Mohamadreza Ahmadi 
  
Giorgio Valmorbida 
  
Antonis Papachristodoulou 
email: antonis@eng.ox.ac.uk
  
  
  
  
  
  
Safety Verification for Distributed Parameter Systems Using Barrier Functionals I

Keywords: Safety Verification, Barrier Certificates, Sum-of-Squares Programming, Distributed Parameter Systems

We study the safety verification problem for a class of distributed parameter systems described by partial differential equations (PDEs), i.e., the problem of checking whether the solutions of the PDE satisfy a set of constraints at a particular point in time. The proposed method is based on an extension of barrier certificates to infinite-dimensional systems. In this respect, we introduce barrier functionals, which are functionals of the dependent and independent variables. Given a set of initial conditions and an unsafe set, we demonstrate that if such a functional exists satisfying two (integral) inequalities, then the solutions of the system do not enter the unsafe set. Therefore, the proposed method does not require finite-dimensional approximations of the distributed parameter system. Furthermore, for PDEs with polynomial data, we solve the associated integral inequalities using semi-definite programming (SDP) based on a method that relies on a quadratic representation of the integrands of integral inequalities.

Introduction

Many real-world engineering systems are described by partial differential equation (PDE) models, which include derivatives with respect to both space and time. For example, mechanics of fluid flows [START_REF] Doering | Applied Analysis of the Navier-Stokes Equations[END_REF], dynamics of spatially inhomogeneous robot swarms [START_REF] Berman | Design of control policies for spatially inhomogeneous robot swarms with application to commercial pollination[END_REF], satellite docking systems [START_REF] Farahani | Constrained autonomous satellite docking via differential flatness and model predictive control[END_REF] and the magnetic flux profile in a tokamak [START_REF] Gahlawat | Bootstrap current optimization in Tokamaks using sum-of-squares polynomials[END_REF] are all described by PDEs. However, compared to systems described by ordinary differential equations (ODEs), the analysis of PDE systems is more challenging. For instance, the solutions to PDEs belong to infinite dimensional (function) spaces, where the norms are not equivalent, as opposed to Euclidean spaces for ODEs. Hence, properties such as stability [START_REF] Papachristodoulou | On the analysis of systems described by classes of partial differential equations[END_REF] and input-output gains [START_REF] Ahmadi | Dissipation inequalities for the analysis of a class of PDEs[END_REF] may differ from one norm to another.

One interesting and unresolved problem in the analysis of PDEs is safety verification. That is, given the set of initial conditions, check whether the solutions of the PDE satisfy a set of constraints, or, in other words, whether they are safe with respect to an unsafe set. Reliable safety verification methods are fundamental for designing safety critical systems, such as life support systems [START_REF] Glavaski | A nonlinear hybrid life support system: Dynamic modeling, control design, and safety verification[END_REF], and wind turbines [START_REF] Wisniewski | Certificate for safe emergency shutdown of wind turbines[END_REF]. The safety verification problem is well-studied for ODE systems (see the survey paper [START_REF] Guéguen | Safety verification and reachability analysis for hybrid systems[END_REF]). Methods based on the approximation of the reachable sets are considered in [START_REF] Kurzhanski | Ellipsoidal techniques for reachability analysis: internal approximation[END_REF] for linear systems and in [START_REF] Tomlin | Computational techniques for the verification of hybrid systems[END_REF] for nonlinear systems. Another method for safety verification, which does not require the approximation of reachable sets, uses barrier certificates.

Barrier certificates [START_REF] Prajna | Barrier certificates for nonlinear model validation[END_REF] were introduced for model invalidation of ODEs with polynomial vector fields and have been used to address safety verification of nonlinear and hybrid systems [START_REF] Prajna | A framework for worst-case and stochastic safety verification using barrier certificates, Automatic Control[END_REF] and safety analysis of time-delay systems [START_REF] Prajna | Methods for safety verification of time-delay systems[END_REF]. Exponential barrier functions were proposed in [START_REF] Steinhardt | Finite-time regional verification of stochastic non-linear systems[END_REF] for finite-time regional verification of stochastic nonlinear systems. Moreover, compositional barrier certificates and converse results were studied in [START_REF] Sloth | On the existence of compositional barrier certificates[END_REF] and [START_REF] Prajna | On the necessity of barrier certificates[END_REF][START_REF] Wisniewski | Converse barrier certificate theorems[END_REF], respectively.

The application of barrier certificates goes beyond just analysis. Inspired by the notion of control Lyapunov functions [START_REF] Artstein | Stabilization with relaxed controls[END_REF] and Sontag's formula [START_REF] Sontag | A universal construction of Artsteins theorem on nonlinear stabilization[END_REF], Weiland and Allgöwer [START_REF] Wieland | Constructive safety using control barrier functions[END_REF] introduced control barrier functions (CBFs) and formulated a controller synthesis method that ensures safety with respect to an unsafe set. This has sparked several subsequent studies on control barrier functions [START_REF] Ames | Control barrier function based quadratic programs with application to adaptive cruise control[END_REF][START_REF] Romdlony | Stabilization with guaranteed safety using control Lyapunov-Barrier Function[END_REF].

In this paper, we study the safety verification problem for PDEs using barrier certificates. The proposed method employs a functional of the dependent and independent variables called the barrier functional. We show that the safety verification problem can be cast as the existence of a barrier functional satisfying a set of integral inequalities.

For PDEs with polynomial data, we demonstrate that the associated integral inequalities can be solved using semi-definite programming (SDP) based on the results in [START_REF] Valmorbida | Stability analysis for a class of partial differential equations via semidefinite programming[END_REF], which were also used in [START_REF] Ahmadi | Dissipation inequalities for the analysis of a class of PDEs[END_REF] to solve dissipation inequalities for PDEs and in [START_REF] Ahmadi | A convex approach to hydrodynamic analysis[END_REF] for input-output analysis of fluid flows. In this respect, we formulate an S-procedure-like scheme for checking integral inequalities subject to a set of integral constraints. The proposed method is illustrated by two examples.

A preliminary application of the proposed method to bounding nonlinear output functionals of nonlinear time-dependent PDEs was discussed in [START_REF] Ahmadi | Barrier functionals for output functional estimation of PDEs[END_REF]. In this regard, an scheme for bounding linear output functionals of linear stationary PDEs using SDPs was presented in [START_REF] Bertsimas | Bounds on linear PDEs via semidefinite optimization[END_REF] based on moment relaxation techniques. In addition, a momentrelaxation-based method was formulated in [START_REF] Mevissen | Moment and SDP relaxation techniques for smooth approximations of problems involving nonlinear differential equations[END_REF] to find smooth approximations of the solutions to nonlinear stationary PDEs using a finite-difference discretization of the domain and maximum entropy estimation. This paper is organized as follows. In the next section, we present some preliminary definitions. In Section 3, we describe a method based on barrier functionals for safety verification of PDEs. In Section 4, we discuss the computational formulation of the barrier functionals method and describe an scheme for verifying integral inequalities subject to integral constraints. We illustrate the proposed results using two examples in Section 5 and conclude the paper in Section 6.

Notation:

The n-dimensional Euclidean space is denoted by R n and the set of nonnegative reals by R 0 . The n-dimensional set of positive integers is denoted by N n , and the n-dimensional space of non-negative integers is denoted by N n 0 . We use M 0 to denote the transpose of matrix M . The set of real symmetric matrices is denoted 

S n = {A 2 R n⇥n | A = A 0 }.
we use f (x, •) 2 C k [x]
to denote the k-times continuous differentiability of f with respect to variable x. If p 2 C 1 (⌦), then @ x p denotes the derivative of p with respect to variable x 2 ⌦. In addition, we adopt Schwartz's multi-index notation. For u 2

C ↵ (⌦; R m ), ⌦ 2 R n , ↵ 2 N 0 , defining matrix A 2 N (m,↵)⇥n 0 , (n, ↵) = (n+↵)! n!↵!
(denote its ith row A i ) which contains a set of ordered elements satisfying

⌃ j A ij  ↵,
we have

D ↵ u := u 1 , @ x u 1 , . . . , @ A x u 1 , . . . , u m , @ x u m , . . . , @ A x u m , where @ Ai x (•) = @ Ai1 x (•) • • • @ Ain x (•).
We use the same multi-index notation to denote 55 a vector of monomials up to degree ↵ on a variable x as ⌘ ↵ (x). For instance, for

x 2 R 2 , ⌘ 2 (x) = (1, x 1 , x 2 , x 2 1 , x 1 x 2 , x 2 
2 ). The Hilbert space of functions defined over the domain ⌦ with the norm kuk

W p ⌦ = R ⌦ P p i=0 (@ xi u) 0 (@ xi u) dx 1 2 is denoted W p ⌦ . By f 2 L 2 (⌦;
), we denote a square integrable function mapping ⌦ ✓ R n to ✓ R m . Also, for an operator A , Dom(A ) and Ran(A ) denote its domain and 60 range, respectively. The notation d•e denotes the ceiling function.

Preliminaries

In this section, we present some definitions and preliminary results. We study a class of forward-in-time PDE systems. Let U be a Hilbert space. Consider the follow-ing differential equation

8 > > > > > > > > < > > > > > > > > : @ t u(t, x) = F u(t, x), x 2 ⌦ ⇢ R n , t 2 [0, T ], y(t) = H u(t, x) u(0, x) = u 0 (x) 2 U 0 ⇢ Dom(F ) u 2 U b (1) 
where U b is a subspace of U , the state-space of system (1), defined by the boundary conditions, H : U ! R and Dom(H ) ◆ U, the state-space of system (1). It is assumed that ( 1) is well-posed. Appendix A reviews some aspects of the well-posedness of PDEs. While these results are important, studying the well-posedness of system ( 1)

is beyond the scope of the current paper.

We call the set

Y u = u 2 U | H u  0 , the unsafe set.
Consider the following properties of trajectories related to an initial set U 0 and an unsafe set Y u .

Definition 2.1 (Safety at Time T ). Let u 2 U. For a set U 0 ✓ U, an unsafe set Y u , satisfying U 0 \ Y u = ;, and a positive scalar

T , system (1) is Y u -safe at time T , if the solutions u(t, x) of system (1) satisfy y(T ) / 2 Y u for all u(0, x) 2 U 0 . Definition 2.2 (Safety ). System (1) is Y u -safe, if it is safe with respect to Y u in the sense of Definition 2.1 for all T > 0.
We are interested in solving the following problem:

Problem 2.3. Given sets Y u , U 0 and a constant T > 0, verify that system (1) is Y u - safe at time T .
To this end, we define a time-dependent functional of the states of the PDE and time

B(t, u) = B(t)u, (2) 
where B(t) : Dom(B) ! R. We refer to this functional as the barrier functional.

Note that this extension of barrier certificates [START_REF] Prajna | Barrier certificates for nonlinear model validation[END_REF] enables us to address sets that are defined on infinite-dimensional spaces. In the subsequent section, we show that the barrier functional provides the means to characterize a barrier between the set of initial conditions and the unsafe set.

Barrier Functionals for Safety Verification of PDEs

In this section, we present conditions to obtain certificates that trajectories starting in the set U 0 are Y u -safe at a particular time instant T . Such a formulation also allows obtaining performance estimates whenever the unsafe set represents a performance index.

Next, we provide a solution to Problem 2.3 based on the construction of barrier functionals satisfying a set of inequalities.

Theorem 3.1 (Safety Verification for Forward PDE Systems). Consider the PDE system described by [START_REF] Doering | Applied Analysis of the Navier-Stokes Equations[END_REF]. Let u 2 U b . Given a set of initial conditions U 0 ✓ U b , an unsafe set Y u , such that U 0 \Y u = ;, and a constant T > 0, if there exists a barrier functional B(t, u(t, x)) 2 C 1 [t] as in [START_REF] Berman | Design of control policies for spatially inhomogeneous robot swarms with application to commercial pollination[END_REF], such that the following inequalities hold

B(T, u(T, x)) B(0, u 0 (x)) > 0, 8u(T, x) 2 Y u , 8u 0 2 U 0 , (3a) 
dB(t, u(t, x)) dt  0, 8t 2 [0, T ], 8u 2 U b , (3b) 
where d(•) dt denotes the total derivative, along the solutions of (1), then the solutions of (1) are Y u -safe at time T (cf. Definition 2.1).

Proof:. The proof is by contradiction. Assume there exists a solution of (1) such that, at time T , u(T, x) 2 Y u and inequality (3a) holds. From (3b), it follows that for all u 2 U. This contradicts (3a). ⇤ Remark 3.2. The level sets of B(t, u(t, x)) B(0, u 0 (x)) represent barrier surfaces in the U space separating U 0 and Y u such that no solution of (1) starting from U 0 is 95 in Y u at time T (hence, the term "barrier functional"). This property is illustrated in Figure 1.

dB(t, u(t, x)) dt  0, (4) 
t 0 kuk H q ⌦ Y u T U 0 B(t, u(t, x)) B(0, u0(x)) = 0
Theorem 3.1 is concerned with conditions for safety verification with respect to the unsafe set Y u at a particular time T > 0. The next corollary follows from Theorem 3.1 and gives conditions for safety verification with respect to an unsafe set Y u for all time 100 t > 0. In this case, the barrier functional can be independent of t.

Corollary 3.3. Consider the PDE system described by [START_REF] Doering | Applied Analysis of the Navier-Stokes Equations[END_REF]. Assume u 2 U b . Given an unsafe set Y u ⇢ U, such that U 0 \ Y u = ;, if there exists a barrier functional B(u(t, x)) as in (2) such that

B(u(t, x)) B(u 0 (x)) > 0, 8u 2 Y u , 8u 0 2 U 0 , (5a) 
dB(u(t, x)) dt  0, 8u 2 U, (5b) 
along the solutions of (1), then the solutions of PDE (1) are Y u -safe (cf. Definition 2.2).

Proof:. The proof follows the same lines as the proof of Theorem 3.1. Assume that there exists a solution u(t, x) to (1) such that, for some t > 0, we have u(t, x) 2 Y u .

Then, from (5a), it follows that B(u(t, x)) B(u 0 (x)) > 0. On the other hand,

105
integrating inequality (5b) from 0 to t implies that B(u(t, x)) B(u 0 (x))  0, which is a contradiction. Thus, since t is arbitrary, the solutions to (1) are Y u -safe for all time.

⇤

We conclude this section by illustrating Corollary 3.3 with an analytical example that uses a barrier functional to bound a performance index. 

@ t u = u, x 2 ⌦, t > 0, (6) 
subject to boundary conditions u| @⌦ = 0 and

u(0, x) 2 U 0 = ⇢ u 0 2 U | Z ⌦ |ru 0 | 2 d⌦  1 . ( 7 
)
where is the Laplacian operator. The output mapping is given by

y(t) = 2 Z ⌦ u 2 (t, x) d⌦,
where 0. Then, the unsafe set is described as

Y u = u 2 U | y(t) = 2 R ⌦ u 2 (t, x) d⌦ < 0 .
We are interested in finding the minimum such that no solution of (6) enters Y u for all u(0, x) 2 U 0 .

We consider the barrier functional (2) with

B : W 1 ⌦ ! R 0 u 7 ! R ⌦ (ru) 0 ru d⌦, that is, B(u(t, x)) = R ⌦ (ru) 0 ru d⌦.
We first check inequality (5b) along the solutions of (6):

dB(u(t, x)) dt = Z ⌦ 2ru@ t (ru) d⌦ = 2 (ru@ t u) | @⌦ 2 Z ⌦ u@ t u d⌦ = 2 Z ⌦ ( u) 2 d⌦  0,
where, in the second equality above, integration by parts and, in the third equality, the boundary conditions are used. Thus, inequality (5b) is satisfied. At this point, let us check inequality (5a). We have

B(u(t, x)) B(u 0 ) = Z ⌦ |ru| 2 d⌦ Z ⌦ |ru 0 | 2 d⌦ Z ⌦ |ru| 2 d⌦ 1 C(⌦) Z ⌦ u 2 d⌦ 1,
where u 0 2 U 0 as in [START_REF] Glavaski | A nonlinear hybrid life support system: Dynamic modeling, control design, and safety verification[END_REF] is applied to obtain the first inequality, C(⌦) > 0, and the Poincaré inequality [START_REF] Payne | An optimal poincare inequality for convex domains[END_REF] is used in the second inequality. Then, it follows that whenever 2 > 1 C(⌦) , we have B(u(t, x)) B(u 0 ) > 0, and thus, from Theorem 3.1,

system (6) is Y u -safe. Therefore, it holds that y / 2 Y u , which implies y(t) = 2 min R ⌦ u 2 d⌦ 0, i.e., 2 min R ⌦ u 2 d⌦, where 2 min = 1 C(⌦) . For example, whenever ⌦ = {(x, y) 2 R 2 | |x + y| < 1}, we obtain 2 = 2 ⇡ 2 .
Note that in the example above, for which the barrier functional is fixed, the verification of the inequalities in Theorem 3.1 can be involved. Moreover, when the dynamics are nonlinear or spatially varying and for more general initial/unsafe sets, the selection of the barrier certificate candidate is less obvious. Therefore, we bring forward a numerical method to automate the verification steps and hence the construction of the barrier certificates in the next section.

Construction of Barriers Functionals

In this section, we study a specific class of barrier functionals and particular sets U 0 and Y u , for which the inequalities (3) become integral inequalities. For the case of polynomial data, the verification of the inequalities can be cast as constraints of an SDP. Furthermore, we set ⌦ = (0, 1). Note that any bounded open subset of the real line can be mapped into this domain 1 .

In the previous sections, the barrier functionals were only assumed to be continuously differentiable with respect to time. In order to present computational tools based on SDPs, hereafter we assume that the barrier functional takes the form of an integral functional.

Verifying Integral Inequalities with Integral Constraints

In order to check inequalities (3) and ( 5) based on the method proposed in [START_REF] Valmorbida | Stability analysis for a class of partial differential equations via semidefinite programming[END_REF],

we require verifying an integral inequality subject to a number of integral constraints.

That is, we need to solve the following class of problems

R 1 0 f i (t, x, D ↵ u) dx 0, subject to R 1 0 s i (t, x, D ↵ u) dx 0, i = 1, 2, . . . , r. (8) 
where

u : R 0 ⇥ ⌦ ! R n , f i , s i 2 R[t, x, D ↵ u] and max(deg(s i ), deg(f i )) = k. Let (n, k) := (n+k 1)! (n 1)!k! .
Then, we can represent f i and s i as the following quadratic-like forms

f i (t, x, D ↵ u) = ⇣ ⌘ d k 2 e (D ↵ u) ⌘ 0 F i (t, x) ⌘ d k 2 e (D ↵ u)
1 A domain (a, b) can be mapped to (0, 1) by the following change of variables

x = x a b a . s i (t, x, D ↵ u) = ⇣ ⌘ d k 2 e (D ↵ u) ⌘ 0 S i (t, x) ⌘ d k 2 e (D ↵ u) with F i , S i : R 0 ⇥ ⌦ ! S (n↵,d k 2 e) .
The approach we develop here is reminiscent of S-procedure [START_REF] Polik | A survey of the S-lemma[END_REF] for LMIs. The S-procedure provides conditions under which a particular quadratic inequality holds subject to some other quadratic inequalities (for example, within the intersection of several ellipsoids). Similar conditions for checking polynomial inequalities within a semi-algebraic set were developed in [START_REF] Papachristodoulou | A tutorial on sum of squares techniques for systems analysis[END_REF][START_REF] Parrilo | Structured semidefinite programs and semialgebraic geometry methods in robustness and optimization[END_REF] thanks to Putinar's Positivstellensatz [START_REF] Lasserre | Moments, Positive Polynomials and Their Applications[END_REF]Theorem 2.14]. However, current machinery for including integral constraints includes multiplying the integral constraint and subtracting it from the inequality (see Proposition 9 in [START_REF] Papachristodoulou | A tutorial on sum of squares techniques for systems analysis[END_REF]). In the following, we propose an alternative to the latter method that can be used to verify the feasibility problem [START_REF] Wisniewski | Certificate for safe emergency shutdown of wind turbines[END_REF].

Consider the following set of integral constraints

S = ⇢ u 2 C ↵ (⌦; R n ) | Z ⌦ s i (t, x, D ↵ u) dx 0, i = 1, 2, . . . , r . (9) 
Note that in this setting, we can also represent sets as u | R ⌦ g(t, x, D ↵ u) dx = 0 by selecting s 1 = g and s 2 = g.

Define v i (t, x) := Z x 0 s i (t, x, D ↵ u) dx, ( 10 
)
satisfying 8 > < > : v i (t, 0) = 0, @ x v i (t, x) s i (t, x, D ↵ u(t, x)) = 0, (11) 
for i = 1, 2, . . . , r. Using [START_REF] Kurzhanski | Ellipsoidal techniques for reachability analysis: internal approximation[END_REF], we can represent S as

S = {u 2 C ↵ ⌦ | v i (t, 1) 0, i = 1, 2, . . . , r} . Lemma 5.1. Consider problem (8) and let t 2 T ✓ R 0 . Let v(t, x) = [ v1(t,x) ••• vr(t,x) ] 0 and s(x, D ↵ u) = [ s1(x,D ↵ u) ••• sr(x,D ↵ u) ] 0
. If there exists a vector function m :

T ⇥ ⌦ ! R r
and a vector n 2 R r 0 such that

Z 1 0 f i (t, x, D ↵ u) dx n 0 v(t, 1)+ Z 1 0 m 0 (t, x) ⇣ @ x v(t, x) s (t, x, D ↵ u(t, x)) ⌘ dx > 0, (12) 
for all u 2 U and all t 2 T , then (8) is satisfied.

Proof:. From ( 11), we have that for any m :

R 0 ⇥ ⌦ ! R r m 0 (t, x) (@ x v(t, x) s(t, x, D ↵ u(t, x))) = 0, 8x 2 ⌦.
Hence, since v and u are related according to [START_REF] Tomlin | Computational techniques for the verification of hybrid systems[END_REF], we obtain

Z 1 0 m 0 (t, x) (@ x v(t, x) s(t, x, D ↵ u(t, x))) dx = 0.
Consequently, if inequality ( 12) is satisfied, we infer

Z 1 0 f i (t, x, D ↵ u) dx > n 0 v(t, 1), 8t 2 T .
Finally, since n 0 v(t, 1) 0, for all u 2 S, we conclude that (8) holds. ⇤

Note that inequality (12) can be checked using the method discussed in [START_REF] Valmorbida | Stability analysis for a class of partial differential equations via semidefinite programming[END_REF]. In order to incorporate the integral constraints, we introduced the (dummy) dependent variables v i (t, x), satisfying [START_REF] Tomlin | Computational techniques for the verification of hybrid systems[END_REF], and their partial derivative with respect to x. 160

Computational Formulation

We impose the following structure for the barrier functionals

B(t, u) = Z ⌦ ⇣ ⌘ d k 2 e (D ↵ u) ⌘ 0 B(t, ✓) ⇣ ⌘ d k 2 e (D ↵ u) ⌘ d✓ (13) 
where ⌦ = (0, 1), B :

R 0 ⇥ ⌦ ! R (n↵,d k 2 e)⇥ (n↵,d k 2 e) , B(t, x) 2 C 1 [t], 8x 2 ⌦,
and the following quadratic-like structures for the unsafe and the initial sets

Y u = ⇢ u 2 U | Z ⌦ ⇣ ⌘ d k 2 e (D ↵ u) ⌘ 0 Y (t, ✓) ⇣ ⌘ d k 2 e (D ↵ u) ⌘ d✓ 0 , (14a) 
and the set of initial conditions

U 0 = ⇢ u 0 2 U | Z ⌦ ⇣ ⌘ d k 2 e (D ↵ u) ⌘ 0 U 0 (t, ✓) ⇣ ⌘ d k 2 e (D ↵ u) ⌘ d✓ 0 . (14b) 
where, Y :

R 0 ⇥⌦ ! R (n↵,d k 2 e)⇥ (n↵,d k 2 e) and U 0 : R 0 ⇥⌦ ! R (n↵,d k 2 e)⇥ (n↵,d k 2 e) .
The following proposition applies Lemma 5.1 to formulate integral inequalities to verify the conditions of Theorem 3.1 considering barrier functional [START_REF] Prajna | A framework for worst-case and stochastic safety verification using barrier certificates, Automatic Control[END_REF]. In this case, the constraint set S as defined in ( 9) is given by S = Y u [ U 0 , with the sets in [START_REF] Prajna | Methods for safety verification of time-delay systems[END_REF] defined as

s 1 (t, x, D ↵ u) = ⇣ ⌘ d k 2 e (D ↵ u) ⌘ 0 Y (t, x) ⇣ ⌘ d k 2 e (D ↵ u) ⌘ , s 2 (t, x, D ↵ u) = ⇣ ⌘ d k 2 e (D ↵ u) ⌘ 0 U 0 (t, x) ⇣ ⌘ d k 2 e (D ↵ u) ⌘ . ( 15 
) Proposition 5.2. If there exist B : [0, T ] ⇥ ⌦ ! R (n↵,d k 2 e)⇥ (n↵,d k 2 e) or B(t, u)
as in [START_REF] Prajna | A framework for worst-case and stochastic safety verification using barrier certificates, Automatic Control[END_REF], m : T ⇥ ⌦ ! R 2 and n 2 R 2 0 such that the following inequalities are satisfied

B(T, u(T, x)) B(0, u 0 ) n 0 h v2(T,1) v1(0,1) i + Z ⌦ h m2(T,✓) m1(0,✓) i 0 h @ ✓ v2(T,✓) s2(T,x,D ↵ u(T,✓)) @ ✓ v(0,✓) s1(0,x,D ↵ u0(✓)) i d✓ > 0, (16a) 
with s 1 and s 2 as defined by (15) and v 1 and v 2 as defined by [START_REF] Kurzhanski | Ellipsoidal techniques for reachability analysis: internal approximation[END_REF], and

Z ⌦ ✓ ⇣ ⌘ d k 2 e (D ↵ u) ⌘ 0 @ t B(t, ✓) ⇣ ⌘ d k 2 e (D ↵ u) ⌘ + 2 ⇣ ⌘ d k 2 e (D ↵ u) ⌘ 0 B(t, ✓)r ⇣ ⌘ d k 2 e (D ↵ u) ⌘ 0 @ t (D ↵ u) ◆ d✓  0, (16b) 8t 2 [0, T ], 8u 2 U, then (3) holds. 
A method to solve integral inequalities as [START_REF] Sloth | On the existence of compositional barrier certificates[END_REF] was proposed in [START_REF] Valmorbida | Stability analysis for a class of partial differential equations via semidefinite programming[END_REF] (also see [START_REF] Valmorbida | Convex solutions to integral inequalities in two-dimensional domains[END_REF] for the formulation for ⌦ ⇢ R 2 ). In the proposed method, the problem of checking 165 an integral inequality is cast as the problem of solving a differential linear matrix inequality. Such a formulation is possible thanks to the use of quadratic-like expressions as in ( 13), [START_REF] Prajna | Methods for safety verification of time-delay systems[END_REF]. Furthermore, it is demonstrated that, for polynomial data, the corresponding differential matrix inequalities can be converted to a Sum-of-Squares (SOS)

program, which is then cast as an SDP. The numerical results presented in the next section consider the problem data to be polynomial, i.e., the functions B, m, Y , U 0 appearing in the inequalities of Proposition 5.2 are polynomials on variables t and x, and the operator F in (1) may be nonlinear and defined by a polynomial on u and its spatial derivatives with coefficients that are polynomials on the spatial variables. The formulation of the SDPs can be automated and a plug-in to SOSTOOLS [START_REF] Valmorbida | Introducing INTSOSTOOLS: A SOS-TOOLS plug-in for integral inequalities[END_REF] has been developed.

Examples

We now illustrate the proposed results with two numerical examples. The first example is associated with the option pricing problem from quantitative finance. The second example concerns a diffusion-reaction-convection PDE. The numerical results

given in this section were obtained using SOSTOOLS v. 3.00 [START_REF] Papachristodoulou | SOSTOOLS: Sum of squares optimization toolbox for MATLAB[END_REF] and the associated SDPs were solved using SeDuMi v.1.02 [START_REF] Sturm | Using SeDuMi 1.02, a MATLAB toolbox for optimization over symmetric cones[END_REF].

Example 1: Option Pricing

Consider the following linear PDE

@ t u(t, s) = 2 s 2 2 @ 2 s u(t, s) + rs@ s u(t, s) ru(t, s), (t, s) 2 [0, T ] ⇥ [0, s], (17) 
which is the (forward) Black-Scholes equation for a non-dividend-paying stock (see [38, p. 331]). For the European call option the terminal and the boundary conditions are given as where K > 0 is the strike price. Assuming the stock is at-the-money, f (s) = s K.

8 > > > > < > > > > : u(T, s) = f (s) = max {s K, 0} , u(t, 0) = 0, u(t, s) = s,
The parameter values for a European call option [38, p. 338] are described as We are interested in checking the safety of the solutions to [START_REF] Prajna | On the necessity of barrier certificates[END_REF] such that the average option price 1 s R s 0 u(T, s) ds does not exceed some price . Of course, a minimization 185 over gives us an estimate on the actual average option price.

To this end, we define

Y u = ⇢ u 2 L 1 [0,s] | 1 s Z s 0 u(0, ✓) d✓ 0 .
Consider the following barrier functional

B(t, u(t, x)) = Z s 0 b(t, ✓)u 2 (t, ✓) d✓.
where 

Diffusion-Reaction-Convection PDE

Consider the following nonlinear PDE @ t u = @ 2 x u + u 2u@ x u, x 2 (0, 1), t > 0

where > 0, and u(t, 0) = u(t, 1) = 0. Due to the presence of a nonlinear convection term, the solutions with ⇡ 2 (otherwise unstable) may converge to a different stationary solution. Figure 2 depicts a solution to PDE [START_REF] Wisniewski | Converse barrier certificate theorems[END_REF] with > ⇡ 2 . This stems from the fact that the nonlinear convection term transfers low wave number components of the solutions to the high wave number ones for which the diffusion term has a stabilizing effect. This phenomenon appears in the solutions of some important nonlinear PDEs, including Kuramoto-Sivashinsky equation [START_REF] Fantuzzi | Construction of an optimal background profile for the Kuramoto-Sivashinsky equation using semidefinite programming[END_REF], Burgers Equation [START_REF] Krstic | On global stabilization of Burgers equation by boundary control[END_REF] and the KdV equation [START_REF] Marx | Global stabilization of a Korteweg-De Vries equation with saturating distributed control[END_REF].

We are interested in computing the maximum value for parameter , such that the solutions starting in

U 0 = ⇢ u 0 | Z 1 0 u 2 0 + (@ ✓ u 0 ) 2 d✓  1 , (19) 
which implies ku 0 k H 1 (0,1)  1, do not enter the set

Y u = ⇢ u | Z 1 0 u 2 + (@ ✓ u) 2 d✓ (6) 2 ,
i.e., kuk H 1 (0,1)

6 for all t > 0. To this end, we consider the following barrier functional structure

B(t, u(t, x)) = Z 1 0 h u(t,✓) @ ✓ u(t,✓) i 0 M (✓) h u(t,✓) @ ✓ u(t,✓) i d✓, (20) 
where M (✓) 2 R 2⇥2 . Applying Corollary 3.3 and performing a line search for , the maximum parameter , for which the solutions are Y u -safe, is found to be = 1.196⇡ 2 , for which the barrier functional (20) was constructed with a degree-16 M (✓)

as given in Appendix B. This is consistent with the numerical experiments shown in Figure 3, where the H 1 ⌦ -norm of the solution to PDE (18) with = 1.2⇡ 2 was computed for four different initial conditions u 0 (x) 2 U 0 as in [START_REF] Artstein | Stabilization with relaxed controls[END_REF] 

Conclusion and Future Work

We developed a method based on barrier certificates for verifying whether the solutions of a PDE are safe with respect to an unsafe set. Numerical examples illustrated the computation of barrier functional certificates by SDPs for problems with polynomial data and equations in one-dimensional spatial domain.

Prospective research can consider bounding functionals of the states of nonlinear stochastic differential equations (SDEs) [START_REF] Ahmadi | An optimization-based method for bounding state functionals of nonlinear stochastic systems[END_REF], where a method for safety verification of backward-in-time PDEs is developed and used to bound state functionals of SDEs thanks to the Feynman-Kac PDE. This method also has direct applications to optimal control of stochastic systems, wherein the Hamilton-Jacobi-Bellman equation can be used.

Neglecting the terms with coefficients smaller than 10 4 , the constructed certificate for Example 2 is given by 

M (✓) =

Figure 1 :

 1 Figure1: Illustration of a barrier functional for a PDE system: any solution u(t, x) with u(0, x) 2 U 0 (depicted by the shaded area) satisfies u(T, x) / 2 Yu. The system is Yu-safe at time t = T but not for 8t > 0.

110 Example 3 . 4 .

 34 (Performance Bounds) Consider the heat equation defined over a domain ⌦ ⇢ R 2 with smooth boundary

T

  = 0.5 (years), K = $40, r = 0.1, = 0.2.

  Figure3, where the H 1 ⌦ -norm of the solution to PDE (18) with = 1.2⇡ 2 was computed for four different initial conditions u 0 (x) 2 U 0 as in[START_REF] Artstein | Stabilization with relaxed controls[END_REF].

Figure 2 :

 2 Figure 2: The solution to PDE (18) for = 1.2⇡ 2 .

Figure 3 :

 3 Figure 3: The evolution of H 1 (0,1) -norm of solutions to (18) with = 1.2⇡ 2 for different initial conditions. The red and green lines show the boundaries of Yu and U 0 , respectively.

2 4M 5 ,

 25 11 (✓) M 12 (x) M 12 (✓) M 22 (✓) 3 10 4 M 11 (✓) = 12.96✓

Table 1 :

 1 Bounds on the average option price.

	deg(b)	1	2	3	4	5	6
	?	44.4285 26.1093 22.7489 19.5572 18.8264 18.2391

  The actual upper bound obtained from the solution to[START_REF] Prajna | On the necessity of barrier certificates[END_REF] [39, p. 76] for the average option price is 18.227. As it can be observed from 190 the table, increasing the degree of the involved polynomials improves the accuracy of

b 2 R[t, ✓]. Using Proposition 5.2 and a minimization over , we obtain the upper bounds on the average option price as given in Table

1

. In these numerical experiments, we set deg(b) = deg(m).

? . The constructed barrier functional certificate of degree 6 is given in Appendix B.

  16 + 27.92✓15 55.38✓ 14 160.6✓ 13 222.4✓ 12 + 180.8✓ 11 + 199.1✓ 10 + 332.9✓ 9 343.5✓ 8 454.9✓ 7 390.1✓ 6 + 329.9✓ 5 + 666.7✓ 4 83.37✓ 3 663.4✓ 2 + 418.7✓ 74.97, 10 4 M 12 (✓) =1.39✓ 16 26.03✓ 15 + 10.76✓ 14 + 22.53✓ 13 14.63✓ 12 22.81✓ 11 + 52.28✓ 10 67.56✓ 9 69.45✓ 8 87.54✓ 7 + 79.37✓ 6 + 262.8✓ 5 32.63✓ 4 447.1✓ 3 + 417.7✓ 2 157.6✓ + 23.88, 10 4 M 22 (✓) = 1.607✓ 16 26.85✓ 14 + 47.17✓ 13 + 38.69✓ 12 77.1✓ 11 34.36✓ 10 + 66.47✓ 9 + 13.36✓ 8 34.57✓ 7 1.477✓ 6 + 17.13✓ 5 9.405✓ 4 + 2.768✓ 3 .
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Appendix A. Well-posedness of PDE Systems

We briefly review some aspects related to the well-posedness of PDEs. In the case where F is a linear operator, the well-posedness problem of ( 1) is tied to whether F generates a strongly continuous semigroup denoted C 0 -Semigroup [START_REF] Curtain | An Introduction to Infinite-Dimensional Linear Systems Theory[END_REF]Chapter 2.1].

In this respect, the Hille-Yosida theorem [START_REF] Staffans | Well-Posed Linear Systems[END_REF]Theorem 3.4.1], [START_REF] Curtain | An Introduction to Infinite-Dimensional Linear Systems Theory[END_REF]Theorem 2.1.12] provides necessary and sufficient conditions for such generators. In addition, given an operator, the Lumer-Phillips theorem [45, Theorem 3.4.5], [START_REF] Lumer | Dissipative operators in a banach space[END_REF], [START_REF] Lumer | Dissipative operators in a banach space[END_REF]Theorem 3.8.6] presents conditions for the generator of a strongly continuous semigroup that are easier to verify based on checking whether the operator is dissipative. 

Appendix B. Numerical Results

Neglecting the terms with coefficients smaller than 10