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Abstract
We consider the structure of aperiodic points in Z2-subshifts, and in particular the positions at
which they fail to be periodic. We prove that if a Z2-subshift contains points whose smallest
period is arbitrarily large, then it contains an aperiodic point. This lets us characterise the
computational difficulty of deciding if an Z2-subshift of finite type contains an aperiodic point.
Another consequence is that Z2-subshifts with no aperiodic point have a very strong dynamical
structure and are almost topologically conjugate to some Z-subshift. Finally, we use this result
to characterize sets of possible slopes of periodicity for Z3-subshifts of finite type.

1998 ACM Subject Classification F.1.1 Models of Computation

Keywords and phrases Subshifts of finite type, Wang tiles, periodicity, aperiodicity, computabil-
ity, tilings

A subshift on Zd is a set of colorings of Zd by a finite set of colors avoiding some family
of forbidden patterns. When this family is finite, the subshift is called a subshift of finite
type (SFT). In dimension 2, SFTs are equivalent to sets of tilings by Wang tiles: Wang tiles
are unit squares with colored borders that cannot be rotated and may be placed next to each
other only if the borders match.

Wang tiles were introduced by Wang in order to study the decidability of some fragments
of logic [18, 19]. He thus introduced the Domino Problem: given a set of Wang tiles, do
they tile the plane? (in other words, is the corresponding subshift nonempty?) Wang first
conjectured that whenever a tileset tiles the plane, it can do so in a periodic manner, which
would have implied the decidability of the Domino Problem.

In dimension 1 the problem is decidable. A Z-SFT correspond to the set of biinfinite
walks on some automaton and it tiles the line if and only if the automaton contains a cycle.
Such a cycle provides a periodic point of the SFT, so non-empty Z-SFTs always contain a
periodic point. The situation is dramatically different in higher dimension. Berger [3] proved
that there exists tilesets in dimension 2 that tile the plane only aperiodically, and that the
Domino Problem was therefore undecidable.

Thus, from the start, periodicity and aperiodicity have been at the heart of the study of
Wang tiles and SFTs, and the main tool in understanding their structural properties and the
answer to various decision problems. To give a few examples:

The presence of a dense set of periodic points is related to the decidability of the problem
of deciding whether a given pattern appears in some point of an SFT [12].
The finite subshifts on Zd are exactly the subshifts containing only periodic configurations
with d non-colinear vectors of periodicity [1, Theorem 3.8]. These configurations can
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2 Aperiodic points in Z2-subshifts

be seen as finite configurations. This result has recently been extended to subshifts on
groups [15].
Countable SFTs always contain a finite configuration and if they are not finite, then they
contain a configuration with exactly one vector of periodicity [1, Theorem 3.11].
A subshift always contains a quasiperiodic configuration [4, 6], a configuration in which
every finite pattern appears in any window of sufficiently large size depending only on
the size of the pattern.

In this article we study the structure of aperiodic points in Z2-SFT, and in particular the
repartition of the coordinates where it avoids to be periodic. Our main result is:

I Theorem 1. Let X be a Z2-subshift. If X contains an aperiodic configuration, then it
contains an aperiodic configuration that avoids every period p at distance at most f(‖p‖)
from 0, where f is a computable function.

This means that aperiodicity can be “organised” in concentric balls around a common
center, in such a way that a proof of aperiodicity for any vector may be found near this
center. As a consequence, when a subshift does not contain any aperiodic point, it must have
a finite number of directions of periodicity:

I Corollary 2. Let X be a subshift. If for every n, X contains a configuration that avoids
all periods p with ‖p‖ ≤ n, then X contains an aperiodic configuration.

In other words, for any subshift X with no aperiodic point, there is a finite set of periods
P such that any configuration of X is periodic for some period p ∈ P.

This will lead to a further characterization of subshifts containing no aperiodic points in
Section 3.2.

[8] proved that for d ≥ 2 it is undecidable to know whether an SFT contains a periodic,
resp. aperiodic configuration. While it is easy to see that checking whether an SFT contains a
periodic configuration is a recursively enumerable problem (Σ0

1 in the arithmetical hierarchy),
it remained an open problem whether deciding if an SFT contains an aperiodic configuration
was even in the arithmetical hierarchy. One of the consequences of Theorem 1 is that it is
Π0

1.
Periodicity is also a central topic of symbolic dynamics since sets of periods and directions

of periodicity constitute conjugacy invariants. For example, we prove that Z2-subshifts with
no aperiodic point have a very strong dynamical structure and are essentially equivalent
to Z-subshifts, and this is true for SFT as well. These sets have also been studied and
characterized through computability and complexity theory [9]. [16] recently proved that any
Σ0

2 set of (Q ∪ {∞})2 can be realized as a set of slopes of a Z3-SFT. Another consequence of
Theorem 1 is that this becomes a characterization.

The article is organized as follows: Section 1 recalls some definitions and notations,
Section 2 is devoted to the proof of Theorem 1, Section 3 is devoted to some of its consequences
and Section 4 shows a counter example for Zd subshifts when d ≥ 3.

1 Definitions

1.1 Subshifts
We provide here standard definitions about subshifts, which may be found in greater detail
in [13].
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The d-dimensional full shift is the set ΣZd where Σ is a finite alphabet whose elements
are called letters or symbols. Each element of the full shift may be seen as a coloring of
Zd with the letters of Σ. For v ∈ Zd, the shift function σv : ΣZd → ΣZd is defined by
σv(xz) = xz+v. The full shift equipped with the distance d(x, y) = 2min{‖v‖ | v∈Zd,xv 6=yv}
forms a compact metric space on which the shift functions act as homeomorphisms. A closed
shift invariant subset X of ΣZd is called a subshift or shift. An element of a subshift X is
called a configuration or point.

A pattern of shape P , where P is a finite subset of Zd, is an element of ΣP or alternatively
a function p : P → Σ. A configuration x avoids a pattern p of shape P if ∀z ∈ Zd, p 6= x|z+P
and contains it if it does not avoid it.

For a family of forbidden patterns F , denote ΣF the set of configuration that avoid F .
Then ΣF is a subshift, and every subshift can be defined in this way. When a subshift can be
defined this way by a finite family, it is called a subshift of finite type. When a subshift can
be defined by a recursively enumerable family of forbidden patterns, it is called an effectively
closed subshift.

If X is a subshift, we denote by L (X) its language, i.e. the set of patterns that appear
somewhere in one of its points. X is irreducible if there exists a constant C such that,
for any two patterns p1, p2 ∈ L (X) of shapes P1 and P2 respectively, and assuming that
d(P1, P2) ≥ C, we have p1 ∪ p2 ∈ L (X) (where p1 ∪ p2 is the pattern on P1 ∪ P2 defined in
the intuitive manner).

I Definition 3 (Periodicity). A configuration x is periodic of period v if there exists v ∈
Zd \ {(0, 0)} such that ∀z ∈ Zd, xz = xz+v. More precisely, a configuration is k-periodic if
it has exactly k independent periods. If c has no period, then it is said to be aperiodic. A
subshift is aperiodic if all its points are aperiodic.

We denote by B(x, n) the ball of radius n centered in x.
Let x ∈ AZd and p ∈ Z2, if there exists z ∈ Z2 such that xz 6= xz+p, we say that x avoids

period p. The pair (z, z + p) is called an avoidance of period p in configuration x. We say
that a configuration avoids a set of periods P if it avoids every period in P.

Let P be a set of periods. We denote P′ the set obtained from P by replacing each period
p by the least commun multiple of all periods of P that are colinear to p. More formally :
P′ = {lcm(q | q ∈ P and q and p are colinear) | p ∈ S}. Observe that P′ is a set of pairwise
non-colinear periods.

A Zd-cellular automaton is a continuous function F : ΣZd → ΣZd that commutes with
every shift. It can be defined equivalently by a local rule f : ΣΓ → Σ for a finite pattern Γ
by F (x)i = f(xi+Γ).

Except in the last section, the subshifts we will be considering will implicitely be Z2-
subshifts.

1.2 Arithmetical hierarchy
We give some basic definitions used in computability theory and in particular about the
arithmetical hierarchy. More details may be found in [17].

Usually the arithmetical hierarchy is seen as a classification of sets according to their logical
characterization. For our purpose we use an equivalent definition in terms of computability
classes and Turing machines with oracles:

∆0
0 = Σ0

0 = Π0
0 is the class of recursive (or computable) problems.

Σ0
n is the class of recursively enumerable (RE) problems with an oracle Π0

n−1.
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Π0
n the complementary of Σ0

n, or the class of co-recursively enumerable (coRE) problems
with an oracle Σ0

n−1.
∆0
n = Σ0

n ∩Π0
n is the class of recursive (R) problems with an oracle Π0

n−1.

In particular, Σ0
1 is the class of recursively enumerable problems and Π0

1 is the class of
co-recursively enumerable problems.

2 Main result

This whole section is dedicated to the proof of the Theorem 1 and Corollary 2. Given a
subshift that contains an aperiodic point, we prove that it contains some aperiodic point
where all period avoidances are organised in concentric balls around a common center, in
such a way that each period p is in a ball whose radius only depends on ‖p‖. This result
is used in a compactness argument to prove that, if a subshift contains configurations with
arbitrarily large smallest period, then it contains an aperiodic point.

Actually, our algorithm can only gather avoidances in a small ball if all the periods are
non-colinear. Fortunately we can easily build a set P′.

I Lemma 4. Let P be a set of periods. Any configuration avoiding P′ also avoids P.

Proof. Each period p in P has a multiple p′ ∈ P′. Each avoidance of p′ induces an avoidance
of p. J

I Lemma 5. Let P be a set of pairwise non-colinear periods. Let x be a configuration
avoiding P. Then there exists a ball of radius

∑
p∈P ‖p‖ where x avoids every period of P.

Proof. We prove the result by induction on the number of periods in P. When P is a
singleton the case is trivial. Now suppose P is not a singleton. Denote p0, p1, . . . , pn the
periods in P. By induction hypothesis, we can find a ball Bn−1 of radius

∑
i<n ‖pi‖ centered

in bn−1 containing avoidances for every period in P except pn. Similarly, we find a ball B′n−1
of radius

∑
i>0 ‖pi‖, centered in b′n−1 that contains avoidances of every period in P except

p0. We now show that either an avoidance of p0 exists near a copy of B′n−1 or an avoidance
of pn exists near a copy of Bn−1.

Consider the ball σpnBn−1 = B(bn−1 + pn,
∑
i<n ‖pi‖), the translated image of Bn by

the vector pn. Either x|Bn
= x|σpnBn

, i.e. the two balls are filled the same way, or we found
an avoidance (z, z+pn) with z ∈ Bn−1 and z+pn ∈ σpnB′n−1n. In the latter case, the result
is proved.

This process can be iterated for both B′n−1 and Bn−1 until either we find the necessary
avoidance or the centers of the balls are close to each other: Since p0 and pn are not colinear,
and assuming ‖pn‖ ≥ ‖p0‖, there exists i, j ∈ Z such that

∥∥bn−1 + ipn − b′n−1 + jp0
∥∥ ≤∥∥pn

2
∥∥ +

∥∥p0
2
∥∥ < ‖pn‖. We thus found a ball centered in b′′n−1 + jp0 and of radius

∑
i ‖pi‖

containing the two balls we translated, and therefore an avoidance of each period in P.
Denote Bn this new ball and bn its center. The process is depicted in Figure 1. J

In the previous proof, the distance between bn−1 and bn only depends on n, p0, pn and the
distance between bn−1 and b′n−1.

Therefore there is a computable function f(P, r) such that ‖bn−1 − bn‖ ≤ f(P, r) assuming
that

∥∥bn−1 − b′n−1
∥∥ ≤ r.

I Lemma 6. Let P = {p0, . . . , pn} be a set of noncolinear periods. Define f ′(P, r) recursively
as:
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pn

p0

bn−1

b′n−1

b′n−1 + jp0

bn−1 + ipn

Figure 1 The process of translating Bn−1 and B′n−1 close to each other: each translation may
uncover the desired avoidance and if not, the two balls next to each other necessarily do so.



6 Aperiodic points in Z2-subshifts

if n = 1, f ′(P, r) = f(P, r);
if n > 1, f ′(P, r) = f(P, f ′(P\{p0}, r) + f ′(P\{pn}, r))

Take x ∈ X, and assume that x avoids every period p ∈ P in some ball B(z, r). Then x
avoids every period p ∈ P in some ball B(z′,

∑
P ‖p‖), with ‖z′ − z‖ ≤ f ′(P,r).

Proof. We prove the lemma by induction. If n = 1, then by the lemma hypothesis we find
two balls B1 = B(b1, ‖p0‖) and B′1 = B(b′1, ‖p1‖) in B(z, r) that contain an avoidance of p0
and p1, respectively. Applying Lemma 5 on these balls, we obtain the result.

Now assume n > 1. By applying the induction hypothesis twice on p0, . . . , pn−1 and
p1, . . . , pn, we find two balls Bn = B(bn,

∑
i>0 ‖pi‖) and B′n = B(b′n,

∑
i<n ‖pi‖) such that

‖bn − z‖ ≤ f ′(P\{pn}, r) and ‖b′n − z‖ ≤ f ′(P\{p0}, r). Applying Lemma 5 on these balls,
we obtain the desired ball with ‖bn − z‖ ≤ f ′(P, r) by the triangular inequality. J

I Lemma 7. Let Pn = {p0, . . . , pn} be a set of noncolinear periods. Define recursively a
function g such that

g({p}) = ‖p‖ and g(Pn) = g(Pn−1) + f ′

Pn′,∑
Pn
′

‖p‖

+
∑
Pn
′

‖p‖

Take x an aperiodic point that avoids every p ∈ Pn′ in a ball B(z,
∑
Pn
′ ‖p‖). There exist

z′ ∈ Z2 such that:

‖z′ − z‖ ≤ g(Pn)
for any i ≤ n, the ball B(z′, g(Pi)) contains an avoidance of every period in Pi′.

Less formally, we can organise avoidances of all periods up to pn in concentric balls around
a common center, so that the distance of the avoidance of any given period to the center does
not depend on n only on the period itself.

Proof. We proceed by induction on n.
If n = 0, then since B(z, ‖p0‖) contains an avoidance of P0

′ = {p0}, taking z′ to be this
avoidance satisfies the requisite.

Assume n > 0. Since B(z,
∑
Pn
′ ‖p‖) contains avoidances of every period in Pn

′, it
contains avoidances of every period in Pn−1

′. Applying Lemma 6 on Pn−1
′, we find a

ball B(z0,
∑
Pn−1′

‖p‖) that contains avoidances for all periods in Pn−1
′ and such that

‖z0 − z‖ ≤ f ′(Pn−1
′,
∑
Pn
′ ‖p‖).

Now apply the induction hypothesis on this ball, obtaining z′ such that ‖z′ − z0‖ ≤
g(Pn−1) and for any i ≤ n, the ball B(z′, g(Pi)) contains avoidances of every period in Pi′.
Given the inductive nature of Lemma 6, this is a kind of double induction illustrated in
Figure 2.

By the triangular inequality, ‖z′ − z‖ ≤ g(Pn−1) + f ′(Pn′,
∑
Pn
′ ‖p‖), so B(z′, g(Pn))

contains entirely the ball B(z,
∑
Pn
′ ‖p‖). Therefore B(z′, g(Pn)) contains an avoidance of

pn and ‖z′ − z‖ ≤ g(Pn), proving the lemma.
J

I Theorem 1. Let X be a Z2-subshift. If X contains an aperiodic configuration, then it
contains an aperiodic configuration that avoids every period p at distance at most g(‖p‖) from
0, where g is a computable function.
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Figure 2 From a large ball containing avoidances for P ′n we build a relatively close smaller ball
containing avoidances for P ′n−1, and so on inductively.

I Corollary 2. Let X be a subshift. If for every n, X contains a configuration that avoids
all periods p with ‖p‖ ≤ n, then X contains an aperiodic configuration.

In other words, for any subshift X with no aperiodic point, there is a finite set of periods
P such that any configuration of X is periodic for some period p ∈ P.

Proof. Let Pn be the set of periods of norm n or less. Let x0, x1, . . . be a sequence of
configurations such that xn avoids every period in Pn

′. By Lemma 5 and Lemma 7, we
can assume (up to replacing each xi by a shift of itself) that the ball B(0, g(Pi′)) contains
avoidances of all periods in Pi′ for all xk, k ≥ i. Theorem 1 is proved.

Let x be a limit point of the sequence (xi)i∈N. x ∈ X since X is compact. By the previous
remark,for all i, the ball B(0, g(Pi′)) contains avoidances of all periods in Pi′ for x. Therefore
x is an aperiodic point. We proved Corollary 2. J

3 Consequences

3.1 Existence of an aperiodic configuration is Π0
1

I Corollary 8. The following problem is Π0
1-computable:

Input A finite set of forbidden patterns F .
Output Does the Z2-SFT XF contain an aperiodic configuration?

Proof. Let (pi)i∈N be an enumeration of all possible periods and Pn = {p0, . . . , pn}. Theo-
rem 1 gives us a bound on the size of the patterns in which to look for avoidances of each
period. For each n ∈ N in order, the algorithm enumerates all patterns on a ball of radius
g(Pn) that do not contain a forbidden pattern, and check if one of them contains avoidances
for every period of Pk (k ≤ n) in the ball of radius g(Pk) in its center. If such a pattern does
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not exist for some n, it means that either the SFT is empty or that all its points are periodic
for some period p with ‖p‖ ≤ n.

Assume the algorithm runs infinitely. For every k, there exists some n ≥ qk such that if a
pattern on the ball of radius g(Pn) does not contain a forbidden pattern, then the subpattern
on the ball of radius g(Pk) is in the language of X. Therefore, for each Pk we find a pattern
in L(X) that avoids all periods of Pk, and we conclude by Corollary 2. J

3.2 Structure of subshifts without aperiodic points
I Definition 9 (Topological conjugacy). For i = 1, 2, take Ci a compact set and fi : Ci → Ci
continuous functions.

(C1, f1) and (C2, f2) are topologically conjugate if there exists a continuous bijection
π : C1 → C2 such that π ◦ f1 = f2 ◦ π.

(C1, f1) and (C2, f2) are almost topologically conjugate if there exists (C3, f3) and contin-
uous surjections πi : C3 → Ci that are bijective almost everywhere1 such that πi ◦f3 = fi ◦πi
for i = 1, 2.

See [13] or [11] for more information on topological conjugacy and almost conjugacy in
the context of symbolic dynamics. We need slightly more general definitions since we consider
subshifts of different dimensions.

Notice that we can have Ci = C3 (and fi = id) in the last definition; this is the case in
the next proof.

I Theorem 10. Let X be a two-dimensional subshift with no aperiodic point. There exists a
vector v and a one-dimensional subshift Y such that (X,σv) is almost topologically conjugate
to (Y, σ).

If X is of finite type, then Y can be chosen of finite type as well.

Proof. Let X be a two-dimensional subshift of finite type with no aperiodic point. By
Theorem 1, there is a finite set of periods P such that any configuration of X is periodic of
some period p ∈ P. We assume that P does not contain two colinear periods, by taking their
least common multiple if necessary.

For the clarity of the argument, we assume in the following that P does not contain any
period colinear to (1, 0). Since P is finite, the proof can be adapted for a different vector.

Take p = (p0, p1) ∈ P, assuming p0 > 0, and denoteXp = {x ∈ X : x admits p as a period.}.
It is a classical argument (see for instance [9, §2.1.2] or [2, Lemma 5.2]) that (Xp, σ(0,1)) is
topologically conjugate to a one-dimensional SFT, which we repeat here for completeness.
Define:

πp =
{

ΣZ2 → (Σp0−1)Z
x 7→ ((xi,j)0≤i<p0)j∈Z

Denote Yp = π(Xp). It is not hard to see that πp is a one-to-one function between Xp and
Yp and that Yp is a subshift of finite type if Xp is. Furthermore, πp ◦ σ(0,1) = σ ◦ πp, so it is
a topological conjugacy between (Xp, σ(0,1)) and (Yp, σ).

For any p1 6= p2 ∈ P, Xp1 ∩ Xp2 is a set of strongly periodic configurations that
admit non-colinear periods p1 and p2; there are a finite number of such configurations, so

1 Except for a finite set of points.
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|Xp1 ∩ Xp2 | < +∞. In other words, X =
⋃
p∈P Xp and the union is disjoint except for a

finite set of configurations.
Denote Y = tp∈PYp (disjoint union). Y is a subshift on the alphabet tp∈PΣp, where Σp

is the alphabet of Yp. Furthermore, Y is of finite type if every Yp is of finite type.
Define ϕ : Y → X by ϕ|Yp

= π−1
p . We can check that ϕ is surjective and almost

everywhere bijective, and that ϕ ◦ σ1 = σ0,1 ◦ ϕ. We have proved that (Y, σ1) is almost
topologically conjugate to (X,σ(0,1)). J

3.3 Various properties of subshifts with no aperiodic points
Theorem 10 implies that the property of having no aperiodic point gives a very strong
structure to a subshift. This is particularly the case for subshifts of finite type, where many
problems that are indecidable in dimension 2 are completely solved in dimension 1, and these
solutions carry through almost topological conjugacy.

In this section, we make use of notations that were defined in the proof of Theorem 10:
Xp, Yp, πp and ϕ.

Decision problems have been a staple of the theory of multidimensional subshifts of
finite type: the seminal paper of Wang proved that the emptiness problem (given a list of
forbidden patterns F , is XF = ∅?) is decidable for two-dimensional subshifts of finite type
with no aperiodic point, but Berger later proved that the problem was undecidable without
this assumption [3]. We consider other classical decision problems: the extension problem,
which is undecidable for multidimensional subshifts of finite type (as a consequence of the
above), and the injectivity and surjectivity problems, which are undecidable even on the
two-dimensional full shift [10].

I Corollary 11. The following problems are decidable for two-dimensional subshifts of finite
type with no aperiodic point:

Extension problem given a list of forbidden patterns F and a pattern w, do we have w ∈
L (XF )?

Injectivity / surjectivity problem given a list of forbidden patterns F and a cellular au-
tomata Φ : ΣZ2 → ΣZ2 , is ϕ|XF injective? surjective on XF?

Links between periodic points and these had already been considered in [12, 7].

Sketch of a proof. Extension problem Assume w has shape [−n, n]2. By Theorem 1 have
X = ϕ(Y ) where ϕ is continuous on a compact space, hence uniformly continuous. In
other words, for every n, there exists r such that the value of ϕ(y)[−n,n]2 only depends
on y[−r,r]. Since the extension problem is decidable on one-dimensional subshifts of finity
type, enumerate all words v ∈ L(Y ) and check whether w = ϕ(v) for some v.

Injectivity/surjectivity problem A configuration and its image by a cellular automaton have
the same period, so any cellular automaton Φ|XF is injective, resp. surjective, if and
only if Φ|Xp

is injective, resp. surjective, for each period p. Let πp : Xp → Yp be the
continuous bijection defined in the proof of Theorem 10. π−1

p ◦ Φ|XF ◦ πp is a CA on Yp
and it shares injectivity and surjectivity with Φ|XF . Injectivity and surjectivity of CA is
decidable for one-dimensional subshifts of finite type [7].

J

I Remark. If we did not know that X admits a finite set of periods, the first proof would
still show that the extension problem is in Σ0

1 (RE). Since it is easy to show that it is in Π0
1

(co-RE), our main result is technically unnecessary here.



10 Aperiodic points in Z2-subshifts

Topological entropy is a widely-used parameter in information theory (channel capacity)
and dynamical systems theory (conjugacy invariant). Entropy dimension is a more refined
notion for systems of entropy zero, introduced in [5] and mainly used for multidimensional
subshifts [14].

I Corollary 12. Any two-dimensional subshift X with no aperiodic point has zero topological
entropy. Its entropy dimension is at most one.

Sketch of a proof. By Theorem 1, there is a finite set of periods P such that L (X) =⋃
p∈P L (Xp). Consider a pattern w of shape [0, n−1]2 in L (Xp), assuming for clarity p0 ≥ 0

and p1 ≥ 0. Since w cannot contain an avoidance for p, it is entirely determined by its p0
bottommost rows and p1 leftmost columns. Therefore there are at most (p0 + p1)n such
patterns. A similar argument applies when p0 < 0 or p1 < 0.

It follows that there are at most
∑
p(|p0|+ |p1|)n patterns of shape [0, n− 1]2 in L (X),

proving the statement. J

Density of periodic points is a typical question in dynamical systems, for example
when studying chaos in the sense of Devaney. See [7] for more details, including a proof that
two-dimensional subshifts of finite type do not have dense 2-periodic points in general, even
under an additional irreducibility hypothesis.

I Corollary 13. Any irreducible two-dimensional subshift of finite type X with no aperiodic
point has dense 2-periodic points.

Sketch of a proof. If X is irreducible then each Xp is irreducible, and so is each Yp by
conjugacy. One-dimensional irreducible subshifts of finite type, such as Yp, have dense
periodic points [7]. ϕ : Y → X is a continuous surjection, and the image of a periodic point
in Yp is a 2-periodic point in X, from which the statement follows. J

3.4 The full caracterization of slopes of 3d SFTs
I Definition 14. Let X be a d-dimensional subshift, θ ∈ (Q ∪∞)d−1 is a slope of periodicity
of X if there exists a configuration x ∈ X such that that:

vZ = {v | σv(x) = x}

A consequence of Corollary 8 is that the sets of slopes of periodicity of 3D SFTs is a Σ0
2

set, and together with [16] this implies the following caracterization:

I Theorem 15. Σ0
2 subsets of S ⊆ (Q ∪ {∞})2 that are Σ0

2 are exactly the sets realizable as
sets of slopes of three dimensional subshifts of finite type.

Proof. We know from [16] that one can realize any such Σ0
2 set S as a set of slopes of a 3d

subshift. Let us now show the remaining direction.
Given θ, a slope, and X an SFT, as an input, one needs to check whether there exists a

configuration in X with exactly one vector of periodicity of direction θ. Let p be the smallest
such vector, all other vectors of direction θ are multiples of it. It thus suffices to find whether
there exists some i ∈ N such that ip is a direction of periodicity for some configuration.

Let us show that given some vector v ∈ Z3, checking whether there exists a point of X
periodic only along v is Π0

1. Using the argmuent as in proof of Theorem 10, notice that
periodic configurations along v can be seen as configurations on one less dimension with a
different alphabet. The set of configurations periodic along v thus constitutes a 2d SFT Y
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computable from X and v and the existence of a configuration of direction of periodicity
v in X corresponds to the existence of an aperiodic configuration in Y . Since this is Π0

1
(Corollary 8), checking whether there exists a periodic configuration of direction ip for some
i and thus whether there exists a configuration of slope θ is Σ0

2. J

4 Counter example for dimensions d > 2

We build a counterexample to Theorem 1 in hig her dimension. Take Σ = {0, 1} and define
X as follows:

All symbols 1 must form lines of direction vector (1, 0, 0) (horizontal) or (0, 0, 1) (vertical);
There is at most one vertical line;
All horizontal lines are repeated periodically with period (0, 0, n), where n is the distance
of the vertical line to any horizontal line.

In particular, if there is no vertical line, then there is at most one horizontal line. To
sum up, a subshift configuration can be : 1. all zeroes, 2. one horizontal line, 3. one vertical
line, or 4. the situation depicted in Figure 3.

n
n

n
n

n
n

n
n

z

xy

Figure 3 A typical configuration of X: a line of ones along z at distance n of an (xy) plane of
lines along x. The only other types of configurations of X are the configurations containing only
one vertical line, or no line at all.

The configuration described in Figure 3 admits (0, 0, n) as period, and no shorter period.
In particular, X avoids the set of periods Pp for any p < (0, 0, n), and thus for every p

X contains a configuration that avoids Pp. However, Σ admits no aperiodic point2. This
example can easily be generalised to any d > 3 by considering a Zd-subshift X ′ that contains
a copy of X in at most one coordinate, and 0 everywhere else: that is,

x ∈ X ′ ⇔ ∀j ∈ Zd−3, (xi,j)i∈Z3 ∈ X and (∀j1 6= j2, (xi,j1)i∈Z3 = 0 or (xi,j2)i∈Z3 = 0).

This proves that Theorem 1 does not hold in any dimension d > 2.

2 Notice that there cannot be a configuration with a single horizontal line with a single vertical line, which
would be aperiodic.
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5 Open problems

We have made clear that our main result does not hold for subshifts of dimension d ≥ 3. We
do not know, however, whether Theorem 10 or Corollary 12 holds in higher dimension, since
the counterexample introduced in Section 4 does not contradict these results.

This counterexample is a subshift with arbitrarily large periodic but no aperiodic point.
We do not know whether such a counterexamples with infinitely many directions of periodicity
exist. Moreover, the structure of d-dimensional subshifts of finite type for d ≥ 3 remains
open; the existence of this counterexample suggests that a making use of the finite type
hypothesis is necessary in higher dimension.
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