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Introduction

In the context of structural dynamics the conflicting requirements of a precise description of the problem and its computationally cheap solution gave rise to the domain of reduced order modelling. The paramount aim of a reduced model is to reduce the computational effort of the solution without overly degrading its quality. The internal forces of a structure, which is discretised in space and also geometrically non-linear due to large displacements, are grouped in a specific expression as are all expressions derived from the non-linear internal forces. Together they form the non-linear terms of the structure. If a model of such a structure is reduced by projection on a reduced basis the reduction of this expression for the non-linear terms presents the hinging point for the success of the reduction. Only a reduced formulation of the non-linear internal force which allows for a rapid numeric evaluation while yielding a good approximation gives meaningful results for a transient solution. With this in mind, the aim of this study is to evaluate different approaches for approximating non-linear terms by specific formulations and to adapt these formulations as necessary to ensure a successful reduced solution that is considerably faster than the full-order solution and introduces but a small error.

In the following the solution procedure for the reduced system is presented in detail and special interest is put on highlighting the points at which non-linear terms appear. In a second step different formulations of the non-linear terms are presented in an attempt of a brief and comprehensive, yet far from exhaustive, review. The two following steps see their application to an academic system and then the extension of this application to a finite element test-case.

Solution procedure

The full order, non-linear, non-conservative, dynamic system of a structure, which is completely discretised in space, is written in matrix form as

M ü + C u + g (u) = f E (t) . ( 1 
)
The mass and the damping terms are represented by the n × n matrices M and C, respectively. The external forces, which are exclusively a function of the time t, are described by the n × 1 vector f E . The non-linear internal forces are represented by the n × 1 vector g, which is exclusively a function of the displacements u. Overdots indicate derivatives with respect to time. The equation ( 1) is the starting point for both the reduction and the transient solution.

Reduced system

The equation ( 1) is of order n which usually represents a substantial number of degrees of freedom. To alleviate the resulting numerical burden, it is desirable for certain purposes to have a reduced system of order r with r n. A reduced system can by formulated by the projection of equation ( 1) on a reduced basis Φ, which is of dimension n × r. By letting u = Φq equation (1) becomes

M q + C q + g (q) = Φ T f E (t) , (2) 
where the generalised coordinates q, which are arranged in a r × 1 vector, have replaced the physical displacements u. The reduction has also been made permanent, by introducing the reduced counterparts of the two static matrices Φ T M Φ = M and Φ T CΦ = C, respectively. The vector of the external forces is kept as Φ T f E to facilitate its description in a physical sense. All the challenge of a successfull solution of equation ( 2) resides in the formulation of the reduced non-linear internal forces g (q).

Reduced non-linear Newmark scheme

The Newmark scheme can be considered as the standard approach for obtaining transient solutions. Its main advantage in the context of reduced systems is that it is blind as to whether the system to be solved is reduced or not. The equations ( 1) and ( 2) have exactly the same structure and are solved in exactly the same way by the Newmark scheme. A Newmark scheme consists of an outer loop, which is advancing in time, and an inner loop, which is constituted of a Newton-Raphson iteration on the residual force [START_REF] Krenk | Non-linear Modeling and Analysis of Solids and Structures[END_REF]. Hereunder, it is formulated in generalised coordinates to demonstrate the importance of the reduced non-linear internal forces g (q). For starting the scheme, being given the initial conditions for the generalised coordinates q (t init ) and the generalised velocities q(t init ) , the initial generalised accelerations are calculated q(t init ) = M -1 Φ T f E (t init ) -C q(t init )g q (t init ) .

(

) 3 
The inner Newton-Raphson iteration over the index (i) is supposed to ultimately yield the system's state at the instant t + ∆t. Predictive values are calculated q(t+∆t) (i=1) = q(t) , q(t+∆t) (i=1) = q(t) + ∆t q(t) , and q

(t+∆t) (i=1) = q (t) + ∆t q(t) + 1 2 ∆t 2 q(t) . (4) 
The generalised residual force r(t+∆t)

(i) is calculated r(t+∆t) (i) = Φ T f E (t + ∆t) -M q(t+∆t) (i) -C q(t+∆t) (i) -g q (t+∆t) (i) . ( 5 
)
In order to eliminate the generalised residual force at the instant t + ∆t the increment ∆q

(t+∆t) (i)
in generalised coordinates is calculated with

∆q (t+∆t) (i) = S-1 (i) r(t+∆t) (i) , ( 6 
)
where the system's Jacobian is defined as

S(i) = K(i) + γ β ∆t C + 1 β ∆t 2 M , (7) 
with the parameters β and γ accounting for different integration schemes and the reduced tangent stiffness matrix is defined as

K(i) = ∂ g (q) ∂ (q) q (t+∆t) (i) . ( 8 
)
The next iteration is initialised with the preceding values of the quantities of motion and the increment in generalised coordinates:

q (t+∆t) (i+1) = q (t+∆t) (i) + ∆q (t+∆t) (i) , q(t+∆t) (i+1) = q(t+∆t) (i) + γ∆q (t+∆t) (i)
β ∆t , and q(t+∆t) (i+1) = q(t+∆t)

(i) + ∆q (t+∆t) (i) β ∆t 2 . ( 9 
)
In order to decide whether the quantities of motion are close enough to the assumed exact solution at t + ∆t the generalised residual force r(t+∆t) (i+1) is compared with an appropriate threshold. If the criterion is not met, the next inner iteration is started by returning to equation [START_REF] Muravyov | Determination of nonlinear stiffness with application to random vibration of geometrically nonlinear structures[END_REF]. If the criterion is met, the scheme returns to equations (4) and reinitialises the values for the next series of iterations.

Formulations for the non-linear terms

The formulation for the reduced non-linear internal forces g (q) from equation ( 2) appears several times in the non-linear Newmark scheme, most prominently in the generalised residual force in equation ( 5), and, most importantly though indirectly in the generalised tangent stiffness matrix in equation ( 8). The iterative nature of the non-linear Newmark scheme requires a considerable number of evaluations of these non-linear terms. This makes the formulation of the reduced non-linear internal forces g (q) the key ingredient for solution of the reduced system that is successful with respect to computational performance and to accuracy. A careful choice of this formulation is hence in order.

Inflation

The inflation formulation bypasses the reduction and draws on the full-order expressions for the nonlinear terms, which are usually available e.g. from a commercial finite element solver. It simply puts

g (q) = Φ T g Φq (t+∆t) (i) (10) 
for the reduced non-linear internal forces and

K(i) = Φ T ∂g (u) ∂u Φq (t+∆t) (i) Φ (11) 
for the generalised tangent stiffness matrix.

The main advantage of the inflation approach is that it provides the exact reduced non-linear terms and may thus be used as a reference. However, a possible gain in computational effort is limited to the treatment of the r × r-matrices minus the additional effort of reducing the inflated non-linear terms for every evaluation.

Linear interpolation

Supposing the generalised coordinates at a given instant can be expressed as q = ∑ m j=1 α j q j the linear interpolation stipulates that the reduced non-linear forces vector can be expressed as

g (q) = m ∑ j=1 α j Φ T g (Φ q j ) (12) 
The non-linear terms for the q j can be evaluated prior to the solution. The α j are determined in the least-squares sense

α = QT Q -1 QT q (t+∆t) (i) (13)
as the matrix Q, which regroups the q j as its columns, is usually not square. It is reasonable to take a number of significant snapshots from a previous full-order solution and to reduce them in order to obtain the q j .

Direct linearisation

The direct linearisation of the reduced non-linear forces vector builds on pre-calculating the non-linear forces vector g with the columns of the reduction matrix Φ ( [START_REF] Tran | Methods of fluid-structure coupling in frequency and time domains using linearized aerodynamics for turbomachinery[END_REF]). A reduced matrix is created, which can be multiplied directly with the vector of generalised displacements q.

Taking the columns of the reduced basis Φ = [φ 1 , . . . , φ r ] allows to establish the r × r matrix

G = Φ T [g (φ 1 ) , . . . , g (φ r )] , (14) 
by static solutions of the full-order system while imposing the columns of the reduced basis as displacements.

g = Gq. ( 15 
)
The direct linearisation provides the advantage of a simple matrix multiplication for expressing the reduced non-linear forces vector, which makes its computational effort comparable to a linear approximation with a constant reduced tangent stiffness matrix. The disadvantage of this method is that it allows only approximating the non-linear forces vector and not the tangent stiffness matrix.

Polynomial approximation

The polynomial approximation expresses the reduced non-linear internal forces g (q) as a cubic polynomial. This is usually expressed in a tensor-vector formulation as

g (q) = Ã(1) q + Ã(2) (q ⊗ q) + Ã(3) (q ⊗ q ⊗ q) . ( 16 
)
For the purpose of this study the approximation is formulated directly in generalised coordinates, which makes it specific for the chosen reduced basis. If independence of the reduced basis is required, the same approximation can be written in physical displacements u and then reduced for different reduced bases with an approach for the reduction of tensors like e.g. the one proposed in [START_REF] Phillips | Projection-based approaches for model reduction of weakly nonlinear, time-varying systems[END_REF]. By switching to indicial notation, equation (16) becomes

gk (u) = r ∑ o=1 Ã(1) ko q o + r ∑ o=1 r ∑ p=o Ã(2) kop q o q p + r ∑ o=1 r ∑ p=o r ∑ s=p à (3 
) kops q o q p q s ∀k ∈ {1, . . . , r}.

The linear tensor Ã(1) is the reduced tangent stiffness matrix of the underlying linear system. The quadratic Ã(2) and the cubic Ã(3) tensors are identified by varying the orgin of the identification, a reference configuration q r , by small, different ∆q o and imposing these generalised displacements for a static evaluation of Φ T g (Φ (q r + ∆q o )). By aptly choosing and combining up to three different ∆q o some terms of the polynomial approximation can be cancelled out by subtracting the corresponding equations.

Equations for the elements of the tensors are obtained. This approach is proposed by [START_REF] Muravyov | Determination of nonlinear stiffness with application to random vibration of geometrically nonlinear structures[END_REF] and refined by [START_REF] Chang | Reduced order modeling for the nonlinear geometric response of some curved structures International Forum of Aeroelasticity & Structural Dynamics[END_REF], who introduced the concept of an origin of the identification. By deriving equation ( 17) with respect to q o and enlarging the scope of the summations, an expression for the tangent stiffness matrix can be obtained

Kko = Ã(1) ko + r ∑ p=1 Ã(2) kop (1 + δ op ) q p + r ∑ p=1 r ∑ s=1 Ã (3) 
kops (1 + δ op + δ os ) q p q s ∀{k, o} ∈ {1, . . . , r}.

The Kronecker-δ account for the derivatives of the terms that are quadratic or cubic in q o . The overwhelming advantage of the polynomial approximation is, that it offers an access to the tangent stiffness matrix. Furthermore, if it is formulated with physical coordinates, it is exact for cubic non-linearities. On the downside there is the considerable effort to be invested for the initial identification of the tensors from r 2 + 1 r static solutions and additional basic vector operations. Also, the evaluation of the reduced non-linear internal forces during the solution requires approximately 1 + ∑ r k=1 k(k+1) 2 1+k 3 basic vector operations.

Applications

The different formulations are first applied to a small academic system with cubic non-linearities to study their behaviour and feasibility. In order to allow an assessment of the computational performance of the numeric evaluation of each formulation their application is the extended to a finite element test-case.

Academic systems and feasibility

The formulations are applied to an academic test-case with a chain of n = 20 degrees of freedom. Neighbouring degrees of freedom are connected with a linear and a cubic stiffness. The references displacement is the static solution to an external forces vector which is applied to the 4-th degree of freedom. The design of this test-case is already used in [START_REF] Lülf | Comparison of some reduction bases approaches for non-linear structural dynamic systems under different excitations[END_REF]. The reduction is performed with the Linear Normal Modes (LNM) of the underlying reduced system at r = 4.

The figure 1 shows the reference reduced vector of the non-linear internal forces and its approximations, acting on the generalised coordinates of the reduced system. A good approximation has to provide a good shape of the vector at the correct amplitude. The approximation in shape is measured with the modal assurance criterion (MAC)

|( greference ) T gapprox. | 2 |( greference ) T greference ||( gapprox.) T gapprox. |
, while the correct amplitude

is measured with the two-norm of the difference of the two vectors || gapprox.greference ||. The results are shown in table 1. For this application the linear interpolation and the direct linearisation offer the best shape approximation but at a wrong amplitude. The polynomial approximation gives a better amplitude at the expense of a slightly inferior shape approximation. As there are only linear and cubic stiffnesses present in the system, the full-order variant of the polynomial approximation would give the exact result. This is reflected on the level of the reduced system by the performance of the reduced variant of the polynomial approximation. An assessment of the computational performance of the different approximations is not possible for this small test-case. 

Finite element application and performance

The finite element application allows an assessment of the formulations' performance. The test-case consists of a twisted, non-tapered cuboid with the typical dimensions of a turbine blade. It is subjected to a prestress due to a rotation around an axis parallel to the x-axis and fixed at its root by linear springs. These uneven linear springs amplify the rotation and increase the large, non-linear displacements. It is discretised with non-linear hexahedron elements in Total-Lagragian-Formulation with a Saint Venant-Kirchhoff material [START_REF] Zienkiewicz | The Finite Element Method: Its Basis and Fundamentals[END_REF]. The transient solution is obtained for a harmonic excitation at the blade's tip with a frequency representative for a complete revolution, that might represent e.g. a contact with the casing. With a rather sparse discretisation the entire system has 78 degrees of freedom. For demonstrating the gains in performance that are possible with the polynomial formulation, the reduction is simply performed with the Linear Normal Modes at r = 25.

The reference solution is obtained with a full-order Newmark-scheme. For the polynomial solution index sub-setting is employed to render the necessary tensor operations computationally feasible. For a continuous model with exclusively geometric non-linearities it is safe to assume that there are no stiffness connections between degrees of freedom beyond those that are present in the linear stiffness matrix of the model. So the sums in the full-order equivalents of equations ( 17) and ( 18) are only performed over the indices for which {i, j} = 1 ≤ {i, j} ≤ n|K i j = 0 holds. The same goes for the static solutions which are required to identify the tensors. Here, the index sub-setting has an even greater impact on the performance of the method, because it cuts considerably the number of 78 2 + 1 78 = 474630 static solutions that would have been necessary for a complete full-order identification by a factor four to only 103030. Not to mention the difficulties of storing the tensors in the memory for even larger systems. For the reduced polynomial approximation the reduced non-linear stiffness matrix K = Φ T KΦ is usually densely populated, so that index sub-setting is not applicable. This results in 15650 static evaluations of the non-linear forces vector for the current setting. These numbers seem rather high, yet is has to be kept in mind, that the actual evaluation of the non-linear forces vector is usually made with a highly efficient commercial FEM package.

The figure 2 shows the displacements of the solutions obtained with the different formulations for the time instant when the reference solution exhibits its maximum flexion. The colours correspond to the ones used in figure 3 and the undeformed configuration is shown in black.

The table 2 (and also the figure 3) shows on its left half the overall solution time for the four different solutions, i.e. the entire time needed for the solution without the identification phases for the polynomial approximations. On its right half the mean of the Relative Root Mean Square Error (R2MSE) Considering the overall solution time the reduction of the system while keeping the inflation formulation of the non-linear terms, i.e. the full-order finite element, only induces a slight decrease. This is mainly due to the operations on the reduced matrices, where the effort scales with a higher order of the matrices' size. The inclusion of the polynomial approximation at full-order already yields a considerable gain in computational time. Yet, the decrease of computational effort only unfolds completely for the reduced polynomial approximation.

1 n ∑ n i=1 ∑ j u (approx.) i (t j ) -u (reference) i (t j ) 2 / ∑ j u (reference) i (t j )
Considering the error, it becomes evident that the error coming from the introduction of the reduction is actually larger, than the error introduced by the polynomial approximation. The effect that the Linear Normal Modes are only a mediocre reduced basis for a non-linear problem should have been countered by taking the rather larger order r = 25 for the reduced system. However, this influence cannot be neglected. On the other hand, the non-linearities for non-linear volumetric elements in Total-Lagrangian- 

Conclusion

The presented work takes a new look at the solution of reduced order systems in the setting of non-linear structural transient dynamics and highlights at which points in the solution procedure the formulations of the non-linear terms appear. It demonstrates that these points are hinging points for the successful solution of the reduced model and require thus special attention. A number of candidates for such an autonomous formulation are passed in review. A first application of these formulations on an academic system leads to the concentration on the polynomial approximation. In the following extension of the application of this particular formulation to a finite element test-case, the polynomial approximation is applied to the full-order and to the reduced non-linear system. The so obtained solutions prove to be acceptably correct if compared to a full-order solution with finite elements. Furthermore, a considerable gain in computational time is proved to take place if the solution is obtained with the reduced polynomial formulation.

However, the specific requirement of the polynomial approximation for a considerable number of static solutions is revealed. This possibly may be a major obstacle in the application of this method on full-order systems. In response the numerical shortcut of index sub-setting is developed to enable a successful application. With the index sub-setting approach a novel numerical shortcut is presented, that might enable the application of the polynomial approximation from [START_REF] Muravyov | Determination of nonlinear stiffness with application to random vibration of geometrically nonlinear structures[END_REF], and therein especially the identification, to full-order systems. This is an important step towards an autonomous formulation of the non-linear terms that is independed from the reduced basis. Such a formulation is required for reduced systems which reduced basis changes during the solution. Such a non-constant reduced basis is necessary if external parameters change, like e.g. the operating point which appears in the form of the prestressing in the used finite element test-case, or if during the solution process the reduced basis is updated in response to the non-linear evolution of the solution.
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 23 Figure 2: The displacements resulting from the solutions with the different formulations
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