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Long-Range Three-Dimensional Ground Wave
Propagation Modeling Over Flat, Irregular Terrain

J. Vincent, P. Borderies, J. R. Poirier, and V. Gobin

Abstract—Ground wave propagation of low-frequency (LF)
electromagnetic waves is well known for the canonical case of a
flat, azimuthally homogeneous, soil. Moreover, it is well investi-
gated for realistic propagation problems, some of which include
Earth’s curvature, irregular and lossy terrain profiles, and mixed
paths. In this paper, kinds of environment are considered in the
far-field of the radiating antenna with an original methodology. It
rests on the use of hybridization of finite-difference in time-domain
(FDTD) with the direct numerical integration of Sommerfeld-type
integrals which is also presented and validated. This hybridization
uses domain decomposition and Huygens’ surfaces in a strat-
ified dielectric medium in three-dimensional (3-D) space. The
approach is validated with respect to a reference solution both in
the canonical flat ground case and in a hilly one.

Index Terms—Ground wave propagation, hybridization, low-
frequency wave, problem of Sommerfeld, three-dimesional (3-D)
FDTD.

I. INTRODUCTION

U SUALLY the electromagnetic problem of low-frequency
(LF) radiating antennas is decomposed into two parts:

1) the near-field radiation emitted by the antenna and 2) the
propagation of this near-field in the far range for the ground
wave [1]. LF electromagnetic field propagation over the ground
is well known for the canonical case of a flat homogeneous
soil [1], [2], and in the case of a stratified one [3] through
approximate analytical approaches which are widely used. An
appropriate numerical method for solving the propagation prob-
lem over long distances is the solution of parabolic equations
(PE) above stratified media [4], [5]. Three-dimensional (3-D)
vector PE approach exists [6], but PE method is mostly used
in two dimensions [7] and it is not a full-wave method [8].
Perturbation methods using the compensation theorem treat
typical forms of radial heterogeneity such as mixed paths and
irregular ground [9], [10].
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However, these techniques do not take into account the 3-
D topography near the propagation path. Then, there is still a
need of rigorous numerical computation of the radiated field
when the distant irregularity does not correspond to the domain
of validity of the usual methods or when there is a need of a
reference solution for the interaction of the ground wave with a
very general discontinuity.

Finite-difference in time-domain (FDTD) method is a well-
known method used for computational electromagnetics [11].
Among its advantages is the ability to treat very general geome-
tries involving heterogeneous complex media in volume and
surface [12]. In [13], a time-domain wave propagator based
on two-dimensional (2-D) FDTD computes the electromag-
netic field propagation over Earth’s surface. In [14] and [15],
bi-dimensional FDTD is applied to obtain the electric field
both in the near and the far-field over an irregular terrain, with
the constraint of a radial cylindrical geometry. FDTD in three
dimensions has been applied to study the near-field radiation
of wire antennas in a complex environment [16]. However,
FDTD is not applicable in three dimensions at large distance
because of the huge amount of computational resources which
are required and also because of the numerical problems aris-
ing at very long distances (numerical dispersion, precision,
boundary conditions, etc.).

In this paper, an original hybrid approach using the FDTD
method is proposed. It rests on the use of the direct numer-
ical integration of Sommerfeld’s integrals, which is also pre-
sented, and its hybridization with 3-D FDTD applied to the
surroundings of the irregularity under consideration, yield-
ing an approach free of the former numerical problems. This
hybridization technique aims at treating complex kinds of
environment located in the far-field.

Section II is dedicated to the implementation of the
hybridization in the 3-D FDTD method. First the Sommerfeld’s
half-space problem is solved with a numerical integration along
the positive real axis using an adaptive algorithm called NISP
(numerical integration of Sommerfeld’s problem). Then, the
new hybrid NISP—3-D FDTD method is presented. The valida-
tion and illustration of the method are presented in Section III.

II. PRINCIPLES OF HYBRIDIZATION

A. Sommerfeld Half-Space Problem

In [17], Sommerfeld computed the radiation of an infinites-
imal vertical electric current element I = I0dlz located at a
height h above a homogeneous dielectric half-space. The XOY
plane separates the two media, the medium 1 is free space in
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Fig. 1. Vertical z-directed current element I0dl at height h above a planar lossy
ground with electrical parameters (µ2, ǫ2, σ2).

the upper half-space with constants µ0, ǫ0 and soil is the
medium 2 in the lower half-space with constants µ2 = µ0, ǫ2,
and σ2. The geometry is presented in Fig. 1.

Using Hertz vector potentials and the boundary conditions
at height z = 0, one obtains in (1) the exact formulas of all
components of the electromagnetic field E and H in both media
1 and 2 [18]. The wavenumbers in free space k0 and soil k2 are
given by ki = [−jωµi(σi + jωǫi)]

1/2. [See (1), shown at the
bottom of the page.]

The free space components in (1) are expressed as the sum
of three terms: the first represents a wave traveling directly
from the current element I0dl; the second can be seen as
radiated from a negative image current in the ground at −h;
and the third is related to a surface wave term. The distance
between the image current at distance h below the plane and
the observation point is R′ = [r2 + (z + h)2]1/2. J0 and J1
are Bessel functions of the first kind for orders 0 and 1,
respectively [19].
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B. Numerical Integration

The integrands in all components in both media are the prod-
uct of three factors. The first element is the quotient whose
denominator is (k20(λ

2 − k22)
1/2 + k22(λ

2 − k20)
1/2). An oscil-

lating term depending on the distance r of the observation point
is created by the spherical Bessel functions J0 and J1. Finally,
there is an exponential attenuation factor depending on the
height of the dipole h and the observation point z. The system
has a pair of complex poles given by s2 = k20k

2
2/(k

2
2 + k20).

There is no singularity on the integration path and the inte-
grand is convergent but very oscillating along the positive real
axis. It can be computed by a numerical integration with a
small error. To determine the best strategy, the behavior of the
integrand functions is detailed. In the following, the z-directed
electric field integral in (2) is only studied but the approach is
identical for the other five components of the electromagnetic
field
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For a current element located at h = 25 m above a medium
wet soil (ǫr = 15, σ = 10−2 S·m−1) and an observation point
located at z = 1 m and r = 1 km, the real and imaginary values
of the integrand are plotted in Fig. 2 as a function of the inte-
gration parameter λ. The four main parts of the integrand are
bounded by the vertical lines.
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Fig. 2. Real (top) and imaginary (bottom) parts of the integrand in (2) as a
function of λ, with a medium wet soil, h = 25 m, z = 1 m, and r = 1 km.
The four main parts are bounded by the three vertical lines.

The first interval value is small; the function is regular and
has low oscillations. The second is the most important contrib-
utor because the function is less regular. In fact, it contains a
singularity which corresponds to the positive real part of the
complex pole s. The third part is longer to evaluate than the
previous two because both real and imaginary values of the
integrand oscillate due to the Bessel function. The last part
is dominated by the exponential attenuation term and may
not be calculated because it is negligible despite the oscil-
lating behavior. These intervals have different properties and
numerical integration does not have the same convergence
behavior. Integration functions are available in many soft-
ware products; however, changes in the integration scheme are
complicated; it is therefore difficult to implement an optimal
strategy.

Indeed the previous analysis shows that different low- and
high-order integration methods have to be used for each part of
the integrand. Third degree Newton–Cotes method is chosen for
parts one and four integrations and Gauss–Legendre quadrature
with more than ten points is chosen for the integrations of parts
two and three.

An adaptive algorithm for numerical integration is real-
ized to ensure a good compromise between computational
time and numerical accuracy [20]. The algorithm performs the
integration independently on the four intervals with minimal
discretization ∆ min. At each iteration, the step is halved for
a new integration until the fixed convergence or the maximum
number of iterations is reached. The four integration intervals
are heuristically defined as follows:

I1 = [0; 0.9 · ℜe (s)] ; I2 = [0.9 · ℜe (s) ; 1.1 · ℜe (s)]

I3 = [1.1 · ℜe (s) ;λη] ; I4 = [λη; 3 · λη] (3)

where ℜe (s) is the real part of complex pole s and λη is deter-
mined from 1% of the maximal value of the integrand and the

TABLE I
DIECLECTRIC CONSTANTS AND CONDUCTIVITY FOR DIFFERENT SOILS

Fig. 3. Comparison of the vertical electric field component in Sommerfeld’s
problem solved with two different methods: NISP and numerical approximation
of Norton. A dl = 25 m long current element at frequency f = 100 kHz is at
height h = 25 m above different soils, the magnitude of the vertical electric
field is computed a long distance r at height z = 1 m.

exponential attenuation factor given in the following:

k0 ≤ λη =
1

(z + h)
· ln

(

100

max {n (λ, r, z)}

)

. (4)

The algorithm NISP has been tested for vertical component
Ez radiated at 100 kHz by a dl = 25 m long current element
located at h = 25 m over different soils, along the direction of
propagation r at height z = 1 m. The soil is characterized with
the dielectric constant ǫr and the conductivity σ, which depend
on the humidity, see Table I, and can be found in [21].

The minimal discretization of NISP is set to ∆ min =
2π/(10r) because of the 2π-periodic Bessel function. The con-
vergence is computed with an absolute relative error, its value
is fixed to cv = 10−3, and the maximal number of iteration is
max = 4. Fig. 3 shows the comparison between two different
methods: the numerical integration and compared with the ana-
lytical formulas given by Norton [2]. We can see that there is
a good agreement between these two approaches on the upper
half-space.

Consequently, NISP may be used to compute the radiated
field whatever the distance beyond a wavelength. It has to be
noted that it yields the radiated field also in the ground: it is
then relevant to initialize the hybrid method presented in the
next section.

C. Hybrid NISP—3-D FDTD Method

The main objective of this section is to present a method able
to compute numerically the effects of a perturbation in/on the
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Fig. 4. SF/TF representation for 1-D FDTD. The Huygens’ surface separates
the computational space into regions: a region where the total field is considered
and the scattered field is considered in the other one.

soil at large distance from the radiating antenna. It rests on the
hybridization of the approach presented in Section II-B and the
3-D FDTD algorithm. The scattered-field/total-field (SF/TF)
formulation has been first proposed in [22]: along a Huygens’
surface surrounding the scatterer, the incident plane wave is
introduced on the six faces with the goal of dividing the com-
putational domain into a total-field zone and a scattered-field
one. In [23] and [24], still in free space, the incident plane wave
is substituted by the field radiated by a remote source, lead-
ing to multidomain approaches. In [25], again with an incident
plane wave, free space is substituted by a stratified medium. As
a simple example, the SF/TF one-dimensional (1-D) formalism
is represented in Fig. 4. Considering the total electromagnetic
field as a sum of the incident and the scattered electromagnetic
field (5), one can write (6) and (7): the nth time step of the
FDTD scheme applied on the whole Huygens’ surface located
at grid point iS in a dielectric medium (µ0, ǫ = ǫrǫ0, σ) with
space step ∆x and time step ∆t. All components of the elec-
tromagnetic field on the whole 3-D Huygens’ surface are easily
deduced from (5)–(7), shown at the bottom of the page.

In this paper, the incident field is the ground wave created
by the remote source which is computed by NISP and the
computation is done in a medium which is stratified.

The computational domain includes soil and free space
above, both of them bounded by adapted absorbing boundaries.
NISP algorithm allows to identify the values of the electro-
magnetic field at any point in space in the frequency domain:
it is used to compute at all times the incident field both in
free space and in the soil along the six faces of the Huygens’
surface with a sine excitation at the frequency of interest. It is

ETOT = EINC +ESCAT , HTOT = HINC +HSCAT (5)
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Fig. 5. NISP—3-D FDTD Hybridization: a vertical z-directed current element
source I0dl creates the electric and magnetic fields (Einc, Hinc) which are
incorporated as incident wave sources in the SF/TF FDTD formulation.

expected that when the soil is flat, the total field is the incident
one: the unperturbed ground wave is retrieved. When there is
some irregularity either in the soil composition or on the relief
(Fig. 5), then a scattered field is generated.

III. RESULTS

A. Validation of the Method

In order to validate the method, various scenarios were
implemented. First the hybridization technique is used with a
homogeneous flat ground (medium wet) and compared with the
analytical formulas given by Norton [2]. The antenna radiat-
ing at f = 100 kHz is dl = 25 m long and at height h = 25 m.
The electromagnetic field is computed at height z = 76 m along
the distance r from 1 to 100 km with several reduced domains.
The computation space for each hybridization implementa-
tion is a 100 cells side cube with the mesh size ∆x = ∆y =
∆z = 75 m and the ground surface (z = 0 m) is located at the
middle of the z-directed cells. Thus the total computational
volume is 7500 m × 7500 m × 2500 m. The volume inside the
Huygens’ surfaces is a 60 cell side cube centered in the domain
which means that 60× 60× 30 cells mesh the ground inside
the volume. Uniaxial-PML is used to terminate the 3-D com-
putational domain [26] and the NISP parameters are set to
∆ min = 2π/(10r) and max = 4. Fig. 6 shows the results of
the electromagnetic field computations. It validates the method
when applied to an infinite flat ground since it agrees with
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Fig. 6. Solution comparison between the NISP—3-D FDTD hybridization and
Norton’s analytic formulas. The electromagnetic field along the distance r from
1 to 100 km at height z = 75 m is emitted by a 25-m long vertical current
element located at height h = 25 m along distance r at height z = 1 m.

Fig. 7. 3-D representation of the computed hill with the hybridization. A stack
of 10 dielectric blocks with different widths are located on the flat ground.

the reference method for a wide range of distances to the
source.

Then the hybridization technique in the vicinity of the source
is compared to 3-D FDTD method including the source when
both methods are relevant (FDTD is here the reference solu-
tion since the distance of observation is short enough). A 250-m
high hill is located at 3.4 km of the infinitesimal antenna previ-
ously described, over a medium wet soil. It is modeled with a
stack of 10 dielectric blocks which are all 25 m high (Fig. 7).
Horizontally, the largest block is 1.5 km × 3 km; the second is
1.35 km × 3 km, up to the top which is 0.15 km × 3 km. For
the FDTD, the current element and the hill are computed in a
240 cells side cube with ∆x = ∆y = 75 m and ∆z = 25 m.
The previous monopole antenna is centered inside the com-
puted volume. The same geometry of the hill and the space
steps are used with a 100 cells side cube for the hybridization.
The volume inside the Huygens’ surfaces is still a 60 cell side
cube centered in the domain. The normalized magnitude of the
electric field at constant elevation 175 m over the soil and the
hill is displayed in Fig. 8. Both methods are in agreement better
than 0.3 dB and a relative error of 3.39%, which demonstrates
the accuracy of the hybridization technique when an obstacle is
present.

Fig. 8. Solution comparison between the NISP—3-D FDTD hybridization and
the 3-D FDTD in this vicinity of the source and at a constant elevation 175 m
over the soil. A hill is located at 3.4 km, electric field values are plotted in
dBV·m−1 unit.

B. Study of Ground Wave Propagation With Obstacles

To complete the study of obstacles along the ground wave
propagation path, several natural elements are remotely located
from the current element. The FDTD parameters, the source,
the ground, the distance, and the size of the Huygens’ surface
are the same in all these computations. The current element
at f = 100 kHz is dl = 25 m long and at height h = 25 m.
The FDTD mesh for each hybridization implementation is a
100 cells side cube with the mesh size ∆x = ∆y = 75 m and
∆z = 25 m; the ground surface (z = 0 m) is located at the mid-
dle of the z-directed cells. The volume inside the Huygens’
surface is a 60 cells side cube and is located at 23 km from the
source. Since the volume bounded by the Huygens’ surfaces is
the same for all the following studies, the incident electromag-
netic field computed by NISP is stored in a file. Thus, only the
nature of the obstacle changes between each computation which
will save time. The chosen obstacles in this section are a hill, a
valley, a lake, and a forest.

First, the geometry of the hill previously used for the vali-
dation is translated along x-axis (Fig. 7). Thus the total electric
field around the same hill, remotely located at 24.5 km from the
current element is computed in the XOZ vertical plane at y = 0
(Fig. 9) and XOY horizontal plane at z = 25 m (Fig. 10). Then
these values of the total electric field in the air are compared to
the case of a flat homogeneous soil with (8) applied in the XOZ
vertical plane at y = 0 and z > 0

η = |Enatural element|dBV·m−1 − |Eflat soil|dBV·m−1 . (8)

Results are shown in Fig. 11, in which a field enhancement
brought about by the natural element is determined by the pos-
itive values of η and conversely a decrease by a negative value.
On the top of the hill, a 3-dB field enhancement is observed
and some interferences appear in front of it (1.5 dB). Further
than the obstacle, after a shaded area there is no visible effect
beyond the distance of 27 km as η ≈ 0 dB. Now other natu-
ral elements such as valley, a lake, and a forest are computed
at the same distance of 23 km from the current element. The
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Fig. 9. Magnitude of the electric field, computed in the XOZ vertical plane,
with the hybridization at 23 km of the antenna. A hill is located at 24.5 km and
the values are plotted in dBV·m−1.

Fig. 10. Magnitude of the electric field, computed in the XOY horizontal plane
at z = 25 m, with the hybridization at 23 km of the antenna. A hill is located
at 24.5 km and the values are plotted in dBV·m−1.

Fig. 11. Difference between the value of the electric field in the air with the hill
and the homogeneous flat soil. It is computed with (5) in the XOZ vertical plane
at z > 0 at 23 km of the antenna. The natural element is located at 24.5 km and
the values of η are plotted in dB.

Fig. 12. Difference between the value of the electric field in the air with the
valley and the homogeneous flat soil. It is computed with (5) in the XOZ ver-
tical plane at z > 0 at 23 km of the antenna. The natural element is located at
24.5 km and the values of η are plotted in dB.

Fig. 13. Difference between the values of the electric field in the air with a
lake and the homogeneous flat soil. They are computed with (5) in the XOZ
vertical plane at z > 0 at 23 km of the antenna. The natural element is located
at 24.5 km and the values of η are plotted in dB.

dimensions of the valley are the same as those of previous hill,
the dielectric constants and the z-axis are reversed in order to
build the hollow in the ground. In Fig. 12, contrasts are oppo-
site to the previous case. The lake is a square-shaped dielectric
block with dielectric constants (ǫr = 80;σ = 5 · 10−2 S·m−1).
It is located at the surface of the ground and its dimensions are
1.5-km large and 100-m deep (Fig. 13).

The forest is a 25-m height square-shaped dielectric block
with dielectric constants [27] (ǫr = 1.065;σ = 10−3 S·m−1).
It is located at the surface of the ground and its dimensions are
1.5-km large. Edge enhancements are presented in Fig. 14.

The results shown do not exceed 3 dB of contrast in all
cases. One can conclude from these observations that all natural
elements have an effect on the electromagnetic field which is in
their vicinity: from 0.3 dB with the lake, 1 dB with the forest, to
3 dB with the hill and the valley. A little further on the propa-
gation path of the ground wave, η approaches the zero value
for all natural elements, the electric field is the same as the
case of a flat homogeneous half-plane. Therefore, the presence
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Fig. 14. Difference between the value of the electric field in the air with the
forest and the homogeneous flat soil. It is computed with (5) in the XOZ ver-
tical plane at z > 0 at 23 km of the antenna. The natural element is located at
24.5 km and the values of η are plotted in dB.

of these obstacles does not affect the long-range ground wave
propagation.

IV. CONCLUSION

In this paper, a method to study the propagation of ground
wave at low frequencies with the presence of an irregular half-
space has been studied with a 3-D approach.

First, the NISP algorithm was proposed to compute the elec-
tromagnetic field emitted by a vertical current element over an
infinite flat ground and validated for the relevant values of soils
parameters.

Then, an hybrid NISP—3-D FDTD method was introduced
to compute the field in the vicinity of remote irregularities and
validated both in the case of an infinite half-space and in the
presence of a hill. This study includes the exploitation of this
technique to treat various kinds of ground irregularities with
emphasis on the three dimensions disturbance effects. These
irregularities are computed over simplified models, located at
24.5 km from the current element and computed with the
hybridization technique. The obtained values of the total elec-
tric field are compared to the case of a flat homogeneous soil.
The observed natural elements create a field enhancement up
to 3 dB in its vicinity but they do not affect the ground wave
propagation beyond them.
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