Fan Xu 
email: fan.xu@univ-lorraine.fr
  
Salim Belouettar 
email: salim.belouettar@tudor.lu
  
Heng Hu 
email: huheng@whu.edu.cn
  
Michel Potier-Ferry 
email: michel.potier-ferry@univ-lorraine.fr
  
A novel nonlocal reduction-based coupling approach via Arlequin method on instability patterns
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A Fourier-related nonlocal reduction-based coupling, using the bridging domain methodology, is investigated to analyze the influence of boundary conditions on wrinkling patterns. The nonlocal reduction-based coupling approach is based on the well-known Arlequin framework. The analysis of the effect of boundary conditions on instability patterns is then provided. Numerical evaluation of the nonlocal reduction-based coupling approach is proposed by considering the case of buckling of a long beam lying on a nonlinear elastic foundation.

Introduction

A new approach based on the concept of Fourier series with slowly varying coefficients has been presented recently, which is developed to study the instabilities with nearly periodic patterns [START_REF] Damil | A generalized continuum approach to describe instability pattern formation by a multiple scale analysis[END_REF][START_REF] Damil | A generalized continuum approach to predict local buckling patterns of thin structures[END_REF][START_REF] Damil | Influence of local wrinkling on membrane behaviour : A new approach by the technique of slowly variable Fourier coefficients[END_REF]. The mathematical representation yields to generalized continua macroscopic models. In this technique, the macroscopic field is defined by Fourier coefficients of the microscopic field. It has been established that the models obtained in this way are consistent with the Landau-Ginzburg technique, but they may remain also valid beyond the bifurcation point, and the coupling between global and local instabilities can be taken into consideration. Besides, this approach could be very useful to analyze the instability problems like Rayleigh-Bénard convection whose discretization requires a huge number of degrees of freedom. Nevertheless, a clear and secure boundary condition cannot be introduced into these macroscopic models, which is a drawback intrinsically linked to the use of any model reduction.

To solve this problem, a multi-scale modeling approach has been proposed in order to bypass the question of boundary conditions [START_REF] Hu | A bridging technique to analyze the influence of boundary conditions on instability patterns[END_REF] : the full model is implemented near the boundary while the envelope model is considered elsewhere, and these two models are bridged by the Arlequin method [START_REF] Dhia | Multiscale mechanical problems : the Arlequin method[END_REF]. In order to match two types of displacement in two models, for simplicity, it carried out a natural prolongation coupling way, which means the coupling is based on the fine model. However, according to the Arlequin framework [START_REF] Ben Dhia | The Arlequin method as a flexible engineering design tool[END_REF][START_REF] Bauman | On the application of the Arlequin method to the coupling of particle and continuum models[END_REF], coupling based on the coarse model is preferred to avoid the locking phenomena.

The present paper proposes to methodically answer these shortcomings. For this purpose, a novel nonlocal reduction-based coupling approach is developed, implemented and evaluated. In this context, the Arlequin method is adopted in order to couple the microscopic fine model and the macroscopic envelope model. In the proposed approach, the Fourier coefficients are computed through reduction over a period. This constitutes a very original contribution that aims at developing a nonlocal coupling approach so as to accurately describe the boundary behaviour and completely avoid the locking phenomena in terms of both amplitude and phase.

Macroscopic modelling of instability pattern formation

As in paper [START_REF] Damil | Influence of local wrinkling on membrane behaviour : A new approach by the technique of slowly variable Fourier coefficients[END_REF], the multi-scale approach, based on the concept of Fourier series with slowly varying coefficients, is adopted in the present paper. Let us consider a physical phenomenon described by the field U (x)(x ∈ R). The instability wave number q is known. The unknowns of the model U = {u(x), v(x), n(x)...} are described as Fourier series, whose coefficients vary more slowly than the harmonics :

U (x) = +∞ ∑ j=-∞ U j (x)e jiqx , (1) 
where the Fourier coefficient U j (x) denotes the envelope for the j th order harmonic and U -j (x) denotes its conjugate value. The macroscopic unknown fields U j (x) slowly vary over a period x, x + 2π jq of
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Fig. 1 -The left shows at least two macroscopic fields (the mean field and the amplitude of the fluctuation) are necessary to describe a nearly periodic response. The right is sketch of an elastic beam on a nonlinear elastic foundation.

the oscillation. It is worth to mention that at least two functions, U 0 (x) and U 1 (x), are necessary to describe the nearly periodic patterns as depicted in Fig. 1. U 0 (x) is identified as the mean value and U 1 (x) represents the envelope or the amplitude of the spatial oscillations. Notice that U 0 (x) is real valued and U 1 (x) can be expressed as U 1 (x) = r(x)e iϕ(x) . The latter mathematical expression represents the first harmonic where r(x) is the amplitude modulation and ϕ(x) is the phase modulation. The main idea of macroscopic modelling is to deduce some differential equations satisfied by the amplitude U j (x).

In what follows, an elastic beam, resting on a nonlinear elastic foundation is used for the development of the microscopic model (see Fig. 1). The unknowns are the components u(x) and v(x) of the displacement vector and the normal force n(x). So U (x) = {u(x), v(x), n(x)} and the analyzed problem is described by the following set of differential equations :

               dn dx + f = 0, (a) 
n ES = du dx + 1 2 dv dx 2 , (b) 
d 2 dx 2 EI d 2 v dx 2 - d dx (n dv dx ) + cv + c 3 v 3 = 0. (c) (2) 
These equations are referred to as the microscopic model. The periodic patterns are fully described by four structural parameters : EI, ES, c, c 3 and an axial force f (x). Note that the solutions of the system (2) are the stationary points of the following potential energy :

P(u, v) = L 0 ES 2 (u ′ + v ′2 2 ) 2 + EI 2 v ′′2 + c 2 v 2 + c 3 4 v 4 -f u dx. ( 3 
)
In paper [START_REF] Damil | Influence of local wrinkling on membrane behaviour : A new approach by the technique of slowly variable Fourier coefficients[END_REF], many simplifications have been introduced to build the simplest macroscopic model that can couple the membrane problem with the envelope equation similar to Landau-Ginzburg equation. Finally, the simplified potential energy of macroscopic model is given by

P(u 0 , v 1 ) = L 0 ES 2 u ′ 0 + v ′2 1 + q 2 v 2 1 2 + EI 6q 2 v ′2 1 + q 4 v 2 1 + cv 2 1 + 3c 3 2 v 4 1 -f 0 u 0 dx. ( 4 
)
The differential equations of the system follow from the stationary behaviour of the potential energy δP = 0. This leads to

         dn 0 dx + f 0 = 0, (a) 
n 0 = ES(u ′ 0 + v ′2 1 + q 2 v 2 1 ), (b) 
- d dx (6EIq 2 + n 0 ) dv 1 dx + EIq 4 + n 0 q 2 + c v 1 + 3c 3 v 3 1 = 0. (c) (5) xi -π q xi + π q Microscopic model xi Fig. 2 -Schematic of the reduction of microscopic model.
It is not easy to associate consistent boundary conditions with macroscopic models like ( 4) and [START_REF] Dhia | Multiscale mechanical problems : the Arlequin method[END_REF]. Indeed, the assumption of slowly varying oscillation is not valid everywhere, especially near the boundary due to the presence of boundary layers [START_REF] Schlichting | Boundary-Layer Theory[END_REF]. The very simplified model ( 4) and ( 5) is able to predict the amplitude modulation, but unable to predict the phase modulation.

Reduction from micro behaviour to Fourier coefficients

Although the approach of using slowly variable Fourier coefficients is well established [START_REF] Damil | A generalized continuum approach to describe instability pattern formation by a multiple scale analysis[END_REF][START_REF] Damil | A generalized continuum approach to predict local buckling patterns of thin structures[END_REF][START_REF] Damil | Influence of local wrinkling on membrane behaviour : A new approach by the technique of slowly variable Fourier coefficients[END_REF], how to obtain the envelopes from given micro behaviour (U (x) → U j (x)) is still challenging. This issue will be addressed from the mathematical standpoint to the finite element point of view. Moreover, the methodology of the nonlocal reduction will be applied in the reduction-based coupling approach in the next section.

For a periodic function U (x) that is integrable on -π q , π q , the Fourier coefficients can be represented as

U j = q 2π π q -π q U (x)e -jiqx dx. ( 6 
)
Using Euler's formula, U j can be divided into a real part U R j and an imaginary part U I j . From the mathematical standpoint, it is straightforward to obtain all the envelopes through Eq. ( 6). From the finite element method perspective, the real microscopic model ( 2) and ( 3) is used to assess the nonlocal reduction. The reduction of the transversal displacement is conducted by considering five envelopes. A clamped beam is defined with the following parameters : L = 30π, ES = 1, EI = 1, c = 1 and c 3 = 1/3. The instability wave number is taken as q = 1. In this configuration, the beam is free of body forces and subjected to an increasing global end shortening u(L) = -λL. The beam is meshed using 120 microscopic elements with the element length l e = π/4. Basically, any point of the discretized beam can be used to implement the proposed nonlocal reduction. The only exception is the points on boundary region 0, π q and L -π q , L , since the numerical integration is carried out over the period -π q , π q . For the sake of simplicity, each node of the element is considered as the center of the numerical integration. Therefore, each reduction point covers eight elements over the whole period as depicted in Fig. 2.

The discretization of the nonlocal reduction can be written as

U R j = q 2π x i + π q x i -π q U (x) cos( jqx)dx = q 2π l e 2 ∑ x n ∈gp U (x n ) cos( jqx n ), (7) 
U I j = - q 2π x i + π q x i -π q U (x) sin( jqx)dx = - q 2π l e 2 ∑ x n ∈gp U (x n ) sin( jqx n ), (8) 
where x i is the node of element. x n ∈ gp represents the corresponding Gauss point on the microscopic elements within the integration domain x i -π q , x i + π q . The reduction of the transverse displacement v is performed with Hermite shape functions. The variations, over the domain [π, 29π], of five different envelopes :

v 0 , v R 1 , v I 1 , v R
2 and v I 2 , are depicted in Fig.

It can be observed that |v I

1 | and |v R 1 | are much larger than the other three envelopes. In the meanwhile, the median values of v 0 , v R 2 and v I 2 are all close to zero. In addition, when substituting the values of envelopes v I 1 and v R 1 in Eq. 6 to construct the microscopic behaviour v(x), it can be noticed that only these two envelopes can sufficiently cover the microscopic model as shown in Fig. 4. Actually, in this case, only five envelopes have been assumed. Theoretically, the microscopic transversal displacement can be exactly illustrated if the number of envelope is infinite, yet it is not necessary and practical. 

Arlequin method in the context of nonlocal coupling

The microscopic model ( 2) and ( 3) is implemented in a small region close to the boundary. This allows introducing the "exact" boundary conditions. The simplified envelope model ( 4) and ( 5) will be applied in the bulk. The two models can be bridged together thanks to the Arlequin framework [START_REF] Dhia | Multiscale mechanical problems : the Arlequin method[END_REF][START_REF] Ben Dhia | The Arlequin method as a flexible engineering design tool[END_REF].

The domain Ω, representing the whole mechanical system, is partitioned into two overlapping subzones : Ω f (microscopic fine model domain) and Ω r (macroscopic reduced model domain). The resulting superposition zone S = Ω f ∩ Ω r contains the gluing zone S g ⊆ S (see Fig. 5).

Defining u f = u(x), v(x) : x ∈ Ω f and u r = {u 0 (x), v 1 (x) : x ∈ Ω r }, the energy contribution of the two models is defined as

     P f (u f ) = Ω f [α f W (u f ) -β f f u] dΩ, P r (u r ) = Ω r [α r W (u r ) -β r f 0 u 0 ] dΩ, (9) in which      W (u f ) = ES 2 (u ′ + v ′2 2 ) 2 + EI 2 v ′′2 + c 2 v 2 + c 3 4 v 4 , W (u r ) = ES 2 (u ′ 0 + v ′2 1 + q 2 v 2 1 ) 2 + EI(6q 2 v ′2 1 + q 4 v 2 1 ) + cv 2 1 + 3c 3 2 v 4 1 . (10) 
The energy associated to each domain is balanced by weight parameter functions which are represented by α i for the internal work and β i for the external work. More details on selection of these functions can be found in [START_REF] Ben Dhia | The Arlequin method as a flexible engineering design tool[END_REF][START_REF] Bauman | On the application of the Arlequin method to the coupling of particle and continuum models[END_REF]. In this work, a linear weight function is considered in the overlapping region.

Coupling alternatives

The coupling aims at connecting the microscopic model with envelope model. According to the Arlequin framework, generally, coupling based on the coarse model is preferred to avoid the locking phenomena. This requires a definition of a nonlocal reduction operator u f → R(u f ) which involves the Fourier transform. Contrarily, the other way is to perform the inverse connection by using a local prolongation operator u r → P(u r ), which reproduces a compatible field from u r to be coupled with u f . Therefore, the coupling is conducted by requiring that one of the two following conditions to be satisfied in a mean sense : R(u f )u r = 0, ∀x ∈ S g ; (11)

u f -P(u r ) = 0, ∀x ∈ S g . ( 12 
)
Due to the nonlocal character of the proposed Fourier transform in nonlocal reduction-based coupling approach, the implementation of ( 11) is much more intricate. The analysis and numerical implementation of the nonlocal reduction-based coupling approach will be detailed in the next sections, while the details of the prolongation coupling approach (12) can be found in [START_REF] Hu | A bridging technique to analyze the influence of boundary conditions on instability patterns[END_REF].

Reduction-based coupling approach

For transversal direction, the reduction operator is the Fourier coefficient which has the nonlocal character over a period. Based on the discussion reported in Section 2, one can deduce the relation among v R 1 , v I 1 and r(x) as follows : 13) 6 -Schematic of the nonlocal reduction-based coupling approach. Two Gauss points are located at each macroscopic element in S g .

v(x) = v 1 (x)e iqx + v -1 (x)e -iqx = v R 1 + iv I 1 e iqx + v R -1 + iv I -1 e -iqx = 2v R 1 cos(qx) -2v I 1 sin(qx), (
Ω f Ω r S S g x i x i -π q x i + π q Fig.
where v R -1 = v R 1 , v I -1 = -v I 1 .
After some algebraic manipulations, one can obtain

r(x) cos ϕ = v R 1 , r(x) sin ϕ = v I 1 . (14) 
Hence, the spatial evolution of the phase is described as ϕ = arctan

v I 1 v R 1 .
Considering the simplified envelope model ( 4), we choose ϕ = -π/2. Consequently,

r(x) = -v I 1 , v(x) = 2r(x) sin(qx). ( 15 
)
Therefore, only one envelope v I 1 is considered for the reduction. Consequently, the nonlocal reduction operator becomes

R v (x i ) = q 2π x i + π q x i -π q v(x) sin(qx)dx = q 2π l j e 2 ∑ x j ∈gp v(x j ) sin(qx j ), (16) 
where x i is the Gauss point on the macroscopic element in S g . x j ∈ gp represents the corresponding Gauss point on the microscopic element of length l j e within the integration region x i -π q , x i + π q . It is worth to mention that the performed reduction is comparable to the one developed in Section 3. Here the Gauss point is the center of the numerical integration and the reduction is conducted at each Gauss point. This choice is motivated by the higher degree of accuracy when estimating u r which accounts for the weak form of (11) as

C (λ, R(u f ) -u r ) = 0, ∀λ ∈ M, ∀x ∈ S g . ( 17 
)
where λ is Lagrange multiplier as a fictive gluing force and M is the mediator space.

Notice that there are two main challenges when performing the numerical implementation. Indeed, the position of Gauss point is not located at the node of the element. Thus, the numerical integration of (16), over a period, might mismatch the corresponding position of the microscopic elements. Consequently, the bounds of the numerical integration will not match the positions of the nodes. In addition, the numerical integration, performed at Gauss points in the gluing zone S g , may overlap in some regions. Furthermore, the bounds of the numerical integration, over the domain S g , might lap either the domain S or the domain Ω f . To cope with these numerical difficulties, the domain S is required to be a little larger than the domain S g (see Fig. 6).

The corresponding stationary function is a Lagrange multiplier :

L(u f , u r , λ) = P f (u f ) + P r (u r ) + C (λ, R(u f ) -u r ) . (18) 
From Eq. (18), one can obtain three equations according to δu f , δu r and δλ :

   δP f (u f ) + C (λ, δR(u f )) = 0, ∀δu f ∈ K.A., δP r (u r ) -C (λ, δu r ) = 0, ∀δu r ∈ K.A., C (δλ, R(u f )) -C (δλ, u r ) = 0, ∀δλ ∈ M. ( 19 
)
where K.A. stands for kinematically admissible. Finally, the L 2 type coupling operator C is defined as follows :

C (λ, u) = S g (λ • u)dΩ. (20) 
More details about coupling operators can be found in [START_REF] Ben Dhia | The Arlequin method as a flexible engineering design tool[END_REF][START_REF] Bauman | On the application of the Arlequin method to the coupling of particle and continuum models[END_REF].

Numerical evaluation

Numerical evaluation of the nonlocal reduction-based coupling approach is performed by considering the case of buckling of a long beam lying on a nonlinear elastic foundation. The clamped beam has the same parameters as those reported in Section 3. Two models (microscopic model and macroscopic model) and two coupling approaches (reduction-based coupling and prolongation coupling [START_REF] Hu | A bridging technique to analyze the influence of boundary conditions on instability patterns[END_REF]) are compared and evaluated.

As for reduction-based coupling approach, the bifurcation path (v max , λ) and the instability pattern for λ = 2.21 are depicted in Fig. 7. As for prolongation coupling approach [START_REF] Hu | A bridging technique to analyze the influence of boundary conditions on instability patterns[END_REF], the bifurcation branch (v max , λ) and the instability pattern for λ = 2.21 are illustrated in Fig. 8. The following conclusions and remarks can be highlighted : 1. Regarding to the evolution of instability patterns, a disagreement between the macroscopic and microscopic model is observed. This is essentially due to the boundary effects that become significant at some distances from the bifurcation point. The macroscopic model is unable to describe boundary layers. 2. The reduction-based coupling approach is able to perfectly capture the local effects in the left boundary layers as depicted in Fig. 7 and 9. Precisely, there is no difference, in terms of amplitude or phase, between the reduction-based coupling approach and the microscopic model in the left part. This conclusion is consistent since the use of the microscopic model near the boundary accounts for the boundary layers. The proposed reduction-based coupling approach is able to correct the deficiency of the macroscopic model near the boundary. 3. According to the results reported in Fig. 8 and9, the prolongation coupling approach [START_REF] Hu | A bridging technique to analyze the influence of boundary conditions on instability patterns[END_REF] gives a fair result in terms of amplitude. However, there is a phase discrepancy in the left boundary region due to the influence of phase locking phenomena when applying the prolongation coupling approach (see Fig. 9). 

Conclusion

In this paper, a nonlocal reduction-based coupling approach via Arlequin method has been developed to analyze the influence of boundary effects on pattern formation. In order to avoid the critical issue of defining appropriate boundary conditions for the macroscopic envelope model, the microscopic fine model has been introduced only in the vicinity of the boundary region. In this way, it allows prescribing the actual boundary conditions. The microscopic fine model and macroscopic envelope model are then bridged together through the proposed nonlocal reduction-based coupling approach. The reduction-based coupling approach is able to capture the local effects around the boundary layers and correct the deficiency of the macroscopic model. Our preliminary results show that this technique is promising and could be applied to cellular instability problems involving thin boundary layers such as membrane wrinkling and fiber microbuckling or even in fluid mechanics [START_REF] Schlichting | Boundary-Layer Theory[END_REF]. Besides, the reduction from microscopic behavior to Fourier coefficients has also raised some interests in deeply studying the number of harmonics to be accounted in macroscopic models [START_REF] Damil | Influence of local wrinkling on membrane behaviour : A new approach by the technique of slowly variable Fourier coefficients[END_REF] for various modelling cases.
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 3145 Fig.3-One real envelope (v 0 ) and four complex envelopes(v R 1 , v I 1 , v R 2 , v I 2 ). The reduction is performed over the domain[π, 29π]. The instability pattern of λ = 2.21.
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 78 Fig. 7 -Buckling of a clamped beam under uniform compression : the left shows applied shortening λ vs. maximal deflection ; the right shows spatial distribution of the instability patterns for λ = 2.21. The reduction-based coupling approach is implemented.
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 9 Fig.9-Zoom of the left boundary : spatial distribution of the instability patterns for λ = 2.21. The reduction-based coupling approach and prolongation coupling approach are depicted together.
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