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Abstract: 1— In this paper, we propose a revisited form of 

the so-called Model-Free Control (MFC). Herein, the 

MFC principle is employed to deal with the unknown part 

of the plant only (i.e. unmodeled dynamics, disturbances, 

etc.) and occurs beside an Interconnection and Damping 

Assignment-Passivity Based Control (IDA-PBC) strategy 

that is used instead of the PID structure as done in the 

classical MFC form. Using the proposed formulation, it is 

shown that we can significantly improve the performance 

of the control and its robustness level. This problem is 

studied in the case of Multi-Inputs Multi-Outputs 

(MIMO) system with an application to a small Vertical 

Take-Off and Landing (VTOL) vehicle where a stability 

analysis is also provided. The numerical simulations have 

shown satisfactory results where an in-depth discussion 

with respect to the control performance is highlighted by 

considering several scenarios and using several metrics.  

I. INTRODUCTION 

The quadrotors are considered as a good case study to design, 
to analyze and to implement flight control strategies. 
Moreover, it is necessary to design a controller such that the 
quadrotor will be able to efficiently follow a predefined 
trajectory, particularly in the presence of disturbances. For this 
reason, many studies have led to the development of 
sophisticated and robust nonlinear control laws (as for instance 
[1-3]). However, most of these proposed strategies require an 
accurate model in order to perform a good control, which is 
extremely difficult when the system is maneuvering in a harsh 
environment.  

In this regards, a strategy based on a Model-Free technique is 
developed (MFC) (see as for instance [4]). The main 
advantage of this control strategy is that it does not require the 
knowledge of the system dynamics as it involves a continuous 
updating of the input-output of a very local model. Thus, its 
use as the basis of control allows the compensation of the 
uncertainties as well as other disturbances. It is employed in 
many real cases such as mobile robots [4] and quadrotors [5].  

In a certain point of view, the control of a system with a model 
free has already been used, since many decades, on the basis 
of fuzzy logic control or the more popular one for linear 
systems through Ziegler-Nichols method [6]. In addition, 
assuming no available model is not totally a correct 
assumption due to the fact that most of systems, at least, may 
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be approximated by mathematical models even with poorly 
known dynamics.  

Using the available information about the system will bring a 
notable benefit and significantly improve the performance of 
control. Therefore, we propose a Revisited Model-Free 
Control (R-MFC) strategy to simultaneously accommodate the 
unmodeled and neglected dynamics and external disturbances. 
As in general, the tuning of PID parameters allows to meet the 
desired specification of control, we use a reference model-
based control technique that achieves the control with the 
required specifications, by means of Interconnection and 
Damping Assignment-Passivity Based Control (IDA-PBC). 

In the last two decades, the use of the so-called Port-Controlled 
Hamiltonian (PCH) representation has attracted the attention 
of researchers. Many control tools have been developed to deal 
with this compact representation. Passivity-Based Control 
(PBC) is well known especially in mechanical applications for 
controlling nonlinear systems. An improvement was 
developed through Interconnection and Damping Assignment 
(IDA) where the use of energy shaping was originated in [7]. 
Recently, the IDA-PBC has become an efficient tool in 
nonlinear control applications and has been illustrated in 
several real experimentations including electrical motors [8], 
magnetic suspension systems [9], etc.  

Throughout this paper, a performance assessment is presented 
via results of several illustrations, scenarios and numerical 
simulations, with complementary comments of the proposed 
revisited strategy of control with respect to other techniques.  

The remainder of this paper is organized as follows: Section II 
concerns the dynamics of the VTOL quadrotor and the control 
architecture. Section III and Section IV introduce the design of 
our nonlinear control approach. The simulation results are 
illustrated in Section V. Finally, the paper is ended with 
concluding remarks.  

II. QUADROTOR MODELING & CONTROL

ARCHITECTURE 

From the fundamental principle of dynamics, we model the 
quadrotor as a rigid body for the validation of control 
performance, neglecting some aerodynamic effects such as 
the gyroscopic and ground effects. The system operates in two 
coordinate frames: the Earth-fixed frame 𝑅0(𝑂, 𝑋, 𝑌, 𝑍) and
the body fixed frame 𝑅1(𝑂1 , 𝑋1, 𝑌1, 𝑍1)(see Figure 1). Let 𝜂 =(𝜑, 𝜃, 𝛹)𝑇describes the orientation of the aerial vehicle (Roll,
Pitch, Yaw) and χ = (𝑥, 𝑦, 𝑧)𝑇denotes its absolute position.
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Figure 1.    Frame representation. 

In this study, we consider a simplified dynamic model of the 
vehicle that is derived in our previous work [1] in order to 
make the controller implementation simpler and easier and to 
show the efficiency of our control strategy that can deal with 
the unmodeled and neglected dynamics. The considered 
mathematical model may be written under the general 
mechanical equation, as follows ℳ(𝑞)�̈� + 𝐶(𝑞, �̇�)�̇� + 𝐺 = 𝐵(𝑞)𝑢                                             (1) 

where 𝑞 = [χ, 𝜂]𝑇 ∈ 𝐷χ × 𝐷𝜂 ⊆ ℝ3 × ℝ3 is the generalized

coordinates, ℳ =ℳ𝑇 ∈ ℝ6×6 = [𝑀 00 𝐼] > 0 is composed 

of the mass, 𝑀 = 𝑚𝐼3×3, and the inertia matrix, 𝐶(𝑞, �̇�) ∈ℝ6×6 = [03×3 03×303×3 𝒞 ] denotes the Coriolis term,                     𝐺 ∈ ℝ6 = [0, 0, 𝑚𝑔, 0, 0, 0 ]𝑇 denotes the gravitational term,𝐵(𝑞) = 𝐼6×6 denotes the input matrix, with

𝒞 ∈ ℝ3×3 = 12 [ 0 (𝐼𝑧 − 𝐼𝑦)�̇� (𝐼𝑧 − 𝐼𝑦)�̇�(𝐼𝑥 − 𝐼𝑧)�̇� 0 (𝐼𝑥 − 𝐼𝑧)�̇�(𝐼𝑦 − 𝐼𝑥)�̇� (𝐼𝑦 − 𝐼𝑥)�̇� 0 ]      (2) 

and 

𝑢 ∈ ℝ6 =
[  
   
𝑢𝑥𝑢1𝑢𝑦𝑢1𝑢𝑧𝑢𝜑𝑢𝜃𝑢𝛹 ]  

   =
[  
   
 (𝑐𝛹𝑠𝜃𝑐𝜑 + 𝑠𝛹𝑠𝜑)𝑢1(𝑠𝛹𝑠𝜃𝑐𝜑 − 𝑐𝛹𝑠𝜑)𝑢1(𝑐𝜃𝑐𝜑)𝑢1𝑢2𝑢3𝑢4 ]  

   
 

 (3) 

with 𝑚  the mass, 𝑔 the gravity acceleration, 𝑢1 the total thrust
of four rotors, 𝜏 = (𝑢2, 𝑢3, 𝑢4)𝑇  the control torque vector ands(.) and  c(.) abbreviations for sin(. ) and cos(. ) respectively.

The parameters of the system UAV are displayed in Table 1. 

Table 1. Quadrotor parameters. 𝑚(𝑘𝑔) 0.429 𝐼𝑦(𝑘𝑔.𝑚2) 0.0029 𝐼𝑥(𝑘𝑔.𝑚2) 0.0022 𝐼𝑧(𝑘𝑔.𝑚2) 0.0048 

In order to simplify the design of the controller, two virtual 
inputs 𝑢𝑥 and  𝑢𝑦  are given as

{𝑢𝑥 = 𝑐𝛹𝑠𝜃𝑐𝜑 + 𝑠𝛹𝑠𝜑𝑢𝑦 = 𝑠𝛹𝑠𝜃𝑐𝜑 − 𝑐𝛹𝑠𝜑  (4) 

The reference angles, 𝜑𝑟 ≠ ± 𝜋2 and 𝜃𝑟 ≠ ± 𝜋2  are considered 

as inputs for the rotation subsystem. From system (4), it 
follows 

{𝜑𝑟 = 𝑎𝑟𝑐𝑠𝑖𝑛(𝑢𝑥𝑠𝑖𝑛 𝛹𝑟 − 𝑢𝑦𝑐𝑜𝑠𝛹𝑟)𝜃𝑟 = 𝑎𝑟𝑐𝑠𝑖𝑛 (𝑢𝑥𝑐𝑜𝑠𝛹𝑟+𝑢𝑦𝑠𝑖𝑛𝛹𝑟𝑐𝑜𝑠 𝜑𝑟 )   (5) 

III. R-MFC FLIGHT CONTROLLER DESIGN

The classic MFC approach proceeds by considering an ultra-
local model, valid in short time that approximates the 
nonlinear model via input-output behavior using the 
experimental available data without any modeling step. 
However, this online numerical differentiator and estimation 
may fail with some highly nonlinear and/or time-varying 
dynamics that need to be treated carefully. In addition, most 
systems have a mathematical model even if it is not accurate. 
Note also that the MFC does not distinguish between model 
mismatches and perturbations. Therefore, to be more realistic, 
our approach employs the model-free principle to only deal 
with the unknown part of the controlled system where the use 
of the known part brings more benefit and makes the control 
more efficient.  

This proposed formulation that we can denote by the acronym 

R-MFC is explained through a class of systems written under 

the general mechanical equation. This class of systems is 

widely adopted in the robotics and mechanical fields. For the 

sake of clarity, equation (1) is written under a compact form 

considering the general case  �̈� = ℱ(𝑞, �̇�) + ℬ(𝑞)𝑢                                                           (6) 

where ℱ(𝑞, �̇�) = −ℳ(𝑞)−1(𝐶(𝑞, �̇�)�̇� + 𝐺) and ℬ(𝑞) = ℳ(𝑞)−1𝐵(𝑞)  𝑞 ∈ 𝐷𝑞 ⊆ ℝ𝑛 is the output vector, ℳ =ℳ𝑇 ∈ ℝ𝑛×𝑛 > 0 is
the inertia matrix, 𝐶(𝑞, �̇�) ∈ ℝ𝑛×𝑛 denotes the Coriolis term,𝐺 ∈ ℝ𝑛 denotes the gravitational term,  𝐵(𝑞) ∈ ℝ𝑛×𝑛 denotes
the input matrix and 𝑢 ∈ ℝ𝑛 denotes the input vector.

Usually, model (6) is quite simplified with neglected and 
unmodeled dynamics. Moreover, the execution of trajectories 
can be easily affected by external disturbances, which 
introduces some unknown terms. Therefore, a term 𝛿ℱ could 
be added to nominal model (6) gathering the neglected and 
unmodeled dynamics and the external disturbances. An 
additional effort is requested to deal with this new term 𝛿ℱ. 
Thus, the input-output relationship of the anticipated model 
may be represented by the following system: 𝑞(𝑣) = ℱ(𝑞, �̇�) + 𝛿ℱ + ℬ(𝑞)𝑢 + κ𝑢                                    (7)
where 𝜅 ∈ ℝ𝑛×𝑛 is a positive definite diagonal scale matrix
fixed by the user and 𝛿ℱ is an estimated term. In fact, the order 𝑣 = 2 of model (7) is chosen according to the prior knowledge 
of the system. It equals to the order of the mathematical model 
(6).   

Remark 1: For the existing MFC technique, 𝑣 is fixed by the 
user and may equal to 1 or 2. 

Therefore, the difference between model (6) and (7) lies in the 
presence of the unknown modeled part that can be estimated 
as 𝛿ℱ̂ = �̈̂� − ℱ(𝑞, �̇�) − (ℬ(𝑞) + κ)�̂�                                         (8)

As the past input vector �̂� in the previous time interval and 

the actual 2𝑛𝑑 derivative of the measured output vector 𝑞 are

known, the value of 𝛿ℱ̂ is computed. This estimation is valid

for a short period 𝑇 only and it should be continuously 

updated at every iteration of the closed loop controller. 



Obviously, the estimate of the second-order derivative �̈̂�
yields an estimate of  𝛿ℱ̂. Many significant advances on the

numerical differentiation of noisy signals are elaborated in the 

literature [10]. This updated term 𝛿ℱ̂ captures the unknown

dynamics of the system as well as the disturbances during 

each period 𝑇 and then brings the required changes in the 

control input by compensation. From (7), the control input for 

our R-MFC proposed strategy can be split into two parts: 𝑢 = (ℬ(𝑞) + 𝜅)−1(−𝑢𝐶 + 𝑢𝑎)                                              (9)

where the matrix ℬ(𝑞) + 𝜅 is non-singular in 𝐷𝑞 .

𝑢𝐶 = 𝛿ℱ̂ plays the role of compensator of the unknown part
and 𝑢𝑎 is considered as an auxiliary input that ensures the
asymptotic convergence of the tracking errors of the closed 
loop into the origin. Injecting input (9) in (7), leads to a new 
and fully known nonlinear model eliminating the unknown 
part  �̈� = ℱ(𝑞, �̇�) + 𝑢𝑎                                                                (10)

The existing MFC technique employs, in the case of 𝑣 = 2, a 
PID controller as an auxiliary input : 𝑢𝑎 = 𝑞�̈� + 𝐾𝐼 ∫ 𝐸𝑡1𝑡0 (𝜏)𝑑𝜏 + 𝐾𝑃𝐸 + 𝐾𝐷�̇�  (11) 

that leads to the intelligent PID where 𝐸 = 𝑞 − 𝑞𝑟 is the

tracking error vector and 𝑞𝑟  is the reference trajectory

vector. 𝐾𝑃 , 𝐾𝐼  and 𝐾𝐷 denote the usual tuning gains.

Herein, we proceed with a different way by employing a 

sophisticated tool rather than the PID structure where the 

main goal is to ensure the asymptotic convergence, towards 

the origin, of the tracking errors of closed-loop of model (10). 

In this stage, a broad range of strategy can be applied. 

The use of PID, in the classic form of MFC, allows to ensure 
a given performance of the system time response according to 
the given specifications (overshoot, settling time, accuracy) 
via the tuning of the control parameters. To achieve the 
desired specifications, by using another control procedure, is 
more challenging. Therefore, we employ a reference model 
based control strategy where the control specifications are a 
priori fixed. Then the control input pushes the system to 
follow the same behavior as the target model.  

IV. IDA-PBC BASED AUXILIARY INPUT

In the following, trajectory tracking control is achieved using 
the IDA-PBC approach. In this technique, we modify the total 
energy function of (10) to assign the desired equilibrium and 
damping injection matrix to meet the asymptotic stability. To 
preserve the energy interpretation, the closed-loop system is 
presented in a Port-Controlled Hamiltonian (PCH) 
representation.  

A. System energy and PCH model 

Explicitly, system (10) is written as ℳ(𝑞)�̈� + 𝐶(𝑞, �̇�)�̇� + 𝐺 = ℳ(𝑞)𝑢𝑎                                  (12)
The system’s Hamiltonian energy, 𝐻(𝑞, 𝑝), the sum of the 
kinetic energy, 𝑇(𝑞, 𝑝) and the potential one, 𝑉(𝑞),  is written 
as: 𝐻(𝑞, 𝑝) = 𝑇(𝑞, 𝑝) + 𝑉(𝑞)                                                  (13) 

So, 𝐻(𝑞, 𝑝) = 12𝑝𝑇ℳ−1(𝑞)𝑝 + 𝐺𝑇𝑞   (14) 

where 𝑝 ∈ ℝ𝑛 is the generalized momentum.

This system has a natural stable equilibrium configuration. 
This latter one is related to the minimum of energy. The PCH 
model is needed in order to design a controller based on the 
IDA-PBC methodology. From (12), the dynamic of the 
quadrotor can be written as [�̇��̇�] = [𝒥(𝑞, 𝑝) − ℛ(𝑞, 𝑝)] [𝛻𝑞𝐻(𝑞, 𝑝)𝛻𝑝𝐻(𝑞, 𝑝)] + [ 0ℳ(𝑞)] 𝑢𝑎       (15)

with [𝒥(𝑞, 𝑝) − ℛ(𝑞, 𝑝)] = [ 0 𝐼6×6−𝐼6×6 −𝐶(𝑞, 𝑝)]  (16) 

B. Target dynamics 

Motivated by equation (13), we propose a desired energy 
function as being: 𝐻𝑑(𝑞, 𝑝) = 𝑇𝑑(𝑞, 𝑝) + 𝑉𝑑(𝑞)                                             (17)
We modify the total internal energy function of the closed 
loop system to assign the desired equilibrium configuration 
and we require that 𝐻𝑑(𝑞) will have a minimum at (𝑞∗, 𝑝∗),
thus 

𝐻𝑑(𝑞, 𝑝) = 12 (𝑝 − 𝑝∗)𝑇ℳ𝑑−1(𝑞)(𝑝 − 𝑝∗) + 𝑉𝑑(𝑞)  (18) 

where 𝑉𝑑(𝑞) and ℳ𝑑 =ℳ𝑑𝑇 > 0 represent the desired closed
loop potential energy function and inertia matrix, respectively 
with 𝑞∗ = 𝑎𝑟𝑔𝑚𝑖𝑛 𝑉𝑑(𝑞)                                                             (19)

We take the reference trajectories as desired equilibrium 
configuration. In another words, (𝑞∗, 𝑝∗) = (𝑞𝑟 , 𝑝𝑟).
To preserve the energy interpretation we also require that the 
desired closed loop system be in PCH form 

[�̇��̇�] = [𝐽𝑑(𝑞, 𝑝) − ℛ𝑑(𝑞, 𝑝)] [𝛻𝑞𝐻𝑑(𝑞, 𝑝)𝛻𝑝𝐻𝑑(𝑞, 𝑝)]   (20) 

where 𝐽𝑑(𝑞, 𝑝) = −𝐽𝑑𝑇(𝑞, 𝑝) = [ 0 ℳ−1ℳ𝑑−ℳ−1ℳ𝑑 𝐽(𝑞, 𝑝) ]   (21) 

ℛ𝑑(𝑞, 𝑝) = ℛ𝑑𝑇(𝑞, 𝑝) = [0 00 ℳ(𝑞)𝐾𝐷𝐼ℳ(𝑞)𝑇]   (22) 

𝐽(𝑞, 𝑝) is a skew  symmetric matrix and 𝐾𝐷𝐼 = 𝐾𝐷𝐼𝑇 > 0
contains the control parameters. Obviously, the matrix [𝐽𝑑(𝑞, 𝑝) − ℛ𝑑(𝑞, 𝑝)] has the same form as the original
system.  

C. Energy shaping & damping injection 

Commonly, the control input of IDA-PBC is decomposed into 
two terms [11]. 𝑢𝑎 = 𝑢𝐸𝑆 + 𝑢𝐷𝐼                                                                    (23)
where 𝑢𝐷𝐼 acts on the damping and 𝑢𝐸𝑆 is designed for the
energy shaping. 

The controller is obtained by substituting (23) in (15) and 
making the resulting equations equal to (20). Thus 

[ 0 𝐼6×6−𝐼6×6 −𝐶 ] [𝛻𝑞𝐻(𝑞, 𝑝)𝛻𝑝𝐻(𝑞, 𝑝)] + [ 0ℳ(𝑞)] (𝑢𝐸𝑆 + 𝑢𝐷𝐼)



= [ 0 ℳ−1ℳ𝑑−ℳ−1ℳ𝑑 𝐽(𝑞, 𝑝) −ℳ(𝑞)𝐾ℳ(𝑞)𝑇] [𝛻𝑞𝐻𝑑(𝑞, 𝑝)𝛻𝑝𝐻𝑑(𝑞, 𝑝)](24) 

ℛ𝑑 injects a damping into the system via negative feedback of
the passive output ℳ𝑇𝛻𝑝𝐻𝑑 . The damping injection term is

then: 𝑢𝐷𝐼 = −𝐾𝐷𝐼ℳ(𝑞)𝑇𝛻𝑝𝐻𝑑(𝑞, 𝑝)                                          (25)

Thus, the second row leads to the energy shaping 𝑢𝐸𝑆 =ℳ(𝑞)−1 (𝛻𝑞𝐻(𝑞, 𝑝) + 𝐶𝛻𝑝𝐻(𝑞, 𝑝) − 𝛻𝑞𝐻𝑑(𝑞, 𝑝) +𝐽(𝑞, 𝑝)𝛻𝑝𝐻𝑑(𝑞, 𝑝))  (26) 

Finally, the R-MFC is split into three parts as 𝑢 = (ℬ + 𝜅)−1(−𝑢𝐶 + 𝑢𝐸𝑆 + 𝑢𝐷𝐼)  (27) 

where 𝑢𝐶  deals with the unknown parts and allows to maintain
a certain level of robustness, 𝑢𝐸𝑆 allows to meet the desired
specification through the target model components and finally 
the damping injection term 𝑢𝐷𝐼 in order to guarantee a damped
response.  Our approach is summarized by Figure 2.  

Figure 2.   R-MFC scheme. 

D. Control design for quadrotor and stability analysis 

For the sake of simplification, we keep the interconnection 
matrix unchanged, namely  ℳ𝑑 =ℳ and 𝐽 = 0,  therefore𝑢𝐸𝑆 becomes

𝑢𝐸𝑆 = ℳ(𝑞)−1 (𝛻𝑞𝐻(𝑞, 𝑝) + 𝐶𝛻𝑝𝐻(𝑞, 𝑝) − 𝛻𝑞𝐻𝑑(𝑞, 𝑝))      (28)

So, 𝑢𝐸𝑆 = 𝐺 + 𝐶ℳ−1𝑝 − 𝛻𝑞𝑉𝑑(𝑞)  (29) 𝑉𝑑 is an arbitrary function of 𝜒 and 𝜂.  From equation (19), the
necessary condition, 𝛻𝑞𝑉𝑑(𝑞∗) = 0 and the sufficient

condition, 𝜕𝑞2𝑉𝑑(𝑞∗) > 0, will hold at 𝑞∗. 𝑉𝑑 has its minimum

at 𝑞∗ = 𝑞𝑟.

In our case we choose 𝑉𝑑(𝑞) to be a quadratic function, which
leads to 𝑉𝑑(𝑞) = 12 (𝜒𝑟 − 𝜒)𝑇𝐾𝐸𝑆𝜒(𝜒𝑟 − 𝜒)+ 12 (𝜂𝑟 − 𝜂)𝑇𝐾𝐸𝑆𝜂(𝜂𝑟 − 𝜂)   (30) 

where 𝐾𝐸𝑆𝜒  and 𝐾𝐸𝑆𝜂  denote positive definite matrices of the

control parameters.  

Now, the auxiliary input for the quadrotor is given by 𝑢𝑎 = 𝑢𝐸𝑆 + 𝑢𝐼𝐷  (31) 
where 𝑢𝐸𝑆 = ( 𝐾𝐸𝑆𝜒(𝜒𝑟−𝜒) + 𝐺𝐾𝐸𝑆𝜂(𝜂𝑟 − 𝜂) + 𝒞�̇�) and 𝑢𝐷𝐼 = 𝐾𝐷𝐼(𝑝𝑟 − 𝑝)
Proposition 1: if ℳ𝑑 =ℳ and 𝐽 = 0 with 𝑉𝑑(𝑞) having a
quadratic form (30), the auxiliary input 𝑢𝑎 for the quadrotor,
using IDA-PBC approach, can be given by (31). 

The stability of the closed-loop dynamics of the quadrotor 
system in form (12) is introduced by the following theorem. 

Theorem 1: Closed-loop of system (12) written under PCH 
form, using control law (31) is asymptotically stable.  

Proof: Following the IDA-PBC approach described above, 
closed loop system (12) written under PCH model (15) is 
equivalent to the desired PCH model (20) using control law 
(31). 𝐻𝑑(𝑞, 𝑝) is a positive definite function chosen herein as
Lyapunov candidate function where the first time derivative 
is 

�̇�𝑑(𝑞, 𝑝) = �̇�𝑇𝛻𝑞𝐻𝑑(𝑞, 𝑝) +  �̇�𝑇𝛻𝑝𝐻𝑑(𝑞, 𝑝)   (32) 

Using (29), we get �̇�𝑑(𝑞, 𝑝) = 𝛻𝑝𝐻𝑑(𝑞, 𝑝)𝑇𝛻𝑞𝐻𝑑(𝑞, 𝑝) −  (𝛻𝑞𝐻𝑑(𝑞, 𝑝)𝑇 +𝛻𝑝𝐻𝑑(𝑞, 𝑝)𝑇ℳ𝑇𝐾𝐼𝐷𝑇ℳ)𝛻𝑝𝐻𝑑(𝑞, 𝑝)   (33) 

Then �̇�𝑑(𝑞, 𝑝) = −  𝛻𝑝𝐻𝑑(𝑞, 𝑝)𝑇ℳ𝑇𝐾𝐼𝐷ℳ𝛻𝑝𝐻𝑑(𝑞, 𝑝)≤ −𝑒𝑖𝑔𝑚𝑖𝑛(𝐾𝐼𝐷)(𝑝 − 𝑝𝑟)𝑇(𝑝 − 𝑝𝑟)  (34) 

So, closed loop of system (12) is asymptotically stable. 

V. RESULTS AND DISCUSSION 

In this section, we test the effectiveness of the proposed 
controller not only in the ideal case but also in the presence of 
different disturbances. For the sake of further comparison, we 
follow the same protocol and fit the same conditions. The 
control parameters are tuned, using Genetic Algorithms (GA), 
in the ideal case then kept for the entire proposed scenarios and 
for which the objective is to reduce the steady state errors. 
Thus, the fitness function is given by 

𝐼𝑆𝐸 = 1𝑡𝑓−𝑡𝑖 ∫ (𝜒𝑟 − 𝜒𝜂𝑟 − 𝜂)𝑇 (𝜒𝑟 − 𝜒𝜂𝑟 − 𝜂) 𝑑𝑡𝑡𝑓𝑡𝑖   (35) 

where 𝑡𝑖 and 𝑡𝑓 denote the initial and the final instants of

optimization respectively. The obtained control parameters 

are depicted in Table 2.  

Table 2: R-MFC control parameters. 𝐾𝐸𝑆𝑥 23.33 𝐾𝐸𝑆𝑦 22.19 𝐾𝐸𝑆𝑧 21.77 𝐾𝐷𝐼𝑥 5.05 𝐾𝐷𝐼𝑦 4.86 𝐾𝐷𝐼𝑧 4.99 𝐾𝐸𝑆𝜑 18.77 𝐾𝐸𝑆𝜃 20.672 𝐾𝐸𝑆𝛹 19.16 𝐾𝐷𝐼𝜑 4.51 𝐾𝐷𝐼𝜃 5.00 𝐾𝐷𝐼𝛹 4.58 

For a significant analysis of the features of the proposed 
controller, two additional nonlinear controllers are considered. 
The first one is the classic model-free technique that exhibits 
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promising results (for details one may refer to [5]) whilst the 
second one is traditionally applied for quadrotors i.e. 
Backstepping approach (BS).  

The overall system dynamics and control laws are 
implemented using Matlab tool. The total simulation time is 
40 seconds and the sampling time is set to 0.01 seconds. We 
simulate the response of the quadrotor using the available 
parameters of an AR-Drone (see Table 1). The following 
scenarios are successively proposed:  
- Basic scenario: After the take-off, the quadrotor tracks a 

square reference trajectory (2𝑚 × 2 𝑚) described as 

𝜎(𝑡) =
{  
 
   

0  𝑤ℎ𝑒𝑛 0 ≤ 𝑡 ≤ 𝑡1𝐿𝑟 (𝑡−𝑡1)5(𝑡−𝑡1)5+(𝑇−𝑡+𝑡1)  𝑤ℎ𝑒𝑛 𝑡1 < 𝑡 ≤ 𝑡2𝐿𝑟  𝑤ℎ𝑒𝑛 𝑡2 < 𝑡 ≤ 𝑡3𝐿𝑟 − 𝐿𝑟 (𝑡−𝑡3)5(𝑡−𝑡3)5+(𝑇−𝑡+𝑡3)  𝑤ℎ𝑒𝑛 𝑡3 < 𝑡 ≤ 𝑡40  𝑤ℎ𝑒𝑛 𝑡4 < 𝑡 ≤ 𝑡𝑓
 (36) 

with 𝑇 = 5 seconds, 𝑡𝑓 = 40  seconds and  𝐿𝑟 = 2 meters.𝑥𝑟 = 𝜎(𝑡) with t1 = 5, 𝑡2 = 𝑡1 + 𝑇, 𝑡3 = 25, 𝑡4 = 𝑡3 + 𝑇 𝑦𝑟 = 𝜎(𝑡) with t1 = 10, 𝑡2 = 𝑡1 + 𝑇, 𝑡3 = 30, 𝑡4 = 𝑡3 + 𝑇 𝑧𝑟 = 𝜎(𝑡) with 𝑡1 = 0, 𝑡2 = 𝑡1 + 𝑇, 𝑡3 = 35, 𝑡4 = 𝑡3 + 𝑇
- Parameters uncertainties: We suppose that the inertia matrix 

elements and the aerodynamic coefficients are underrated 
by 50% of the real values. 

- Extra Payload: The quadrotor is supposed carrying a heavy 
camera with an additional mass that represents 50% from 
the initial mass of quadrotor. The camera is modeled as a 
rigid compact body located at the center of mass of 
quadrotor. 

- Sensor noise: We add the sensor noise on the states of the 
system. The expression of the noisy states is {𝜒 = 𝜒 + 𝑁𝑐𝑟𝑎𝑛𝑑(. )𝜂 = 𝜂 + 𝑁𝑐𝑟𝑎𝑛𝑑(. )   (37) 𝑟𝑎𝑛𝑑(. ) is a Matlab function, which generates a random 

number between 0 and 1. 𝑁𝑐  is a scale parameter to adjust the
level of noise. 

- Wind disturbance: We accept that the wind causes the same 
acceleration intensity on all X, Y, Z-axes. These 
accelerations are considered as perturbations added to the 
equations related to the forces in the quadrotor model. 
Therefore, the disturbed model may be expressed as 
follows  �̈̃� = �̈� + 𝑎𝑥(𝑡)�̈̃� = �̈� + 𝑎𝑦(𝑡)  (38) �̈̃� = �̈� + 𝑎𝑧(𝑡)

The profile of this acceleration expressed explicitly as 𝑎𝑖(𝑡) = 0         𝑤ℎ𝑒𝑛 0 ≤ 𝑡 ≤ 𝑡1𝑎𝑖(𝑡) = 0.8 𝑠𝑖𝑛 (𝜋(𝑡−30)31 ) + 0.4 𝑠𝑖𝑛 (𝜋(𝑡−30)7 )  +0.08 𝑠𝑖𝑛 (𝜋(𝑡−30)2 ) + 0.056 𝑠𝑖𝑛 (𝜋(𝑡−30)11 )    𝑤ℎ𝑒𝑛 𝑡1 < 𝑡 ≤ 𝑡2𝑎𝑖(𝑡) = 0  𝑤ℎ𝑒𝑛 𝑡2 < 𝑡 ≤ 𝑡𝑓
with 𝑡1 = 10 and 𝑡2 = 30 𝑖 = 𝑥, 𝑦, 𝑧.

First of all, we start with the basic scenario. We plot separately, 
the tracking errors of the translations along X, Y, Z-axes in 
Figure 3 and the control inputs in Figure 4. 

Figure 3. Tracking errors along the three axes. 

Figure 4. Control inputs. 

Overall, from the curves obtained in Figures 3-4, the 
controllers stabilize correctly the roll, pitch and yaw angles 
where the quadrotor follows its reference trajectory with small 
errors with moderate energy consumption. From Figure 3, we 
observe that our proposed strategy ensures a damped response 
with less overshoot compared to the other considered 
techniques, which is an important result, due to the fact that 
the large overshoot leads to physical oscillations of the vehicle 
and engenders overturns nearby constraints.  

We suggest quantifying the obtained results in order to get a 
close view of the features so deep analysis of the performance. 
Some analysis tools are considered such as:  

- Integral Square Error (ISE): It is given by 𝐼𝑆𝐸 = ∫ (𝑒𝑥2(𝑡) +  𝑒𝑦2(𝑡) + 𝑒𝑧2(𝑡)) 𝑑𝑡𝑡𝑓𝑡0 . 

- Integral Squared Control Input (ISCI): It allows to 

measure the consumed energy using 𝐼𝑆𝐶𝐼 = ∫ 𝑢1(𝑡) 𝑑𝑡𝑡𝑓𝑡0
The quantified metrics are summarized for each scenario in 
Table 3. 

Table 3: Metrics for each scenario. 

BS MFC [5] R-MFC 

Basic scenario 

ISE 0.152 0.0884 0.0425 

ISCI 716.031 729.3093 719.76 
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Parameters uncertainties 

ISE 0.251 0.0955 0.0446 

ISCI 713.141 749.1154 721.9139 

Extra payload 

ISE 0.767 0.0968 0.0451 

ISCI 1612.613 2.9240e+03 2.8815e+03 

Sensors noise 

ISE 0.47 0.0950 0.0575 

ISCI 719.277 729.1249 719.8055 

Wind gust 

ISE 0.28 0.0884 0.0425 

ISCI 675.040 688.0810 678.4928 

Overall, as illustrated in Table 3, the three controllers exhibit 
an acceptable behavior with moderate consumed energy 
regardless the external effect. Nonetheless, the extra payload 
as the gust of wind requests additional thrust in order to ensure 
good performance.  

One may notice that, from Table 3 and for the basic scenario, 
the BS technique is the less accurate technique (ISE=0.152) 
followed by the classic MFC technique (ISE=0.088) while the 
R-MFC is the most accurate techniques (ISE=0.0425). We 
also observe that the MFC consumes more energy while the 
R-MFC consumes less energy.  

The accuracy of control degrades less and more for the BS 
according to the disturbance nature. However, the accuracy is 
almost the same using the MFC or R-MFC, which demonstrate 
the efficiency of the online estimation of the disturbance.  It is 
then worthwhile to note that the MFC, as well as R-MFC, are 
insensitive to the disturbances where the thrust is requested 
according to the disturbance intensity in order to keep the same 
performance. 

Finally, among the considered approaches, R-MFC exhibits 
the best performance in terms of accuracy and damped 
response with an acceptable level of energy consumption. 
Using our R-MFC is more relevant because that allows 
estimating the disturbances that affect our system as the wind, 
unlike the classic MFC that cannot distinguish the disturbances 
from the system dynamics. 

VI. CONCLUSION

 In this paper, a relevant way to reformulate the actual MFC 
controller by R-MFC is described. It uses an auxiliary input 
and by bringing some changes (see Section III-IV), it operates 
in closed loop form. It improves the performance with respect 
to structured and unstructured uncertainties. Numerical 
simulations have been performed using the non-linear 
dynamic model of the quadrotor in order to test the 
effectiveness of the designed controller. The good efficiency 
of our approach is demonstrated in multiple test scenarios. The 
settling time is shown to be quite fast with good accuracy and 
a high level of robustness is ensured with respect to parameters 
uncertainties or external disturbances. The autonomous 
vehicle exhibits good performance under the wind gust and 
maintains its defined position very well. It is worthwhile to 
stress that our strategy is also able to estimate the disturbances. 
Some experimental tests will be reported in the near future in 
order to validate the obtained results.  
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