
HAL Id: hal-01722040
https://hal.science/hal-01722040v1

Submitted on 2 Mar 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Delta-oriented Approach to Support the Safe Reuse of
Black-box Code Rewriters

Benjamin Benni, Sébastien Mosser, Naouel Moha, Michel Riveill

To cite this version:
Benjamin Benni, Sébastien Mosser, Naouel Moha, Michel Riveill. A Delta-oriented Approach to
Support the Safe Reuse of Black-box Code Rewriters. 17th International Conference on Software
Reuse (ICSR’18), May 2018, Madrid, France. �hal-01722040�

https://hal.science/hal-01722040v1
https://hal.archives-ouvertes.fr

A Delta-oriented Approach to Support the Safe
Reuse of Black-box Code Rewriters

Benjamin Benni1, Sébastien Mosser1, Naouel Moha2, and Michel Riveill1

1 Université Côte d’Azur, CNRS, I3S, France
{benni, mosser, riveill}@i3s.unice.fr
2 Université du Québec à Montréal, Canada

moha.naouel@uqam.ca

Abstract. The tedious process of corrective and perfective maintenance
is often automated thanks to rewriting rules using tools such as Spoon

or Coccinelle. These tools consider rules as black-boxes, and compose
multiple rules by giving the output of a given rewriting as input to the
next one. It is up to the developer to identify the right order (if it exists)
among all the different rules. In this paper, we define a formal model
compatible with the black-box assumption that reifies the modifications
(∆s) made by each rule. Leveraging these ∆s, we propose a way to safely
compose multiple rules when applied to the same program by (i) ensuring
the isolated application of the different rules and (ii) yield unexpected
behaviors that were silently ignored before. We assess this approach by
applying rewriting rules used to fix anti-patterns existing in Android
applications to external pieces of software available on GitHub.

1 Introduction

It is a commonplace to state that “software evolves”, and it is part of software
developers’ duty to support and operate such an evolution. On the one hand,
the adaptive and perfective evolution [8] of a piece of software to address new
requirements is taken into account by software development methodologies and
project management methods [20]. On the other hand, this evolution [8] is not
correlated to the addition of immediate business value in the program. It covers
time-consuming and error prone activities, including software migration (e.g.,
moving from Python 2.x to Python 3.x); framework upgrade (e.g., supporting
upcoming versions of Android for a mobile application); implementation of best
practices that change along time (e.g., following vendor guidelines to rewrite
Docker deployment descriptors); code refactoring (e.g., to introduce design pat-
terns) or bugs/anti-patterns correction.

The second form of evolution is usually automated as much as possible,
using tools working directly on the source code. For example, migrating from
Python 2.x to 3.x is automated using the 2to3 shell command [15]. In a broader
way, any up-to-date IDE provides automated refactoring options to ease the
work of software developers. In 2006, Muller et al coined the term of collateral
evolution to address the issues that appear when developing linux drivers: the

kernel libraries continuously evolve, and device-specific drivers must be ported
to support the new APIs. To tame this challenge, they develop the Coccinelle

tool [13], used to rewrite C code and generate patches automatically applied to
the Linux kernel to correct bugs or adapt drivers, in a fully automated way.
In the Java ecosystem, the Spoon tool [14] (also released in 2006) allows one
to write processors that adapt Java source code in various way, such as code
refactoring, automated bug-fixing or anti-patterns fixing [5]. At runtime, both
tools consider rewriting rules as black boxes, applied to a program to generate
a patched one.

Contrarily to abstract rewriting machines that focus on the confluence, fixed
point identification and termination of the rewriting process [7] for a given set of
rewriting rules, the previously cited tools took an opposite point of view. They
do not consider the confluence of rules application, and generalize the classical
function composition operator (◦) to compose rules: each rule ri is a black-box
that consumes a program p to produce a new program p′. Rules are sequentially
applied to the input program to yield the final one, passing intermediate results
to each others.

p′ = apply(p, [r1, . . . , rn]) = r1 ◦ · · · ◦ rn(p) = r1(. . . (rn(p)))

The main issue with this assumption is the impact of overlapping rules on
the yielded program. Considering large software systems where separation of
concerns matters, each code rewriting function is defined independently. As a
consequence, if two rules do not commute (r1(r2(p)) 6= r2(r1(p))), it is up to the
developer to (i) identify that these rules are conflicting inside the rules sequence,
and (ii) fix the rules or the application sequence to yield the expected result.
Classical term rewriting methods cannot be applied to these tools, as it breaks
the underlying black-box assumption: a rewriting function cannot be opened to
reason on its intrinsic definition, and only the result of its application on a given
program can be analyzed.

In this paper, we propose an approach to support the safe reuse of
code rewriters defined as black-boxes. The originality of the approach is
to reason on the modifications (i.e., the deltas) produced by code rewriters,
when the application to the program guarantees that each one is successfully
applied, or to detect conflicts when relevant. We give in Sec. 2 background in-
formation about black-box rewriters, using Coccinelle and Spoon as examples.
Then, Sec. 3 defines a formal model to represent deltas and Sec. 4 describes
how conflicts can be identified based on this representation. The approach is
implemented in the Java ecosystem, and Sec. 5 describes how the contribution
is implemented and then applied to identify rewriting conflicts when automat-
ically patching Android mobile applications with respect to Google guidelines.
Finally, Sec. 6 describes related work and Sec. 7 concludes the paper by de-
scribing perspectives of this work from both theoretical and empirical point of
views.

2 Background and challenges

In this section, we focus on two tools that exist in the state of practice (Coccin-
elle and Spoon) to automate code rewriting, so to identify the challenges our
contribution addresses.

2.1 Using Coccinelle to patch the Linux Kernel

As stated in the introduction, the Coccinelle tool is used to automatically fix
bugs in the C code that implements the Linux kernel, as well as backporting
device-specific drivers [16]. These activities are supported by allowing a software
developer to define semantic patches. A semantic patch contains (i) the decla-
ration of free variables in a header identified by at symbols (@@), and (ii) the
patterns to be matched in the C code coupled to the rewriting rule. Statements
to remove from the code are prefixed by a minus symbol (-), statements to be
added are prefixed by a plus symbol (+), and placeholders use the ... wildcard.
For example, the rule Rk (Fig. 1a) illustrates how to rewrite legacy code in
order to use a new function available in the kernel library instead of the previ-
ous API. It describes a semantic patch removing any call to the kernel memory
allocation function (kmalloc, l.5) that is initialized with 0 values (memset, l.8),
and replacing it by an atomic call to kzalloc (l.6), which do both at the very
same time. Wildcards can define guards, for example here the patch cannot be
applied if the allocated memory was changed in between (using the when key-
word). Fig. 1b describes another semantic patch used to fix a very common bug,
where the memory initialization is not done properly when using pointers (l.8).
These two examples are excerpts of the examples available on the tool webpage3.

Considering these two semantic patches, the intention of applying the first
one (Rk) it to use call to kzalloc whenever possible in the source code, and the
intention associated to the second one (Rm) is to fix bad memory allocation. In
the state of practice, applying the two patches, in any orders, does not produce
any error. However, the application order matters. For example, when applied
to the sample program pc described in Fig. 1c:

– pkm = Rk(Rm(pc)) : The erroneous memset is fixed (Fig. 1c, l.13), and as
a consequence the kzalloc optimization is also applied to the fixed memset,
merging l.11 and l.13 into a single memory allocation call. In this order,
the two initial intentions are respected in pkm: all the erroneous memory
allocations are fixed, and the atomic function kzalloc is called whenever
possible. This is the expected result depicted in Fig. 1d.

– pmk = Rm(Rk(pc)) : In this order, the erroneous memory allocations are
fixed after the kzalloc merge. As a consequence, it is possible to forgot some
of these kzalloc calls when it implies badly defined memset. Considering pc,
l.5 and l.7 are not mergeable until l.7 pointer is fixed, leading to a program
pmk where the intention of Rk is not respected: the kzalloc method is not
called whenever it is possible in the final program.

3 http://coccinelle.lip6.fr/impact_linux.php: (i) “kzalloc treewide” for Rk and
(ii) “Fix size given to memset” for Rm.

http://coccinelle.lip6.fr/impact_linux.php

1 @@
2 type T;
3 expression x, E, E1 ,E2;
4 @@
5 - x = kmalloc(E1 ,E2);
6 + x = kzalloc(E1,E2);
7 ... when != \(x[...]=E; \| x=E; \)
8 - memset ((T) x, 0, E1);

(a) kmalloc∧memset(0) 7→ kzalloc (Rk)

1 @@
2 type T;
3 T *x;
4 expression E;
5 @@
6

7 - memset(x, E, sizeof(x))
8 + memset(x, E, sizeof (*x))

(b) Fix size in memset call (Rm)

1 struct Point {
2 double x;
3 double y;
4 };
5 typedef struct Point Point;
6

7 int main()
8 {
9 Point *a;

10 //
11 a = kmalloc(sizeof (*a), 0);
12 // not using a
13 memset(a, 0, sizeof(a));
14 // ...
15 return 0;
16 }

(c) Example of a C program (pc)

1 struct Point {
2 double x;
3 double y;
4 };
5 typedef struct Point Point;
6

7 int main()
8 {
9 Point *a;

10 //
11 a = kzalloc(sizeof (*a), 0);
12 // not using a
13

14 // ...
15 return 0;
16 }

(d) Expected program: Rk(Rm(pc))

Fig. 1: Coccinelle: using semantic patches to rewrite C code

2.2 Using Spoon to fix anti-patterns in Android applications

Spoon is a tool defined on top of the Java language, which works at the Ab-
stract Syntax Tree (AST) level. It provides the AST of a Java source code and
let the developer define her transformations. A Spoon rewriter is modeled as a
Processor, which implements an AST to AST transformation. It is a Java class
that analyses an AST by filtering portions of it (identified by a method named
isToBeProcessed), and applies a process method to each filtered element, mod-
ifying this AST. Spoon reifies the AST through a meta-model where all classes
are prefixed by Ct: CtClasses contains CtMethods made of CtExpressions.

We consider here two processors defined according to two different intentions.
The first one, implemented in a file NPGuard.java (Rnp), is a rewriter used to
protect setters4 from null pointer assignment by introducing a test that prevents
an assignment to the null value to an instance variable in a class. The second
one (IGSInliner.java, Rigs) implements a guideline provided by Google when
developing mobile application in Java using the Android framework. Inside a
given class, a developer should directly use an instance variable instead of access-

4 We use the classical definition of a setter, i.e., “a setter for a private attribute x is
a method named setX, with a single parameter, and doing a single-line and type-
compatible assignment from its parameter to x”.

1 public class NPGuard extends AbstractProcessor <CtClass > {
2

3 @Override public boolean isToBeProcessed(CtClass candidate) {
4 List <CtMethod > allMethods = getAllMethods(candidate);
5 settersToModify = keepSetters(allMethods);
6 return !settersToModify.isEmpty ();
7 }
8

9 @Override public void process(CtClass ctClass) {
10 List <CtMethod > setters = settersToModify;
11 for (CtExecutable currentSetterMethod : setters) {
12 if (isASetter(currentSetterMethod)) {
13 CtParameter parameter =
14 (CtParameter) currentSetterMethod.getParameters ().get (0);
15 CtIf ctIf = getFactory ().createIf ();
16 ctIf.setThenStatement(currentSetterMethod.getBody ().clone());
17 String snippet = parameter.getSimpleName () + " != null";
18 ctIf.setCondition(getFactory ()
19 .createCodeSnippetExpression(snippet);
20 currentSetterMethod.setBody(ctIf);
21 }
22 }
23 }
24 }

Fig. 2: Spoon: using processors to rewrite Java code (NPGuard.java, Rnp))

ing it through its own getter or setter (Internal Getters Setters anti-pattern).
This is one (among others) way to improve the energy efficiency of the developed
application with Android5.

Like in the Coccinelle example, these two processors work well when applied
to Java code, and always yield a result. However, order matters as there is
an overlap between the add of the null check in Rnp and the inlining process
implemented by Rigs. As described in Fig. 3, when composing these two rules,
if the guard mechanism is introduced before the setters are inlined, the setters
will not be inlined as they do not conform to the setter definition with the
newly introduced if statement. We depict in Fig. 3 how these processor behave
on a simple class pj . Inlining setters yields pigs, where internal calls to the
setData method are replaced by the contents of the associated method (Fig. 3b,
l.11). When introducing the null guard, the contents of the setData method is
changed (Fig. 3c, l.5-8), which prevents any upcoming inlining: Rigs(Rnp(pj)) =
Rnp(pj). It is interesting to remark that, when considering Rigs and Rnp to be
applied to the very same program, one actually expects the result described in
Fig. 3d: internal setters are inlined with the initial contents of setData, and
any external call to setData is protected by the guard.

2.3 Challenges associated to rewriting rules reuse

Based on these two examples that come from very different worlds, we identify
the following challenges that need to be addressed to properly support the safe

5 http://stackoverflow.com/a/4930538

http://stackoverflow.com/a/4930538

1 public class C {
2

3 private String data;
4

5 public String setData(String s) {
6 this.data = s;
7 }
8

9 public void doSomething () {
10 // ...
11 setData(newValue) /* <<<< */
12 // ...
13 }
14 }

(a) Example of a Java class (C.java, pj)

1 public class C {
2

3 private String data;
4

5 public String setData(String s) {
6 this.data = s;
7 }
8

9 public void doSomething () {
10 // ...
11 this.data = newValue /* <<<< */
12 // ...
13 }
14 }

(b) pigs = Rigs(pj)

1 public class C {
2

3 private String data;
4

5 public String setData(String s) {
6 if (s != null)
7 this.data = s;
8 }
9

10 public void doSomething () {
11 // ...
12 setData(newValue) /* <<<< */
13 // ...
14 }
15 }

(c) pnp = pigs◦np = Rigs(Rnp(pj))

1 public class C {
2

3 private String data;
4

5 public String setData(String s) {
6 if (s != null)
7 this.data = s;
8 }
9

10 public void doSomething () {
11 // ...
12 this.data = newValue /* <<<< */
13 // ...
14 }
15 }

(d) pnp◦igs = Rnp(Rigs(pj))

Fig. 3: Spoon: applying processors to Java code

reuse of code rewriters. These challenges define the scope of requirements asso-
ciated to our contribution. As rewriting tools are part of the state of practice in
software engineering (e.g., for scalability purpose when patching the whole Linux
kernel), an approach supporting the reuse of rewriting rules must be aligned
with the assumptions made by these tools, i.e., consider their internal decisions
as black boxes.

C1 Rules isolation. When rules overlaps, it is not possible to apply the two
rules in isolation, as the result of a rule is used to feed the other one. It is
important to support isolation when necessary.

C2 Conflict detection. As each rewriter is associated to an intention, it is im-
portant to provide a way to assess if the initial intention is still valid in the
composed result.

3 Using deltas to isolate rule applications (C1)

In this section, we focus on the definition of a formal model that supports the safe
reuse of code rewriters, w.r.t. the challenges identified in the previous section.
This model directly addresses the first challenge of rule isolation (C1). It also
provides elementary bricks to support the conflict detection one (Sec. 4).

We model a code rewriter ρ ∈ P as a pair of two elements: (i) a function
ϕ ∈ Φ used to rewrite the AST, coupled to (ii) a checker function χ ∈ X
used to validate a postcondition associated to the rewriting6. The postcondition
validation is modeled as a boolean function taking as input the initial AST
and the resulting one, returning true when the postcondition is valid, and false
elsewhere. For a given p ∈ AST , applying ϕ to it yields an AST p′ where χ(p, p′)
holds. This model supports the formalization of the rewriting rules exemplified
in the previous section, and also automates the validation of the developer’s
intention on the yielded program.

Let ρ = (ϕ, χ) ∈ (Φ×X) = P, (ϕ : AST → AST) ∈ Φ
χ : AST ×AST → B ∈ X, ∀p ∈ AST, χ(p, ϕ(p))

(1)

Working with functions that operate at the AST level does not provide any
support to compose these functions excepting the classical composition operator
◦. When combined with the postcondition validation introduced in the model,
it supports the apply operator that classically exists in the rewriting tools. The
rules [ρ1, . . . , ρn] to be applied are consumed in sequence, leading to a situation
where only the last postcondition (χ1) can be ensured in the resulting program,
by construction.

apply : AST × Pn< → AST

p, [ρ1, . . . , ρn] 7→ Let p2.n = (
n◦
i=2

ϕi)(p), p
′ = ϕ1(p2.n), χ1(p2.n, p

′)
(2)

Using this operator leads to scheduling issues, as it implies strong assump-
tions on the functions to be commutative. We build here our contribution on
top of two research results: Praxis [2] and a parallel composition operator [12].
These two approaches share in common the fact that instead of working on a
model (here an AST), they rely on the sequence of elementary actions used to
build it. Praxis demonstrated that for any model m, there exists an ordered
sequence of elementary actions [α1, . . . , αn] ∈ A∗< yielding m when applied to
the empty model. The four kinds of actions available in A are (i) the creation of
a model element, (ii) the deletion of a model element, (iii) setting a property to
a given value in a model element and (iv) setting a reference that binds together
two model elements. For example, to build the Java program pj described in
Fig. 3a, one can use a sequence of actions Spj that creates a class, names it C,

6 We do not formalize preconditions, as the tools silently return the given AST when
they are not applicable.

creates an instance variable, names it data, sets its type to String, adds it to
C, . . .

Spj = [create(e1, Class), setProperty(e1, name, {“C”}), . . .] ∈ A∗<

Considering a rewriting rule as an action producer introduces the notion
of deltas in the formalism. We consider the rewriting not through its resulting
AST but through the elementary modifications made on the AST (i.e., a ∆)
by the rule to produce the new one. This is compatible with the “rules are
black boxes” assumption for two reasons. On the one hand, rewriting tools use a
similar mechanism in their rewriting engine, for example by relying on patches
for Coccinelle (i.e., ∆s containing elements to add or remove) or on an action
model for Spoon (e.g., l.15 in Fig. 2 creates an if statement, and l.20 binds
the contents of the setter to this new conditional statement). We model here the
application of a sequence of actions to a given AST to modify it, as a generic
operator denoted by ⊕ (where executing a given action on the AST is a language-
specific operation). On the other hand, it is possible for certain languages to
define a differentiation tool working at the AST level. For example, the GumTree

tool [4] exposes the differences between two Java ASTs as the minimal sequence
of actions necessary to go from the right one to the left one. We denote such a
diff operation using the 	 symbol (language-specific).

⊕ : AST ×A∗< → AST

(p, S) 7→

{
S = ∅ ⇒ p

S = α|S′ ⇒ exec(α, p)⊕ S′

	 : AST ×AST → A∗<

(p′, p) 7→ ∆, where p′ = p⊕∆

(3)

This representation is compatible with the previously defined semantics for
the apply composition operator.

Let p ∈ AST, ρ1 = (ϕ1, χ1) ∈ P, ρ2 = (ϕ2, χ2) ∈ P
p1 = ϕ1(p) = p⊕ (p1 	 p) = p⊕∆1, χ1(p, p1)

p2 = ϕ2(p) = p⊕ (p2 	 p) = p⊕∆2, χ2(p, p2)

p12 = apply(p, [ρ1, ρ2]) = ϕ1 ◦ ϕ2(p) = ϕ1(ϕ2(p))

= ϕ1(p⊕∆2) = (p⊕∆2)⊕∆′1, χ1(p2, p12)

p21 = apply(p, [ρ2, ρ1]) = ϕ2 ◦ ϕ1(p) = ϕ2(ϕ1(p))

= ϕ2(p⊕∆1) = (p⊕∆1)⊕∆′2, χ2(p1, p21)

(4)

However, the need for the user to decide an order is implied by the way
the rewriting tools are implemented. At the semantic level, the user might not
want to order the different rewriting (as seen in the Spoon example). Using our
model, it is possible to leverage the ∆s to support an isolated composition of
multiple rewriting rules, where the rewriting functions are applied on the very

! � � " ⊕ ⊨

"�1 �1"1 �2 "2�2
⊕ �’1⊕ "12⊕

�1�’2"21 ⊕
�2

"’�
;

⊕

Fig. 4: Sequential (p 7→ {p12, p21}) versus isolated (p 7→ p′) rewriting

same model in an isolated way (Fig. 4). Using this approach, (i) we obtain the
two sequences ∆1 and ∆2 used to yield p1 and p2, (ii) concatenate7 them into a
single one ∆, and (iii) apply the result to the initial program. As a consequence,
according to this composition semantic, both postconditions χ1 and χ2 must
hold in the resulting program p′ for it to be valid.

p′ = p⊕ ((p1 	 p); (p2 	 p)) = p⊕ (∆1;∆2), χ1(p, p′) ∧ χ2(p, p′) (5)

An interesting property of the isolated composition is to ensure that all post-
conditions are valid when applied to a program. Unfortunately, it is not always
possible to apply rules in an isolated way: for example, to yield the expected
program in the Coccinelle example (Fig. 1d), it is necessary to always execute
the error fixing rule before the allocation optimization one. However, we need
to detect that one ordering ensures both postconditions, where the other only
ensures the last one. As a consequence, we generalize the application of several
rewriting rules to a given program according to two new composition operators
that complements the legacy apply one. Using these operators ensures that all
the postconditions hold between the initial program and the final one, no matter
what happened in between. The seq operator implements the sequential com-
position of an ordered sequence of rules, and the iso operator implements the
isolated application of a set of rules.

seq : AST × Pn< → AST

p, [ρ1, . . . , ρn] 7→ pseq = (
n◦
i=1

ϕi)(p),
n
∧
i=1

χi(p, pseq)

iso : AST × Pn → AST

p, {ρ1, . . . , ρn} 7→ piso = p⊕ (
n
;
i=1

(ϕi(p)	 p)),
n
∧
i=1

χi(p, piso)

(6)

4 Detecting syntactic and semantic conflicts (C2)

We discriminate conflicts according to two types: (i) syntactic conflicts and
(ii) semantic conflicts. The latter are related to the violation of postconditions
associated to the rewriting rules. The former are a side effect of the iso operator,
considering that ∆s might perform concurrent modifications of the very same
tree elements. These two mechanisms address the second challenge of conflict
detection (C2, Sec. 2).

7 We consider a function denoted as ; that implements action sequence concatenation.

4.1 Syntactic conflicts as overlapping deltas

Let p an AST that defines a class C with a protected attribute named att. Let
ρ1 and ρ2 two rewriting rules, applied using the iso operator to prevent one to
capture the output of the other. On the one hand, applying ϕ1 to p creates ∆1,
which makes att private, with an associated getter and setter. On the other
hand, applying ϕ2 to p creates ∆2, which promotes the very same attribute as a
public one. As an attribute cannot be public and private at the very same time,
we encounter here a syntactic conflict: applying the two rules ρ1 and ρ2 on the
same program is not possible as is.

ϕ1(p)	 p = ∆1 = [. . . , setProperty(att, visibility, {“private”}), . . .]
ϕ2(p)	 p = ∆2 = [. . . , setProperty(att, visibility, {“public”}), . . .]

(7)

On the one hand, the seq operator cannot encounter a syntactical conflict,
as it it assumed to produce a valid AST as output. On the other hand, the
iso operator can encounter three kinds of conflicts (Eq. 8) at the syntax level8:
Concurrent Property Modification (CPM), Concurrent Reference Modification
(CRM) and Dangling reference (DR). The first and second situation identify
a situation where two rules set a property (or a reference) to different values.
It is not possible to automatically decide which one is the right one. The last
situation is identified when a rule creates a reference to a model element that is
deleted by the other one. This leads to a situation where the resulting program
will not compile. Thanks to the definition of these conflicting situations, it is
possible to check if a pair of ∆s is conflicting through the definition of a conflict?
function. If this function returns true, it means that the two rewriting rules
cannot be applied independently on the very same program. One can generalize
the conflict? function to a set of ∆s by applying it to the elements that compose
the cartesian product of the ∆s to be applied on p.

The syntactical conflict detection gives an information to the software de-
veloper: among all the rules used to rewrite the program under consideration,
there exist a pair of rules that cannot be applied independently. It is still her
responsibility to fix this issue, but at least the issue is explicit and scoped instead
of being silently ignored.

4.2 Semantic conflicts as postcondition violations

We now consider rewriting rules that are not conflicting at the syntactical level.
We focus here on the postconditions defined for each rules, w.r.t. the legacy,
sequential and isolated composition operators. We summarize in Tab. 1 and
Tab. 2 how the different postconditions hold when applying the apply, iso and
seq operators to the examples defined in Sec. 2. When composed using the apply
operator (p′ = apply(p, rules)), the only guarantee is that the last postcondition
is true. It is interesting to notice that, in both tables, using the apply operator

8 See the Praxis seminal paper [2] for a more comprehensive description of conflict
detection in the general case.

CPM : A∗< ×A∗< → B
∆,∆′ 7→ ∃α ∈ ∆,α′ ∈ ∆′, α = setProperty(elem, prop, value)

α′ = setProperty(elem, prop, value′), value 6= value′

CRM : A∗< ×A∗< → B
∆,∆′ 7→ ∃α ∈ ∆,α′ ∈ ∆′, α = setReference(elem, ref , elem′)

α′ = setReference(elem, ref , elem′′), elem′ 6= elem′′

DR : A∗< ×A∗< → B
∆,∆′ 7→ ∃α ∈ ∆,α′ ∈ ∆′, α = setReference(elem, ref , elem′)

α′ = delete(elem′′), elem′ = elem′′

conflict? : A∗< ×A∗< → B
∆,∆′ 7→ CPM(∆,∆′) ∨ CRM(∆,∆′) ∨DR(∆,∆′) ∨DR(∆′,∆)

(8)

always yields a result that conforms to the associated postcondition, even if the
result is not the expected one.

Let rules = [ρ1, . . . , ρn] ∈ Pn a set of rewriting rules. When using the seq
operator, ordering issues are detected. For example, in the Coccinelle example,
both apply(pc, [ρk, ρm]) and apply(pc, [ρm, ρk]) yield a valid result (i.e. that do
not violate postconditions). However, in the last case, the fixed calls to memset

introduced by ρm make the postcondition invalid. When using the seq operator,
only seq(pc, [ρk, ρm]) is valid w.r.t. to the postcondition associated to the opera-
tor. This detects the fact that fixing the memset size error must be applied before
the one that merges the kmalloc and memset calls to support both intentions.
The operator also identifies an issue when, in the Spoon example, the guard rule
is applied before the other one.

When composed using the iso operator (p′ = iso(p, rules)), the resulting
program is valid only when all the postcondition hold when the rules are si-
multaneously applied to the input program. On the one hand, when applied to
Coccinelle example, this is not the case. The fact that at least one postcondi-
tion is violated when using the iso operator gives a very important information
to the developers: these two rewriting rules cannot be applied independently on
this program. On the other hand, considering the Spoon example, the two rules
can be applied in isolation (yielding the result described in Fig. 3d).

5 Implementation & Validation

The approach described in this paper is implemented9 on top of the Spoon frame-
work, in the Java ecosystem. Each rule is defined as a Processor working at the
AST level, and we also used the same mechanism to implement the associated
postcondition, as another Processor that identifies violations when relevant.

9 https://github.com/ttben/ICSR-Implementation-validation

https://github.com/ttben/ICSR-Implementation-validation

Table 1: Identifying semantic conflicts on the Coccinelle example
p ∈ AST p′ ∈ AST χk(p, p′) χm(p, p′) Postcondition

pc ϕk(pc) X X
pc ϕm(pc) X X

ϕm(pc) apply(pc, [ρk, ρm]) X X X
ϕk(pc) apply(pc, [ρm, ρk]) × X X

pc seq(pc, [ρk, ρm]) X X X
pc seq(pc, [ρm, ρk]) × X ×
pc iso(pc, {ρk, ρm}) × X ×

Table 2: Identifying semantic conflicts on the Spoon example
p ∈ AST p′ ∈ AST χigs(p, p′) χnp(p, p′) Postcondition

pj ϕk(pc) X X
pj ϕm(pc) X X

ϕnp(pj) apply(pj , [ρigs, ρnp]) X X X
ϕigs(pj) apply(pj , [ρnp, ρigs]) X X X

pj seq(pc, [ρigs, ρnp]) × X ×
pj seq(pc, [ρnp, ρigs]) X X X
pj iso(pc, {ρigs, ρnp}) X X X

We consider here as a validation example the development of an Android
application. Based on the collaborative catalogue Android Open Source Apps10,
we selected the RunnerUp11 application. This application is developed by an ex-
ternal team, is open-source, has a large number of installations (between 10, 000
and 50, 000) and positive reviews in the Android Play Store. From a source code
point of view, it has 316 stars on its GitHub repository (December 2017) and
have involved 28 contributors since December 2011. It defines 194 classes imple-
mented in 53k lines of code. This application is dedicated to smartphones and
smartwatches thus its energy efficiency is very important.

From the software rewriting point of view, we reused here four different rules.
The first one, named Rλ, is used to migrate plain old iterations to the new
λ-based API available since Java 8, helping the piece of software to stay up
to date. The second one, named Rnp, is used to introduce guards preventing
null assignments (Fig. 2) in setters, introducing safety in the application. The
two others are dedicated to energy consumption anti-pattern fixing: Rh replaces
HashMaps in the code by a more efficient data structure (ArrayMaps are preferred
in the Android context), and Rigs inlines internal calls to getter and setters
(Sec. 2).

We act here as the maintainer of RunnerUp, who wants to reuse these four
rules. As there is no evident dependencies between the rules, she decides to use
the iso operator to automatically improve her current version of RunnerUp:

10 https://github.com/pcqpcq/open-source-android-apps
11 https://github.com/jonasoreland/runnerup

https://github.com/pcqpcq/open-source-android-apps
https://github.com/jonasoreland/runnerup

p′ru = iso(pru, {Rnp, Rigs, Rh, Rλ}). It happens that all the postconditions hold
when applied to pru and p′ru, meaning that the iso operator can be used in this
case. The maintainer do not have to wonder about ordering issues w.r.t. this set
of rules (4! = 24 different orders).

To validate the seq operator, we consider a slightly different implementation
of the Rigs rule, named R′igs. This rule rewrites a setter even if it does not contain
a single line assignment, and expects as postcondition that the call to the setter
is replaced by the contents of the method in the resulting program. With such a
rule, p′ru = iso(pru, {Rnp, R′igs, Rh, Rλ}) is not valid with respect to its postcon-
dition, as χ′igs(pru, p

′
ru) does not hold. Actually, the yielded program contains

call to the initial contents of the setter, where the guarded one is expected ac-
cording to this postcondition. Considering this situation, the maintainer is aware
that (i) isolated application is not possible when R′igs is involved for pru and
(ii) that the conflicting situation might involve this very rule. She can yield a
valid program by calling iso(pru, {Rnp, Rh, Rλ}), meaning that these three rules
do not interact together on pru, and thus an order involving R′igs must be de-
fined. The main advantage of the seq operator is to fail when a postcondition
is violated, indicating an erroneous combination that violates the developers in-
tention. Any call to the seq operator that does put R′igs as the last rule will fail,
thanks to a postcondition violation. Thus, among 24 different available ordering,
the expected one is ensured by calling p′ru = seq(pru, [. . . , R

′
igs]).

Threats to validity. This experiment does not aim to empirically validate the
apply, seq and iso operators with a large number of programs and rules. The
point here is to validate the expressiveness of the three operators when con-
fronted to a legacy piece of software that was not developed by the authors
of the approach. Further experiments are necessary to empirically identify con-
flicting cases on a large scale code rewriting, measuring the scalabilityof our
approach, but is considered out of the scope of this contribution.

6 Related Work

Model transformation is “the automatic manipulation of input models to produce
output models, that conform to a specification and has a specific intent” [10].
Tool such as T-core [18] targets the definition and execution of rule-based graph
transformations. Such transformation rules are defined as (i) a right part that
describes the pattern that will trigger the rule and (ii) a left part indicating
the expected result once the rules has been executed. It does not indicate how
to go from the right part to the left, and only express the expected result. In
this paper, we underlined the fact that our rewriting functions are black-boxes
that hide their behaviors and inputs (i.e., the right and left parts are hidden).
In addition, some rewriting rules implemented in the Android example are not
pattern-based and uses a two-pass algorithm to catch relevant elements before
processing it.

Aspect-Oriented Programming (AOP [6]) aims to separate cross-cutting con-
cerns into aspects that will be weaved on a software. Aspects can be weaved in

sequence on the same software, thus interactions between different aspects can
occur. Their interactions has been identified and studied [3,19]. These works fo-
cus on their interaction in order to find a possible schedule in their application
to avoid any interactions. In this paper, we want to avoid such a scheduling
by using the iso composition operator and detect interactions on a given code
base. When conflicts are detected, it is possible to reuse aspect-ordering like
mechanisms to schedule the application of the rewriting rules.

Transformations can also be directly operated at the code level. Compil-
ers optimize, reorganize, change or delete portions of code according to known
heuristics. Works has been done to formalize these transformations and guar-
antee their correctness [9]. Such tooling, Alive for example, are focused on the
correctness of a given rule, expressed in an intermediate domain specific lan-
guage. A strong assumption of our work is that these transformations are black-
boxes, correct, bug-free, and we focus on the interactions between rules instead
of rule-correctness itself, making our work complementary to this one.

Other works focus on concurrent modifications that can occurs during a team
development. Concurrent refactorings can occur when multiple developers work
on the same code and incompatibility can be detected [11]. Such refactoring can
be considered as white-boxes graph transformations. Each refactoring is formal-
ized as a function that captures elements in a graph and updates them. This
work focus on refactoring operations only, and need to formalize and specify the
captured inputs of the refactoring (i.e., the pattern that needs to be captured),
breaking the black-box assumption of the contribution described in this paper.

Work has been done in Software Product Lines (SPL) to safely evolve it
by applying step-wise modifications [17,1]. A modification is brought by so-
called delta modules that specify changes to be operated on a core module of
a SPL. A delta module can operate a finite set of changes in the SPL (e.g.,
add/remove a superclass, add/remove an interface), and is considered as a white-
box function. In addition, conflicting applications of delta modules is solved by
explicitly defining an ordering. The sequence of application is explicitly defined
by chaining the execution of modules. The white-box paradigm, along the explicit
dependency declaration does not match our constraints and initial hypothesis.
Finally, the delta-oriented programming of SPL is focused on the safety of a delta
module: is a given function safe?, will it bring inconsistencies?, will it perform
inconsistent queries? It does not deal with the safe application of multiple delta
modules.

7 Conclusions & Perspectives

In this paper, we identified the composition problem that exists when compos-
ing multiple rewriting rules using state of practice tools such as Coccinelle

or Spoon. We proposed a formal model to represent rewriting rules in a way
compatible with such tools. Through the reification of the deltas introduced by
each rule on a given program, we defined two composition operators seq and iso
used to safely compose the given rules. The safety is ensured by the validation

of postconditions associated to each rule. This enables to detect badly composed
rules that would silently ignore developers’ intention if sequentially applied. We
implemented the model and operators, and applied them on an external Android
application, using four rewriting rules designed to identify and fix anti-patterns,
following the latest guidelines from Google for Android development.

Contrarily to related work approaches that assume an access to the internal
definition of the rewriting rules, we advocate from a reuse point of view the
necessity to be fully compatible with state of practice tools that do not expose
such information. We intent to extend this work by (i) introducing results from
the state of the art in the existing tools and (ii) applying methods from the
test community to the rules. For the former, one can imagine an annotation-
based mechanism where a rule would describe in a non-invasive way the elements
it selects, as well as the one it produces. Such metadata, when available, will
provide a more accurate way to identify conflicts in the general case instead of
doing it program by program. For the latter, we believe that property-based
testing could help to assess rewriting rules composition safety. By generating
input programs under given assumptions, it is possible to explore how the rules
interact between each others and perform an empirical evaluation of the conflict
rate. This might also lead to the reverse engineering of the rules to automatically
extract from such applications the selected and rewritten elements.

Acknowledgments

This work is partially funded by the M4S project (CNRS INS2I JCJC grant).
The authors want to thanks Erick Gallesio for his help on kernel development;
Geoffrey Hecht for his knowledge of Android optmizations; Mehdi Adel Ait
Younes for having developed the initial versions of the Spoon processors and
Mireille Blay-Fornarino and Philippe Collet for their feedbacks on this paper.

References

1. Lorenzo Bettini, Ferruccio Damiani, and Ina Schaefer. Compositional type checking
of delta-oriented software product lines. Acta Informatica, 50(2):77–122, Mar 2013.

2. Xavier Blanc, Isabelle Mounier, Alix Mougenot, and Tom Mens. Detecting model
inconsistency through operation-based model construction. In Proceedings of the
30th International Conference on Software Engineering, ICSE ’08, pages 511–520,
New York, NY, USA, 2008. ACM.

3. Rémi Douence, Pascal Fradet, and Mario Südholt. Detection and resolution of
aspect interactions. Research Report RR-4435, INRIA, 2002.

4. Jean-Rémy Falleri, Floréal Morandat, Xavier Blanc, Matias Martinez, and Martin
Monperrus. Fine-grained and accurate source code differencing. In ACM/IEEE
International Conference on Automated Software Engineering, ASE ’14, Vasteras,
Sweden - September 15 - 19, 2014, pages 313–324, 2014.

5. Geoffrey Hecht, Romain Rouvoy, Naouel Moha, and Laurence Duchien. Detecting
antipatterns in android apps. In 2nd ACM International Conference on Mobile
Software Engineering and Systems, MOBILESoft 2015, Florence, Italy, May 16-
17, 2015, pages 148–149, 2015.

6. Gregor Kiczales, John Lamping, Anurag Mendhekar, Chris Maeda, Cristina Lopes,
Jean-Marc Loingtier, and John Irwin. Aspect-oriented programming, pages 220–
242. Springer Berlin Heidelberg, Berlin, Heidelberg, 1997.

7. Jan Willem Klop et al. Term rewriting systems. Handbook of logic in computer
science, 2:1–116, 1992.

8. Bennett P. Lientz and E. Burton Swanson. Software Maintenance Management.
Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1980.

9. Nuno P. Lopes, David Menendez, Santosh Nagarakatte, and John Regehr. Provably
correct peephole optimizations with alive. SIGPLAN Not., 50(6):22–32, June 2015.

10. Levi Lúcio, Moussa Amrani, Juergen Dingel, Leen Lambers, Rick Salay, Gehan
M. K. Selim, Eugene Syriani, and Manuel Wimmer. Model transformation intents
and their properties. Software & Systems Modeling, 15(3):647–684, Jul 2016.

11. Tom Mens, Gabriele Taentzer, and Olga Runge. Detecting structural refactoring
conflicts using critical pair analysis. Electronic Notes in Theoretical Computer Sci-
ence, 127(3):113 – 128, 2005. Proceedings of the Workshop on Software Evolution
through Transformations: Model-based vs. Implementation-level Solutions (SETra
2004).

12. Sébastien Mosser, Mireille Blay-Fornarino, and Laurence Duchien. A Commutative
Model Composition Operator to Support Software Adaptation. In 8th European
Conference on Modelling Foundations and Applications, pages 4–19, Lyngby, Den-
mark, July 2012. SPRINGER LNCS.

13. Yoann Padioleau, René Rydhof Hansen, Julia L. Lawall, and Gilles Muller. Seman-
tic patches for documenting and automating collateral evolutions in linux device
drivers. In Proceedings of the 3rd Workshop on Programming Languages and Oper-
ating Systems: Linguistic Support for Modern Operating Systems, PLOS ’06, New
York, NY, USA, 2006. ACM.

14. Renaud Pawlak, Martin Monperrus, Nicolas Petitprez, Carlos Noguera, and Lionel
Seinturier. Spoon: A Library for Implementing Analyses and Transformations of
Java Source Code. Software: Practice and Experience, 46:1155–1179, 2015.

15. J. M. Redondo and F. Ortin. A comprehensive evaluation of common python
implementations. IEEE Software, 32(4):76–84, July 2015.

16. Luis R. Rodriguez and Julia Lawall. Increasing Automation in the Backport-
ing of Linux Drivers Using Coccinelle. In 11th European Dependable Computing
Conference - Dependability in Practice, 11th European Dependable Computing
Conference - Dependability in Practice, Paris, France, November 2015.

17. Ina Schaefer, Lorenzo Bettini, Viviana Bono, Ferruccio Damiani, and Nico Tan-
zarella. Delta-Oriented Programming of Software Product Lines, pages 77–91.
Springer Berlin Heidelberg, Berlin, Heidelberg, 2010.

18. Eugene Syriani, Hans Vangheluwe, and Brian Lashomb. T-core: A framework for
custom-built model transformation engines. Softw. Syst. Model., 14(3):1215–1243,
July 2015.

19. Thein Than Tun, Yijun Yu, Michael Jackson, Robin Laney, and Bashar Nu-
seibeh. Aspect Interactions: A Requirements Engineering Perspective, pages 271–
286. Springer Berlin Heidelberg, Berlin, Heidelberg, 2013.

20. Kevin Vlaanderen, Slinger Jansen, Sjaak Brinkkemper, and Erik Jaspers. The agile
requirements refinery: Applying scrum principles to software product management.
Information and Software Technology, 53(1):58 – 70, 2011.

	A Delta-oriented Approach to Support the Safe Reuse of Black-box Code Rewriters

