

1. After some algebraic manipulations, one can obtain
{

r(x)cosϕ = vR
1 ,

r(x)sinϕ = vI
1.

(14)

Hence, the spatial evolution of the phase is described asϕ = arctan
(

vI
1

vR
1

)

. Considering the simplified

envelope model (4), we chooseϕ =−π/2. Consequently,
{

r(x) =−vI
1,

v(x) = 2r(x)sin(qx).
(15)

Therefore, only one envelopevI
1 is considered for the reduction. Consequently, the nonlocal reduction

operator becomes

Rv(xi) =
q
2π

∫ xi+
π
q

xi−
π
q

v(x)sin(qx)dx=
q
2π

l j
e

2 ∑
xj∈gp

v(x j)sin(qxj), (16)

wherexi is the Gauss point on the macroscopic element inSg. x j ∈ gp represents the corresponding Gauss

point on the microscopic element of lengthl j
e within the integration region

[

xi −
π
q ,xi +

π
q

]

.

It is worth to mention that the performed reduction is comparable to the one developed in Section
3. Here the Gauss point is the center of the numerical integration and the reduction is conducted at
each Gauss point. This choice is motivated by the higher degree of accuracy when estimatingur which
accounts for the weak form of (11) as

C (λ,R(u f )−ur) = 0, ∀λ ∈ M, ∀x∈ Sg. (17)

whereλ is Lagrange multiplier as a fictive gluing force andM is the mediator space.
Notice that there are two main challenges when performing the numerical implementation. Indeed,

the position of Gauss point is not located at the node of the element. Thus, the numerical integration
of (16), over a period, might mismatch the corresponding position of the microscopic elements. Conse-
quently, the bounds of the numerical integration will not match the positions of the nodes. In addition,
the numerical integration, performed at Gauss points in the gluing zoneSg, may overlap in some regions.
Furthermore, the bounds of the numerical integration, over the domainSg, might lap either the domainS
or the domainΩ f . To cope with these numerical difficulties, the domainS is required to be a little larger
than the domainSg (see Fig. 6).

The corresponding stationary function is a Lagrange multiplier :

L(u f ,ur ,λ) = Pf (u f )+Pr(ur)+C (λ,R(u f )−ur) . (18)

From Eq. (18), one can obtain three equations according toδu f , δur andδλ :






δPf (u f )+C (λ,δR(u f )) = 0, ∀δu f ∈ K.A.,
δPr(ur)−C (λ,δur) = 0, ∀δur ∈ K.A.,
C (δλ,R(u f ))−C (δλ,ur) = 0, ∀δλ ∈ M.

(19)

whereK.A. stands for kinematically admissible. Finally, theL2 type coupling operatorC is defined as
follows :

C (λ,u) =

∫
Sg

(λ ·u)dΩ. (20)

More details about coupling operators can be found in [6, 7].
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5 Numerical evaluation

Numerical evaluation of the nonlocal reduction-based coupling approach is performed by consid-
ering the case of buckling of a long beam lying on a nonlinear elastic foundation. The clamped beam
has the same parameters as those reported in Section 3. Two models (microscopic model and macro-
scopic model) and two coupling approaches (reduction-based coupling and prolongation coupling [4])
are compared and evaluated.

As for reduction-based coupling approach, the bifurcation path (vmax,λ) and the instability pattern
for λ = 2.21 are depicted in Fig. 7. As for prolongation coupling approach [4], the bifurcation branch
(vmax,λ) and the instability pattern forλ = 2.21 are illustrated in Fig. 8.
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Fig. 7 – Buckling of a clamped beam under uniform compression : the left shows applied shorteningλ
vs. maximal deflection ; the right shows spatial distribution of the instability patterns forλ = 2.21. The
reduction-based coupling approach is implemented.
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Fig. 8 – Buckling of a clamped beam under uniform compression : the left shows applied shorteningλ
vs. maximal deflection ; the right shows spatial distribution of the instability patterns forλ = 2.21. The
prolongation coupling approach is implemented.

The following conclusions and remarks can be highlighted :

1. Regarding to the evolution of instability patterns, a disagreement between the macroscopic and
microscopic model is observed. This is essentially due to the boundary effects that become signif-
icant at some distances from the bifurcation point. The macroscopic model is unable to describe
boundary layers.

2. The reduction-based coupling approach is able to perfectly capture the local effects in the left
boundary layers as depicted in Fig. 7 and 9. Precisely, there is no difference, in terms of amplitude
or phase, between the reduction-based coupling approach and the microscopic model in the left
part. This conclusion is consistent since the use of the microscopic model near the boundary ac-
counts for the boundary layers. The proposed reduction-based coupling approach is able to correct
the deficiency of the macroscopic model near the boundary.

3. According to the results reported in Fig. 8 and 9, the prolongation coupling approach [4] gives
a fair result in terms of amplitude. However, there is a phase discrepancy in the left boundary
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region due to the influence of phase locking phenomena when applying the prolongation coupling
approach (see Fig. 9).
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Fig. 9 – Zoom of the left boundary : spatial distribution of the instability patterns forλ = 2.21. The
reduction-based coupling approach and prolongation coupling approach are depicted together.

6 Conclusion

In this paper, a nonlocal reduction-based coupling approach via Arlequin method has been devel-
oped to analyze the influence of boundary effects on pattern formation. In order to avoid the critical issue
of defining appropriate boundary conditions for the macroscopic envelope model, the microscopic fine
model has been introduced only in the vicinity of the boundary region. In this way, it allows prescribing
the actual boundary conditions. The microscopic fine model and macroscopic envelope model are then
bridged together through the proposed nonlocal reduction-based coupling approach. The reduction-based
coupling approach is able to capture the local effects around the boundary layers and correct the defi-
ciency of the macroscopic model. Our preliminary results show that this technique is promising and could
be applied to cellular instability problems involving thin boundary layers such as membrane wrinkling
and fiber microbuckling or even in fluid mechanics [8]. Besides, the reduction from microscopic behavior
to Fourier coefficients has also raised some interests in deeply studying the number of harmonics to be
accounted in macroscopic models [3] for various modelling cases.
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