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Abstract. It is well-known, since [12], that cells in the primary visual
cortex V1 do much more than merely signaling position in the visual field:
most cortical cells signal the local orientation of a contrast edge or bar –
they are tuned to a particular local orientation. This orientation tuning
has been given a mathematical interpretation in a sub-Riemannian model
by Petitot, Citti, and Sarti [14,6]. According to this model, the primary
visual cortex V1 lifts grey-scale images, given as functions f : R2 → [0, 1],
to functions Lf defined on the projectivized tangent bundle of the plane
PTR2 = R2 × P1. Recently, in [1], the authors presented a promising
semidiscrete variant of this model where the Euclidean group of roto-
translations SE(2), which is the double covering of PTR2, is replaced by
SE(2, N), the group of translations and discrete rotations. In particu-
lar, in [15], an implementation of this model allowed for state-of-the-art
image inpaintings.
In this work, we review the inpainting results and introduce an applica-
tion of the semidiscrete model to image recognition. We remark that both
these applications deeply exploit the Moore structure of SE(2, N) that
guarantees that its unitary representations behaves similarly to those of
a compact group. This allows for nice properties of the Fourier transform
on SE(2, N) exploiting which one obtains numerical advantages.

1 The semi-discrete model

The starting point of our work is the sub-Riemannian model of the primary
visual cortex V1 [14,6], and our recent contributions [3,1,2,4]. This model has
also been deeply studied in [8,11]. In the sub-Riemannian model, V1 is modeled
as the projective tangent bundle PTR2 ∼= R2 × P1, whose double covering is
the roto-translation group SE(2) = R2 o S1, endowed with a left-invariant sub-
Riemannian structure that mimics the connections between neurons. In particu-
lar, grayscale visual stimuli f : R2 → [0, 1] feeds V1 neurons N = (x, θ) ∈ PTR2

with an extracellular voltage Lf(ξ) that is widely accepted to be given by
Lf(ξ) = 〈f, Ψξ〉. The functions {Ψξ}ξ∈PTR2 are the receptive fields. A good fit
is Ψ(x,θ) = π(x, θ)Ψ where Ψ is the Gabor filter (a sinusoidal multiplied by a
Gaussian function) and π(x, θ)Ψ(y) := Ψ(R−θ(x− y)).



In this work we consider a slightly different setting, by assuming that neurons
are sensible only to a finite (small) number of orientations. This assumption is
based on the observation of the organization of the visual cortex in pinwheels:
we conjecture that there are topological constraints that prevent the possibility
of detecting a continuum of directions even when sending the distance between
pinwheels to zero. This assumption leads us to consider the group of translations
and discrete rotations SE(2, N) = R2 o ZN , for some N ∈ N, where the action
of k ∈ ZN on R2 is the rotation of angle 2πk/N .

To be more precise, our model is based on the following assumptions:

1. Grayscale visual stimuli coming from the retina are modeled as functions
f ∈ L2(R2);

2. The primary visual cortex is modeled as SE(2, N) and its activation patterns
as ϕ ∈ L2(SE(2, N));

3. There exists a linear function L : L2(R2) → L2(SE(2, N)) that lifts vi-
sual stimuli to activation patterns in the primary visual cortex, of the form
Lf(x, k) = 〈f, π(x, k)Ψ〉 for some Ψ ∈ L2(R2).

4. An excited neuron activate neighboring neurons according to the SDE

dAt = X1dWt + dΘt, (1)

where X1(x, k) = cos(2πk/N)∂x1
+ sin(2πk/N)∂x2

, W is a Wiener process
and Θ is a Poisson jump process on ZN with jump probability equal to 1/2
on both sides.

Remark 1. Observe that the lift operator L respects the shift-twist symme-
try of V1. (See e.g. [5].) That is, letting Λ be the left regular representation
of SE(2, N) in L2(SE(2, N)) (i.e., [Λ(x, k)ϕ](y, h) = ϕ((x, k)−1(y, h))) and π
the quasi-regular representation of SE(2, N) in L2(R2) (i.e., [π(x, k)f ](y) =
f(R−k(y − x))), it holds Λ(x, k)Lf = L(π(x, k)f).

2 Image inpainting

The algorithm we now present for image inpainting is inspired by the neurophys-
iological process of amodal completion, that is, the perception of a shape even
when it is not actually drawn. A famous example is that of the Kanizsa triangle.
Our working assumption is that amodal completion is caused by the following
neurophysiological principle: Corrupted images are reconstructed by the natural
diffusion in V1, induced by the SDE (1), which for small times follows the less
expensive paths (geodesics) to activate unexcited neurons.

From the practical point of view, images are reconstructed through the fol-
lowing algorithm. For details see [1].



Algorithm 1: Image inpainting algorithm

Data: Input (corrupted) image f ∈ L2(R2). The corrupted points are
assumed to be those x’s such that f(x) = 0.

Result: Inpainted image f̃ ∈ L2(R2).

1 h ← GaussianFilter(f)
2 Lh ← Lift(h)
3 Lh ← EvolveDiffusion(Lh)
4 return Project(Lh)

A description of the 4 functions used in Algorithm 1 follows.

1. GaussianFilter: Smooths the input via a Gaussian filter. As explained in
[2], the result of this procedure is generically a Morse function (i.e. with
isolated non-degenerate critical points only).

2. Lift: Given a Morse function h lifts it to Lh defined on SE(2, N), obtained
as follows. We let θ(x) ∈ [0, π) to be orientation of ∇h(x), when it is well
defined. Then, we define Lh(x, k) = h(x) if k ∼= θ(x) and 0 otherwise Here,
the formulation k ∼= θ(x) means that 2πk/N is the nearest point to θ(x)
among {2π`/N | ` ∈ ZN}. Since h is a Morse function, θ(x) is not well
defined on isolated points. In this case, we let Lh(x, h) := h(x)/N for any
h ∈ ZN .

3. EvolveDiffusion: Given a function Lh on SE(2, N) evolves it according
to (1). An efficient way to compute this diffusion is presented in [1], and
recalled in Algorithm 2.

4. Project: Given a function ϕ on SE(2, N) returns its projection on R2 de-
fined as Pϕ(x) := maxk∈ZN ϕ(x, k).

Remark 2. The Lift procedure detailed above is not obtained via a convolution
with an oriented wavelet as it is supposed to be the case in V1. However, it can be
seen as the limit when the support of the wavelet tends to zero and experiments
have shown that it yields more precise reconstructions.

Algorithm 2: Evolution of the diffusion, as explained in [1]

1 Function EvolveDiffusion:
Data: A function ϕ on SE(2, N)
Result: The evolved function ϕ̃

2 For k = 0, . . . , N − 1 let ϕ̂k ← F(ϕ(·, k))

3 For x ∈ R2 let {ψ̂k(x)}k ← Solution of an ODE with datum {ϕ̂k(x)}k
4 For k = 0, . . . , N − 1 let ψ(·, k)← F−1(ψ̂k)
5 return ψ

6 end

In Figure 1 we present two different inpainting results. While the first one is
obtained using Algorithm 1, to produce the second one we added some heuristic
procedure (detailed in [1,15]) in order to prevent the diffusion from modifying
the non-corrupted part of the image.



Fig. 1. Two inpaintings.

3 Image recognition

The fact that images are lifted to V1, which has the (group) structure of SE(2, N)
allows for a natural description of the process of invariant image recognition.
(That is, recognizing images under the roto-translation action of SE(2, N).)
Namely, we propose to use the bispectrum as an invariant under the action of
SE(2, N). These invariants are well established in statistical signal processing
[7] and have been introduced and studied in the context of SE(2, N) and of
compact groups in [18]. We mention also [13], devoted to the bispectrum on
homogeneous spaces of compact groups.

Let us introduce some generalities on the (generalized) Fourier transform on
SE(2, N). Since this group is a non-commutative unimodular semi-direct prod-
uct, computing the Fourier transform of an L2(SE(2, N)) requires the knowledge
of the (continuous) irreducible unitary representations Tλ of SE(2, N). Here, λ
is an index taking values in the dual object of SE(2, N), which is denoted by
̂SE(2, N) and is the set of equivalence classes of irreducible unitary representa-

tions. (See, e.g., [10].) Exploiting the semi-direct product structure of SE(2, N),
by Mackey machinery this dual can be shown to be the union of the slice S ⊂ R2,
which in polar coordinates is R∗+× [0, 2π/N), to which we glue ZN on 0. Since it
is possible to show that to invert the Fourier transform it is enough to consider
representations parametrized by S, we will henceforth ignore the ZN part of the
dual. A crucial fact for the following is that SE(2, N) is a Moore group, that
is, all the Tλ act on finite-dimensional spaces, that is CN for λ ∈ S. This is
not true for the roto-translation group SE(2) and is indeed one of the main
theoretical advantages of the semi-discrete model.

The matrix-valued Fourier coefficient of a function ϕ ∈ L2(SE(2, N)) ∩
L1(SE(2, N)) for λ ∈ ̂SE(2, N) is ϕ̂(Tλ) =

∫
SE(2,N)

f(a)Tλ(a−1) da. This is

essentially the same formula for the Fourier transform on R, which is a scalar
and is obtained using the representations Tλ(x) = e2πixλ. As usual, the above

formula can be extended to a linear isometry F : L2(SE(2, N))→ L2( ̂SE(2, N)).
The bispectrum of ϕ is then the quantity

Bϕ(λ1, λ2) = ϕ̂(Tλ1)⊗ ϕ̂(Tλ2) ◦ ϕ̂(Tλ1 ⊗ Tλ2)∗ ∀(λ1, λ2) ∈ S.

This quantity can be interpreted as the Fourier transform of the triple correlation
function, see [13].



In a forthcoming paper we will present (in a more general setting) the fol-
lowing result.

Theorem 1. The bispectral invariants discriminate on the set G of functions
ϕ ∈ L2(SE(2, N)) such that the matrices ϕ̂(Tλ) are invertible for a.e. λ ∈ S.
That is, ϕ1, ϕ2 ∈ G are such that Bϕ1

= Bϕ2
if and only if ϕ1 = Λ(x, k)ϕ2 for

some (x, k) ∈ SE(2, N).

Unfortunately, when considering the lifts of visual stimuli f ∈ L2(R2) under

lifts , an easy computation shows that L̂f(Tλ) = ωf (λ)⊗ ωΨ (λ) where ωf (λ) =

(f̂(R−kλ))k∈ZN ∈ CN . This immediately implies that rank L̂f(Tλ) ≤ 1 and
hence that rangeL ∩ G = ∅.

Using the previous formula for the Fourier transform of lifted functions and
under mild assumptions on the wavelet Ψ one can show that the bispectrum
B(λ1, λ2) is completely determined by the quantity

I2f (λ1, λ2) = 〈ωf (λ1)� ωf (λ2), ωf (λ1 + λ2)〉. (2)

It is still an open question (although we conjecture it to be true) whether the
bispectrum discriminates on a “big” set of rangeL.

To bypass the difficulty posed by the non-invertibility of the Fourier trans-
form for lifted functions, we are led to consider the rotational bispectrum:

B̃ϕ(λ1, λ2, k) := ϕ̂(TRhλ1)⊗ ϕ̂(Tλ2)◦ ϕ̂(Tλ1 ⊗Tλ2)∗ ∀(λ1, λ2) ∈ S,∀h ∈ ZN .

Observe that the rotational bispectrum is invariant only under the action of
ZN ⊂ SE(2, N) but not under translations. To avoid this problem, let us consider
the set A ⊂ L2(R2) of compactly supported functions with non-zero average5.
We can then define the barycenter cf ∈ R2 of f ∈ A as

cf =
1

avg f

(∫
R2

x1f(x) dx,

∫
R2

x2f(x) dx

)
, j = 1, 2,

and the centering operator Φ : A → A as Φf(x) := f(x− cf ). Then, considering
the lift Lc = L ◦ Φ, we have that Lcf = Lcg if and only if g is a translate of f .

Finally, we have the following.

Theorem 2. Let R ⊂ L2(R2) be the set of compactly supported functions f
such that

1. f̂(λ) 6= 0 for a.e. λ ∈ R2;
2. the circulant matrix associated with ωf (λ) is invertible for a.e. λ ∈ R2.

Then, if Ψ ∈ R the rotational bispectrum discriminates on Lc(R ∩A). That is,
for any f, g ∈ R ∩ A it holds that B̃Lcf = B̃Lcg if and only if f = π(x, k)g for
some (x, k) ∈ SE(2, N).

Moreover, since set R is residual in the compactly supported functions L2(R2),
the rotational bispectrum is generically discriminating on the compactly sup-
ported functions of L2(R2).

5 Recall that the average of f ∈ L1(R2) is avg f =
∫
R2 f(x) dx.



Let us observe that, if Ψ ∈ R, then B̃Lcf (λ1, λ2, k) is completely determined
by the quantities

I2f (λ1, λ2, k) = 〈ωΦf (Rkλ1)� ωΦf (λ2), ωΦf (λ1 + λ2)〉.

In particular, computing the rotational bispectrum requires N times more oper-
ations than computing the bispectrum.

3.1 Implementation and numerical experiments

We now describe how to efficiently compute the bispectrum invariants6. The
same method, with the obvious modifications, also works for the computation
of the rotational bispectrum. We then show that the difference in norm of the
bispectrum and the rotational bispectrum strongly separates images of different
objects. The next natural step, that we will tackle in a forthcoming paper, is to
use these invariants in machine learning algorithms as SVM’s or AdaBoosts.

As previously remarked, to compute the bispectrum invariants it is enough
to compute the quantities I2f (λ1, λ2) given in (2). Thus, the main obstacle is to
efficiently and precisely compute the vectors ωf (λ) for a given λ. This vector is
obtained by evaluating the Fourier transform of f on the orbit of λ under the
action of the rotations R 2πk

N
for k ∈ ZN .

Since the Fourier transform f̂ of an image is given as a discrete matrix,
the usual way to proceed would be to implement rotations as functions on the
plane and then evaluate f̂(R 2πk

N
λ) by bilinear interpolation on the values of f̂ .

However, this requires a lot of matrix products and, especially for values of λ
very near to 0 where most of the information for natural images is contained, is
prone to errors.

We thus chose to consider only N = 6 and to work with images composed of
hexagonal pixels. This choice was motivated by the following reasons:

– It is well-known that retinal cells are distributed in an hexagonal grid.
– Hexagonal grids are invariant under the action of Z6 and discretized trans-

lations, which is the most we can get in the line of the invariance w.r.t.
SE(2, 6).

– We can exploit the Spiral Architecture introduced by Sheridan [16,17]. This
is a way to index hexagons of the grid with only one index which allows to
introduce an operation, spiral multiplication, that, with the same complexity
of a normal multiplication, computes rotations by multiples π/3.

– There exist efficient methods [9] to simulate hexagonal pixels by oversam-
pling the image by a ratio of 7 and then using so-called hyperpels composed
of 56 pixels to approximate an hexagonal pixel.

Indeed, once the spiral addressing described in [9] has been implemented
in the function SpiralAddr and the spiral multiplication in SpiralMult, to
evaluate ωf (λ) it suffices to apply Algorithm 3.

6 The iPython notebook with the code is available at http://nbviewer.ipython.org/
github/dprn/GSI15/blob/master/Invariants-computation.ipynb.



Algorithm 3: Evaluation of ωf (λ)

1 Function Omega(F,λ):
Data: F: FFT of the input image f oversampled by a factor of 7
λ: The spiral address of the hexagon where to compute ωf (λ)
Result: The vector ωf (λ)

2 For k = 0, . . . , N − 1 let ωf (λ)k ← SpiralAddr(F,SpiralMult(λ,k))
3 return ωf (λ)

4 end

To test the invariants, we built a library composed of 5 geometrical figures
rotated of angles πk/3, k ∈ Z6, and 14 natural images and computed the invari-
ants corresponding to λ1 and λ2 chosen between the subset of central hexagons
of the grid shown in Figure 2, obtaining a vector I2f of invariants with 49 ele-
ments. Then, for each geometrical figure f , we computed the difference in norm
‖I2f −I2g‖ between its invariants and those of another image g, for all the images.
In the second and third column of Table 3 we reported the maximal difference
w.r.t. the rotated of the same image and the minimal difference w.r.t. the other
images. In particular, since the difference between these two values is at least in
the order of 102, we observe that already simply using the norm seems to be a
good discriminating factor for these simple images.

We then repeated the same test with the rotational bispectrum, whose results
are reported in the fourth and fifth column of Figure 3. We point out that,
accordingly to our conjecture regarding the completeness of the bispectrum,
considering the rotational invariants do not seem to add discriminating power.

Fig. 2. Hexagons used in
the computation of the in-
variants. The covered area
corresponds to roughly 11
square pixels.

bisp. rot. bisp.
Max. Min Max. Min

Triangle 9.2× 1010 7.0× 1012 2.2× 1011 1.7× 1013

Rectangle 7.9× 1010 8.2× 1012 1.9× 1011 2.0× 1013

Ellipse 7.4× 1010 7.1× 1012 1.8× 1011 1.7× 1013

Star 7.2× 1010 5.5× 1012 1.7× 1011 1.3× 1013

Diamond 3.7× 1010 5.4× 1012 9.2× 1010 1.3× 1013

Fig. 3. Results of the comparisons of the invari-
ants.

4 Conclusions

In this work we presented a framework for image reconstruction and invariant
recognition. We remark that the numerical work for the image recognition part



has just started. Presently, we are testing the bispectrum as a source of invariant
for different machine learning algorithms. In particular, the AdaBoost algorithm
seems very promising and well adapted to the problem.
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