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Résumé— In this communication we present the work by Pampolini and Triantafyllidis [1], in which
an electro-mechanical theory for nematic continua is proposed. The theory is based on a variational ap-
proach and the equilibrium relations plus the Maxwell’s equations are obtained as the Euler-Lagrange
equations of a specific potential energy. The variational formulation is applied to the study of a 2D boun-
dary value problem, termed in the literature asFreedericksz transition, where a nematic liquid crystal
layer is confined between two plates and an electric field is applied perpendicular to the plates. This
boundary value problem is treated as a bifurcation problem and an asymptotic analysis of the bifurcated
equilibrium path is carried out.
Mots clés— nematic continua, electromechanical theory, variational approach, Freedericksz transition,
asymptotic analysis

1 Introduction

Nematicelastomers are rubber-like solids formed by crosslinking polymeric chains that include li-
quid crystal molecules. In a simple description they consist of a network of polymeric strands connecting
liquid crystal compartments of the size of some micrometers. The interaction between rubber elasticity
of the network and the alignment of liquid crystal molecules leads to peculiar mechanical-optical [2] and
electro-mechanical effects [3, 4].

One simple way to describe nematic ordering effects within a continuum theory is to represent the
local molecular orientation through a unit vector, called the director. This idea was introduced by Oseen
[5] and Zocher [6], further developed by Frank [7] and re-organized by Ericksen [8]. Terentjev [9] used
the director description to model electro-mechanical effects in nematic elastomers by considering a total
energy composed of three terms : the Frank-Oseen energy characteristic of liquid crystals, the energy of
the electric field and an elastic term that models the resistance that the rubber network opposes to director
rotation. Eringen [10] presented a thermo-electro-magnetic theory for liquid crystal polymers where
stretching of liquid crystal molecules are taken into account by considering directors whose magnitudes
change with motion. In the works by DeSimone et al. [11, 12, 13] the electro-mechanical coupling effects
of nematic elastomers were studied in the context of phase transforming materials by assuming a non-
convex strain energy density with multiple natural configurations .

This communication is based on the work by Pampolini and Triantafyllidis [1], in which an elec-
tromechanical theory for nematic continua is presented. Since the theory is based on recent variational
formulations for electro-elastic solids [14, 15], it is suitable to deal with bifurcation problems and sta-
bility analysis of quasi-static evolutions. The outline of the present communication is as follows : in
Section 2 we briefly describe the electromechanical theory. The Frank-Oseen director representation is
adopted and a potential energy depending on four independent variables (the displacement, director,
specific polarization and perturbed electric displacement potential) is constructed. The equilibrium plus
the Maxwell’s equations are thus obtained as the Euler-Lagrange equations of the potential energy. The
theory can be used for both nematic elastomers and nematic liquid crystals depending on the choice of
the free energy density.

In Section 3 a specific free energy of a nematic liquid crystal is considered and the variational for-
mulation is applied to the analysis of a classical boundary value problem leading to a bifurcation. A
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infinite 2D layer of a nematic liquid crystal is confined between two parallel plates andis subjected to an
electric field perpendicular to the plates. At the boundaries, the director lay parallel to the external plates.
The remarkable behavior of liquid crystals originates from the competition between the alignment of the
director prescribed at the boundary and the orientation favored by the electric field. For small electric
fields, the director orientation is not influenced by the electric field. As the magnitude of the electric
field overcomes a certain threshold value, the nematic begins to adjust its director orientation forwards
the applied external electric field. This problem, known in the literature assplay Freedericksz transition,
plays a basic role in determining the elastic properties of liquid crystals and it has many electro-optic
applications [16].

2 Electromechanical theory for nematic continua

In this Section, we briefly present the electromechanical theory for nematic continua proposed in [1].
Following the Frank-Oseen model[5, 7], nematic ordering effects are described by using a unit vectorn,
called the director, that represents the local molecular orientation. The specific (i.e. per unit mass) free
energyΨ of the nematic continuum is taken to be function of the deformation gradientF, the director
n, its gradientn∇ andp the polarization per current volume1. The specific form ofΨ depends on the
application at hand.

We consider a nematic continuum of densityρ occupying a volumeV and subjected to an externally
applied electrical fielde0 and to general mechanical loadings. The applied electric field is perturbed by
the presence of the nematic continuum. To take into account this aspect, we define the total electric field
eand the electric displacementd as follows (see [17]) :

e= e0+ ê, d = d0+ d̂ , d0 = ε0e0 , d̂ = ε0ê+p , x ∈V , d̂ = ε0ê, x ∈ R
3\V , (1)

whereε0 is the electric permittivity of free space,p is the polarization per current volume andê, d̂ are
the perturbed electric field and the perturbed electric displacement, respectively. Due to the absence of
free electric charges,̂d can be represented in terms of a potentialâ

d̂ =∇× â. (2)

Assuming isothermal, quasistatic and non dissipative processes, the total stored energy of the system
is the sum of the strain energy stored in the nematic continuum plus the electric energy stored in the
entire space, namely

E =
∫

V
ρψ dv+

∫
R3

ε0

2
(ê•ê)dv. (3)

Note that writing the electric energy in Eq.(3), we can take only the contribution due to the perturbed
electric field, see [1] for justification. The potential of the externally applied loads is

W =−
∫

V
[ρ(f•u+g•n)+e0•p] dv−

∫
∂V
(t•u+ r•n)da, (4)

wheref, gare respectively the body force and the body couple, both per unit mass, andt, r are respectively
the surface traction and the surface moment, both per unit current area da. By using Eqs. (1−4), the
potential energy of the systemP = E +W takes the form

P =
∫

V
[ρ(ψ− f•u−g•n)−e0•p] dv−

∫
∂V

(t•u+ r•n) da+
∫
R3

1
2ε0

(∇× â−p)•(∇× â−p)dv. (5)

As it will be clear later, the electric field energy will give a Maxwell stress contribution to the total
stress tensor in the mechanical equilibrium equations. To take into account for the Maxwell stress non
linear dependence on electric field quantities, a Lagrangian formulation is necessary. For this purpose,
we introduce the reference configuration electric displacement perturbationD̂, its vector potential̂A and
the per unit mass polarizationP as follows :

D̂ = JF−1•d̂ , D̂ = ∇× Â , P= p/ρ , (6)

1. These quantities are function of the current positionx. In particular,F ≡ x∇ with ∇ ≡ ∂/∂X is the gradient operator in
the reference configuration while∇ ≡ ∂/∂x s the gradient operator in the current configuration
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whereJ = det(F). By using Eqs. (1)3 and (6) the perturbed electric field is written as function ofÂ and
P :

ê=
1

ε0J

(
F•(∇× Â)−ρ0P

)
. (7)

whereρ0 is the reference mass density defined on the entire spaceR
3, e.g.ρ0(X) 6= 0 for X ∈ V while

ρ0(X) = 0 for X ∈R
3\V. The system’s potential energy, in reference configuration field quantities, takes

the form

P =
∫

V
ρ0(ψ− f•u−g•n−e0•P)dV −

∫
∂V

(T•u+R•n) dA

+
∫
R3

1
2ε0J

(
F•(∇× Â)−ρ0P

)
•
(
F•(∇× Â)−ρ0P

)
dV (8)

whereT, R are the reference counterparts of the tractiont and momentr, respectively2.
The potential energy in (8) depends on four independent variables : the displacementu = X −x, the

directorn, the specific polarizationP and the electric displacement perturbation potentialÂ. Variations
of P with respect to each one of these independent variables lead to the governing Euler-Lagrange
equations and associated boundary/interface conditions. In particular, variation ofP with respectn
gives the director equilibrium and the corresponding interface condition, namely

∇•

(
∂ψ

∂(n∇)

)T

−
∂ψ
∂n

+g= 0, X ∈V ,

N•

[[
∂ψ

∂(n∇)

]]
= R , X ∈ ∂V ,

(9)

whereN is the outward normal to∂V 3

WhenP is extremized with respect tôA, the Euler-Lagrange equations give the Faraday’s law and
the associated interface condition

∇× Ê = 0, X ∈ R
3 ,

N× [[Ê]] = 0, X ∈ ∂V ,

Ê ≡
1

ε0J

(
F•(∇× Â)−ρ0P

)
•F =ê•F ,

(10)

The derivation ofP with respect to the specific polarizationP results in the electric part of the
constitutive equation

∂ψ
∂P

= e, (11)

andthe derivation with respect to the displacementu yelds

Π̂=ΠS+ Π̂M , ΠS= ρ0

(
∂ψ
∂F

)T

,

Π̂M =
1

ε0J

[
(∇× Â)⊗

(
F•(∇× Â)−ρ0P

)
−

1
2

∥∥∥F•(∇× Â)−ρ0P
∥∥∥

2
F-1

]
,

∇•Π̂+ρ0
(
f+P•(e0∇)•F−1)= 0, X ∈ R

3 , (12)

N•
[[
Π̂

]]
= T , X ∈ ∂V ,

Note that the perturbed stress tensorΠ̂ is the sum of the nematic constitutive partΠS and the perturbed
Maxwell stresŝΠM. Equilibrium equations that involve only mechanical body forces are obtained when
Π̂ is replaced by a total stress tensor, defined as the sum of theΠS and a total Maxwell stress, see [1] for
details.

2. Henceforth quantities associated with the reference configuration are denotedby capital symbols to distinguish them
from their current configuration counterparts

3. N the outward normal to∂V is not to be confused with the nematic directorn(X).
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3 The 2D boundary value problem - The Freedericksz transition

3.1 Material selection

To represent an incompressible nematic liquid crystal, the free energyψ is taken to be the sum of two
contributions : the Frank-Oseen energyψF−O characteristic of nematics4, and a polarization energyψP

ρψ(n,n∇,P) = ρψF−O(n,n∇)+ρψP(n,P),

ρψF−O =
1
2

k1(∇•n)2+
1
2

k2(n•(∇×n))2+
1
2

k3‖n× (∇×n)‖2+
1
2

c1(n•n−1)2 ,

ρψP =
ρ2

2ε0

(
χ−1P•P+(χ−1

n −χ−1)(P•n)2) ,

(13)

wherek1, k2 andk3 are positive constants, called in the literature thesplay,twist andbendconstants,
respectively. The inextensibility of the directorn is taken into account by the penalization term(n•n−1)2

multiplied by a large constantc1. In (13) χ and χn are the electric susceptibility constants when the
electric field and the directorn are perpendicular or parallel, respectively.

3.2 Problem description and bifurcation analysis

Consider a two-dimensional infinite layer of a nematic liquid crystal confined between two parallel
plates at distancel . An electric fielde0 is applied perpendicular to the plates. The directorn is anchored
parallel to the plates at the extremities, so the essential boundary conditions are

n1(x1,± l/2) =1, n2(x1,± l/2) =0. (14)

For every value of the applied electric field the equilibrium configuration can be found by extremizing
the potential energyP,

P,v (v)δv = 0, v ≡ (n, P,α) . (15)

Note that we neglect the variation with respect tou because the liquid crystal is incompressible and there
is not interest in computing forces5. One obvious solution to equation (15) is theprincipal solution,
which corresponds to constant director orientation, namely

0
v =





0
n = (1,0) ,

ρ
0
P=

(
0,

χ
1+χ

ε0e0

)
,

0
α = 0.

(16)

At small values of the applied electric field, the principal solution
0
v is stable. Ase0 increases, it

reaches a valueec
0 where the principal solution is no longer a minimizer of the potential energy, but

where the energy vanishes along a particular direction
1
v, called the critical mode, which satisfies the

condition : (
P,vv

(
0
v(ec

0), ec
0

)
1
v
)

δv = 0,
1
v =

(
1
n,

1
P,

1
α
)
. (17)

Eq. (17) can be transformed in a system of three partial differential equations in terms of
1
n = (

1
n1,

1
n2)

and
1
α, with the natural boundary conditions

1
α,2(x1,±l/2) =0. (18)

These natural boundary conditions are compatible with a fixed voltage at the end plates, as discussed in
[1].

4. Thesaddle splaytermof the Frank-Oseen energy is here omitted since it does not contribute to the bulk energy, see [18]
for details.

5. We takeF = I
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e0n e0n

e0 < ec
0 e0 > ec

0

θ
x1

x2

Fig. 1 – Principal solution fore0 < ec
0 (left) and bifurcated solution fore0 > ec

0 (right).

The symmetries in the problem allow for the following Fourier decomposition with respect the

x1−direction of the critical mode
1
v,

S
1 :





1
n1 = n1(x2)sin(ω1x1) ,

1
n2 =−n2(x2)cos(ω1x1) ,

1
α = α(x2)sin(ω1x1) ,

A
1 :





1
n1 = n1(x2)cos(ω1x1) ,

1
n2 = n2(x2)sin(ω1x1) ,

1
α =−α(x2)cos(ω1x1) ,

(19)

where the symbolsS 1 andA 1 denote the symmetric and antisymmetric parts of the mode. By assuming
the director to be inextensible, one obtainsn1 = 0, and the following expressions forn2(x2) andα(x2)
(see [1]) :

S
2 :





n2 =Vncosh(ω2x2) ,

α =Vα sinh(ω2x2) ,

A
2 :





n2 =Vnsinh(ω2x2) ,

α =Vα cosh(ω2x2) ,

(20)

where the symbolsS 2 andA 2 denote the symmetric and antisymmetric parts with respect to the coor-
diantex2. The constantsω2, Vn andVα entering (20) are related by

Q(ω1,ω2)•V = 0, (21)

Q ≡

[
k3(ω1)

2−k1(ω2)
2− ε0 χ̄(ec

0)
2 χ̄ec

0 ω2

χ̄ec
0 ω2

1
ε0(1+χ) (ω2)

2− 1
ε0(1+χN)

(ω1)
2

]
, V ≡

[
Vn

Vα

]
,

with χ̄ ≡ (χN −χ)/[(1+χ)(1+χN)] andω2 is the solution of the bi-quadratic :

det(Q(ω1,ω2)) = 0. (22)

It is possible to show that the boundary conditions (14) and (18) enforceω2 to be a pure imaginary
number with values

S
2 : ω2 = i (2m−1)π/l , A

2 : ω2 = i 2mπ/l . (23)

A detailed derivation of this result is given in [1].
The critical electric fieldec

0 is then found as the minimum value ofe0 that satisfies (22). By using
(23) in (22), one shows that the lowestec

0 correspond toω1 = 0, ω2 = iπ/l (i.e. m= 1), and it takes the
value

ec
0 =

π
l
(1+χ)

(
k1

ε0(χn−χ)

)1/2

. (24)

The total critical electric field in thex2−directionec is the sum of the externally applied fieldec
0 plus

the perturbed electric field̂ec = −ec
0 χ/(1+χ), and by using (24) we haveec = (π/l)[k1/ε0(χn−χ)]1/2

which is exactly the value stated in [18] in his Eq.(3.208).
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Finally in view of ω1 = 0 andω2 = iπ/l , the critical mode
1
v takes the form

1
v =





1
n = (0, cos(πx2/l)) ,

ρ
1
P=

(
(k1 ε0(χn−χ))1/2 cos(πx2/l) , 0

)
,

1
α =

l
π
(k1 ε0(χn−χ))1/2 sin(πx2/l) ,

(25)

3.3 LSK asymptotic analysis

It is typical of most boundary value problems exhibiting bifurcations that a post-bifurcated solution
has no easily obtainable analytic solution. To remedy this situation, an asymptotic analysis of the problem
is possible that provides the initial dependence of the critical load and corresponding eigenmode on the
bifurcation amplitude.

This asymptotic technique, termed “Lyapunov - Schmidt - Koiter” method (LSK) is applied here to
determine the bifurcated equilibrium solution near the critical point and check its stability. According to
the general theory presented in [19], the asymptotic expansion for the applied electric fielde0 and the
bifurcated equilibrium solutionv about the critical pointec

0 are given by

e0 = ec
0+ξe1

0+
ξ2

2
e2

0+O(ξ3) , v =
0
v(ec

0)+ξ
1
v+

ξ2

2
2
v+O(ξ3) , (26)

with ξ the“bifurcation amplitude parameter” defined as the projection of the bifurcated solution on the

eigenmode
1
v, namely

ξ ≡ 〈v−
0
v,

1
v〉=

2
|A|

∫
A

(
ni −

0
ni

)
1
ni dA, . (27)

where|A| denotes the area of the domainA. A remark is in order at this point to justify the choice of the
norm used in Eq. (27). Usually in the literature, the bifurcated solution is computed by introducing the
director distortion angleθ, see Fig.1. The chosen norm gives a direct relation between the amplitude of

the modeξ and the director distortion angleθ, e.g.ξ = sinθ(0). The norm of the eigenmode
1
v is assumed

to be unity and the expressions in (25) reflect this assumption.

The bifurcation point ofec
0 is a simple one, since the eigenmode

1
v in (25) is unique (up to an ampli-

tude), see [19] for details. Moreover the bifurcation is a symmetric one since

P
c
,vvv

1
v

1
v

1
v = 0. (28)

Consequently in (26)1 e1
0 = 0, the first term in the asymptotic expansion of the applied electric field

vanishes and the calculation ofe2
0 requires the calculation of

2
v the second order term in the expansion

(26)2, which is obtained by the solution of the following variational equation
(

P
c
,vv

2
v+

(
P

c
,vvv

1
v
)

1
v
)

δv = 0, with 〈δv,
1
v〉= 0. (29)

Making use of (25), it can be shown that the solution of the equation (29) results in the following expres-

sion for
2
v :

2
v =





2
n =

(
−cos2(πx2/l) , 0

)
,

ρ
2
P=

(
0,

2π
(1+χ) l

[k1 ε0(χn−χ)]1/2 cos2(πx2/l)

)
,

2
α = 0.

(30)
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Tableau 1 – Coefficients of a typical nematic liquid crystal used in the numerical calculations(see [18])
k1 [N] k3 [N] χ χn

6.2×10−12 8.2×10−12 6 17.5

−1 −0.5 0 0.5 1
0

0.5

1

1.5

2

2.5

ξ

e0

ec
0

Fig. 2 – Graph of external electric field versus the amplitudeξ of the bifurcated mode for the exact
solution (full line) and for the asymptotic solution (dotted line).

The first non zero coefficient in the asymptotic expansion ofe0 can now be calculated from the general

theory [19] using
2
v in (30) from the following expression

e2
0 =−

1
3

(((
P c

,vvvv
1
v
)

1
v
)

1
v
)

1
v+3

((
P c

,vvv
2
v
)

1
v
)

1
v

((
dPc

,vv/de0
)c 1

v
)

1
v

. (31)

The stability of the bifurcated equilibrium path in the neighborhood ofec
0 depends on the sign ofe2

0 ; if
e2

0 > 0 the bifurcated path is stable, it minimizes the potential energyP in a neighborhood of the critical
point, while fore2

0 < 0 it is unstable near the critical point. Upon using relations (25) and (30) into (31),
the coefficiente2

0 is found to be :

e2
0 =

3k1(χn−χ)+k3(1+χ)
2(k1 ε0(χn−χ))1/2

π
l
> 0 (32)

Thestability of the bifurcated path neare2
0 follows, since a bifurcated solution exists only whenχn > χ.

The details of these asymptotic calculations are given in [1]. In Fig.2 the asymptotic solution id compared
with the exact bifurcated solution, given in the literature [18], for a typical nematic liquid crystal with
material parameters given in Table 1.
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