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A new hierarchy of combinatorial operads is introduced, involving families of regular polygons with configurations of arcs, called decorated cliques. This hierarchy contains, among others, operads on noncrossing configurations, Motzkin objects, forests, dissections of polygons, and involutions. All this is a consequence of the definition of a general functorial construction from unitary magmas to operads. We study some of its main properties and show that this construction includes the operad of bicolored noncrossing configurations and the operads of simple and double multi-tildes. We focus in more details on a suboperad of noncrossing decorated cliques by computing its presentation, its Koszul dual, and showing that it is a Koszul operad.

Introduction

Regular polygons endowed with configurations of arcs are very classical combinatorial objects. Up to some restrictions or enrichments, these polygons can be put in bijection with several combinatorial families. Triangulations are the most celebrated among these, but also noncrossing configurations [START_REF] Flajolet | Analytic combinatorics of non-crossing configurations[END_REF], dissections of polygons, noncrossing partitions, or involutions belong also to this world. As many combinatorial objects, the polygons of most of these families can be described by composing or grafting smaller pieces together. Operads [START_REF] Loday | Algebraic Operads[END_REF][START_REF] Méndez | Set operads in combinatorics and computer science[END_REF] are algebraic structures abstracting the notion of planar rooted trees and their grafting operations. For this reason, operads are one of the most suitable modern algebraic structures to study such objects. In the last years, a lot of combinatorial sets have been endowed fruitfully with a structure of an operad (see for instance [START_REF] Chapoton | Operads and algebraic combinatorics of trees[END_REF][START_REF] Chapoton | Enveloping operads and bicoloured noncrossing configurations[END_REF][START_REF] Giraudo | Operads from posets and Koszul duality[END_REF][START_REF] Giraudo | Operads, quasiorders, and regular languages[END_REF][START_REF] Luque | Some Combinatorial Operators in Language Theory[END_REF]), each time providing results about enumeration, discovering new statistics, or establishing new links (by morphisms) between different combinatorial sets.

The purpose of this work is twofold. First, we are concerned in endowing the whole set of polygons with configurations of arcs with a structure of an operad. This leads to see these objects under a new light, stressing some of their combinatorial and algebraic properties. Second, we would provide a general construction of operads of polygons rich enough so that it includes some already known operads. As a consequence, we obtain alternative constructions of existing operads and new interpretations of these. We work here with M-decorated cliques, that are complete graphs whose arcs are labeled on M, where M is a unitary magma. These objects are natural generalizations of polygons with configurations of arcs since the arcs of any M-decorated clique labeled by the unit of M are considered as missing. The elements of M different from the unit allow moreover to handle polygons with arcs of different colors. We propose a functor C from the category of unitary magmas to the category of operads. It builds, from any unitary magma M, an operad CM on M-decorated cliques.

This operad has a lot combinatorial and algebraic properties. First, CM admits as quotients of operads several structures on particular families of polygons with configurations of arcs. We can for instance control the degrees of the vertices, the crossings, or the nestings between the arcs to obtain new operads. We hence get quotients of CM involving, among others, Schröder trees, dissections of polygons, Motzkin objects, forests, with colored versions for each of these. This leads to a new hierarchy of operads, wherein links between its elements appear as surjective or injective morphisms of operads (see Figure 1). One of the most notable of these is built by considering the M- decorated cliques that have vertices of degrees at most 1, leading to a quotient InvM of CM involving standard Young tableaux (or equivalently, involutions). To the best of our knowledge, InvM is the first nontrivial operad on these objects. Besides, the construction C allows to retrieve the operad BNC of bicolored noncrossing configurations [START_REF] Chapoton | Enveloping operads and bicoloured noncrossing configurations[END_REF] and the operads MT and DMT respectively defined in [START_REF] Luque | Some Combinatorial Operators in Language Theory[END_REF] and [START_REF] Giraudo | Operads, quasiorders, and regular languages[END_REF] that involve multi-tildes and double multi-tildes, operators coming from formal languages theory [START_REF] Caron | Multi-Bar and Multi-Tilde Regular Operators[END_REF]. The suboperad NCM of CM of M-noncrossing configurations, that are M-decorated cliques without crossing diagonals, admits some nice algebraic properties. It is first generated by elements of arity two (which is not the case of CM), and its nontrivial relations are concentrated in arity three. This operad is also a Koszul operad.
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This text is organized as follows. The construction C is defined in Section 1 and its first properties are listed. Among other, we describe the generators of CM, its dimensions, establish that it admits a cyclic operad structure, and define two alternative bases, the H-basis and the K-basis, by considering a partial order structure on the set of M-decorated cliques. Section 2 is devoted to define some quotients of CM and to construct, through C, the operads BNC, MT, and DMT. Finally, we study in more details the operad NCM in Section 3. We show that this operad is an operad of Schröder trees with labels on arcs satisfying some conditions. We compute its dimensions, its presentation, its Koszul dual, and establish the fact that it is a Koszul operad.

Notations and general conventions. All the algebraic structures of this article have a field of characteristic zero K as ground field. We shall use the classical notations about operads [START_REF] Loday | Algebraic Operads[END_REF] and more precisely those of [START_REF] Giraudo | Operads from posets and Koszul duality[END_REF]. Since we consider only nonsymmetric operads, we call these simply operads. The sequences of integers cited in the sequel come from [START_REF] Sloane | The On-Line Encyclopedia of Integer Sequences[END_REF].

Operads of decorated cliques 1.Unitary magmas and decorated cliques

A clique of size n 1 is a complete graph p on the set of vertices [n + 1]. An arc of p is a pair of integers (x, y) with 1 x < y n + 1, a diagonal is an arc (x, y) different from (x, x + 1) and (1, n + 1), and an edge is an arc of the form (x, x + 1) and different from (1, n + 1). We denote by A p the set of arcs of p. The i-th edge of p is the edge (i, i + 1) and the arc (1, n + 1) is the base of p. Let M be a unitary magma, that is a set endowed with a binary operation admitting a left and right unit 1 M . An M-decorated clique (or an M-clique for short) is a clique p endowed with a map φ p : A p → M. For convenience, for any arc (x, y) of p, we shall denote by p(x, y) the value φ p ((x, y)). Moreover, we say that the arc (x, y) is labeled by p(x, y). When the arc (x, y) is labeled by an element different from 1 M , we say that the arc (x, y) is solid.

In our graphical representations, we shall stick to the following drawing conventions for M-cliques. First, each M-clique is depicted so that its base is the bottommost segment and vertices are implicitly numbered from 1 to n + 1 in the clockwise direction.

Second, the label of any arc (x, y) of p is represented in the following way. If (x, y) is solid, we represent it by a line decorated by p(x, y). If (x, y) is not solid and is an edge or the base of p, we represent it as a dashed line. In the remaining case, when (x, y) is a diagonal of p and is not solid, we do not draw it.

To explore some examples in this article, we shall consider the additive unitary magma Z, the cyclic additive unitary magma N on Z/ Z , and the unitary magma D on the set {1, 0, a 1 , . . . , a } where 1 is the unit of D , 0 is absorbing, and a i a j = 0 for all i, j ∈ [ ]. For instance,

p := -1 1 2 3 2 2 (1.1.1) is a Z-clique of size 6 such that, among others, p(1, 2) = -1, p(1, 5) = 1, p(3, 7) = 3, p(5, 7) = 2, p(2, 3) = 0, and p(2, 6) = 0.

A functor from unitary magmas to operads

For any unitary magma M, we define the vector space CM := n 1 CM(n) where CM(1) is the linear span of the singleton consisting in the M-clique of size 1 whose base is labeled by 1 M , and for any n 2, CM(n) is the linear span of all M-cliques of size n. We endow CM with a partial composition map • i defined linearly in the following way. If p and q are two M-cliques of respective sizes n and m, and i is a valid integer, p • i q is obtained by gluing the base of q onto the i-th edge of p, by relabeling the common arcs between p and q, respectively the arcs (i, i + 1) and (1, m + 1), by p(i, i + 1) q(1, m + 1), and by renumbering the vertices of the clique thus obtained from 1 to n + m -1 (see Figure 2). For example, in CZ, one has the two partial compositions

a i i+1 p • i b q = a i i+1 p b q = i i+m a b

Figure 2:

The partial composition of CM. Here, p and q are two M-cliques. The label of the i-th edge of p is a ∈ M and the label of the base of q is b ∈ M. The size of q is m.

1 -2 -2 1 • 2 1 3 1 2 = 1 -2 1 1 1 2 1 , 1 -2 -2 1 • 2 1 2 1 2 = 1 -2 1 1 2 1 . (1.2.1)
Moreover, if M 1 and M 2 are two unitary magmas and φ : M 1 → M 2 is a unitary magma morphism, we define Cφ : CM 1 → CM 2 as the linear map sending any M 1clique p of size n to the M 2 -clique (Cφ)(p) of size n such that, for any arc (x, y) ∈ A p , ((Cφ)(p))(x, y) := φ(p(x, y)). Theorem 1.2.1. The construction C is a functor from the category of unitary magmas to the category of operads. Moreover, C respects injections and surjections, and all operads of the image of C are set-operads.

Proof. We just sketch the proof of the fact that CM is an operad when M is a unitary magma. This amounts to prove that the partial composition of CM satisfies, for all Mcliques p (resp. q, r) of sizes n (resp. m, k), (p

• i q) • i+j-1 r = p • i (q • j r) where i ∈ [n], j ∈ [m], (p • i q) • j+m-1 r = (p • j r) • i q where i < j ∈ [n], and • 1 p = p = p • i where i ∈ [n]
. Each of these relations can be checked for example with the help of Figure 2.

General properties

Proposition 1.3.1. Let M be a finite unitary magma. For all n 2, dim CM(n) = m ( n+1 2 ) , where m := #M.

If p is an M-clique, we say that two diagonals (x, y) and (x , y ) of p are crossed if x < x < y < y or x < x < y < y. Let G CM be the set of all M-cliques p such that, for any diagonal (x, y) of p, there is at least one solid diagonal (x , y ) of p such that (x, y) and (x , y ) are crossed. Observe that, according to this description, all M-cliques of size 2 belong to G CM . Proposition 1.3.2. Let M be a unitary magma. The set G CM is the unique minimal generating set of CM.

Recall that an operad O defined in the category of sets is basic [START_REF] Vallette | Homology of generalized partition posets[END_REF] if all the maps Let be (resp. d ) be the partial order relation on the set of all M-cliques, where, for any M-cliques p and q, one has p be q (resp. p d q) if q can be obtained from p by replacing some labels 1 M of its edges or its base (resp. solely of its diagonals) by other labels of M. For any M-clique p, let the elements of CM defined by H p := ∑ p be p p and K p := ∑ p d p (-1) ham(p ,p) p , where ham(p , p) is the Hamming distance between p and p, that is the number of arcs (x, y) such that p (x, y) = p(x, y). By triangularity and by Möbius inversion, the family of all the H p (resp. K p ) forms a basis of CM, called H-basis (resp. K-basis). For instance, in CZ,

• y i : O(n) → O(n + |y| -1), y ∈ O, defined by • i (x) := x • i y are injective.
H 1 1 2 2 = 1 2 + 1 2 2 + 1 1 2 + 1 1 2 2 , K 1 1 2 2 = 1 1 2 2 - 1 2 2 -1 1 2 + 1 2 . (1.3.1)
If p is an M-clique, we denote by p 0 (resp. p i ) the label of its base (resp. i-th edge). Moreover, d 0 (p) (resp. d i (p)) is the M-clique obtained by replacing the label of the base (resp. i-th edge) of p by 1 M . Proposition 1.3.5. Let M be a unitary magma. The partial composition of CM expresses over the H-basis, for any M-cliques p and q different from and any valid integer i, as

H p • i H q =            H p• i q + H d i (p)• i q + H p• i d 0 (q) + H d i (p)• i d 0 (q) if p i = 1 M and q 0 = 1 M , H p• i q + H d i (p)• i q if p i = 1 M , H p• i q + H p• i d 0 (q) if q 0 = 1 M , H p• i q otherwise.
(1.3.2) Proposition 1.3.6. Let M be a unitary magma. The partial composition of CM expresses over the K-basis, for any M-cliques p and q different from and any valid integer i, as

K p • i K q = K p• i q if p i q 0 = 1 M , K p• i q + K d i (p)• i d 0 (q) otherwise. (1.3.3)
For instance, in CZ,

H 1 • 2 H 1 = H + 2 H 1 + H 2 , K 1 • 2 K 1 = K + K 2 . (1.3.4)
2 Quotients and suboperads

Operads on subfamilies of M-cliques

We now define quotients of CM, leading to the construction of some new operads involving various combinatorial objects which are, basically, M-cliques with some restrictions. Figure 1 shows a diagram containing all the considered quotients and suboperads of CM.

Bubbles. An M-clique is an M-bubble if it has no solid diagonals. Let R BubM be the subspace of CM generated by all M-cliques that are not bubbles. As quotient of vector spaces, BubM := CM/ R BubM is the linear span of all M-bubbles. Moreover, the space BubM is a quotient of operads of CM. When M is finite, the dimensions of BubM satisfy, for any n 2, dim BubM(n) = m n+1 , where m := #M.

White M-cliques. An M-clique is white if it has no solid edges nor solid base. Let WhiM be the subspace of CM of all white M-cliques. The space WhiM is a suboperad of CM. When M is finite, the dimensions of WhiM satisfy, for any n 2, dim WhiM(n) = m (n+1)(n-2)/2 , where m := #M.

Restricting the crossing. The crossing of a solid diagonal of an M-clique p is the number of solid diagonals crossing it. The crossing of p is the maximal crossing of its solid diagonals. For any integer k 0, let R Cro k M be the subspace of CM generated by all M-cliques of crossings greater than k. As quotient of vector spaces, Cro k M := CM/ R Cro k M is the linear span of all M-cliques of crossings no greater than k. Moreover, the space Cro k M is both a quotient and a suboperad of CM. Observe that Cro 0 M is the operad BubM. Let us set NCM := Cro 0 M. Any M-clique of NCM is a noncrossing configuration [START_REF] Flajolet | Analytic combinatorics of non-crossing configurations[END_REF] where each diagonal is decorated by an element of M \ {1 M }. These operads NCM have a lot of nice properties and will be studied in Section 3.

Acyclic M-cliques. An M-clique is acyclic if it does not contain any cycle formed by solid arcs. Let R AcyM be the subspace of CM generated by all M-cliques that are not acyclic. As quotient of vector spaces, AcyM := CM/ R AcyM is the linear span of all acyclic M-cliques. When M has no nontrivial unit divisors, the space AcyM is a quotient of operads of CM. Any D 0 -clique of AcyD 0 can be seen as a forest of trees. The dimensions of this operad begin by 1, 7, 38, 291, 2932 (Sequence A001858, except for the first terms).

Nesting-free M-cliques. A solid arc (x , y ) is nested in a solid arc (x, y) of an M-clique p if x

x < y y. We say that p is nesting-free if for any solid arcs (x, y) and (x , y ) of p such that (x , y ) is nested in (x, y), (x , y ) = (x, y). Let R NesM be the subspace of CM generated by all M-cliques that are not nesting-free. As quotient of vector spaces, NesM := CM/ R NesM is the linear span of all nesting-free M-cliques. When M has no nontrivial unit divisors, the space NesM is a quotient of operads of CM. Any D 0clique of NesD 0 can be seen as an nesting-free clique. The dimensions of this operad begin by 1, 5, 14, 42, 132, and are Catalan numbers (Sequence A000108, except for the first terms). In the same way as considering M-cliques of crossings no greater than k leads to quotients Cro k M of CM, it is possible to define analogous quotients Nes k M spanned by M-cliques having solid arcs that nest at most k other ones.

Restricting the degree. The degree of a vertex x of an M-clique p is the number of solid arcs adjacent to x. The degree of p is the maximal degree of its vertices. For any integer k 0, let R Deg k M be the subspace of CM generated by all M-cliques of degrees greater than k. As quotient of vector spaces, Deg k M := CM/ R Deg k M is the linear span of all M-cliques of degrees no greater than k. When M has no nontrivial unit divisors, the space Deg k M is a quotient of operads of CM. Observe that Deg 0 M is the associative operad As. Let us set InvM := Deg 1 M. Any D 0 -clique of InvD 0 of size n can be seen as a partition of the set [n + 1] in singletons or pairs. In this case, InvD 0 involves involutions, or equivalently standard Young tableaux. The dimensions of this operad begin by 1, 4, 10, 26, 76 (Sequence A000085, except for the first terms). Moreover, the dimensions of InvD 1 begin by 1, 7, 25, 81, 331 (Sequence A047974, except for the first terms). Besides, any D 0 -clique of Deg 2 D 0 can be seen as a thunderstorm graph (i.e., a graph where connected components are cycles or paths). The dimensions of this operad begin by 1, 8, 41, 253, 1858 (Sequence A136281, except for the first terms).

Mixing quotients and substructures

For any operad O and ideals of operads R 1 and R 2 of O, the space R 1 + R 2 is still an ideal of operads of O, and O/ R 1 +R 2 is a quotient of operads of both O/ R 1 and O/ R 2 . Moreover, if O is a suboperad of O and R is an ideal of operads of O, the space R ∩ O is an ideal of operads of O , and O / R∩O is a quotient of operads of O . For these reasons, we can combine the constructions of Section 2.1 to build a bunch of new quotients of operads of CM.

When M is finite and has cardinal 2, several interesting phenomenons occur already. In this case, M is necessarily isomorphic to N 2 or to D 0 , but only D 0 satisfies the conditions required by all the propositions of Section 2.1. The obtained substructures of CD 0 are operads that involve some very classical combinatorial objects. 

Constructing existing operads

We give here three examples of already known operads that can be build through the construction C.

Bicolored noncrossing configurations. The operad of bicolored noncrossing configurations

BNC is an operad defined in [START_REF] Chapoton | Enveloping operads and bicoloured noncrossing configurations[END_REF] which involves noncrossing configurations where each solid diagonal can be blue or red, and each edge can be blue or uncolored. This operad is in fact a special case of our general construction C. Let M BNC := {1, a, b} be the unitary magma wherein operation is defined so that a and b are idempotent, and a b = 1 = b a. Observe that M BNC is a commutative unitary magma, but, since (b a) a = a and b (a a) = 1, the operation is not associative. Proposition 2.3.1. The suboperad of NCM BNC consisting in its unit and all M BNC -noncrossing configurations without edges labeled by 1 is isomorphic to the operad BNC.

Multi-tildes and double multi-tildes. Appearing from the context of formal languages theory, multi-tildes are operators introduced in [START_REF] Caron | Multi-Bar and Multi-Tilde Regular Operators[END_REF] as tools offering a convenient way to express regular languages. As shown in [START_REF] Luque | Some Combinatorial Operators in Language Theory[END_REF], the set of all multi-tildes admits a very natural structure of an operad MT. Double multi-tildes are extensions of these operators introduced in [START_REF] Giraudo | Operads, quasiorders, and regular languages[END_REF] that increase their expressiveness and admit also a structure of an operad DMT. Let M DMT be the unitary magma M DMT := D 2 0 and M MT be the subunitary magma of M DMT on the set {(1, 1), (0, 1)}. Proposition 2.3.2. The operad CM DMT (resp. CM MT ) is isomorphic to the suboperad of DMT (resp. MT) consisting in all double (resp. simple) multi-tildes except the three (resp. one) nontrivial ones of arity 1.

Operads of decorated noncrossing configurations

In this section, we study in details the suboperad NCM of CM. As observed in Section 2.1, this operad involves all M-cliques that do not admit crossing solid diagonals. We call M-noncrossing configurations such objects.

General properties

The set of all M-noncrossing configurations is in one-to-one correspondence with the set of Schröder trees (i.e., rooted planar trees where internal nodes have arities 2 or
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 1 Figure 1: A diagram of suboperads and quotients of CM. Arrows (resp. ) are injective (resp. surjective) morphisms of operads. Here, M is a unitary magma without nontrival unit divisors.
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 133134 Let M be a unitary magma. As a set-operad, CM is basic if and only if M is right cancellable.Let ρ : CM → CM be the linear map sending any M-clique p to the M-clique obtained by rotating by one step p in the counterclockwise direction. Let M be a unitary magma. The map ρ endows CM with a cyclic operad structure.

  For instance: Schröder trees. Let SchM := WhiM/ R Cro 0 M ∩WhiM . The operad SchD 0 involves Schröder trees. Its dimensions begin by 1, 1, 3, 11, 45 (Sequence A001003). Forests of paths. Let PatM := CM/ R AcyM +R Deg 2 M . The operad PatD 0 involves forests of non-rooted trees that are paths. Its dimensions begin by 1, 7, 34, 206, 1486 (Sequence A011800, except for the first terms). Forests of trees. Let ForM := CM/ R AcyM +R Cro 0 M . The operad ForD 0 involves forests of rooted trees without crossing edges. Its dimensions begin by 1, 7, 33, 181, 1083 (Sequence A054727, except for the first terms). Motzkin configurations. Let MotM := CM/ R Cro 0 M +R Deg 1 M . The operad MotD 0 involves Motzkin paths. Its dimensions begin by 1, 4, 9, 21, 51 (Sequence A001006, except for the first terms). Dissections of polygons. Let DisM := WhiM/ (R Cro 0 M +R Deg 1 M )∩WhiM . The operad DisD 0 involves dissections of polygons by strictly disjoint diagonals. Its dimensions begin by 1, 1, 3, 6, 13 (Sequence A093128, except for the first terms). Lucas configurations. Let LucM := CM/ R BubM +R Deg 1 M . The operad LucD 0 involves D 0 -bubbles p such that any vertex of p belongs to at most one solid edge. Its dimensions begin by 1, 4, 7, 11, 18, and are Lucas numbers (Sequence A000032, except for the first terms).

Samuele Giraudo

more) where the edges adjacent to the roots are labeled on M, the edges connecting two internal nodes are labeled on M \ {1 M }, and the edges adjacent to the leaves are labeled on M. This is realized by computing the dual trees of M-noncrossing configurations by considering the labels of the solid diagonals. We call these trees M-dual trees. Here is an example of a Z-noncrossing configuration and the Z-dual tree encoding it: By seeing the elements of NCM as M-dual trees, we can rephrase the partial composition of this operad as follows. If s and t are two M-dual trees and i is a valid integer, the tree s • i t is computed by grafting the root of t to the i-th leaf of s. Then, by denoting by b the label of the edge adjacent to the root of t and by a the label of the edge adjacent to the i-th leaf of s, we have two cases to consider, depending on the value of c := a b. If c = 1 M , we label the edge connecting s and t by c. Otherwise, when c = 1 M , we contract the edge connecting s and t by merging the root of t and the father of the i-th leaf of s. For instance, in NCN 3 , we have Let T M be the set of all M-cliques of arity 2. We call such cliques M-triangles. 

From this result, together with classical arguments involving Narayana numbers, we obtain that for all n 2,

For instance, when #M = 2, the dimensions of NCM begin by 1, 8, 48, 352, 2880 (Sequence A054726, except for the first terms).

Presentation, Koszulity, and Koszul dual

In what follows, M-triangles p = p 1 p 3 p 2 are denoted by words p 1 p 2 p 3 ∈ M 3 . Theorem 3.2.1. Let M be a finite unitary magma. The operad NCM is binary, quadratic, Koszul, and admits the presentation NCM Free(T M )/ R , where R is the space of relations generated by

where p 1 , p 2 , p 3 , q 1 , q 2 , q 3 , r 1 , r 2 , r 3 ∈ M.

Proof. The proof is long, technical, but classical and uses techniques from rewriting theory [START_REF] Baader | Term rewriting and all that[END_REF]. It consists in defining a rewrite rule → from R on syntax trees of M-triangles, by showing that → is convergent, and prove that → admits as many normal forms as basis elements of NCM of arity n for all n 1. The fact that NCM is Koszul is a consequence of the existence of such a rewrite rule → (see [START_REF] Dotsenko | Gröbner bases for operads[END_REF][START_REF] Hoffbeck | A Poincaré-Birkhoff-Witt criterion for Koszul operads[END_REF]).

We can now compute a presentation of the Koszul dual NCM ! of NCM from the presentation of NCM provided by Theorem 3.2.1. Proposition 3.2.2. Let M be a finite unitary magma. The operad NCM ! admits the presentation NCM ! Free(T M )/ R ⊥ , where R ⊥ is the space of relations generated by ∑ p 2 ,q 1 ∈M,p 2 q 1 =δ p 1 p 2 p 3 • 1 q 1 q 2 q 3 , where p 1 , p 3 , q 2 , q 3 ∈ M, δ ∈ M \ {1 M }, (3.2.2a) ∑ p 2 ,q 1 ∈M,p 2 q 1 =1 M p 1 p 2 p 3 • 1 q 1 q 2 q 3p 1 q 2 p 2 • 2 q 1 q 3 p 3 , where p 1 , p 3 , q 2 , q 3 ∈ M,

Let M be a finite unitary magma and m be its cardinality. The Hilbert series

3) This is the generating series of all noncrossing configurations where all edges and bases are labeled by pairs (a, a) ∈ M 2 , and all solid diagonals are labeled by pairs (a, b) ∈ M 2 where a = b. Proposition 3.2.3 hence provides a combinatorial description of the elements of NCM ! . For instance, when #M = 2, the dimensions of NCM ! begin by 1, 8, 80, 992, 13760 (Sequence A234596). It is worthwhile to observe that the dimensions of NCM ! in this case are the ones of the operad BNC [START_REF] Chapoton | Enveloping operads and bicoloured noncrossing configurations[END_REF] (see Section 2.3).