
HAL Id: hal-01722052
https://hal.science/hal-01722052

Submitted on 2 Mar 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Public Domain

Vibration of mechanical systems with geometric
nonlinearities: Solving Harmonic Balance Equations

with Groebner basis and continuations methods
Aurélien Grolet, Fabrice Thouverez

To cite this version:
Aurélien Grolet, Fabrice Thouverez. Vibration of mechanical systems with geometric nonlinearities:
Solving Harmonic Balance Equations with Groebner basis and continuations methods. 11e colloque
national en calcul des structures, CSMA, May 2013, Giens, France. �hal-01722052�

https://hal.science/hal-01722052
https://hal.archives-ouvertes.fr


CSMA 2013
11e Colloque National en Calcul des Structures

13-17 Mai 2013

Vibration of mechanical systems with geometric nonlinearities: Sol-
ving Harmonic Balance Equations with Groebner basis and continua-
tions methods

Aurélien GROLET1, Fabrice THOUVEREZ1

1 LTDS, aurelien.grolet@ec-lyon.fr
2 LTDS, fabrice.thouverez@ec-lyon.fr

Résumé— This paper is devoted to the study of vibration of mechanicals systems with geometric
nonlinearities. After applying the harmonic balance method, one has to solve a system of multivariate
polynomial equations whose solutions give the frequency component of the possible steady states. Com-
puting solutions of HBM (harmonic balance method) equations for a particular frequency is usually done
iteratively with Newton-Raphson methods resulting in only one solution depending on the first iterate.
Here we intend to compute all solutions of HBM equations by using methods based on Groebner basis
computation. This approach allows to reduce the complete system to an unique polynomial equation
in one variable driving all solution of the problème. This way the procedure avoid the computation of
multiple paths, as in homotopie techniques, which can be quickly to much time consuming. In addition
continuation methods are used to extend the solution for multiple values of the frequency parameter.
We apply those methods to a simple forced nonlinear dynamic system and give a representation of the
multiple states possible versus frequency.
Mots clés— nonlinear vibration, harmonic balance method, Groebner basis, numeric continuation.

1 Introduction

This paper presents a method for computing multiple steady state solutions of dynamical systems
with polynomial nonlinearities. The harmonic balance method (HBM) [1, 2, 3, 4] is used to transform
the nonlinear differential equation into a set of nonlinear algebraic equation which solutions give the
frequency component of the possible steady states. As we consider polynomial nonlinearities, the HBM
equations consists in a system of polynomial equations.

Solving HBM equations is usually done for a fixed frequency by mean of Newton-like algorithms
giving only one solution. The solution can then be extended using continuation algorithms [5] which
follow the solution with relation to a parameter (frequency, curvilinear abscissa, damping, forces, ...).
Bifurcations can be monitored, and several new branches of solutions can be computed from the bifur-
cation points depending on the bifurcation types [5, 6]. However, if there exists branches of solutions
disconnected (in the sense that they are not arising from bifurcation points of the previous branches),
or if the bifurcation points are out of the studied frequency range, continuation algorithms fail to detect
them and new tool are needed to solve the polynomial system of equation induced by the HBM.

Finding all solutions of a multivariate polynomial system is a subject of particular interest since,
systems of polynomial equations arise in many research fields. Most of the time, the system is solved by
mean of Newton-Raphson algorithms [5], which gives only one solution depending on the initial iterate.
If one wants to compute all solutions by mean of Newton Raphson, one has to discretized the initial
condition space and try all initial iterates. Sometimes the algorithm do not converge, or the attraction
pool for a particular solution is too narrow compared to the discretization used, leading to the fact that
some solutions can be missed. Some authors has proposed [7] to modify the Newton Raphson iteration
in a way such that all previously computed solution will not be computed again. Indeed, dividing each
equation by a factor of the type‖x−x ∗ ‖, wherex∗ is a previously computed solution, introduces
a singularity at each previously computed solution so that those solutions will not be computed again
(supposing the singularity is strong enough). However, the more solution computed the more singularity
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in the system, which can lead to poor convergence rate or no convergence at all so that the modified
algorithm outputs only a subset of all solutions.

Homotopy methods are an alternative which can actually compute all solutions of polynomial equa-
tion systems. The linear homotopy (see e.g [6]) relies on liking the roots of a polynomial systemP to
the known roots of a simpler systemQ. The roots ofQ are used as starting points for following the paths
given byH(x, t) = tP (x)+(1− t)Q(x) (t ∈ [0,1]) by continuation methods on parametert. SystemQ
generally have more roots than systemP so that some path will be divergent and their continuation will
results only in a loss of time. Designing the polynomialQ may be more or less complex depending on
the method used.

Finally algebraic methods such as Groebner basis [8], Rational univariate representation [9, 10] or
matrix methods [11, 12, 13] exploit the relation between variables induced by the set of polynomial
equation. Those method are mostly based on Groebner basis and computation in quotient algebra.

In this paper we propose to use Groebner basis to solve the set of HBM equations. We note that
some attempts to use Groebner basis in the domain of structural mechanics has already been proposed
in [14, 15] for the determination of multiple static equilibriums. Here, Groebner basis theory is used as
a mean to derive solutions of polynomial equations through matrix method and eigenvalue problems.
In order to reduce the computation time for the search of multiple solution, we propose to first find the
multiple solutions of the undamped system and second recover the solutions of the damped system by
applying a continuation on the damping parameter.

The paper is organized a follows : Section 2 described the application of the harmonic balance me-
thod, the methods for solving multivariate polynomial equations, and the continuation on damping. In
section 3 we apply our method to a simple cyclic system with cubic nonlinearities.

2 Multiple steady states of systems with polynomial nonlinear ities

2.1 Harmonic Balance Method

This section presents the application of the harmonic balancemethod [1, 2, 3, 4]. Let’s consider the
n dof nonlinear dynamic system given by :

M ü+Cu̇+Ku+H(x, ẋ) = F (t) (1)

whereu(t) is the vector of unknown of sizen, M , C and K are respectively the mass, damping and
stiffness matrices,F (t) is the vector of excitation force which is assumed to be periodic with period
T = ω

2π , and finallyH(x, ẋ) is the vector of nonlinear forces which are assumed to be polynomial. The
HBM consist in searching the solution under the form of a truncated Fourier series up toH harmonics as
follows :

u(t) = a0+
H

∑
k=1

akcos(kωt)+bk sin(kωt) (2)

Then, Substituting Eq.(2) in Eq.(1) and projecting the resulting equation over the truncated Fourier
basis leads to the following set of nonlinear algebraic equations :

Z(ω)x+H̃(x)− F̃ = P (x,ω) = 0 (3)

wherex= [aT
0 ,a

T
1 ,b

T
1 , . . . ,a

T
H ,b

T
H ]

T is the vector of unknown of sizenh = n(2H +1), Z is the matrix of
dynamic stiffness computed asZ = diag(K ,(Zk)1≤k≤H) whereZk is given by

Zk =

[
K − (kω)2M kωC

−kωC K − (kω)2M

]
(4)

Finally F̃ and H̃(x) corresponds respectively to the excitation force and the nonlinear force in the
frequency domain. Since we assumed the nonlinear force in the time domainH to be polynomial, the
resulting nonlinear force in the frequency domaiñH are also under polynomial form so that Eq.(3) is a
system ofnh polynomial equations. Fixing the frequency and solving the algebraic system in Eq.(3) then
give the possible steady states of the system for a particular frequencyω.
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When the system is undamped, the HBM approximation only needs to take into account cosine terms,
so that Eq.(3) simplifies to

Zu(ω)a+H̃(a)− F̃ = Pu(a,ω) = 0 (5)

wherea = [aT
0 ,a

T
1 , . . . ,a

T
H ]

T is the vector of unknown of sizenh = n(H + 1), and Zu = diag(K ,(K −
(kω)2M)1≤k≤H).

2.2 Continuation methods on the damping parameter

This section described the continuation method used to transform a solution of the undamped system
in Eq.(5) into a solution of the damped system in Eq.(3). Let’s consider a solutiona(u) of system in
Eq.(5) for a particular frequencyωu, this solution will be used as a starting point for the continuation on
damping parameter. SubstitutingC by εC in Eq.(4) whereε is a new parameter going from 0 to 1, results
in the following form for Eq.(3) :

Z(ω,ε)x+H̃(x)− F̃ = P (x,ω,ε) = 0 (6)

For ε = 0 the system is undamped and the vectorx0 = [a(m),0H ] (of size (n(2H + 1)) is solution of
Eq.(6), and forε = 1 the system is fully damped. At first sight, a simple way to apply continuation
would be to setω to the fixed valueωu and apply a sequential continuation on parameterε. However, as
the damping increase withε, the frequency of the solution may be shifted so that the continuation stop
prematurely. In order to overcome this drawback,ω is also considered as a variable and a continuation
process with two parametersω andε based on a predictor/corrector is applied. The prediction/correction
process is then applied untilε = 1, giving a solution(x(d),ω(d)) of the damped system.

During the continuation a step length management is applied by monitoring the number of iteration
needed in the correction process, if this number is greater than a selected threshold, the length of the
predicted vector is decrease and the correction precess starts again. For some starting points, it may
happen that the solution disappears as the damping increase leading to an unfinished continuation. This
situation can be checked by monitoring for exemple the step length size, if this length is to small and
ε 6= 1 then we assume that the solution has disappeared due to too high damping. As a by product of
the continuation method, if the solution has disappeared, we have the maximum damping value for this
solution to exist (i.e the value ofε for the last converged correction). This information can be useful in
design strategies for removing critical solutions.

2.3 Solving multivariate polynomial systems with groebner basis

This section presents the use of Groebner basis for solving multivariate polynomial systemP such
as the HBM equations in Eqs.(3,5). First, note that polynomial systemP defines an idealI over the ring
C[x] of complex valued polynomials in the variablex. The concept of Groebner basis for polynomial
ideals has been introduced in the 60’s by B.Buchberger during its PhD under the direction of professor
W.Grobner [16]. A Grobner basis is a particular kind of generating subsetG for the idealI with the
additional property that the division of any element of ringK[x] by G gives a unique remainder [17].
This definition extends the concept of euclidean division for multivariate polynomials, and allows for
calculation in the quotient spaceQ = K[x]/I . Buchberger has proposed an algorithm for computing
Groebner basis in his thesis which has been improved several time, particularly by J.C. Faugère [18, 19,
20].

When computed with an elimination order, Groebner basis are under a special triangular which can
be used directly for finding zeros ofP . Indeed, the last equation will be an univariate polynomial which
can be solved to give values forxn. Then, the penultimate equation (a two-variate polynomials)is solved
giving values forxn−1, etc... The procedure is then repeated until values forx1 has been found. However
it is known that computing Groebner basis relatively to an elimination order can be very time consuming
as the number of variables grows.

In the case of non-elimination order (such as total degree ordering), Groebner basis are computed
faster, but they no longer are in triangular form. However, they can be used to compute a monomial
basisB for the quotient spaceQ, which in turns is used to build special matrices called multiplication
matrices [11, 8]. It can be shown that the eigenvalues of those multiplication matrices are related to the
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zeros of the polynomial system [11]. Solving polynomial system then corresponds to solve eigenvalue
problems (or equivalently univariate polynomials, like with elimination order), and simply read the solu-
tion in selected eigenvectors. The detailed description of this method can be found in [11, 12, 13]. In this
study, we use symbolic computation softwares that already include packages related to Grobner basis
and multiplication matrices computation such as the ’Groebner’ package of the Maple software, so that
the computation of multiple solutions will corresponds to solving eigenvalue problems.

3 Application on a simple exemple

This section presents the application of methods described insection 2 on a simple dynamic system
with cubic nonlinearities. Let’s consider the followingn dof cyclic dynamic system :

müi +cu̇i +(k+2kc)ui −kcui−1−kcui+1+knlu
3
i = Fi(t), 1≤ i ≤ n (7)

with conventionun+1 = u1. Parametersm, c, k are respectively the mass, damping and stiffness coeffi-
cient,kc andknl are the coupling stiffness and the nonlinear stiffness coefficient, and finallyFi(t) is the
excitation force which is assumed to be under the formFi(t) = fi cos(ωt).

In the remaining of this paper we will consider a system with onlyn= 6 dofs. This number can seem
pretty small, but it it indeed sufficient for the system to develop a large number of solution. Moreover we
will consider a special case of forcing where all dof are forced with the same amplitude, i.e.fi = f for
1≤ i ≤ n. Finally, the numerical value used through this example are the following :

m= 1, c= 0.1, k= 1, kc = 1, knl = 1, f =−1 (8)

In accordance with the results of a linear analysis, we choose to study our system in the range of fre-
quency[0,1]. The particular frequency for the search of multiple solution will be set to 0.47 Hz.

3.1 Solution of the undamped system

In order to find solutions of the undamped system, the HBM is applied with only one harmonics
resulting in a set ofnh = 6 algebraic equations with variablea= [a1, . . . , a6]

T given by :

(k+2kc−ω2m)ai −kcai−1−kcai+1+
3
4

knl a
3
i − fi = 0, 1≤ i ≤ nh (9)

Solutions of Eq.(9) are then sought using methods described in section 2.3. In this exemple, it turns out
that Groebner basis computation is not necessary since the system in Eq.(9) is already in a Groebner
basis form for any total degree monomial ordering, and the dimension of the quotient spaceQ is maxi-
mum being equals to 3nh [21, 8]. Taking this facts into account, we only need to build the multiplication
matricesMai of size 3nh = 729, and solve the different eigenvalue problems. Multiplication matrices are
build for the particular frequencyωm = 3 rad.s−1 with help of the Maple v15 software. Each multipli-
cation matrices has a total of 217 real eigenvalues. We noted that the eigenvectors corresponding to the
real eigenvalues are not perfectly symmetric, this fact may be due round off error when converting ra-
tional numbers into floating point numbers in the multiplication matrices. The resulting eigenvectors are
thus refined using the HBM equation of the undamped system with one harmonic. Merging the different
results leads to a total of 254 different solutions for the undamped system. In order to avoid unnecessary
continuation du to cyclic symmetry, we choose to sort the solution by family, a familyFa being defined
by b ∈ Fa either if b= a, or b is a circular permutation ofa. Applying this sorting method leads to only
46 families of solution for the undamped system, corresponding to motions going from weakly to stron-
gly localized. Finally, the 46 solutions of the undamped system are refined using an HBM approximation
with 5 harmonics.

3.2 From undamped to damped

Here the 46 solutions of the undamped system are used as starting points for the continuation algo-
rithm described in section 2.2 in order to derive solutions for the damped system. The continuation is
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carried out on the damped HBM system derived withH = 5 harmonics. From the 46 solutions, only 23
converged to a solution of the fully damped system. The method of damping continuation is illustrated
in Fig.1 : first a solution of the undamped system is computed (green curve), then the continuation on
the damping parameter is applied to derive a solution of the damped system (black curve) and finally the
solution of the damped system is continued (magenta curve).
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Fig. 1 – Illustration of the continuation on the damping parameter

3.3 Continuation of the damped solutions

Finally the 23 converged solutions for the damped system are continued using a classical arc-length
continuation. In order to avoid unnecessary continuations, for each starting point we test if this star-
ting point belong to a previously computed cuve of solution by computing the distance of the starting
point to the curve. The same strategy is used for terminating the continuation of closed curve solutions
(i.e. we monitor the distance between the current point and the starting point). Using this starting point
management, only 6 curves of solutions are continued over the 23 starting points, leading to 6 families
of solutions for the damped system. In addition, stability of solution is evaluated using the so called
monodromy matrix [5].

The resulting FrF diagram is depicted on Fig.2 in a classical frequency-amplitude plot, and on Fig.3
in an energy-frequency plot.

We seen that their exists a small intervalle of stability for some different solutions in the range [0.44,
0.48] Hz. The stability of a particular stable solution of the 3rd family (red solution) is illustrated by
numerical integration in Fig.4. After integrating the system over 5000 periods with stating point taken
from the 3rd family atω = 0.45Hz one can still see the accordance between the HBM solution and the
integrated solution.

4 Conclusion

This paper propose a method to compute multiple steady statesof nonlinear dynamic equation with
polynomial nonlinearities. The harmonic balance method is used to transform the set of nonlinear dif-
ferential equations into polynomial equations, which are solved by mean of computation in the induced
quotient algebra. In order to decrease the computation time, we proposed to work on the undamped sys-
tem first. This has several advantages : (i) decrease the number of variables, and (ii) put the polynomial
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Fig. 2 – Frequency Amplitude plot of the 6 family of solution for the damped system (◦ :stable,· :uns-
table).
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Fig. 3 – Energy Frequency plot of the 6 family of solution for the damped system (◦ :stable,· :unstable).

system under Groebner basis form so that no Groebner basis computation are needed. Once the undam-
ped system has been totally solved, solutions of the damped system are recovered by using a continuation
method on the damping parameter leading to a full frequency response diagram. The proposed method
has been applied on a simple exemple.

In this paper solutions of polynomial systems are computed by solving eigenvalue problems related
to multiplication matrices. Clearly the major limitation of this method is the exponential growth of the
multiplication matrix size with the number of variables, which considerably limits the number of harmo-
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Fig. 4 – Comparison between temporal integration and HBM solutions for a stable point of the 3rd family
at ω = 0.45Hz (· : temporal integration◦ : HBM)

nics to be used in the harmonic balance method. To maintain the number of variables sufficiently small
one should consider model reduction.
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