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WORKING NOTES ON THE TIME MINIMAL SATURATION OF

A PAIR OF SPINS AND APPLICATION IN MAGNETIC

RESONANCE IMAGING

B. BONNARD, O. COTS, J. ROUOT, AND T. VERRON

Abstract. In this article, we analyse the time minimal control for the satu-
ration of a pair of spins of the same species but with inhomogeneities of the

applied RF-magnetic field, in relation with the contrast problem in Magnetic

Resonance Imaging. We make a complete analysis based on geometric control
to classify the optimal syntheses in the single spin case to pave the road to

analyze the case of two spins. The Bocop software is used to determine local

minimizers for physical test cases and Linear Matrix Inequalities approach is
applied to estimate the global optimal value and validate the previous compu-

tations. This is complemented by numerical computations combining shooting

and continuation methods implemented in the HamPath software to analyze the
structure of the time minimal solution with respect to the set of parameters

species.

1. Introduction

In Magnetic Resonance Imaging (MRI), a challenging problem is to maximize
the contrast between two observed species, e.g. healthy tissues from tumors by
saturating one of the species. Optimal control techniques were introduced in this
domain in the eighties [17] and were developed very recently under the impulse
of S. Glaser using advanced analytical and numerical techniques. This gave rise
to a series of articles which analyze the contrast problem, starting from the ideal
contrast problem where only a pair of spins is considered, to the optimal control
of an ensemble of pairs of spins, taking into account the so-called B0 and B1 inho-
mogeneities [22, 23, 11, 8] to compute robust control. A first major contribution in
this area was for some physical cases, the explicit computation of the time minimal
control of saturating a single spin, that is steering the state representing the spin
to zero and showing that the standard inversion sequence applied in practice is not
optimal in many physical cases, e.g. the blood case [22]. Additional pulses have to
be used corresponding to the so-called singular control [5]. This computation relies
on an intense research activities at the end of the eighties to the computation of
the time-minimal closed loop solution for Cω-planar single input control system in
a neighborhood of a given point, taking into account the Lie algebraic structure of
the systems of this point [12, 35, 33, 34].
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Thanks to the bilinear structure of the model, this local analysis can be global-
ized for a single spin and a first contribution of our article is to make a complete
classification of the time minimal syntheses taking into account the time relaxation
parameters of the species and the maximal amplitude of the applied RF-field (con-
trol). Our aim is to extend this analysis to the case of two spins in relation to the
problem of the so-called B1-inhomogeneity, that is of the applied RF-field. The
analysis is very complex and we present a combination of algebraic and geometric
methods based on [6] and adapted numerical schemes to analyze the problem im-
plemented in specific software: Bocop [3], HamPath [15], GloptiPoly [19]. A similar
analysis was presented for the contrast problem [11] but for this simplified version
it is complete in many directions, thus providing a testbed of the methods to deal
with the time minimal control of a single input control system where the state space
is of codimension 4, depending upon 2-parameters and with many local optima.

This article is organized as follows. In section 2, we present the mathematical
model, that is the Bloch equations [26] and we discuss the underlying optimal con-
trol problem in MRI, that is the contrast problem with B0 and B1 inhomogeneities
[23], to introduce the time minimal saturation of a pair of spins, that we ana-
lyze in this article. The seminal result in optimal control theory is the Maximum
Principle [31] which is recalled to select extremal curves candidates as minimizers.
The extremal controls split into bang controls and the so-called singular controls
whose role in the time minimal problem is recalled [7]. In section 3, the time
minimal saturation of a pair of spins of the same species with B1-inhomogeneities
is investigated. A preliminary study concerning the case of a simple spin is pre-
sented in details using geometric control theory techniques. This led to a complete
classification of the optimal syntheses to steer any state to the origin. Thanks to
the symmetry of revolution it is reduced to a time minimal control problem for a
single-input 2D-system. All the fine results of the geometric theory [13, 35] are used
to provide a complete classification depending upon the physical parameters and
completing [22]. The next step in section 4 is to extend this analysis to a pair of
spins, numerical methods are used to complete the analysis. First of all, the direct
methods implemented in the Bocop code are applied to analyze for physical cases:
Desoxygenated and Oxygenated case, Cerebrospinal fluid and Water case. Global
optimality is analyzed using LMI methods [24]. In the final part, the problem is an-
alyzed using multiple shooting methods implemented in the HamPath software [15]
and completed by numerical continuations (available in the software) to compute
the optimal solutions for a continuous set of physical relaxation parameters. This
numerical investigation, based on homotopy reveals the existence path of zeros that
has to be compared to determine the global optimal. In section 5, we discuss the
theoretical complexity of the procedure. The crucial point is to analyze the singular
trajectories associated with a 4D-Hamiltonian flow, with constraints and many sin-
gularities. They are computed using symbolic computations, extending techniques
from [6]. They led to identify a simplified case corresponding to the so-called water
case, important in practice and which is a generalization of the standard inversion
sequence for a single spin. This case is important to analyze the general case, using
homotopy methods.

2. Theoretical concepts and results



SATURATION OF A SINGLE PAIR OF SPINS AND MRI 3

Name T1 T2
T2

T1
=
γ

Γ
θ = atan( γΓ )

Water 2.5 2.5 1.0 0.7854

Fat 0.2 0.1 0.5 0.4636

Cerebrospinal Fluid 2.0 0.3 0.15 0.1489

Oxygenated blood 1.35 0.2 0.1481 0.1471

White cerebral matter 0.78 0.09 0.1154 0.1148

Gray cerebral matter 0.92 0.1 0.1087 0.1083

Brain 1.062 0.052 0.0490 0.0489

De-oxygenated blood 1.35 0.05 0.0370 0.0370

Parietal muscle 1.2 0.029 0.0242 0.0242

Table 1. Matter name with relaxation times in seconds, ratio
T2/T1 and value θ = atan(γ/Γ).

2.1. The model. We consider an ensemble of spin-1/2 particules, excited by a
radio-frequency (RF) field which is ideally assumed homogeneous, each spin of this
ensemble being described by the magnetization vector M = (Mx,My,Mz) whose
dynamics is governed in a specific rotating frame by the Bloch equation [26]:

Ṁx(t) = −Mx

T2
+ ωyMz,

Ṁy(t) = −My

T2
− ωxMz,

Ṁz(t) =
M0 −Mz

T1
− ωyMx + ωxMy,

where T1, T2 are respectively the longitudinal, transversal relaxation constants, M0

is the thermal equilibrium and ω = (ωx, ωy) is the control corresponding to the
applied RF-magnetic field, with ωmax the maximal amplitude of the control, i.e.
ω2
x + ω2

y ≤ ω2
max. Table 1 gives a list of longitudinal and transversal relaxation

constants for the main practical cases.
Up to a renormalization of M introducing (x, y, z) = (Mx,My,Mz)/M0 and a

time reparameterization, the dynamics take the form:

ẋ(t) = −Γx+ uyz,

ẏ(t) = −Γy − uxz,

ż(t) = γ(1− z)− uyx+ uxy.

In the relevant physical cases, one has 0 ≤ γ ≤ 2Γ and the Bloch ball: x2+y2+z2 ≤
1, is invariant for the dynamics. Thanks to the reparameterization, one can assume
that the control is bounded by u2

x + u2
y ≤ 1. In this case, the relations between the
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parameters (γ,Γ) and (T1, T2, ωmax) are the following:

(2.1) γ =
1

T1 ωmax
, Γ =

1

T2 ωmax
.

The system admits a symmetry of revolution around the z-axis, which allows us to
set uy = 0 and to restrict each spin system to a single-input control system in the
trace of the Bloch ball on the plane (y, z). The system then takes the form:

(2.2)
ẏ(t) = −Γy − uz,

ż(t) = γ(1− z) + uy,

with u = ux, |u| ≤ 1.
The problem of saturation associated to the contrast problem by saturation in

MRI is to steer from the north pole N = (0, 1) to the origin O = (0, 0) one of the
two species to be distinguished. In the contrast problem with RF-inhomogeneities,
which is due to the spatial position of the species in the image, one has to consider
an ensemble of pair of spins, such as for each system, the dynamics is perturbed.
This perturbation is modeled as a rescaling of the maximal amplitude perceived
by the spin. Restricting again to the sub-problem of saturation of one species, and
considering only an ensemble of two pairs of spins, this leads to consider the case
of a couple of systems (2.2) with the same parameters (γ,Γ) but with a distortion
in the maximal amplitude, that is:{

ẏ1(t) = −Γy1 − u z1,

ż1(t) = γ(1− z1) + u y1,

{
ẏ2(t) = −Γy2 − (1− ε)u z2,

ż2(t) = γ(1− z2) + (1− ε)u y2,

where |u| ≤ 1, with q1 = (y1, z1), q2 = (y2, z2) denote the coordinates of spin 1 and
spin 2 and (1−ε), ε > 0 small, is the rescaling factor of the control maximal ampli-
tude. Hence, the saturation problem of a pair of spins consists into a simultaneous
steering of the couple from q1(0) = q2(0) = N to the center q1(tf ) = q2(tf ) = O,
where tf is the transfer time. The optimal control that we shall analyze is the time
minimal saturation, i.e. we aim to minimize the transfer time tf .

2.2. Maximum principle and singular extremals.

2.2.1. Preliminaries. In this section, we consider a single-input control system:
dq
dt = F + uG, where F , G are Cω vector fields defined on an open subset V ⊂ Rn

and the control u is a bounded measurable mapping defined on [0 , T (u)] and val-
ued in |u| ≤ 1. For fixed q0 and T > 0, the extremity mapping is the map
E : u ∈ L∞([0 , T ]) 7→ E(u) = q(T, q0, u), where q(·, q0, u) is the solution of the
system with q(0, q0, u) = q0. A control u ∈ L∞([0 , T ]) is called singular if the
extremity mapping is not of full rank and the corresponding trajectory is called
singular on [0 , T ]. We have the following relations with the time minimal control
problem [31].

Proposition 2.1. Consider the time minimal control problem for the single-input
control system: dq

dt = F + uG, |u| ≤ 1. If u(·), with corresponding trajectory q(·),
is solution, then there exists p(·), t 7→ p(t) ∈ Rn \ {0Rn}, such that the following
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equations are satisfied for the triplet (q(·), p(·), u(·)):

q̇ =
∂H

∂p
, ṗ = −∂H

∂q
a.e.(2.3)

H(q(t), p(t), u(t)) = max
|v|≤1

H(q(t), p(t), v) a.e.(2.4)

Moreover, M(q, p) = max|v|≤1H(q, p, v) is constant along (q(·), p(·)) and non-
negative, with H(q, p, u) = p · (F + uG) the pseudo-Hamiltonian and p is called
the adjoint vector.

Definition 2.2. A triplet (q(·), p(·), u(·)) solution of (2.3) and (2.4) is called an
extremal. It is called regular if u(t) = sign(p(t) ·G(q(t))) a.e. and bang-bang if it is
regular and the number of switchings of u(·) is finite. An extremal is called singular
if p(·) · G(q(·)) = 0 everywhere. We denote by σ+, σ− and σs respectively bang
with u = +1, u = −1 and singular extremals. Extremals satisfying the boundary
conditions are called BC-extremals

Proposition 2.3. If the control u(·) is singular on [0 , T ] (for the extremity map-
ping), with q(·) the associated trajectory, then there exists p(·) such that (q(·), p(·),
u(·)) is a singular extremal.

2.2.2. Computation of singular trajectories. The Lie bracket of two Cω vector fields
X, Y on V is computed with the convention:

[X,Y ](q) =
∂Y

∂q
(q)X(q)− ∂X

∂q
(q)Y (q),

and denoting HX , HY the Hamiltonian lifts: HX(z) = p ·X(q), HY (z) = p · Y (q),
with z = (q, p) ∈ V × Rn, the Poisson bracket reads:

{HX , HY } = dHY ·
−→
HX = p · [X,Y ](q),

where
−→
HX = ∂H

∂p
∂
∂q −

∂H
∂q

∂
∂p . Differentiating twice p(·) ·G(q(·)) with respect to the

time t, one gets:

Proposition 2.4. Singular extremals (z(·), u(·)) are solutions of the following equa-
tions:

HG(z(t)) = {HF , HG}(z(t)) = 0,

{HF , {HF , HG}}(z(t)) + u(t) {HG, {HF , HG}}(z(t)) = 0.

If {HG, {HF , HG}} 6= 0 along the extremal, then the singular control is called of
minimal order and it is given by the dynamic feedback:

us(z(t)) = −{HF , {HF , HG}}(z(t))
{HG, {HF , HG}}(z(t))

.

From the above proposition one gets:

Corollary 2.5. If u(·) = 0 is a singular control on [0 , T ] then one has:

adkHF ·HG(z(t)) = p(·) · (adk F ·G(q(t))), ∀ k ≥ 0,

with adF ·G = [F,G], adHF ·HG = {HF , HG}.

The following lemma is useful [5, p. 213].

Lemma 2.6. For generic pair (F,G) for the Whitney topology, dim span{adk F ·
G, k ≥ 0} = n.
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Corollary 2.7. Up to the time reparameterization

ds =
dt

{HG, {HF , HG}}(z(t))
,

singular extremals of minimal order are solutions of the analytic differential equa-
tion:

dz

ds
= X(z),

with

X =
(
{HG, {HF , HG}}F − {HF , {HF , HG}}G

) ∂
∂q

−
(
{HG, {HF , HG}}

∂F

∂q
− {HF , {HF , HG}}

∂G

∂q

) ∂
∂p
,

with two constraints HF (z) = {HF , HG}(z) = 0.

2.2.3. Classification of singular extremals and time optimality properties. In this
section we recall results of [12] concerning singular extremals. We consider the
Cω-single input control system relaxing the control bound |u| ≤ 1

q̇ = F (q) + uG(q), u ∈ R.

Let γ(t) = (q(t), p(t)), t ∈ [0, T ] be a reference singular extremal of minimal order
and we assume that t 7→ q(t) is one-to-one. Assuming F,G not collinear along q(·)
one can assume that q(·) is a singular extremal associated to us ≡ 0. The first
order Pontryagin cone K(t) is the subspace of codimension ≥ 1 generated by the

vectors adk F ·G(q(t)), k ≥ 0. We introduce the following generic assumptions

(H1) ∀t ∈ [0, T ], ad2 F ·G(q(t)) /∈ K(t)

(H2) ∀t, K(t) is exactly of codimension one and generated by the vectors {adk F ·
G(q(t)); k = 0, . . . n− 2}.

(H3) If n ≥ 3, ∀t ∈ [0, T ], F (q(t)) ∈ span{adk F ·G(q(t)); k = 0, . . . , n− 3}.
Under these assumptions, the problem is normal that is the adjoint vector p(·)
associated to q(·) is unique up to a factor and ∀t ∈ [0, T ], p(t) is orthogonal to K(t).
Orienting p(·) using the convention of the Maximum Principle: 〈p(t), F (q(t))〉 ≥ 0,
the singular trajectory is called

• Hyperbolic if 〈p(t), ad2(G · F (q(t))〉 > 0.
• Elliptic if 〈p(t), ad2(G · F (q(t))〉 < 0.
• Exceptional if 〈p(t), F (q(t))〉 = 0.

Note that the condition 〈p(t), ad2(G · F (q(t))〉 ≥ 0 amounts to the generalized
genralized Legendre-Clebsch condition

∂

∂u

d2

dt2
∂H

∂u
(γ(t)) ≥ 0

and according to the higher-order maximum principle [20], this condition is a nec-
essary (small) time minimization condition. The key result is the following.

Theorem 2.8. Under assumptions (H1), (H2) and (H3) an exceptional or hyper-
bolic (respectively elliptic) is time minimizing (respectively time maximizing) on
[0, T ] with respect to all trajectories contained in a C0-neighbourhood of q(·) if
T < t1c where t1c > 0 is called the first conjugate time along q(·).
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Algorithms to compute the fist conjugate times are described in [4] and are
implemented in the HamPath code.

This gives a complete characterization of the time minimality status of the sin-
gular extremals under (generic) assumptions. The control bound |u| ≤ 1 has been
relaxed. In this classification, the control bound |us| ≤ 1, that is the singular arc is
admissible to complete the analysis. The case |us| = 1 corresponds to saturation.
If |us| > 1, the singular control is not admissible and with some abuse, we shall
use the terminology parabolic arc for the corresponding trajectory. See [21] for this
terminology.

3. Time minimal saturation of a single spin

We refer to [34, 13] for the standard concepts of regular synthesis used in our
analysis. We have two cases:

• case 1: fix the initial point to be the North Pole N = (0, 1);
• case 2: fix the final point to be the center O = (0, 0).

We shall only analyze the first case. We complete results from [11] and give new
insights.

3.1. Lie brackets computations. The system (2.2) is written as:

dq

dt
= F (q) + uG(q), |u| ≤ 1,

with

F (q) = −Γ y
∂

∂y
+ γ (1− z) ∂

∂z
, G(q) = −z ∂

∂y
+ y

∂

∂z
,

and we can write

F (q) = Aq + a, A =

(
−Γ 0
0 −γ

)
, a =

(
0
γ

)
, G(q) = Bq, B =

(
0 −1
1 0

)
.

The system can be lifted on the semi-direct product GL(2,R) ×s R2 acting on
the q-space by the action (A, a) · q = Aq + a, and where the Lie bracket rule is:
[(A, a), (B, b)] = ([A,B], Ab− Ba), with [A,B] = AB − BA the commutator. One
writes

A = µ I2 +

(
λ 0
0 −λ

)
,

with µ = −Γ+γ
2 , which is zero if and only if γ = −Γ and λ = δ

2 , where δ = γ − Γ.
The case δ = 0 is the case of water species. Otherwise, we have:

Lemma 3.1. If δ 6= 0, the Lie algebra generated by (A, a), (B, 0) is gl(2,R)⊕R2.

This provides a rough classification of the problems between the simple water
case and the general case.

Moreover, all the Lie brackets can be easily computed. They are listed next, up
to length 4.
Length 1.

F (q) = −Γ y
∂

∂y
+ γ (1− z) ∂

∂z
, G(q) = −z ∂

∂y
+ y

∂

∂z
,
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Length 2.

[F,G](q) = (δ z − γ)
∂

∂y
+ δ y

∂

∂z
.

Length 3.

[F, [F,G]](q) =
(
γ (γ − 2Γ)− δ2 z

) ∂
∂y

+ δ2 y
∂

∂z
,

[G, [F,G]](q) = 2 δ y
∂

∂y
+ (γ − 2 δ z)

∂

∂z
.

Length 4.

[F, [F, [F,G]]](q) = (γ Γ (γ − 2Γ)− γ δ2 + δ3 z)
∂

∂y
+ δ3y

∂

∂z

= γ Γ (γ − 2Γ)
∂

∂y
+ δ2 [F,G](q),

[G, [F, [F,G]]](q) = [F, [G, [F,G]]](q) = −γ (γ − 2Γ)
∂

∂z
,

[G, [G, [F,G]]](q) = (γ − 4 δ z)
∂

∂y
− 4 δ y

∂

∂z
= −3 γ

∂

∂y
− 4 [F,G](q).

3.2. Frame curves, collinearity and singular loci. The collinearity locus C is
defined as the set where F and G are linearly dependent and the singular set S is
where F and [F,G] are collinear. Computing, one has:

Lemma 3.2. The collinearity set C is given by γz(1 − z) − Γy2 = 0, thus O and
N belong to C . Under the assumption 0 < γ ≤ 2Γ, C is an ellipse contained in the
Bloch ball. Besides, for each point q of C , except O, there exists u such that q is
an equilibrium point of the dynamics F + uG.

The dynamics reads F (q) + uG(q) = Mq+ a, M = A+ uB, so for the maximal
amplitude u = +1, the corresponding equilibrium point is

O1 = −M−1a =
γ

u2 + γ Γ

(
−u
Γ

)
=

γ

1 + γ Γ

(
−1
Γ

)
∈ C

and it is contained in the sector y < 0. We define in the same way O−1 for u = −1.

Lemma 3.3. The singular trajectories are located on S which is given by y(γ −
2δz) = 0. Hence, it is the union of the z-axis of revolution y = 0 and the horizontal
line z = γ/(2δ), providing δ 6= 0. Under the assumption 0 < γ ≤ 2Γ, S intersects
the Bloch ball if and only if 3γ ≤ 2Γ. In this case, zs = γ/(2δ) ∈ [−1 , 0).

The singular control is given by solving

D′(q) + uD(q) = 0,

with D = det(G, [G, [F,G]]) and D′ = det(G, [F, [F,G]]). For y = 0, D(q) =
−z(γ − 2δz) and D′ = 0. Hence, the singular control is zero and the singular
trajectories are solution of ẏ = −Γy = 0, ż = γ(1 − z). The North Pole is an
equilibrium which is a stable node for 0 < γ ≤ 2Γ. Along the horizontal singular
line, i.e. for z = γ/2δ, one has D(q) = −2δy2, D′(q) = γy(2Γ−γ) and the singular
control denoted us is given by us(q) = γ(2Γ− γ)/(2δy). Hence, along the singular
horizontal direction, the singular flow is: ẏ = −Γy− γ2(2Γ− γ)/(4δ2y), ż = 0, and
one has us → ±∞ when y → 0∓.
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Main assumptions. Under the physical assumptions

0 < γ ≤ 2Γ,

the Bloch ball is invariant for the dynamics. Besides, under the physical assumption
and

|δ| < 2,

any positive bang arc solution of q̇ = F (q) + G(q) = Mq + a spirals around O1

and converges to it (O1 is a stable spiral), since in this case M has two complex
conjugate eigenvalues with negative real part. Likewise, negative bang arcs spirals
around O−1.

Proposition 3.4. If γ > 0 and |δ| < 2, then the solution of q̇ = F (q) + G(q),
q(0) = q0 is given by:
(3.1)

q(t) = exp((α− γ)t)

(α
β sin(βt) + cos(βt) − 1

β sin(βt)
1
β sin(βt) −αβ sin(βt) + cos(βt)

)
(q0 −O1) +O1,

where α = δ/2 and β =
√

1− α2. The solution is quasi-periodic of period T = 2π/β.

Proposition 3.5. Let (y(·), z(·)), with associated control u(·), be a trajectory so-
lution of (2.2). Then, (−y(·), z(·)) with control −u(·) is also solution of (2.2).

This discrete symmetry allows us to consider only trajectories in the domain
y ≤ 0 of the Bloch ball.
Notation. We denote by S1 the intersection of the positive bang arc σ+ issued
from the North Pole with the horizontal singular line z = zs = γ/2δ, and by S′1
the intersection with the vertical singular line y = 0. S1 and S′1 may not exist for
specific values of (γ,Γ). We denote by S3 the point on the horizontal singular line
such that σ+ is tangent to this line at this point, i.e. S3 is a saturation point for
the singular control us (us(S3) = 1), and by S′3 the intersection of the bang arc σ+

issued from S3 with the axis y = 0. If 0 < γ ≤ 2Γ is satisfied, then S3 is in the
domain y < 0 if δ < 0. We define in the same way S−3 for u = −1. See Fig. 1 to
visualize on an example: the singular and collinearity sets, the points S1, S′1, S3,
S′3. . .

3.3. Switching function, the concept of bridge and the θ function.

3.3.1. Switching function. Let z(t), t ∈ [0 , T ], be an extremal curve. The switching
function is defined as Φ(t) = p(t) ·G(q(t)). A time t is called an ordinary switching

time if Φ(t) = 0 and Φ̇(t) 6= 0, i.e. p(t) ·G(q(t)) = 0 and p(t) · [F,G](q(t)) 6= 0. In
the 2D-case, outside the collinearity set, one can write:

[F,G](q) = α(q)F (q) + β(q)G(q),

with

α(q) =
det(G(q), [F,G](q))

det(G(q), F (q))
.

At an ordinary switching time t, one has:

sign(Φ̇(t)) = sign(α(q(t))),

with the convention of the maximum principle, i.e. HF ≥ 0. If α(q(t)) > 0, then
we switch from an arc σ− to an arc σ+ and the converse if α(q(t)) < 0. Fig. 2 gives
the sign of α inside the Bloch ball for fixed parameters γ and Γ.
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Figure 2. Sign of α(q) in the domain y ≤ 0. The sign in the
domain y ≥ 0 is given by symmetry. In this example, (γ,Γ) =
(0.12, 0.5).

3.3.2. The concept of Bridge. An arc σ+ or σ− corresponding to u = +1 or u = −1,
is called a bridge on [0 , t] if the extremities correspond to non ordinary switching

points, i.e. Φ(0) = Φ̇(0) = Φ(t) = Φ̇(t) = 0, see Fig. 3.

Remark 3.6. This concept is important and leads to a generalization in higher
dimension, which plays an important role in the time minimal saturation of a pair
of spins, but also in the contrast problem.
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left sub-graph: (γ,Γ) = (0.1, 0.5) and on the right: (γ,Γ) =
(0.163, 0.5).

If a bridge σ+, in the domain y ≤ 0, connecting the horizontal and vertical
singular lines exists, then we denote by S2 the extremity on z = γ/2δ, and S′2 the
other extremity on y = 0. We observe two cases when S2 exists which are crucial
for the analysis of the time minimal saturation problem of a single spin, see Fig. 4.

3.3.3. Analysis of two consecutive switching times. In the 2D-case, in order to an-
alyze switchings, one proceeds as follows. Assume 0 and t be two consecutive
switching times on an arc σ+ or σ−. Let z(·) = (q(·), p(·)) denote the associated
extremal. We have:

p(0) ·G(q(0)) = p(t) ·G(q(t)) = 0.

We denote by v(·) the solution on [0 , t] of the variational equation

v̇(t) =

(
∂F

∂q
(q(t)) + u

∂G

∂q
(q(t))

)
v(t), v(t) = G(q(t)), u = ±1.
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This equation is integrated backwards from time t to 0. By construction, p(·) · v(·)
is constant and equal to zero. At time 0, one has p(0) · v(0) = p(0) · G(q(0)) = 0.
Hence, p(0) is orthogonal to v(0) and to G(q(0)). Therefore, v(0) and G(q(0))
are collinear (p(·) does not vanish, according to proposition 2.1). We introduce
naturally the θ(t) function which gives the angle betweenG(q(0)) and v(0) measured
counterclockwise. One deduces that switchings occur at times 0 and t if

θ(t) = 0 mod π

and it can be tested using det(G(q(0)), v(0)) = 0. This test may be used by con-
traposition in order to eliminate the possibility that bang-bang trajectories with at
least two switching times (or more) are optimal. We have by definition

v(0) = e−t ad(F+uG)(G(q(t)), u = ±1,

and in the analytic case, the ad-formula gives:

v(0) =
∑
n≥0

(t)n

n!
adn(F + uG) ·G(q(t)).

The computation can be made explicit on a Lie group since determining exp(t ad(F+
uG)) amounts to compute a Jordan form of the linear operator ad(F +uG) defined
by the Lie brackets.

3.4. Optimality status. A first step in the optimality analysis is to discrimi-
nate between small time minimizing or maximizing singular trajectories using the
high-order maximum principle and Theorem 2.8. In dimension 2, we introduce
D′′ = det(G,F ) and D′′ = 0 is the collinearity set C . Singular lines are fast
if DD′′ > 0 and slow if DD′′ < 0. Using these conditions, if 0 < γ and
δ < 0, then the horizontal singular line z = zs is fast if y 6= 0. For the in-
teresting case when the horizontal singular line cuts the Bloch ball, i.e. when
0 < 3γ ≤ 2Γ, the singular horizontal line is fast. Moreover, it is parabolic on
(S3 , S−3) = {(1− λ)S3 + λS−3 | λ ∈ (0 , 1)} when y 6= 0 and hyperbolic otherwise
(except of course at S3 and S−3). On the other hand, assuming 0 < γ ≤ 2Γ and
considering only the interesting part inside the Bloch ball, then we have the fol-
lowing: if δ < 0, then the vertical line is hyperbolic for zs < z < 1 and elliptic for
−1 ≤ z < zs. If δ > 0, then it is hyperbolic for −1 ≤ z < 1.

Theorem 2.8 combined with the generalized Legendre-Clebsch condition gives
information about the local optimality of the singular extremals. In the 2D-case,
global optimality can be analyzed using the clock form ω = p · dq with p ·G = 0 and
p · F = 1. The clock form may be used to compare two trajectories with the same
extremities whenever they do not cross the collinearity set. In the time minimal
saturation problem of a single spin, the collinearity set plays a crucial role and we
must use the θ function defined in section 3.3 to eliminate the possibility to have
two consecutive ordinary switching times.

To complete the study, we have to analyze the behavior of optimal trajectories
in the neighborhood of some particular points, named Frame Points corresponding
to isolated singularities: intersection of the collinearity locus with singular locus or
singular loci [13]. In the time minimal saturation problem, there exists two phe-
nomena to analyze. The horizontal singular line being admissible up to a saturation
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point S3, there is a birth of a switching locus Σ3
1 connecting the horizontal and ver-

tical singular lines. This is related to the concept of bridge and this phenomenon is
referred as the SiSi singularity [11]. The time minimal synthesis, with initial point
N , is represented on Figs. 9, 10 and 11. The interaction between the collinear-
ity and singular sets near the North Pole is the second phenomenon to analyze
and is refered as the SiCo singularity[11]. Near the North Pole, only bang-bang
trajectories with at most one switching are optimal (see the top part of Fig. 9).

According to the sections 3.5, 3.6, 3.7 and 3.8 and according to the Figs. 9, 10
and 11, we have the following results.

Theorem 3.7. Let us denote by σN+ the positive bang arc starting from the North
Pole with S1, S′1 respectively the intersection points (they may not exist) with the
horizontal, vertical singular line. Let us denote by σb+ the bridge with S2 and S′2 as

extremities, by σhs , σvs respectively a horizontal, vertical singular arc. Let S3 denote
the saturation point on the horizontal singular line and S′3 the intersection of the
bang arc starting from S3 with the axis y = 0.

For parameters (Γ, γ) satisfying the physical constraints 0 < γ ≤ 2Γ, and such
that the points S′1 and S′3 are below the origin O, then the minimal time trajectory
to steer the spin from N to O is NS1S2S

′
2O, i.e. it is of the form σN+ σ

h
s σ

b
+σ

v
s (no

empty arcs), if σN+ intersects the horizontal singular line strictly before S2, that is

S1 < S2. Otherwise, the optimal trajectory is NS′1O, i.e. of the form σN+ σ
v
s .

3.5. Parameters and practical cases. The optimal syntheses depend on the
parameters (γ,Γ). We define in this section the domain of interest of the parameters
and partition it in four main sub-domains which are denoted A1, A2, B and C. This
partitioning may be visualized on Fig. 5.

We have already seen that we assume 0 < γ ≤ 2Γ and |δ| < 2, with δ = γ − Γ.
Additionally, we require that the origin O is accessible from the North Pole N , that
is we impose that S′1 is below O. The parameters such that S′1 = O are given by
the following proposition:

Proposition 3.8. For γ > 0, we have:

S′1 = O ⇐⇒ exp

(
(t0 β + π)

α− γ
β

)
− γ = 0,

with

t0 =


1
β arctan

(
−β
α

)
if δ < 0,

π
2 if δ = 0,
1
β

(
arctan

(
−β
α

)
+ π

)
if δ > 0.

Besides, to simplify the presentation, we restrict the analysis to the case where
S′3 is below O. This implies that the origin may be reached from the horizontal
singular locus going through the bridge. We have the following relation on the
parameters to impose S′3 = O:

Proposition 3.9.

S′3 = O ⇐⇒ (2Γ2 − γΓ + 1) exp ((α− γ)t0)− 2|δ| = 0.

1We denote by Σ the switching locus with strata Σ1, Σ2. . .
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Figure 5. The domain of interest of the parameters in white with
the sub-domains A1, A2, B and C.

One can notice according to Fig. 5 that if 0 < γ ≤ 2Γ is satisfied and if the points
S′1 and S′3 are below the origin O, then |δ| < 2 holds. We restrict the analysis of
the optimal syntheses to these values of parameters. Let us explain now how we
partition this domain. We denote by A1 the sub-domain such that 2Γ/3 ≤ γ ≤ 2Γ
and S′1 is below O. In this case, S′3 is necessarily below O, the horizontal singular
line (at z = zs = γ/2δ) does not cut the interior of the Bloch ball and the optimal
synthesis is simple, see section 3.8. Now, when the horizontal singular line cuts
the interior of the Bloch ball, that is for 0 < γ < 2Γ/3, this part of the singular
locus does not play any role if the bang arc starting from the North Pole does not
intersect it, that is if S1 does not exist. The limit case is when S1 = S3, where
S3 is the saturation point on the horizontal singular line. We denote by A2 this
sub-domain of parameters and we have the same optimal syntheses in A1 and A2,
see again section 3.8.

Proposition 3.10.

S1 = S3 ⇐⇒ (2Γ2 − γΓ + 1)
γ

2δ
+ exp

(
(α− γ)

π

β

)
= 0.

The remaining part, when S1 exists, may be split in two. Either, S1 is before S2

(S2 is one of the extremities of the bridge) or after. We denote by B the sub-domain
where S2 < S1 (i.e. S2 strictly before S1) and C where S1 ≤ S2. One can visualize
the sub-domains A1, A2, B and C on the Fig. 5.

Remark 3.11. Each specie to study is characterized by its relaxation times T1 and
T2, see Table 1. However, the main parameter is the ratio T2/T1. According to
Fig. 6, one can see that for any couple (T1, T2) such that 0 < T2 < 2T1/3, then there
exists ωmax > 0 such that the associated parameters (γ,Γ), see eq. (2.1), belongs to
the sub-domain C. Hence, for any couple (T1, T2) satisfying the physical constraint
0 < T2 ≤ 2T1, there exists ωmax > 0 such that the associated parameters (γ,Γ)
belongs either to A1 or C.
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Figure 7. The associated (γ,Γ) parameters of cases from Table 1
with ωmax = 2π × 32.3 Hz. Except the water case which is in the
sub-domain A1, all the others cases belong to the sub-domain C.

In Fig. 7, we show for the practical cases from Table 1, the associated (γ,Γ)
parameters with ωmax = 2π × 32.3 Hz. Note that in the experiments, ωmax may
be chosen up to 15 000 Hz but we consider here the same value as in [11]. The
water case belongs to the domain A1 while all the others cases are contained in
C. In Fig. 8 is represented the slope T2/T1 = γ/Γ with the particular case when
ωmax = 2π×32.3 Hz. One can notice that the fat case is the only one which crosses
the sub-domains A2, B and C but for the value ωmax = 2π× 32.3 Hz, it belongs to
C.

3.6. The optimal synthesis in the sub-domain C. For the optimal synthesis in
the sub-domain C, we have the following: the parameters satisfy 0 < 3γ < 2Γ, the
point S′3 is below the origin O and there exist S1 and S2 such that S1 ≤ S2 < S3, i.e.
we are in the situation of the left sub-graph of Fig. 4. In this case, the horizontal
singular line cuts the Bloch ball in the domain −1 < z < 0 and the global synthesis
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Figure 8. The slopes T2/T1 = γ/Γ for the species from Table 1
with the particular case when ωmax = 2π×32.3 Hz. This particular
case is represented by a bullet while the slope is represented by a
line. One can notice that the fat case is the only one which can
belong to the domains A2, B and C. The water case belongs only
to A1 while the others belong only to C.

is similar as the one presented in [11]. It is obtained gluing together the SiSi and
SiCo cases and it is represented on the Fig. 9.

Remark 3.12. In [11], to obtain this optimal synthesis, it is assumed that ωmax is
large enough. Remark 3.11 explains why this assumption is correct. However, this
assumption is replaced here by geometric relations on the points S1, S2 and S′3.

The switching locus is formed by the positive bang arc starting from the North
Pole (denoted σN+ ) and reaching the horizontal singular arc at S1 (it is denoted Σ1

in the figure), by the horizontal singular segment Σ2 between the points S1 and
S3, the switching locus Σ3 due to the saturation phenomenon and by the part of
the vertical singular direction between S′2 and O (the Σ4 segment), S′2 being the
extremity of the bridge on y = 0. The bang arc with u = −1 starting from S1

splits the domain in two sub-domains, one with a bang-bang policy and the other
containing a non trivial singular arc.

We have, as a corollary, that in this case, the optimal strategy to steer the system
from the North Pole to the origin in minimum time is of the form σN+ σ

h
s σ

b
+σ

v
s , where

σhs and σvs denote respectively horizontal and vertical singular arcs, and where σb+
is the bridge.

Remark 3.13. Note that the switching locus has a complex structure, but due to
the symmetry, all the cut points, i.e. the first points where the extremal trajecto-
ries cease to be optimal, are on the vertical z-axis where two symmetric solutions
starting respectively on the left and right part of the Bloch ball intersect at the
same time.

3.7. The optimal synthesis in the sub-domains B. For the optimal synthesis
in the sub-domainB, we have the following: the parameters satisfy 0 < 3γ < 2Γ, the
point S′3 is below the origin O and there exist S1 and S2 such that S2 < S1 ≤ S3, i.e.
we are in the situation of the right sub-graph of Fig. 4. In this case, the horizontal
singular line cuts the Bloch ball in the domain −1 < z < 0 and still plays a role.
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Figure 9. Schematic time minimal synthesis to steer a single
spin system from the North Pole N to any point of the Bloch ball
in the reachable set, for parameters (Γ, γ) ∈ C. An arbitrary zoom
has been used to construct the figure. The set of Σi forms the
switching surface Σ dividing the +1 and −1 areas respectively in
red and blue. The minimal time trajectory to steer the spin from N
to O is NS1S2S

′
2O, i.e. it is of the form σN+ σ

h
s σ

b
+σ

v
s with horizontal

σhs and vertical σvs singular arcs. The spin leaves the horizontal
singular arc before the point S3 (where the control saturates the
constraint) producing a bridge σb+ to reach the vertical singular
line.

The switching locus is formed by the positive bang arc starting from the North
Pole (denoted σN+ ) and reaching the horizontal singular arc at S1 (denoted Σ1), by
the horizontal singular segment Σ2 between the points S1 and S3, by the switching
locus Σ3 due to the saturation phenomenon from S3 to the intersection with σN+
(denoted S′′1 ), by the part of σN+ between S′′1 and S′1 (denoted Σ5) and by the part
of the vertical singular direction between S′1 and O (the Σ4 segment), S′1 being the
extremity of σN+ on y = 0.

We have, as a corollary, that in this case, the optimal strategy to steer the system
from the North Pole to the origin in minimum time is of the form σN+ σ

v
s .

Remark 3.14. Note that the switching locus is located on the vertical z-axis due to
the symmetry.

3.8. The optimal synthesis in the sub-domains A1 and A2. For the optimal
synthesis in the sub-domains A1 and A2, we have the following: the parameters
satisfy 0 < γ ≤ 2Γ, the point S′1 is below the origin O and σN+ does not intersect
the horizontal singular line z = zs = γ/2δ, that is S1 does not exist. In this case,
the horizontal singular line does not play any role.
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Figure 10. Schematic time minimal synthesis to steer a single
spin system from the North Pole N to any point of the Bloch ball
in the reachable set, for parameters (Γ, γ) ∈ B. An arbitrary zoom
has been used to construct the figure. The set of Σi forms the
switching surface Σ dividing the +1 and −1 areas respectively in
red and blue. The minimal time trajectory to steer the spin from
N to O is NS′1O, i.e. it is of the form σN+ σ

v
s .

The switching locus is formed by the positive bang arc starting from the North
Pole (denoted σN+ ) and reaching the vertical singular arc at S′1 (denoted Σ1) and
by the part of the vertical singular direction between S′1 and O (the Σ4 segment).

We have, as a corollary, that in this case, the optimal strategy to steer the system
from the North Pole to the origin in minimum time is of the form σN+ σ

v
s as in the

sub-domain B.

Remark 3.15. Note that the switching locus is located on the vertical z-axis due to
the symmetry.

3.9. Geometric comments and construction of a normal form.

Lie brackets computations. At the intersection q0sof the horizontal and vertical
lines the Lie algebraic structure up to order four is described by:
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Figure 11. Schematic time minimal synthesis to steer a single
spin system from the North Pole N to any point of the Bloch ball in
the reachable set, for parameters (Γ, γ) ∈ A2. For (Γ, γ) ∈ A1, the
synthesis is the same but there is no horizontal singular line inside
the Bloch ball. An arbitrary zoom has been used to construct the
figure. The minimal time trajectory to steer the spin from N to O
is NS′1O, i.e. it is of the form σN+ σ

v
s .

F (q0s) = γ (1− γ/(2 δ)) ∂
∂z
, G(q0s) = −γ/(2 δ) ∂

∂y
,

[F,G](q0s) = −γ/2 ∂

∂y
,

[F, [F,G]](q0s) = (γ (γ − 2Γ)− δ γ/2)
∂

∂y
,

[G, [F,G]](q0s) = 0,

[F, [F, [F,G]]](q0s) = γ Γ (γ − 2Γ− δ2 γ/2)
∂

∂y
,

[G, [F, [F,G]]](q0s) = −γ (γ − 2Γ)
∂

∂z
,

[G, [G, [F,G]]](q0s) = −γ ∂
∂y
.

This led to the algebraic characterization of some specific bridges, related to this
case.

Normal form. A normal form to make an explicit evaluation of the synthesis in
the neighbourhood of zero of size ε is obtained by choosing parameters in such a
way that the points S2 and S3 are contained in this neighbourhood.



20 B. BONNARD, O. COTS, J. ROUOT, AND T. VERRON

Limit syntheses. Since the singular control us is L1 when q → q0s stay on the
horizontal singular line, one has:

Proposition 3.16. Relaxing |u| ≤ 1, we have two limit time minimal solutions to
steer N to O

• 2Γ > 3γ > 0 : Rσhs σ
v
s ,

• 2Γ ≤ 3γ : Rσvs ,

where R is the rotation with respect to the center O to reach either the horizontal
singular line or the vertical singular line.

4. Time minimal saturation of a pair of spin-1/2 particles

4.1. The model. Let us consider a couple of spins with the same characteristics,
i.e. the same relaxation times T1 and T2, but for which for each, the control field
has different intensities, because of inhomogeneities. The system we consider is the
following:

(4.1)
q̇1(t) = F (q1(t)) + u(t)G(q1(t)),

q̇2(t) = F (q2(t)) + u(t) (1− ε)G(q2(t)),

where qi = (yi, zi), i = 1, 2, denote the coordinates of each system and where the
vector fields F and G are given by eq. (2.2), see sections 2.1 and 3.1. The term
(1 − ε), ε > 0 small, is the rescaling factor of the control maximal amplitude. We
define the time minimal saturation problem of a pair of spin-1/2 particles as the
following affine control problem with Mayer cost:

(PBS)


J(u(·), tf ) = tf −→ min

q̇(t) = F (q(t)) + u(t)G(q(t)), |u(t)| ≤ 1, t ∈ [0 , tf ], q(0) = q0,

q(tf ) = qf ,

where q = (q1, q2) = (y1, z1, y2, z2), q0 = (0, 1, 0, 1), qf = (0, 0, 0, 0), and where we
use the notation

F (q) = F (q1)
∂

∂q1
+ F (q2)

∂

∂q2
,

G(q) = G(q1)
∂

∂q1
+ (1− ε)G(q2)

∂

∂q2
.

We have the following Lie brackets up to order 3:

[F,G](q) = [F,G](q1)
∂

∂q1
+ (1− ε) [F,G](q2)

∂

∂q2
,

[F, [F,G]](q) = [F, [F,G]](q1)
∂

∂q1
+ (1− ε) [F, [F,G]](q2)

∂

∂q2
,

[G, [F,G]](q) = [G, [F,G]](q1)
∂

∂q1
+ (1− ε)2 [G, [F,G]](q2)

∂

∂q2
.
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4.2. Some prior theoretical results. We present some theoretical results in re-
lation with numerical homotopies. They are based on Lie brackets computations.

Lemma 4.1. span{adk F ·G; k ≥ 0} = span{adk F ·G; k = 0, 1, 2, 3}.

Proposition 4.2. For all q in the Bloch ball, for all pair of parameters (Γ, γ), we
have det(G(q), [F,G](q), [F, [F,G]](q), [F, [F, [F,G]]](q)) = 0 and every solution of
F (q) is a (smooth) singular trajectory.

Lemma 4.3. In the water case γ = Γ, ad2 F ·G is constant and collinear to [F,G].

Proposition 4.4. In the water case γ = Γ, the only singular trajectories are the
(smooth) solutions of F (q).

Next, we present some accessibility criteria.

Lemma 4.5. A necessary condition to steer the North pole (0, 1, 0, 1) to (0, 0, 0, 0)
is that for the second spin the arc σ+ starting from (0, 1) reaches the vertical axis
y2 = 0 at a point (0, z), z ≤ 0.

Definition 4.6. The center O is called η-reachable if there exists O′ of the collinear-
ity locus such that |O − O′| ≤ η and O′ is a point of the collinear locus such
(F + u0G)(O′) = O and O′ is globally stable.

4.3. First numerical results and validation with LMI methods.

4.3.1. Direct approach (Bocop). The Bocop software [3] implements a so-called
direct transcription approach, where the continuous optimal control problem (OCP)
is transformed into a nonlinear programming (NLP). The reformulation is done by
a discretization of the time interval, with an approximation of the dynamics of the
system by a generalized Runge-Kutta scheme. This is part of direct local collocation
methods. We refer the reader to for instance [2], [18] and [30] for more details on
direct transcription methods and NLP algorithms.

We present local solutions obtained by the Bocop software for the bi-saturation
problem (PBS) in the Desoxygenated blood case (denoted C1), the Oxygenated
blood case (C2) and the Cerebrospinal fluid case (C3) with ωmax = 2π × 32.3 and
the Water case (C4) with a larger value of ωmax. Let us mention that for C4, the
value of ωmax is larger than 2π× 32.3 just to obtain a control law with longer bang
arcs, to visualize better the solution. The parameter ε is fixed to 0.1 and let us
recall that the associated relaxation times are given in Table 1. The time evolution
of the state variables q = (q1, q2) and of the control variable u are represented in
Figs. 12–15, the optimal time is given in Table 2 and is compared with the optimal
time for the saturation of the single spin. Note that for each case, there is one more
Bang-Singular sequence (the first one) in the bi-saturation problem than in the
mono-saturation problem. Besides, the remaining part looks like the strategy to
steer one single spin to the center of the Bloch ball except that for C1, C2 and C3,
the penultimate singular part of the trajectory do not follow exactly the horizontal
lines z1 = z2 = zs = γ/2δ, δ = γ − Γ. Finally, note that both spins reach the
vertical line y1 = y2 = 0 with z1 = z2 before the final singular arc with u = 0 to
reach the center of the Bloch ball at the same time. In other words, the spins are
synchronised at this time.
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Case Γ γ tf (2 spins) tf (1 spin)

C1 9.855×10−2 3.65 ×10−3 44.769 42.685
C2 2.464×10−2 3.65 ×10−3 113.86 110.44
C3 1.642×10−2 2.464×10−3 168.32 164.46
C4 9.855×10−2 9.855×10−2 15.0237 8.7445

Table 2. Cases treated numerically corresponding respectively to
the Desoxygenated case (C1), the Oxygenated case (C2), the Cere-
brospinal fluid case (C3) and the Water case (C4). The 5th (resp.
4th) column gives the final time found by Bocop for the satura-
tion of one spin (resp. two spins with B1-inhomogeneity). The
parameter ε is fixed to 0.1.
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Figure 12. Desoxygenated blood case (C1) with RF-
inhomogeneity (ε = 0.1). Trajectories for spin 1 and 2 in
the (y,z)-plane are portrayed in the first two subgraphs. The
corresponding control is drawn in the right subgraph. The
horizontal lines z1 = z2 = zs = γ/2δ, δ = γ − Γ, is represented by
dashed lines. Note that the last bang arc is not well captured by
the direct solver because it is too short.
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Figure 13. Oxygenated blood case (C2) with RF-inhomogeneity
(ε = 0.1). Trajectories for spin 1 and 2 in the (y,z)-plane are
portrayed in the first two subgraphs. The corresponding control is
drawn in the right subgraph. The horizontal lines z1 = z2 = zs =
γ/2δ, δ = γ−Γ, is represented by dashed lines. Note that the last
bang arc is not well captured by the direct solver because it is too
short.

4.3.2. LMI method (GloptiPoly). A crucial step is to check whether the local
optimal times presented in Table 2 and obtained with Bocop for the saturation
problem are globally optimal using moment/LMI techniques. More precisely, these
techniques provide for the saturation problem, lower bounds on the global optimal
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Figure 14. Cerebrospinal fluid case (C3) with RF-inhomogeneity
(ε = 0.1). Trajectories for spin 1 and 2 in the (y,z)-plane are
portrayed in the first two subgraphs. The corresponding control is
drawn in the right subgraph. The horizontal lines z1 = z2 = zs =
γ/2δ, δ = γ−Γ, is represented by dashed lines. Note that the last
bang arc is not well captured by the direct solver because it is too
short.
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Figure 15. Water case (C4) with RF-inhomogeneity (ε = 0.1).
Trajectories for spin 1 and 2 in the (y,z)-plane are portrayed in the
first two subgraphs.

time which can be used as a validation of the global optimality if the gap between
the lower bound obtained from moment/LMI techniques and the time obtained
by the direct method is small. This combination of techniques has already been
successful in the contrast problem [8] by nuclear magnetic resonance in medical
imaging.

The moment approach is a global optimization method which relaxes a non linear
optimal control problem using measures as a linear programming (LP) problem. In
the case where the data are polynomials, we can handle these measures by their
moment sequences. Using powerful certificate coming from algebraic geometry, e.g.
Putinar’s Positivstellensatz [32], this leads to an infinite dimensional LMI problem
which can be truncated to a finite set of moments. The sequence of optimal values
associated to these truncated problems converges to the optimal value of problem
(PBS), that we denote by T ∗min. We present a classical formulation and an alternative
one which exploits the structure of the problem, based on [16]. Note that we present
the method on the bi-saturation problem but it is straightforward to adapt the
explanations for the mono-saturation problem.

Notations. Bn is the unit ball of dimension n,M+(Z) is the set of finite, positive
Borel measures supported on compact set Z and

∫
f(z) dµ denotes the integration

of a continuous function f ∈ C(Z) with respect to µ ∈M+(Z).

Step 1: linear program on measures.
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• 1st formulation: Moment approach using occupation measures.
Following [25], the problem (PBS) can be embed into the linear program

on measures:

TLP = inf
µ,µf

∫
dµf

s.t.

∫ (∂v
∂t

+
∂v

∂q
(F + uG)

)
dµ

=

∫
v(·, qf ) dµf − v(q0), ∀v ∈ R[t, q],

µ ∈M+([0, T ]×Q× U), µf ∈M+(Qf ),

(4.2)

and where T is fixed, Qf = [0, T ] × {(0, 0, 0, 0)}, Q = B2 × B2 are ad-
missible state sets and U = B1 is the admissible control set. Given any
admissible pair (q(·), u(·)) for (PBS), it corresponds a measure µ admissible
for (4.2) achieving the same cost, hence T ∗min ≥ TLP . Moreover, according
to Theorem 3.6 (ii) of [25], there is no optimality gap and

T ∗min = TLP .

Remark 4.7. Since the dynamic is autonomous, the time variable can be
removed and the LP problem becomes

TLP = inf
µ

∫
dµ

s.t.

∫
∂v

∂q
(F + uG) dµ = v(qf )− v(q0), ∀v ∈ R[q],

µ ∈M+(Q× U).

(4.3)

• 2nd formulation: Moment approach using modal occupation mea-
sures.

In the first formulation (4.2) (respectively (4.3)), measures are supported
on the set [0, T ]×Q× U (respectively Q× U) of dimension 1 + 4 + 1 = 6
(respectively 5) and we expect them to be located on the optimal trajec-
tory (q∗(·), u∗(·)). An alternative formulation [16] is to model controls by
measures such that the measures are supported on Q only. Indeed, note
that the dynamic in (PBS) is affine in the control u which takes its values
inside the polytope conv{−1,+1}. This optimal control problem can be
written as a switching system with two modes, the first mode correspond-
ing to u = +1 and the second mode corresponding to u = −1. This leads
to consider

TLP ′ = inf
µ1,µ2,µf

∫
dµf

s.t. ∀v ∈ R[t, q],

∫ (
∂v

∂t
+
∂v

∂q
(F +G)

)
dµ1

+

∫ (
∂v

∂t
+
∂v

∂q
(F −G)

)
dµ2 =

∫
v(·, qf ) dµf − v(0, q0),

µ1, µ2 ∈M+([0, T ]×Q), µf ∈M+(Qf )

(4.4)
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where T is fixed, Qf = [0, T ]×{(0, 0, 0, 0)} and Q = B2×B2 are admissible
state sets.

Step 2: Moment SDP. An important feature of the problems (4.2)-(4.4) is their
algebraic structure: the dynamic is polynomial and the sets Q and U are compact
basic semi-algebraic sets. In these settings, it is possible to handle the measures by
their moments which leads to a semi-definite program on countably many moments.
Let us introduce for a multi-index α = (α1, . . . , αp) ∈ Np and y = (y1, . . . , yp) ∈ Rp,
the notation |α|1 =

∑p
i=1 αi and yα which stands for the monomial yα1

1 . . . y
αp
p .

Then, we denote by Npd the set {α ∈ Np | |α|1 ≤ d}.

Definition 4.8. The moment of order α ∈ Np of a measure µ supported on Z ⊂ Rp
is the real yα =

∫
zα dµ. Besides, µ ∈ M(z) is said to be a representing measure

for a sequence (yα)α if yα =
∫
zα dµ for all α ∈ Np.

Definition 4.9. Given an arbitrary sequence of reals (yα)α, we define the Riesz
linear functional ly : R[z]→ R by ly(zα) = yα for all α ∈ Np.

Definition 4.10. The moment matrix Md(y) of order d is such that ly(p(z)2) =
p′Md(y)p for all polynomials p(z) of degree d whose coefficients are denoted by the
vector p. In particular, the (i, j)th entry is Md(y)[i, j] = ly(zi+j) = yi+j , ∀i, j ∈ Npd.

Similarly, the localizing matrix of order d associated with a sequence (yα) and a
polynomial g(z) is the matrix Md(g y) such that ly(g(z) p(z)2) = p′Md(g y)p for all
polynomial p(z) of degree d.

Proposition 4.11. Let Z be a compact basic semi-algebraic set defined by Z =
{z ∈ Rp | gk(z) ≥ 0, k = 1, . . . , nZ}. Then, a necessary condition for a sequence
(yα)α to have a representing measure µ ∈M+(z) is

Md(y) � 0, Md(gk y) � 0, ∀d ∈ N, ∀k = 1, . . . , nZ .

Finally, we introduce

[0, T ]×Q× U ={(t, q, u) | q = (q11, q12, q21, q22), g1(t, q, u) := t(T − t) ≥ 0,

g2(t, q, u) := 1− q2
11 − q2

12 ≥ 0, g3(t, q, u) := 1− q2
21 − q2

22 ≥ 0,

g4(t, q, u) := 1− u2 ≥ 0},
and

Qf = {(t, q) ∈ R5 | gf0 (t) := t(T − t) ≥ 0, gf1 (q) := q11 = 0,

gf2 (q) := q12 = 0, gf3 (q) := q21 = 0, gf4 (q) := q22 = 0}.
We denote by lyµ , lyµf the Riesz functionals associated respectively with the se-
quences yµ and yµf . Then, the moment SDP problem associated with (4.2) is

TSDP = inf
yµ, yµf

lyµf (1)

lyµ

(
∂v

∂t
+
∂v

∂q
(F + uG)

)
= lyµf (v(·, qf ))− v(0, q0), ∀v ∈ R[t, q],

Md(y
µ) � 0, Md(gi y

µ) � 0, i = 1 . . . 4, ∀d ∈ N,

Md(y
µf ) � 0, Md(g

f
i y

µf ) � 0, i = 0 . . . 4, ∀d ∈ N.

(4.5)

At the end, according to Proposition 4.11, we have TLP ≥ TSDP and this is in fact
an equality according to Theorem 3.8 from [24].
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Step 3: Hierarchy of SDP problems. Note that Md+1(y) � 0 implies Md(y) �
0. The LMI constraints and the sequence (yα) of (4.5) are truncated which lead to
r ≥ 1 to the Lasserre’s hierarchy parameterized by r ≥ 1

T rLMI = inf
(yµα)|α|≤2r, (y

µf
α )|α|≤2r

lyµf (1)

lyµ

(
∂v

∂t
+
∂v

∂q
(F + uG)

)
= lyµf (v(·, qf ))− v(0, q0), ∀v ∈ R[t, q],

Mr(y
µ) � 0, Mr−si(gi y

µ) � 0, i = 1 . . . 4

Mr(y
µf ) � 0, Mr(g

f
i y

µf ) � 0, i = 0 . . . 4.

(4.6)

where si = deg(gi)/2 if deg(gi) is even and si = (deg(gi) + 1)/2 otherwise. The
main result is then the following.

Proposition 4.12 (Theorem 5.6, [24]). We have

T ∗min = TLP = TSDP ≥ . . . ≥ T r+1
LMI ≥ T

r
LMI ≥ . . . ≥ T 1

LMI .

Moreover the sequence of lower bounds (T rLMI)r converges to T ∗min as r →∞.

Summary of the LMI method. The moment/LMI method approach for opti-
mization consist in reformulating an optimization problem as a linear program on
measures. When the data is polynomial, a hierarchy of lmi relaxations can be con-
structed, whose costs converge to that of the original problem. The strong feature
of the method is that those LMI generate lower bounds on the true cost, and can
therefore be used as certificates of global optimality. On the other hand, the weak
points of the method are its poor algorithm complexity for unstructured problem,
as well as for the special case of optimal control, the unavailability of a generic
method to recover controls. Note that the passage to a given LMI relaxation start-
ing from measure problem (4.2) or (4.4) can be fully automated with high-level
commands using the GloptiPoly toolbox [19].

4.3.3. Validation of the numerical results. The problem (4.6) corresponds to the
multisaturation problem of two spins associated with the LP problem (4.2). Like-
wise, we can construct from the LP problem (4.4) a hierarchy of LMI relaxations
parameterized by r in the single spin case and the two spins case to compare the
two formulations. We use the Mosek toolbox [29] to solve the SDP problems. Let
tf denote the best solution found with the Bocop software, given in Table 2 for the
single spin case and the two spins case. The value of the parameters for (4.6) are:
ε = 0.1, q0 = (0, 1, 0, 1), qf = (0, 0, 0, 0) and T = tf . The lower bounds of T ∗min
are T rLMI (resp. T rLMI′) associated with the LP problem (4.2) (resp. (4.4)) and are
given in Table 3.
We denote by n = dim Q, m = dim U and nd = 2 is the number of modes
for the second formulation. At the relaxation order d, the number of moments
involved in the SDP problem associated with (4.2) and (4.4) is given by Nm =(
n+m+1+2d
n+m+1

)
+
(
n+1+2d
n+1

)
and Nm = (nd + 1)

(
n+1+2d
n+1

)
respectively. In Fig. 16 are

represented the relative error err(r) = (tf − T rLMI)/tf for the cases C1, C2, C3 and
C4, where T rLMI is the optimal value of (4.6) in the single spin case and the two
spins case. Note that in the single spin case, we know the structure and the optimal
value of the global solution and we can compute the numerical gap between the
direct approach and the moment/LMI approach.
Both formulations are computationally demanding, the relative errors on the final
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1st Formulation 2nd Formulation

r Nm (tf − T rLMI)/tf Nm (tf − T rLMI′)/tf
1 25 0.8143 30 0.818
2 105 0.5164 105 0.5958
3 294 0.2611 252 0.4355
4 660 0.1491 495 0.1842
5 1287 0.0932 858 0.1284
6 2275 0.0643 1365 0.096
7 3740 0.0517 2040 0.0797
8 5814 0.0461 2907 0.0716

Table 3. Single spin saturation for the case C2. T rLMI is the
optimal value of the hierarchy (4.6). Likewise, T rLMI′ is the optimal
value of the hierarchy of SDP problems derived from (4.4). tf =
110.44 is the best time found by the Bocop software. The second
and fourth columns are the relative errors between best solution
found by the Bocop software and the one found by moment/LMI
techniques for each relaxation order r.

times found by Bocop for the cases C2, C3, C4 are less than 5% for the single
spin saturation and less than 10% for the multisaturation. Note that these two
formulations have to be compared not only on the sharpness of the lower bounds
but also considering the number of moments involved in the hierarchy.

Figure 16. Saturation problem of one spin and two spins for the
cases C1, C2, C3 and C4. Relative error err(r) = (tf − T rLMI′)/tf
where r is the order of relaxation, T rLMI′ is the optimal value of
(4.6) using the formulation (4.4) and tf is the final time computed
with Bocop .
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4.4. Influence of the parameters on the BC-extremals. We use a combina-
tion of multiple shooting and differential path following methods to analyze the
influence of the parameters on BC-extremals from problem (PBS). We recall the
multiple shooting technique in section 4.4.1, we give some details about homotopy
and monitoring in section 4.4.2 and we present the results in section 4.4.3.

4.4.1. Multiple shooting (HamPath). Since the optimal structures are composed of
sequences of bang and singular arcs, we must use multiple shooting instead of single
shooting. We refer to [14, 28] for details about multiple shooting algorithms and
to [8] and [9] for explanations about multiple shooting in the context of medical
imaging. One particularity is that the solutions end with a singular arc and not
a bang arc, contrary to the examples given in [28]. Because of that, the shooting
equations are more intricate as we can see it hereinafter.

Let us(x, p) denote the singular control and u± = ±umax = ±1 the positive and
negative bang controls. Let us assume we have a solution with a structure of the
form BSBS, i.e. Bang-Singular-Bang-Singular. We note y = (p0, tf , t1, t2, t3, z

1, z2, z3)
the unknowns of the shooting function which is given by :

S : R32 −→ R32

y =



p0

tf
t1
t2
t3
z1

z2

z3


7−→ S(y) =



u±H1(z0) + p0

H1(z1)

H01(z1)

H1(z3)

H01(z3)

y2(tf , t3, z
3, us)

z2(tf , t3, z
3, us)

(pz1(tf , t3, z
3, us) + pz2(tf , t3, z

3, us))γ + p0

z(t1, 0, z
0, u±)− z1

z(t2, t1, z
1, us)− z2

z(t3, t2, z
2, u±)− z3


where p0 = −1 in the normal case, where z0 = (q0, p0) is the initial state-costate
vector with q0 = (0, 1, 0, 1). To get a BC-extremal we want to solve the shooting
equations

S(y) = 0.

The first equation comes from the fact that the final time is free, the four following
equations means that the associated extremal becomes singular at z1 and z3. The
last three matching equations improve numerical stability. Note that we have only
three equations (the three remaining equations) associated to the final condition:
q(tf ) = (0, 0, 0, 0). This is because we can find a redundant equation and this
is due to the fact that the trajectory ends with a singular (and not bang) arc.
Indeed, the fact that H1(z3) = H01(z3) = 0 implies that H1(z(tf , t3, z

3, us)) =
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H01(z(tf , t3, z
3, us)) = 0. But, if (py1(tf , t3, z

3, us), pz1(tf , t3, z
3, us)) 6= 0, then

H1(z(tf , t3, z
3, us)) = 0

H01(z(tf , t3, z
3, us)) = 0

y2(tf , t3, z
3, us) = 0

z2(tf , t3, z
3, us) = 0

(pz1(tf , t3, z
3, us) + pz2(tf , t3, z

3, us))γ + p0 = 0


⇒

y1(tf , t3, z
3, us) =

z1(tf , t3, z
3, us) = 0.

Hence, for any zero of the shooting function, the associated trajectory reaches the
target qf = (0, 0, 0, 0) at the final time if (py1(tf , t3, z

3, us), pz1(tf , t3, z
3, us)) 6= 0.

Let us recall that one difficulty to solve a shooting equation is to have a good
initial guess. To determine the structure and make the shooting method converge,
we use direct methods from the Bocop software. This combination of direct and
indirect methods has already been successful in the contrast problem [8] by nuclear
magnetic resonance in medical imaging.

4.4.2. Homotopy and monitoring. Once we have a solution obtained by a multiple
shooting method, we can use differential homotopy techniques [1] to study the de-
formation of the solution with respect to the relaxation parameters. The homotopy
method, from HamPath software [15], is based on Predictor-Corrector algorithm
with a high order and step-size control Runge-Kutta scheme for the prediction and
with a classical simplified Newton method for the correction. We combine the
differential path following method with monitoring at each accepted step of the
integration to detect if structural changes occur during the homotopy. We consider
three different monitoring for which we give the associated action for the saturation
problem:

• check if each arc (except the first and the last arcs) has positive length,
that is if ti ≤ ti+1. If not, the arc with negative length has to be removed.

• check if the singular control on each singular arc (except the last arc because
it is 0) is admissible. If not, one bang arc has to be added.

• check if the switching function on each bang arc remains of constant sign.
If not, one singular arc has to be added.

Let us illustrate the third monitoring on an example. We write Γ = ρ cos θ and
γ = ρ sin θ, and we consider an homotopy (called H1a) on θ with ρ = ρ̄ ≈ 0.0551,
from θ = θmax = atan(2) ≈ 1.1071 to θ = θmin = 0.02. One starts from θ = θmax

with a structure of the form BSBS (σ−σsσ+σ0). Around θ = θ1a,1 ≈ 0.5069, the
monitoring detects a change in the structure. Let us denote by θ+

1a,1 ≥ θ1a,1 ≥ θ−1a,1

the two values of θ at the two consecutive steps such that these inequalities are
satisfied. Since, for θ = θ−1a,1, the switching function crosses 0 two times on the first
bang arc, one has to stop the homotopy and add a singular arc, see figure 17.

4.4.3. Numerical results. We write Γ = ρ cos θ and γ = ρ sin θ, and we consider
only homotopies on θ with ρ = ρ̄ ≈ 0.0551. This particular value of ρ is such
that we retrieve the fat case, that is T1 = 0.2 and T2 = 0.1, with umax = 1 and
ωmax = 2π×32.3, this specific value of ωmax being excerpted from [11]. We present
some results for a range of values of θ to illustrate the role of this parameter on the
structure of some BC-extremals from problem PBS. The value of θ ranges between
θ = θmax = atan(2) ≈ 1.1071 and θ = θmin = 0.02. The maximal bound is chosen
to satisfy the physical constraint 0 < γ ≤ 2Γ while the minimal bound is chosen
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Figure 17. Fat case: ρ = ρfat, θ = θ+
1a,1 (Left) and θ = θ−1a,1

(Right). Each subgraph represents the graph of the switching
function H1 along the extremal. For θ = θ−1a,1, we observe that
H1 crosses 0 twice. A singular arc must be added to continue the
homotopy on θ. A zoom in on the graph of H1 is given and may be
located thanks to the vertical red lines. Note that we add a singu-
lar arc, since in this case the singular extremal is time-minimizing
for small time.

to include all the practical cases, see Table 1. The saturation of a pair of spins is
a much more complex problem than the mono-saturation, so we do not intend to
get any optimal synthesis but just optimal trajectories to steer both spins from the
North Pole to the center of the Bloch ball in minimum time and in a synchronized
fashion. Besides, we just analyze the influence of θ for fixed values of ρ = ρ̄ and
ε = 0.1.

The methodology is the following. For a given initial value of θ, we use direct
method to determine the structure and to initialize the multiple shooting method.
Then, we perform homotopies on θ with monitoring to stop it if necessary. If a
change in the structure is detected, then, we update the multiple shooting function
and continue the homotopy until we reach the final value of θ if possible. Note
that in the multi-saturation problem, there exist many local solutions. Thus, for a
given value of θ we must compare the cost of each solution. This leads to compute
several path of zeros and then compare them in terms of cost. We choose to
present four different paths, see Table 4 and Fig 21. Note that the paths of zeros
are computed with a very good accuracy according to the bottom-right subgraph
of Fig 21. Before we give some details about the homotopies, we present three
particular cases excerpted from these homotopies: the Water case (ωmax = 10.2684),
the Fat case (ωmax = 202.9469 ≈ 2π × 32.3) and the Cerebrospinal Fluid case
(ωmax = 61.1840). See Table 1 for the corresponding values of θ. All the others
cases have the same optimal structure than the Cerebrospinal Fluid case. One
can see from Fig 21 that for the Water case, the optimal structure is of the form
σ−σsσ+σ0 and the solution is given by the homotopie (H1a). The solution is given
on Fig. 18. For the Fat case, the structure is of the form σ−σsσ−σsσ+σ0 and it
is also given by (H1a), see Fig. 19. Finally, for the Cerebrospinal Fluid case, the
structure is of the form σ−σsσ+σsσ+σ0 and it is given by (H1b), see Fig. 20. One
can notice different interactions between bang and singular arcs depending on the
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case, and one can see that the horizontal line z = zs = γ/2δ plays a crucial role in
the optimal trajectory when it intersects the Bloch ball.
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Figure 18. Water case: ρ = ρ̄, θ = 0.7854 and ε = 0.1. Trajecto-
ries of spins 1 and 2, control and H1.
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Figure 19. Fat case: ρ = ρ̄, θ = 0.4636 and ε = 0.1. Trajectories
of spins 1 and 2, control and H1.
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Figure 20. Fluid: ρ = ρ̄, θ = 0.1489 and ε = 0.1. Trajectories of
spins 1 and 2, control and H1.

Let us give now some details about the different homotopies. The first two
paths (called H1a and H1b) are interesting since, even if they are distinct paths
(see bottom-left subgraph of Fig 21), they intersect in terms of cost for a value
θ∗ ∈ [θ1b,1 , θ1b,2], where θ1b,1 ≈ 0.2752 and θ1b,2 ≈ 0.3018. For θ ≤ θ∗, H1b
is better and for θ ≥ θ∗, H1a is better, see top-left subgraph of Fig 21. The
homotopy H1a has been already introduced in section 4.4.2. One starts from θ =
θmax with a structure of the form BSBS (σ−σsσ+σ0). Around θ = θ1a,1 ≈ 0.5069,
the monitoring detects a change in the structure: a singular arc has to be added
inside the first negative bang arc and the structure becomes σ−σsσ−σsσ+σ0. A
new change occurs around θ1a,2 ≈ 0.2722: the second singular arc vanishes and the
structure becomes σ−σsσ−σ+σ0. We stop the homotopy here since the homotopy
H1b is better for this value of θ. Le us explain the homotopy H1b: this homotopy
starts from θ = θmin with a structure of the form BSBSBS (σ−σsσ+σsσ+σ0). A
first change in the structure is detected around θ1b,1 ≈ 0.2752: the second singular
arc vanishes and the structure becomes σ−σsσ+σ0. A second change occurs around
θ1b,2 ≈ 0.3018: the control saturates at the end of the first singular arc. We denote
by σ−s this singular arc with since at the end the control takes the value −1. The
structure is now σ−σ

−
s σ+σ0 and we do not continue the homotopy since H1a is

better for θ = θ1b,2. The different structures with the names of the homotopies
and the associated figures to observe the trajectories and the control are given in
Table 4 and Figs. 22–36.

Let us give some details about the two last homotopies. The homotopy H2
starts with a local solution (not globally optimal, see top-right subgraph of Fig 21)
of the form σ+σsσ+σsσ+σ0 for θ = 0.2. This solution has the particularity that
all the bang arcs are positive bang arcs. Besides, the trajectory (see Fig 29) has
a self-intersection which prevents the BC-extremal to be globally optimal. During
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the homotopy there is only one change, the first singular arc vanishes around θ =
θ2,1 ≈ 0.3618. This homotopy may be compared with the homotopy H3. The
homotopy H3 is similar as H2 but the last bang arc is longer. During this last bang
arc, the trajectory realizes a complete turn around its center. There is also one
single change around θ = θ2,1 ≈ 0.4778, from which the first singular arc vanishes.

Name Init Transition End

H1a
θmax ≈ 1.1071 θ1a,1 ≈ 0.5069 θ1a,2 ≈ 0.2722 > θmin = 0.02
σ−σsσ+σ0 σ−σsσ−σsσ+σ0 σ−σsσ−σ+σ0

fig 22 fig 23 fig 24

H1b
θmin θ1b,1 ≈ 0.2752 θ1b,2 ≈ 0.3018 < θmax

σ−σsσ+σsσ+σ0 σ−σsσ+σ0 σ−σ
−
s σ+σ0

fig 25 figs 26 and 27 fig 28

H2
θ = 0.2 θ2,1 ≈ 0.3618 θ = atan(1.5) ≈ 0.9828
σ+σsσ+σsσ+σ0 σ+σsσ+σ0 σ+σsσ+σ0

fig 29 figs 30 and 31 fig 32

H3
θ = 0.25 θ3,1 ≈ 0.4778 θ = θmax

σ+σsσ+σsσ+σ
1
0 σ+σsσ+σ

1
0 σ+σsσ+σ

1
0

fig 33 figs 34 and 35 fig 36

Table 4. The homotopies are detailed on each line. The first col-
umn gives the name of the homotopy. The second colum “Init”
gives the initial value of θ, the associated structure with the ref-
erence to the figure which presents the trajectory with the control
and the switching function. For this initial value, the solution is
obtained from direct method and multiple shooting. The column
“Transition” gives the same details but when a first change in the
structure is detected during the homotopy thanks to the monitor-
ing. The last column “End” gives again the same details at the
end of the homotopy. For the homotopies H1a and H1b, the end
occurs when a second change in the structure is detected while for
H2 and H3, the end occurs when the final value of θ is reached.
The red and green colors may help to understand the change in
the structure, which is explained more in details in this section.
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Figure 21. The homotopies H1a, H1b, H2 and H3 are presented
respectively in blue, red, black and black. The homotopies H2
and H3 are presented only on the top-right subgraph. The plain
and dashed lines distinguish the different structures. The top-left
subgraph gives the cost (i.e. the final time tf ) with respect to θ for
the homotopies H1a and H1b. One can see (it is more visible in the
zoom) the intersection of the two paths of zeros in terms of cost.
H1b is better for small value of θ and H1a is better for greater
values. One can notice that this two paths of zeros are distinct
from the bottom-left subgraph. This subgraph gives the norm of
the initial adjoint vector with respect to the homotopic parameter.
The norm of the shooting function along the paths H1a and H1b
is given in the bottom-left subgraph. One can see the very good
accuracy. The strategies from H1a and H1b are compared with
homotopies H2 and H3 on the top-right subgraph.
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Figure 22. H1a: ρ = ρ̄, θ = θmax and ε = 0.1. Trajectories of
spins 1 and 2, control and H1.
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Figure 23. H1a: ρ = ρ̄, θ = θ−1a,1 and ε = 0.1. Trajectories of
spins 1 and 2, control and H1.
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Figure 24. H1a: ρ = ρ̄, θ = θ+
1a,2 and ε = 0.1. Trajectories of

spins 1 and 2, control and H1.
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Figure 25. H1b: ρ = ρ̄, θ = θmin and ε = 0.1. Trajectories of
spins 1 and 2, control and H1.
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Figure 26. H1b: ρ = ρ̄, θ = θ−1b,1 and ε = 0.1. Trajectories of
spins 1 and 2, control and H1.
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Figure 27. H1b: ρ = ρ̄, θ = θ+
1b,1 and ε = 0.1. Trajectories of

spins 1 and 2, control and H1.
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Figure 28. H1b: ρ = ρ̄, θ = θ+
1b,2 and ε = 0.1. Trajectories of

spins 1 and 2, control and H1.
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Figure 29. H2: ρ = ρ̄, θ = 0.2 and ε = 0.1. Trajectories of spins
1 and 2, control and H1.
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Figure 30. H2: ρ = ρ̄, θ = θ−2,1 and ε = 0.1. Trajectories of spins
1 and 2, control and H1.
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Figure 31. H2: ρ = ρ̄, θ = θ+
2,1 and ε = 0.1. Trajectories of spins

1 and 2, control and H1.
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Figure 32. H2: ρ = ρ̄, θ = atan(1.5) and ε = 0.1. Trajectories of
spins 1 and 2, control and H1.
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Figure 33. H3: ρ = ρ̄, θ = 0.25 and ε = 0.1. Trajectories of spins
1 and 2, control and H1.
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Figure 34. H3: ρ = ρ̄, θ = θ−3,1 and ε = 0.1. Trajectories of spins
1 and 2, control and H1.
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Figure 35. H3: ρ = ρ̄, θ = θ+
3,1 and ε = 0.1. Trajectories of spins

1 and 2, control and H1.
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Figure 36. H3: ρ = ρ̄, θ = atan(2) and ε = 0.1. Trajectories of
spins 1 and 2, control and H1.
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5. Algebraic computations for multisaturation with
B1-inhomogeneity

The Maple symbolic software is used to perform algebraic computations related
to singularity analysis of the extremal trajectories, in particular in relation with
the determination of bridges. The computations boiled down to compute Gröbner
basis and one needs the following concepts and techniques of this area.

5.1. Operation on polynomial ideals. Let n be a positive integer and we con-
sider polynomials in A = C[X1, . . . , Xn]. Given a system of equations F , one
consider the ideal I coding the set V (F of zeros of F .

Given an ideal J and a polynomial F , saturating I by F means computing a set
of generators of the ideal

(I : F∞) = {g ∈ A, ∃m ∈ N, gFm ∈ I}.

The radical of an ideal I is the set:
√
I = {f ∈ A, ∃m ∈ N, fm ∈ I}

and it has the same set of zeros. An operation used given a set of generators of
I, computing a set of generators of J ⊃ I such that

√
I =

√
J . This can be

done by using the square free form of the generators: give a polynomial f with
decomposition in primes pn1

1 . . . pnrr , the square free form is sqfr(f) = p1 . . . pr.

5.2. Frame curves. Frame curves associated to the saturation of a single spin lead
to the following.

• Collinearity locus: C is defined as the set where f and g are linearly depen-
dent. Outside zero it is defined by: ∃λ such that F = λG that is:

− Γy1 = λz1, γ(1− z1) = λy1,

− Γy2 = λz2 (1− ε), γ(1− z2) = λy2 (1− ε),

The projections on qi-spaces are the ovals:

Γiy
2
i = γ (1− zi)zi, 0 ≤ zi ≤ 1, i = 1, 2

intersected with one of the sets

Γ(1− ε)y1z2 = Γy2z1, (1− ε)y2(1− z1) = y1(1− z2)

• Singularity locus: S is defined as the set where G and [F,G] are linearly
independent. Outside zero it is defined by: ∃λ such that [F,G] = λG, that
is

δ z1 − γ = −λ z1, δ y1 = λ y1,

δ z2 − γ = −λ z2, δ y2 = λ y2,

Projections on each qi-spaces will form the two singular lines

zis = γ/2δ, yi = 0, i = 1, 2.

The additional relations defined the full locus.

5.3. Singularity classification: exceptional case HF = 0.
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Conventions and notations. For the computations, we use the translation

z1 ← z1 + 1, z2 ← z2 + 1, (5.1)

which places the center of the coordinates at the North pole of the Bloch ball.
In this new system of coordinates, the center of the Bloch ball has coordinates
(0,−1, 0,−1).

We have in the exceptional case the constraint

p · F = p ·G = p · [F,G] = 0,

hence p can be eliminated in the relation defining the control

p · ([[G,F ], F ] + u [[G,F ], G]) = 0

which is computed as the feedback

us(q) = −D
′(q)

D(q)

with

D = det(F,G, [G,F ], [[G,F ], G])

(5.2)

= det


−Γy −z − 1 δz − Γ 2δy
−γz y δy −2δz + Γ− δ
−Γy (1− ε)(−z − 1) (1− ε)(δz − Γ) (1− ε)2(2δy)
−γz (1− ε)y (1− ε)δy (1− ε)2(−2δz + Γ− δ)


and

D′ = det(F,G, [G,F ], [[G,F ], F ])

(5.3)

=


−Γy −z − 1 δz − Γ γ(γ − 2Γ) + δ2(z + 1)
−γz y δy δ2y
−Γy (1− ε)(−z − 1) (1− ε)(δz − Γ) (1− ε)2(γ(γ − 2Γ) + δ2(z + 1))
−γz (1− ε)y (1− ε)δy (1− ε)2δ2y


Using a time reparameterization, this leads to analyze the Cω-vector field in the
q-space

X = DF −D′G.
The following polynomials will appear frequently in the remainder of the section:

• Py1 := y1 − (1− ε)y2

• Py2 := y2 − (1− ε)y1

• Pz1 := 2(Γ− γ)z1 + 2Γ− γ
• Pz2 := 2(Γ− γ)z2 + 2Γ− γ

The root of the univariate polynomials Pz1 and Pz2 is

zS =
γ − 2Γ

2Γ− 2γ
. (5.4)

5.3.1. Transfer time not fixed (HF = 0).
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D, ∂D∂y1 ,

∂D
∂y2

, ∂D∂z1 ,
∂D
∂z2

〉
〈
D̃, ∂D̃∂y1 ,

∂D̃
∂y2

, ∂D̃∂z1 ,
∂D̃
∂z2

〉

z2 = 0

z1 = 0
y2 = 0
y1 = 0

Pz2 = 0
z2 6= 0

z1 = z2

y1 = 0 Py1 = 0

Figure 37. Structure of the study of the singularities of {D = 0}

Singularities of {D = 0}.

Proposition 5.1. The set of points satisfying D = ∂D
∂y1

= ∂D
∂z1

= ∂D
∂y2

= ∂D
∂z2

= 0 is

given, generically on authorized values of γ,Γ, by

(1) the point y1 = y2 = z1 = z2 = 0, and
(2) the curve defined by Py1 = Pz1 = Pz2 = 0, which is parameterized by y2 as{

y1 = (1− ε)y2

z1 = z2 = zS = γ−2Γ
2Γ−2γ .

(5.5)

If γ = Γ (for example if the matter is water), only the former solution exists.

Proof. The structure of this proof is summarized in Fig. 37. The determinant D
can be factored as (1 − ε)D̃. The singularities of D and those of D̃ are the same,
so for the study, we consider the ideal

I :=

〈
D̃,

∂D̃

∂y1
,
∂D̃

∂y2
,
∂D̃

∂z1
,
∂D̃

∂z2

〉
. (5.6)

In order to eliminate y1, y2 and z1 from the ideal I, we compute a Gröbner basis
G of I with respect to the elimination ordering y1 > y2 > z1 � z2 > ε > Γ > γ.This
computation yields that

I ∩Q[z2, ε,Γ, γ] =
〈
ε2(ε− 2)2(2 Γ− γ)(Γ− γ)z3

2P
3
z2

〉
, (5.7)

so singular points necessarily satisfy
z2 = 0

or

Pz2 = 0 ⇐⇒ z2 = γ−2 Γ
2 Γ−2 γ .

(5.8)
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If Γ = γ (that is, if the matter is water), the second of these solutions does not
exist. If γ = 2 Γ (which means that the matter is on the limit of the domain of
validity 2 Γ ≥ γ), both solutions coincide.

In all other cases, there are 2 distinct possible values for z2, and we consider
both cases: we consider the two ideals

I1 := 〈sqfr(G), z2〉 (5.9)

I2 := 〈sqfr(G), Pz2〉 (5.10)

where for any polynomial f , sqfr(f) is the square-free part of f and sqfr(G) means
that we apply sqfr to each element of G.

In order to lift the partial solution z2 = 0, we compute a Gröbner basis G1 of I1
with respect to the ordering y1 > y2 � z1 > z2 > ε > Γ > γ, and we find that this
ideal contains

γz2
1(ε− 1)2(2Γ− γ), (5.11)

so z1 = 0.
We then compute a Gröbner basis of 〈sqfr(G1), z1〉 with respect to the order

y1 � y2 > z1 > z2 > ε > Γ > γ, and we find that this ideal contains

Γγεy2
2(Γ− γ)(2Γ− γ)2(ε− 2), (5.12)

so y2 = 1.
Finally, adding y2 to the ideal yields that

0 = Γy1(ε− 1)(2Γ− γ), (5.13)

so the final solution is

(y1, y2, z1, z2) = (0, 0, 0, 0). (5.14)

We now consider the partial solution z2 = (γ − 2Γ)/(2Γ − 2γ). We compute a
Gröbner basis G2 of I2 with respect to the order y1 > y2 � z1 > z2 > ε > Γ > γ,
and we find that the ideal contains

z2γ(z1 − z2)2. (5.15)

Since this case was already studied, we may assume that z2 6= 0, so

z1 = z2 =
γ − 2Γ

2Γ− 2γ
. (5.16)

Adding z1 − z2 to sqfr(G2) and computing a Gröbner basis for the order y1 �
y2 > z1 > z2 > ε > Γ > γ, we find that the ideal contains

γ2y2(ε− 1)Py1(2Γ− γ), (5.17)

so we have 2 new branches to consider.
If y2 6= 0, y1 = (1−ε)y2. Otherwise, by adding y2 = 0 to the system of equations,

we find that the ideal contains

γy2
1z2, (5.18)

so y1 = 0, and in particular, this point is on {Py1 = 0}.
�
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D = D′ = 0

D̃ = 0
z1 − z2 = 0

Pz2 = 0
(sol. 1)

p2 = 0

y1 = y2 = 0
(sol. 2)

a3 6= 0
(sol. 3)

D̃ = 0
(ε− 1)y2z1 + y1z2 = 0

y1 = z1 = 0

y2 = z2 = 0
(⊂ sol. 2)

y1 = 0
z1 6= 0

p3 = 0
(sol. 4)

y1 6= 0

p4 = 0 p5 = 0

Figure 38. Structure of the study of {D = D′ = 0}

Locus of {D = D′ = 0}.

Proposition 5.2. The points of {D = D′ = 0} are given by:

(1) the plane

z1 = z2 = zS =
γ − 2Γ

2Γ− 2γ
(5.19)

(2) the line {
y1 = y2 = 0

z1 = z2

(5.20)

(3) the surface (parameterized by y1, y2)

z1 = z2 =
ΓP 2

y2(γ − 2Γ)

2(Γ− γ)a3
(5.21)

with

a3 = (Γ + γ)P 2
y1 + ε(ε− 2)Γ(y1 − y2)(y1 + y2) (5.22)

(4) the surface (parameterized by y1, z2)

y2 =
y1z2

(1− ε)z1
, z1 =

(2Γ− γ)z2

a4
(5.23)

with

a4 = 2(ε− 2)(Γ− γ)εz2 + (2Γ− γ)(ε− 1)2 (5.24)

(5) the surface (parameterized by y2, z2)

z1 =
z2y1

(1− ε)y2
, y1 =

(1− ε)y2

(
(2Γ− γ)Γy2

2 + γ2z2
2

)
a5

(5.25)

with

a5 = Γ
(
2ε(ε− 2)(Γ− γ)z2 + (ε− 1)2(2Γ− γ)

)
y2

2 + γ2z2
2 (5.26)

Proof. The structure of this proof is summarized in Fig. 38. The determinant D′

factors as

D′ = 2γ2(2Γ− γ)(Γ− γ)(z1 − z2)(ε− 1)((ε− 1)y2z1 + y1z2), (5.27)
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so we form the two ideals

I1 = 〈D̃, z1 − z2〉 (5.28)

I2 = 〈D̃, (ε− 1)y2z1 + y1z2〉. (5.29)

If z1 = z2, after substitution, D̃ has two factors depending on y1, y2, z2: Pz2 and

p2 := 2(Γ−γ)
(
(Γ + γ)P 2

y1 + ε(ε− 2)Γ(y1 − y2)(y1 + y2)
)
z2 +ΓP 2

y2(2Γ−γ) (5.30)

The polynomial Pz2 gives solution 1.
Let

a3(y1, y2) = (Γ + γ)P 2
y1 + ε(ε− 2)Γ(y1 − y2)(y1 + y2) (5.31)

so that the coefficient of z2 in p2 is 2(Γ − γ)a3, it is homogeneous in y1, y2 with
degree 2. Its discriminant in y2 is

− 4(ε− 2)2ε2y2
1γΓ. (5.32)

Since the parameters γ,Γ are necessarily positive, this discriminant is negative, and
thus the only real root of a3(y1, y2) is y1 = y2 = 0. If y1 = y2 = 0, p2 vanishes
regardless of z2.

If y1 6= 0, a3(y1, y2) does not have any real root in y2, and z2 is given by

(z1 =)z2 =
ΓP 2

y2(γ − 2Γ)

2(Γ− γ)a3(y1, y2)
. (5.33)

We now turn to the other branch, defined by (ε− 1)y2z1 + y1z2 = 0.
If y1 = z1 = 0, there are 2 curves of singular points defined (in y2, z2) by

Γ(2Γ− γ)y2
2 + γ2z2

2 = 0. (5.34)

Since 2Γ ≥ γ, the only solution is z2 = 0 with either 2Γ = γ or y2 = 0.
If y1 = 0 and z1 6= 0, then (since ε 6= 1) we must have y2 = 0. Furthermore,

we may assume that z1 6= z2 since this case was already studied. The remaining
solutions form a curve defined by

0 = p3 :=
(
2(ε− 2)(Γ− γ)εz2 + (2Γ− γ)(ε− 1)2

)
z1 − (2Γ− γ)z2. (5.35)

Let a4(z1, z2) be the coefficient of z1 in p3, the solutions are given by either
a4(z2) 6= 0

z1 =
2Γ− γ
c3(z2)

z2

(5.36)

or (since by assumption z1 6= 0)

z2 = 2Γ− γ = 0. (5.37)

So we may assume that y1 6= 0. We compute a Gröbner basis of I2 +〈uy1−1〉 for
the order u � z1 > y1 � z2 > y2 > ε > γ > Γ. This basis contains a polynomial
which factors as the product of

p4 =
(
2(ε− 2)(Γ− γ)εz2 + (ε− 1)2(2Γ− γ)

)
y1 + (ε− 1)(2Γ− γ)y2 (5.38)

and

p5 =
(
Γ
(
2ε(ε− 2)(Γ− γ)z2 + (ε− 1)2(2Γ− γ)

)
y2

2 + γ2z2
2

)
y1

+(ε− 1)y2

(
(2Γ− γ)Γy2

2 + γ2z2
2

)
.

(5.39)
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First, assume that p4 = 0. We compute a Gröbner basis of I2 + 〈uy1 − 1, p4〉
for the order u � z1 > y1 � z2 > y2 > ε > γ > Γ, and we find that the last
polynomial defining the ideal is p3, whose solutions we already studied.

Finally, assume that p4 6= 0 and p5 = 0. The discriminant in y2 of the coefficient
a5(y2, z2) of y1 in p5 is

− 4a4(z2)Γγ2z2
2 (5.40)

where a4(z2) is as above the coefficient of z1 in p3. The last components of the
solutions are given bya5(y2, z2) 6= 0

y1 =
(1−ε)y2((2Γ−γ)Γy22+γ2z22)

Γ(2ε(ε−2)(Γ−γ)z2+(ε−1)2(2Γ−γ))y22+γ2z22

(5.41)

and {
a5(y2, z2) = 0

y2

(
(2Γ− γ)Γy2

2 + γ2z2
2

) (5.42)

which, as in the case y1 = z1 = 0, is only y2 = z2 = 0 if 2Γ > γ. This partial
solution completes into y1 = y2 = z1 = z2 = 0, which was already known. �

Equilibrium positions.

Lemma 5.3. The equilibrium points of Ẋ = DF −D′G are all contained in {D =
D′ = 0}.

Proof. Assume that at some point, either of the determinants D and D′ is non-zero,
this implies that F and G are colinear. Since F and G form the first two columns
of the matrices whose D and D′ are the respective determinants, D = D′ = 0 at
that point. �

Linearization of the system at equilibrium points. For each of the com-
ponents of the set of equilibrium points {D = D′ = 0} found in the previous
paragraph, we inspect the behavior of the system in a neighborhood. Namely, for
each equilibrium point q, we write

d

dt
(q + δq) = (DF −D′G)(q) +A(q) · δq +R(δq). (5.43)

where A = Jacq(DF −D′G), so that

d

dt
(δq) = A(q) · δq +R(q)(δq). (5.44)

We can compute A(q) explicitely: Indeed, let f = DF −D′G. Its first derivative
is

df(q)(u) = dD(q)(u)F (q) +D(q)dF (q)(u)− dD′(q)(u)G(q)−D′(q)dG(q)(u),
(5.45)

so

A(q) = ∇D(q).F (q) +D(q)Jacq(F )(q)−∇D′(q).G(q)−D′(q)Jacq(G)(q). (5.46)

We examine the eigenvalue decomposition of A(q).

Solution 1 (5.19). If z1 = z2 = γ−2Γ
2Γ−2γ , the characteristic polynomial of A factors

as
T 2
(
T − γ2(2Γ− γ)2(ε− 1)P 2

y1

)2
(5.47)

The matrix A(q) is diagonalizable.
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Solution 2 (5.20). If y1 = y2 = 0 and z1 = z2, the characteristic polynomial of
A(q) is

T 4 (5.48)

The Jacobian matrix A(q) can be trigonalized as

A(q) = P−1


0 1 0 0
0 0 0 0
0 0 0 0
0 0 0 0

P (5.49)

with the transition matrix

P =


0 1 −1 0

εγ3(ε− 1)(ε− 2)z2
1Pz1 1 0 0

0 1 0 1
εγ3(ε− 1)(ε− 2)z2

1Pz1 0 0 0

 . (5.50)

Solution 3 (5.21). If z1 = z2 = ΓP 2
y2(γ − 2Γ)/2(Γ− γ)a3, the characteristic poly-

nomial of A(q) factors as

T 2

(
T +

b3
a3

)(
T − b3

a3

)
(5.51)

with

b3 = Γγ2(ε− 1)Py1Py2(2Γ− γ)2. (5.52)

The matrix A(q) is diagonalizable.

Solution 4 (5.23). If y2 = y1z2
(1−ε)z1 and z1 = (2Γ−γ)z2

a4
, the characteristic polynomial

of A(q) factors as

T 2

(
T − b4

a4

)(
T +

b4
a4

)
(5.53)

with

b4 = 2ε2γ3z3
2(ε− 1)(ε− 2)2(2Γ− γ)(Γ− γ)Pz2 . (5.54)

The matrix A(q) is diagonalizable.

Solution 5 (5.25). If z1 = z2y1
(1−ε)y2 and y1 =

(1−ε)y2((2Γ−γ)Γy22+γ2z22)
a5

, the character-

istic polynomial of A(q) factors as

T 2

(
T − b4(Γy2

2 + γ(z2
2 + z2))Γy2

2

a5

)2

. (5.55)

The matrix A(q) is diagonalizable.
Special points. There are two points at which A vanishes: the North pole N =
(0, 0, 0, 0) and S = (0, zS , 0, zS). Both points are such that D = D′ = 0, ∇D =
∇D′ = 0, and additionally, at the North pole, F (N) = 0.

The North pole is on solutions 2, 3, 4 and 5.
The remainder at N is cubic:

d

dt
(N + δq) = R(N)(δq) = O(‖δq‖3). (5.56)

The point S is the intersection of solutions 1 and 2. The remainder at S is
quadratic.
Higher order studies for the special points.
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Quadratic approximation at S. We now study the quadratic component H2 =
Q(S) of the remainder R(S):

d

dt
(q + δq) = (DF −D′G)(q) +A(q)(δq) +Q(q)(δq) +O(‖δq‖3), (5.57)

with dq
dt (S) = (DF −D′G)(S) = 0 and A(S) = 0.

We can compute Q by differentiating f = DF −D′G again, as was done in [6,
Sec. 3.4]. Differentiating (5.45) along q again, the second derivative of f is

d2f(q)(u, v) = d2D(q)(u, v)F (q) + dD(q)(u)dF (q)(v) + dD(q)(v)dF (q)(u)

− d2D′(q)(u, v)G(q)− dD′(q)(u)dG(q)(v)− dD′(q)(v)dG(q)(u) (5.58)

Note that second derivatives of F and G are 0, since their coordinates are affine in
q.

We wish to compute H2(δq) = Q(S)(δq, δq) = 1
2d2f(q)(δq, δq). Since dD(S) =

dD′(S) = 0, we find in the end that

H2(δq) = h2(δq)F (S)− h′2(δq)G(S), (5.59)

with

F (S) =

(
0,
γ(2Γ− γ)

2(Γ− γ)
, 0,

γ(2Γ− γ)

2(Γ− γ)

)t
(5.60)

G(S) =

(
γ

2(Γ− γ)
, 0,

(1− ε)γ
2(Γ− γ)

, 0

)t
(5.61)

h2(δq) =
1

2
d2D(S)(δq, δq) = (1− ε)(δz1 − δz2)(δz1 − (1− ε)2δz2)(2Γ− γ)γ2

(5.62)

h′2(δq) =
1

2
d2D′(S)(δq, δq) = (1− ε)(δz1 − δz2)(δy2(ε− 1) + δy1)(2Γ− γ)2γ2.

(5.63)

Following [6] and [27], we study the projection of the differential equation v̇ =
H2(v) on the sphere S3. Let w = v/‖v‖ be this projection, it satisfies the differential
equation

ẇ =
1

‖v‖2

(
v̇‖v‖ − v 〈v, v̇〉

‖v‖

)
(5.64)

=
H2(v)

‖v‖
− 〈v,H2(v)〉

‖v‖3
v (5.65)

= ‖v‖
(
H2(w)− 〈w,H2(w)〉w

)
(5.66)

so we are to study the following differential equation on the sphere S3:

v̇ = H2(v)− 〈v,H2(v)〉v =: Hπ
2 (v). (5.67)

Invariants are related to the eigenvalues of the linearization of Hπ
2 at points where

Hπ
2 (v) = 0. Those points are:

• lines of non-isolated singular points of H2, that is vectors v such that
H2(v) = 0
• ray solutions, that is vectors ξ such that there exists λ ∈ R\{0}, H2(ξ) = λξ.
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We study the linearization of Hπ
2 in some neighborhood of these solutions in S3.

Proposition 5.4. The blow-up at point S has no ray solution, and two sets of
non-isolated singularities:

(1) the projective plane δz1 = δz2;
(2) the projective line δy2 = (1− ε)δy1, δz1 = (1− ε)2δz2.

In the first case, the Jacobian of the system is nilpotent. In the second case, it is
diagonalizable with non-zero eigenvalues:

1

2

(
¯δy2 + 1±

√
¯δy2

2
+ (2ε− 1)2( ¯δy2 + 1)− 4(ε− 1)4 − 2 ¯δy2 + 1

)
. (5.68)

Proof. First we study ray solutions. Let ξ be a vector on a ray solution, such that

H2(ξ) = λξ. (5.69)

Let αξ be another vector on the same line (α ∈ R), since H2 is homogeneous with
degree 2, one has

H2(αξ) = α2H2(ξ) = α2λξ = αλ(αξ). (5.70)

So each line or ray solutions contains a unique ξ0 such that H2(ξ0) = ξ0.
A Gröbner basis of the system 〈H2(δq) − δq〉 is given by {δy1, δz1, δy2, δz2}, so

there is no non-trivial ray.
This can also be seen in the following way: let δq be a vector such that H2(δq) =

δq. By the structure of the vector F (S), δq satisfies δz1 = δz2, and so h2(δq) =
h′2(δq) = 0, so H2(δq) = 0, and which, by hypothesis, implies that δq = 0.

We now consider non-isolated singular points of H2, that is the zeroes of H2.
Since F (S) and G(S) are linearly independent, those points are exactly the zeroes
of h2 and h′2, as described in the statement of the proposition.

Then we study the linearization of Hπ
2 in some neighborhood of these solutions

in S3. First we consider vectors δq such that δz1 = δz2, we may perform the
computations in the affine chart given by δz1 6= 0, with coordinates ¯δy1 = δy1/δz1,
¯δy2 = δy2/δz1, ¯δz2 = δz2/δz1. The differential equation becomes

d

dt

 ¯δy1
¯δy2
¯δz1

 = δz2C̄( ¯δy1, ¯δy2, ¯δz1) (5.71)

with C̄ a polynomial vector field of degree 3.
At ¯δz1 = 1, its Jacobian is nilpotent:0 0 (ε− 1)( ¯δy1(ε(ε− 1)− 1) + ¯δy2(1− ε))(2Γ− γ)2γ3

0 0 (ε− 1)( ¯δy1(2ε(ε− 2) + 1) + ¯δy1(ε− 1))(2Γ− γ)2γ3

0 0 0

 (5.72)

Then we consider vectors δq such that δy2 = (1− ε)δy1, δz1 = (1− ε)2δz2. This
time we use the chart δz2 6= 0 with coordinates ¯δy1 = δy1/δz2, ¯δy2 = δy2/δz2, ¯δz1 =
δz1/δz2. As above, we compute the differential equation in this chart, linearize the
resulting vector field, and evaluate this Jacobian at ¯δy2 = (1 − ε) ¯δy1 and ¯δz1 =
(1− ε)2. This matrix has rank 2 and is diagonalizable with non-zero eigenvalues:

1

2

(
¯δy2 + 1±

√
¯δy2

2
+ (2ε− 1)2( ¯δy2 + 1)− 4(ε− 1)4 − 2 ¯δy2 + 1

)
. (5.73)

�
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Cubic approximation at N . We perform the same study at the North pole N .
With expression (5.58), we can verify that the quadratic component of R(N) is 0.
Indeed, F (N) = 0 and d2D′(N) = 0.

Further differentiating along q, we obtain

H3(δq) :=
1

6
d3f(N)(δq, δq, δq) (5.74)

=
1

6

(
3d2D(N)(δq, δq)F (δq)− d3D′(N)(δq, δq, δq)G(N)

)
(5.75)

Note that since we centered the coordinates at the North pole, F is linear in q, so
dF (q) = F , and G is affine in q, so dG(q) is constant.

As in the previous subsection, we study the projection of the differential equation
v̇ = H3(v) on the sphere S3, and its equilibrium points, which form lines of non-
isolated singular points and ray solutions.

Proposition 5.5. The cubic blow-up at the North pole N , for admissible values of
the parameters, has two sets of ray solutions:

(1) the projective line
δz1 = δz2 = 0

(ε− 1)δy1 + δy2 =
1

Γ(2Γ− γ)
√

1− ε
;

(5.76)

(2) the quadric
δy1 = δy2 = 0

((ε− 1)δz1 − δz2)
2 − (ε− 2)δz1δz2 =

1

γ3(2Γ− γ)(1− ε)
.

(5.77)

and three sets of real non-isolated singularities:

(1) the plane {
δz1 = δz2

δy1(1− ε) = δy2

(5.78)

(2) the plane {
δy2 = (1− ε)δy1

δz2 = (1− ε)2δz1

(5.79)

(3) the surface defined by
0 = Γ(ε− 1)(2Γ− γ)δy2

1 + (2Γ− γ)Γδy1δy2 + γ2(ε− 1)δz2
1 − γ2(ε− 1)δz1δz2

0 = Γ(ε− 1)(2Γ− γ)δy1δy2 − γ2δz1δz2 + (2Γ− γ)Γδy2
2 + γ2δz2

2

0 = δy1δz2 + (ε− 1)δy2δz1.

(5.80)

For points on the line (5.76), the linearization of Hπ
3 is diagonal: the vectors

(1, 0, 0) and (0, 0, 1) are eigenvectors, with the same eigenvalue, and the vector
(0, 0, 1) is in the kernel.
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For isolated singularities satisfying (5.78), the matrix is not diagonalizable, its
Jordan form has the following structure:0 0 0

0 ∗ 1
0 0 ∗

 (5.81)

For isolated singularities satisfying (5.79), the matrix is diagonalizable with 3
non-zero eigenvalues.

Proof. First we study ray solutions. Let ξ be a vector on a ray solution, such that

H3(ξ) = λξ. (5.82)

Let αξ be another vector on the same line (α ∈ R), one has

H3(αξ) = α3H3(ξ) = α3λξ = α2λ(αξ). (5.83)

So unlike in the quadratic case, a line of ray solutions contains 2 vectors ξ1, ξ2 such
that either H3(ξ1) = H3(ξ2) = 1 or H3(ξ1) = H3(ξ2) = −1.

In order to study ray solutions, we compute a Gröbner basis of the system
H3(δq) − ιδq = 0, ι2 = 1, for an order eliminating α. We find that the basis
contains

{δy1δz1, δy1δz2, δy2δz1, δy2δz2} (5.84)

so either δy1 = δy2 = 0 or δz1 = δz2 = 0.
If δz1 = δz2 = 0, computing a new Gröbner basis of the system, saturating with

Γ− γ and δy1 shows that δy1 and δy2 must satisfy(
Γ2(ε− 1)(2Γ− γ)2 ((ε− 1)δy1 + δy2)

2
)2

− 1 = 0. (5.85)

Since ε− 1 < 0, 2Γ− γ > 0 and Γ > 0, this defines 2 lines of real solutions given by

(ε− 1)δy1 + δy2 = ± 1

Γ(2Γ− γ)
√

1− ε
(5.86)

Those lines are equivalent in the projective space: each line of ray-solutions contains
a vector in both lines.

If δy1 = δy2 = 0, the same technique shows that δz1 and δz2 must satisfy(
γ3(2Γ− γ)(ε− 1)

(
((ε− 1)δz1 − δz2)

2 − (ε− 2)δz1δz2

))2

− 1 = 0, (5.87)

which defines 1 quadric

((ε− 1)δz1 − δz2)
2 − (ε− 2)δz1δz2 =

1

γ3(2Γ− γ)(1− ε)
. (5.88)

We now consider non-isolated singularities, that is zeroes of H3. To this end, we
compute a Gröbner basis of the system H3(δq) = 0, saturating by γ−Γ, γ, Γ, ε− 1
and 2Γ− γ. Factoring the results, it appears that the solutions split into 5 cases:

(1) δz1 = δz2

(2) δz1 = −δz2

(3) δz1 = 0
(4) δz2 = (1− ε)2δz1

(5) otherwise.



SATURATION OF A SINGLE PAIR OF SPINS AND MRI 51

In the case 1, a Gröbner basis is given by
δy1(δy1(ε− 1) + δy2)2

δy2(δy1(ε− 1) + δy2)2

δz2(δy1(ε− 1) + δy2)2

δz1 − δz2

 (5.89)

and the solutions form the plane (5.78).
In the case 2, saturating by δz1 − δz2, a Gröbner basis is given by

δy1 + (1− ε)δy2

δz1 + δz2

Γ(ε2 − 2ε+ 2)(2γ − γ)δy2
2 + 2γ2δz2

2

 (5.90)

which has no real non-zero solution for admissible values of the parameters.
In the case 3, saturating by δz1 − δz2 and δz1 + δz2, a Gröbner basis is given by{

δy1, δz1, (2Γ− γ)Γδy2
2 + γ2δz2

2

}
(5.91)

which has no real non-zero solution for admissible values of the parameters.
In the case 4, saturating by δz1 ± δz2 and δz1, a Gröbner basis is given by{

δy1δz2 + (ε− 1)δy2δz1, δy2 + (ε− 1)δy1, δz2 − (ε− 1)2δz1

}
(5.92)

and the solutions form the plane (5.79).
Finally, for the case 5, we compute a Gröbner basis, saturating by all the previous

conditions. This basis is
Γ(ε− 1)(2Γ− γ)δy2

1 + (2Γ− γ)Γδy1δy2 + γ2(ε− 1)δz2
1 − γ2(ε− 1)δz1δz2

Γ(ε− 1)(2Γ− γ)δy1δy2 − γ2δz1δz2 + (2Γ− γ)Γδy2
2 + γ2δz2

2

δy1δz2 + (ε− 1)δy2δz1(
Γ(2Γ− γ)(ε− 1)2δy2

2 + δz2
2γ

2
)
δz1 − (2Γ− γ)Γδz2δy

2
2 − γ2δz3

2


(5.93)

The fourth polynomial is a combination of the other 3, and the solutions form the
surface (5.80).

For the second part of the proposition, as in the quadratic case, we study the
linearization of Hπ

3 : v̇ = H3(v) − 〈v,H3(v)〉v. In the affine chart with δy1 6= 0,
with coordinates ¯δz1 = δz1/δy1, ¯δy2 = δy2/δy1 and ¯δz2 = δz2/δy1, the differential
equation v̇ = H3(v) becomes

d

dt

 ¯δz1
¯δy2
¯δz2

 = δy2
1Q̄( ¯δz1, ¯δy2, ¯δz2) (5.94)

with Q̄ a polynomial vector field of degree 4. In this chart, Hπ
3 becomes

v̇ = Q̄(v). (5.95)

We conclude by evaluating the Jacobian of Q̄ at the relevant points. �

5.3.2. General case.
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Singularities of {D = HG = {HG, HF } = 0}.

Proposition 5.6. The set of singularities of {D = HG = {HG, HF } = 0} is given,
generically on authorized values of γ,Γ, by

(1) the plane z1 = z2 = zS;
(2) the line z1 = z2, y1 = y2 = 0;
(3) an irreducible variety of dimension 5.

If γ = Γ, solution 2 becomes a surface defined by z1 = z2, y2 = (1− ε)y1.

Proof. By definition of D = {{HG, HF }, HG}, we want to study the zeroes of
0 = p ·G
0 = p · [G,F ]

0 = p · [[G,F ], G]

(D)

The singularities of this variety is the set of points at which the matrixG [G,F ] [[G,F ], G]

 (5.96)

has rank at most 2.
We encode that with the incidence varietyG [G,F ] [[G,F ], G]

v1 v2 v3

 ·
L1

L2

L3

 =


0
0
0
1

 (5.97)

with new variables L = L1, L2, L3 and random numbers v1, v2, v3. This gives us a
system of 4 polynomial equations in the 10 unknowns y1, z1, y2, z2, L1, L2, L3,Γ, γ, ε.
We eliminate L1, L2, L3 from the ideal in order to recover the projection, and we
saturate by 1− ε.

We then compute a Gröbner basis for the elimination order y1 > y2 > z1 >
z2 � γ > Γ > ε, this basis contains 10 polynomials, some of which have factors
with multiplicity greater than 1 or are divisible by 1−ε or γ. We take the square-free
form of this basis, and we saturate by 1− ε and γ before computing a new Gröbner
basis for the same order. The result is a set of 11 polynomials which includes

(z1 − z2) ((ε− 1)Pz2y1 + Pz1y2) . (5.98)

First, we add z1 − z2 to the ideal. Once again, we compute a Gröbner basis for
the elimination order y1 > y2 > z1 > z2 � γ > Γ > ε, take its square-free form,
and recompute a Gröbner basis. The result contains the polynomial

Pz2Py2 . (5.99)

The solutions decompose into 2 algebraic sets, defined by

z1 = z2 = zS =
2Γ− γ
2Γ− 2γ

(5.100)
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and (adding (ε− 1)y1 + y2 to the ideal and saturating by Pz2 , ε and ε− 2)
0 = y1(Γ− γ)

0 = y2(Γ− γ)

0 = Py2 = (ε− 1)y1 + y2

0 = z1 − z2.

(5.101)

The latter is generically (if Γ 6= γ) defined by{
y1 = y2 = 0

z1 = z2

(5.102)

or if Γ = γ (that is if the spin we consider is water), by{
y1 = y2

ε−1

z1 = z2.
(5.103)

Then, starting again with the whole ideal, we add (ε − 1)Pz2y1 + Pz1y2 to the
ideal and saturate by z1 − z2. The result, generically on (Γ, γ, ε), is an irreducible
surface. �

Locus of {D = D′ = HG = {HG, HF } = 0}.

Proposition 5.7. The solutions form the union of the hyperplane defined by

z1 = z2 (5.104)

and the hypersurface

y1 = − y2Pz1
(ε− 1)Pz2

. (5.105)

Proof. Points such that {D = D′ = HG = {HG, HF } = 0} satisfy
0 = p ·G
0 = p · [G,F ]

0 = p · [[G,F ], G]

0 = p · [[G,F ], F ]

(5.106)

The projection of these points onto the space (y1, z1, y2, z2) is given by the vanishing
of the determinant ∆′, defined as

∆′ = det

[
G [G,F ] [[G,F ], G] [[G,F ], F ]

(1− ε)G [(1− ε)G,F ] [[(1− ε)G,F ], (1− ε)G] [[(1− ε)G,F ], F ]

]
(5.107)

= (1− ε)2 det

[
G [G,F ] [[G,F ], G] [[G,F ], F ]
G [G,F ] (1− ε)[[G,F ], G] [[G,F ], F ].

]
(5.108)

This determinant factors as

− 2 (ε− 1)
2

(2 Γ− 1) (Γ− 1) (z1 − z2)
[

(ε− 1)Pz2y1 + Pz1y2

]
(5.109)

�
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Equilibrium positions.

Lemma 5.8. All equilibrium points of Ż = D ~HF−D′ ~HG satisfying HG = {HG, HF } =
0 are contained in {D = D′ = 0}.

Proof. Recall that ~HF is defined as

~HF =

[
∂HF
∂p

−∂F∂q

]
=

[
F

−p · ∂HF∂q

]
(5.110)

and ~HG is defined in the same way. Let z = (q, p) be a point such that

D(z) ~HF (z)−D′(z) ~HG(z) = 0, (5.111)

by looking at the first 4 components of this system, we see that the vectors F (q)
and G(q) are colinear.

Introduce new variables XD and XD′ and consider the ideal generated by

• XDF (q)−XD′G(q) = 0
• HG(z) = {HG, HF }(z) = 0

• D(z) ~HF (z)−D′(z) ~HG(z) = 0

saturated by XD and XD′ . Computing a Gröbner basis of this ideal (for any order)
yields that this ideal is actually 〈1〉, and so the associated system has no solution.

Hence, at an equilibrium point, either D(z) or D′(z) has to be 0. Since both
O (the center of the Bloch ball) and N (the north pole) are on the hyperplane
z1 = z2 = 0, which is contained in {D = D′ = 0}, we may assume that the point z is
neither O nor N . Hence, F (z) and G(z) are non-zero, and so D(z) = D′(z) = 0. �

Eigenvalues of the linearization. We consider the eigenvalue decomposition of
the matrix

A = Jac(D ~HF −D′ ~HG) (5.112)

on equilibrium point, given as the union of points satisfying Eq. (5.104) and (5.105).
Solutions of Eq. (5.104). If z1 = z2, the matrixA has rank 2, and its characteristic
polynomial is

T 6

(
T 2 −

ε(ε− 1)(ε− 2)
(
8(Γ− γ)2Py1y1y2 + Pz2(2Pz2 − γ)Py2

)
2Py1(Γ− γ)y1

T

+

(
(ε− 1)γPy1(2Γ− γ)

y1

)2
)

(5.113)

Solutions of Eq. (5.105). If y2 = − y2pz1
(ε−1)pz2

, the matrix A has rank 2, and its

characteristic polynomial is

T 6

(
T 2 − 4εy2(ε− 1)(ε− 2)(Γ− γ)T +

(
2γ(z1 − z2)(ε− 1)2(2Γ− γ)(Γ− γ)

pz1

)2
)
.

(5.114)
The discriminant of the degree 2 factor factors as

16(Γ− γ)2(ε− 1)2 (a6(z1, y2)− b6(z1, z2)) (a6(z1, y2) + b6(z1, z2))

p2
z1

(5.115)
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with

a6(z1, y2) = ε(ε− 2)Pz1y2 (5.116)

b6(z1, z2) = (2Γ− γ)(ε− 1)γ(z1 − z2) (5.117)

which induces the following classification of the eigenvalues of A:

• if |a(z1, y2)| > |b(z1, z2)|: 2 single real eigenvalues;
• if |a(z1, y2)| = |b(z1, z2)|: 1 double real eigenvalue;
• if |a(z1, y2)| < |b(z1, z2)|: 2 single complex eigenvalues.

6. Conclusion

In this article we made a complete use of the state of the art in geometric, sym-
bolic and numeric techniques to analyze the problem of saturating a pair of spins
in relation with the B1-inhomogeneities, that is inhomogeneities of the applied RF-
field. We extend the results in many directions. First of all, the time minimal
syntheses for a single spin are classified, taking into account the relaxation param-
eters and the control bounds. For a pair of spins, the crucial theoretical problem
is to classify the singularities of the extremal flow. This is realized using symbolic
computations based on Gröbner basis to compute the singularities and linear or
quadratic, cubic approximations of some crucial frame points. This is not sufficient
to make a topological classification of the behaviours, since Grobman-Hartman
cannot be applied in general for non isolated singularities, see [6]. Nevertheless
numerical methods using continuation techniques can be used to analyze the sin-
gularities. One feature of the problem is the existence of many local optima and
applications of LMI techniques are particularly important to compare the different
local optima obtained using direct or indirect numerical schemes implemented in
the Bocop and HamPath software. Hence, we believe that this article complete in
many directions the results and techniques obtained in previous articles. It is a
relevant step in the problem of determining the cartography of the global optima
with respect to the relaxation parameters in the (ideal) contrast problem in MRI
and to provide substantial improvements in existing software in MRI.

Also in the contrast of geometric optimal control it is a significant step to handle
complex 4-D problems.
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